
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11724–11735
August 11-16, 2024 ©2024 Association for Computational Linguistics

An Entropy-based Text Watermarking Detection Method

Yijian LU1, Aiwei Liu2 , Dianzhi Yu1 , Jingjing Li1 , Irwin King1*

1The Chinese University of Hong Kong
2Tsinghua University

luyijian@link.cuhk.edu.hk, liuaw20@mails.tsinghua.edu.cn

dianzhi.yu@link.cuhk.edu.hk, lijj@link.cuhk.edu.hk, king@cse.cuhk.edu.hk

Abstract

Text watermarking algorithms for large lan-
guage models (LLMs) can effectively identify
machine-generated texts by embedding and de-
tecting hidden features in the text. Although the
current text watermarking algorithms perform
well in most high-entropy scenarios, its per-
formance in low-entropy scenarios still needs
to be improved. In this work, we opine that
the influence of token entropy should be fully
considered in the watermark detection process,
i.e., the weight of each token during water-
mark detection should be customized according
to its entropy, rather than setting the weights
of all tokens to the same value as in previous
methods. Specifically, we propose Entropy-
based Text Watermarking Detection (EWD)
that gives higher-entropy tokens higher influ-
ence weights during watermark detection, so
as to better reflect the degree of watermarking.
Furthermore, the proposed detection process
is training-free and fully automated. From the
experiments, we demonstrate that our EWD
can achieve better detection performance in
low-entropy scenarios, and our method is also
general and can be applied to texts with differ-
ent entropy distributions. Our code and data is
available1. Additionally, our algorithm could
be accessed through MarkLLM (Pan et al.,
2024)2.

1 Introduction

The rapid advancements in large language models
(LLMs) have enabled them to generate high-quality
outputs indistinguishable from humans, and also
achieve better performance on various real-world
generation tasks. However, this gives rise to the po-
tential risk of misuse. Specifically, LLM-generated
assignments, including essays and codes, pose a
threat to academic integrity. Misusing LLMs to

*Corresponding Author.
1https://github.com/luyijian3/EWD
2https://github.com/THU-BPM/MarkLLM

Green Token
Ratio within
Different Entropy
Ranges

Watermarked High-entropy Text Watermarked Low-entropy Code

An example of this is choosing a
card from the top thirty cards
in a deck. If you draw a card
from the top thirty cards in the
deck, the probability of drawing
the top card from the top thirty
cards is the same.

if n<2:
return False

if n%2==0:
return False

for i in range(3,int(n**0.5)+1,2):
if n%i==0:

return False
return True

Entropy tag
High Entropy
Mid Entropy
Low Entropy

z-score:
9.29

z-score:
2.54

Figure 1: This figure shows that compared with wa-
termarked texts with mostly high-entropy tokens, wa-
termarked codes with mostly low-entropy tokens see
significantly less green tokens, resulting in a small de-
tection z-score. Furthermore, on the bottom of the fig-
ure, we demonstrate that the green token ratio in tokens
decreases as their entropy decreases.

generate fake news can also lead to negative so-
cietal consequences (Megías et al., 2021). There-
fore, algorithms capable of effectively identifying
machine-generated contents have become essential.

Text watermarking algorithms can effectively al-
leviate the problem of LLM misuse by embedding
and detecting hidden features in LLM-generated
contents. For example, the watermarking algorithm
proposed by Kirchenbauer et al. (2023a) (KGW)
divides the LLM’s model vocabulary into two lists,
green and red, and increases the logits value of
tokens in the green list by a positive constant (wa-
termark strength). The modified logits will bias
the LLM to sample most tokens from the green
list. As a result, the watermarked text containing
a dominant number of green tokens will be recog-
nized by the watermark detector while human texts
will not. However, the successful watermark gen-
eration is largely tied to the token entropy during
text generation. Under the watermark algorithm,
the probability of sampling a token from the green
list is proportional to its entropy, meaning that low-

11724

https://github.com/luyijian3/EWD
https://github.com/THU-BPM/MarkLLM

entropy tokens would produce far less green tokens
than high-entropy tokens, as illustrated by Figure 1.
In that case, green tokens will occupy only half
of a watermarked low-entropy text, resulting in a
smaller detection score and being mistakenly la-
beled as human-written. Furthermore, to ensure
the text quality of output contents, the watermark
strength in the generator cannot be excessively en-
larged to forcefully modify the logits and sample
more tokens from the green list (Tu et al., 2023).

Consequently, a crucial problem is how to im-
prove the watermark detector so that low-entropy
watermarked texts with a limited number of green
tokens can be successfully identified. Lee et al.
(2023) propose a selective watermark detector
named SWEET to better reflect the watermark level
in low-entropy texts. Specifically, they only detect
tokens that exceed a certain entropy threshold, thus
excluding tokens that are difficult to be affected
by the watermark generator. However, this method
itself has three weaknesses. First, their method
requires a manually-set entropy threshold by ana-
lyzing samples of code written by humans. Second,
their method also does not consider the distribution
of token entropy, that is, their method treats all to-
kens that exceed the threshold as the same, while
in fact the entropy of these tokens may vastly vary.
Third, the performance gain using the SWEET de-
tector is limited and there is still significant room
for further advancement.

To better address the low-entropy watermarking
detection problem than previous methods, we intro-
duce an Entropy-based Text Watermark Detection
(EWD) algorithm to fully consider the role of en-
tropy in the detection of a given text. Specifically,
we propose that the influence of a token during
detection should be proportional to its entropy. Fur-
thermore, in order to fully reflect this positive re-
lation between token entropy and detection influ-
ence, we utilize a monotonically-increasing and
continuous function to generate influence weights
from token entropy. By creating a gap between the
weights of high entropy tokens and low entropy
tokens, we ensure that if the watermark generation
algorithm can hardly affect a low-entropy token,
the state of that token will make minimal impact to
the detection result. Overall, our method has three
major benefits. First, the method saves the trou-
ble of altering the watermark generation process.
Second, compared to SWEET, our method is more
efficient as the acquisition of token weights is an
independent and training-free process, avoiding the

trouble of a human dataset or any manual opera-
tions. Third, the proposed detection scheme can be
applied to machine-generated texts of all entropy
levels, not solely low-entropy texts.

From the experiments, we demonstrate that the
detection accuracy of EWD in low-entropy sce-
narios surpasses existing baselines. Furthermore,
EWD exhibits versatility in detecting texts of high
entropy levels, as well as robustness against the
back-translation watermark-removal attack.

In summary, the contributions of our work are
summarized as follows:

• We propose an entropy-based text watermark-
ing detection method called EWD.

• We provide a theoretical analysis of the detec-
tion accuracy in the low-entropy setting.

• We show that EWD not only improves the
detection accuracy under the low-entropy sce-
nario, but also provides similar performance
as other methods in high-entropy texts.

2 Related Work

In this section, we aim to review existing works
on text watermarking algorithms. Overall, text
watermarking can be divided into two different
categories: watermarking for existing texts and
watermarking for LLMs Liu et al. (2023).
Text Watermarking for Existing Texts. Water-
mark message can be embedded into existing text
by performing a series of modifications, such as
lexical substitutions (Munyer and Zhong, 2023;
Topkara et al., 2006; Yang et al., 2022; Yoo et al.,
2023a; Yang et al., 2023). Those methods typically
replace words with their alternatives to place wa-
termark. For example, Topkara et al. (2006) used
WordNet(Fellbaum, 1998) as his dictionary while
Munyer and Zhong (2023) utilized a pretrained
Word2Vec model to select the alternative words.
To ensure that the repalced words would cause
minimal changes to the text semantics, Yang et al.
(2022) proposed a BERT-based infill model to gen-
erate replacement with regard to the sentence mean-
ing. To improve the robustness of the algorithm
against possible corruptions, Yoo et al. (2023a)
fine-tuned the infill model to generate consistent
word distribution given several corrupted texts of
the same origin. However, the level of modification
to an existing text is often limited to protect text
quality in the watermarked output. Hence, water-
marking for existing text is less favored due to its
limited capacity and effectiveness.

11725

Text Watermarking for LLMs. Watermark em-
bedding can also be conducted during the LLM
generation phase, either by modifying the token
sampling or model logits. Christ et al. (2023) in-
troduced a technique that incorporates watermark
message by predefining a random number sequence
for sampling the tokens. To enhance resistance to
text modifications, Kuditipudi et al. (2023) utilized
the Levenshtein distance in matching the text and
numbers. For the latter, the most representative
one that modifies the model logits is proposed by
Kirchenbauer et al. (2023a) based on previous to-
kens during text generation. There are a number of
works proposed on top of this algorithm with en-
hanced performance in payload (Yoo et al., 2023b;
Wang et al., 2023), robustness (Zhao et al., 2023;
Liu et al., 2024b; Kirchenbauer et al., 2023b; Ren
et al., 2023; He et al., 2024) and unforgeability (Liu
et al., 2024a; Fairoze et al., 2023). For example,
Yoo et al. (2023b) extends the method to a multi-
bit setting.Wang et al. (2023) proposed to utilize a
proxy LLM for multi-bit message embedding. To
increase robustness against editing attacks, Zhao
et al. (2023) proposed to set a universal green list
during the generation process. Liu et al. (2024b)
proposed a different approach called SIR which uti-
lizes the semantic meaning of previous generated
text to determine the green lists. Inspired by Liu
et al. (2024b), He et al. (2024) firstly proposed the
Crosslingual Watermark Removal Attack (CWRA),
then offered X-SIR as a defense method against
CWRA. Also, to enhance the unforgeability of text
watermark, Liu et al. (2024a) introduced a neu-
ral network for text generation and detection. In
this work, we focus only on the detection of low-
entropy texts. Lee et al. (2023) designed a selective
watermark generation and detection approach for
low-entropy code generation. However, it requires
a human code dataset to help manually determine
the entropy threshold. To sum up, there lacks an
effective method to improve the low-entropy detec-
tion problem.

3 Preliminaries

3.1 Text Generation Process of LLMs

Here we introduce the necessary concepts used in
this paper. A LLM, M takes a prompt as input and
outputs subsequent tokens as the corresponding re-
sponse. Specifically, we denote the initial prompt
as xprompt. Then, at the l-th step, the input to the
LLM is the xprompt and the already-generated to-

kens T:(l−1). The LLM would generate a distribu-
tion logits PLLM (xprompt, T:(l−1)), consisting of
PLLM (v|xprompt, T:(l−1)) over each token v of its
model vocabulary based on the joint input.

3.2 Text Watermarking

The general watermarking scheme used in this pa-
per is called KGW, which is to modify the logits
generation process of an original LLM M to ac-
quire the watermarked LLM, denoted as M̃ . The
modification on the original logits by adding a
small value (the watermark strength δ) to the logits
of green-list tokens will result in LLM’s prefer-
ence on those tokens in the output text. Thus such
modification could likely produce a green token.

The detection algorithm is to calculate the water-
mark level using the following equation,

z = (|s|G − γ|T |)/
√
γ(1− γ)|T |, (1)

where |s|G is the number of green tokens in text T
and γ is the green-list ratio in the model vocabulary.
The algorithm would output Detect(T) = 1 if
the value is greater than a given threshold, and
Detect(T) = 0 otherwise.

3.3 Token Entropy and Low-entropy Scenario

The entropy of a token is measured by the degree
of spread-out of the logits generated by the LLM
during the sampling process of that token. In this
paper, we follow the spike entropy from KGW,

SE(k) =
∑

v

pv
1 + τpv

, (2)

where pv is the logits value of each token v in the
vocabulary when sampling the token k, and τ is
a scalar. The entropy value reaches the minimal
value if the logits concentrates on a single token
and the maximal value given a uniform distribution.

The watermark generation process is more ef-
fective on a high-entropy token where the logits
distribution is nearly uniform, so that the modifica-
tion could produce a green-list token easily. On the
other hand, a low-entropy token is almost determin-
istic and hard to be affected. Therefore, the green-
list ratio for a low-entropy token is much lower,
resulting in fewer green tokens in the output. There-
fore, low-entropy watermarked texts pose threats
on the detection accuracy as they are easily identi-
fied as human-written.

11726

4 Proposed Method

In this section, we will first explain the motivation
by analysing the watermark generation effect on
low-entropy tokens, then provide a detailed expla-
nation of the proposed EWD.

4.1 Motivation

Entropy plays an important role in the watermark
generation process, yet its role in the detection
process has been underestimated. In the KGW
generator, a positive constant is added to the log-
its value of all green-list tokens. The distribution
level of the logits, represented by the entropy, mat-
ters significantly during this process. When the
logits resembles a uniform distribution, this logits
modification would very likely produce a green-list
token. However, when the logits concentrates on
one single token, this watermark embedding pro-
cess would hardly affect the token sampling and
produce a green token with a much lower proba-
bility close to the green list ratio γ. Since entropy
determines the watermark generation process, then
it should also affect the watermark detection. How-
ever, in the KGW detector, all tokens are of the
same influence, no matter how their entropy varies.

4.2 Entropy-based Text Watermarking
Detection

Our proposed EWD aims to fully consider the
role of entropy in the watermark detection process.
Specifically, we firstly propose a positive influence-
entropy relation, then utilize entropy for detection
weight customization.

The influence of a token during detection should
be proportional to its entropy. From previous sec-
tions, we explain why a high-entropy token is eas-
ier to be affected by the watermark generator, as
well as the situation for a low-entropy token. Since
a low-entropy token is hard to be affected, then
whether it is sampled from the green list or not
should have a limited influence on the overall wa-
termark level. Similarly, when an easy-to-affect
(high-entropy) token is not green, it should con-
tribute more to showing that the text T is not
watermarked. Therefore, we introduce a positive
influence-entropy relation to determine how much
a token t can influence the detection result:

I(Detect(T) = 1(t ∈ G)|t) ∝ SE(t), (3)

where T is the given text and G is the green list.

Table 1: Features of detection weights by different
methods and how they can reflect the proposed posi-
tive influence-entropy relation.

Methods Detection Weight Reflection of
Eq. (3)

KGW Constant None
SWEET Binary Partial

EWD Customized Full

Algorithm 1 Entropy-based Watermark Detection
Input: a language model M , input text T , detection key

k, window size m, detection threshold τ , green list
ratio γ

Compute token entropy based on model logits,
SE = SpikeEntropy[M(T)] = [SE0, SE1....]

Compute token weights based on token entropy,
W = ComputeWeight[SE] = [W0,W1....]

for l = m,m+ 1.... do
Use the detection key k and previous m tokens
Tl−m:l−1 to find the green list G

If current token Tl is inside the green list G, then
add its weight Wl to |s|G

Compute the detection score z′ by Eq. (5)
if z′ > τ then return 1, i.e., "Input text is watermarked"
else return 0, i.e., "Input text is not watermarked"

The detection weight of a token should be cus-
tomized based on its entropy to fully reflect the pos-
itive influence-entropy relation. The influence in-
dex in Eq. (3) is represented by the detection weight
of each token. However, the detection weight as-
signing of each token in SWEET fails to reflect the
positive influence-entropy relation. This is because
that inside the two groups of above-threshold to-
kens and below-threshold tokens, the weights of
tokens with different entropy are identical. There-
fore, to fully reflect the influence-entropy relation,
we utilize a monotonically-increasing and contin-
uous function f to customize weights from token
entropy. The weight W (t) of a token t can be illus-
trated as follows:

W (t) = f(SE(t)− C0), (4)

where C0 is the minimal value of the spike entropy
to normalize the entropy input before computing
the weight. Using the entropy-based weight cus-
tomization, even a sight increase in the token en-
tropy will result in a increased detection weight.
Table 1 summarizes the weight features of differ-
ent methods and their reflection of the proposed
influence-entropy relation.

Pseudocode of our proposed detection method
is provided in Algorithm 1. We first acquire the
text entropy by computing the model logits of each
token. The next step is to determine the influence

11727

weight of each token, the output of a designed func-
tion ComputeWeight with their entropy values as
inputs. After obtaining the entropy-based weights
for each token, we then apply the standard detec-
tion procedure by Kirchenbauer et al. (2023a) to
determine the group of green tokens, i.e., com-
puting the green lists using the detection key and
previously generated tokens. Finally, we sum up
the weights of the green tokens |s|G and calculate
the z-score by

z′ = (|s|G − γ

|T |−1∑

i=m

Wi)/

√√√√γ(1− γ)

|T |−1∑

i=m

Wi
2,

(5)
given |s|G and weight Wt of each detected token
t in text T . The detector would give a positive
result if the z-score is greater than the given thresh-
old. It is noticably that the proposed algorithm is
a fully automated process that eliminates the need
for manual operations from the SWEET method.

5 Theoretical Analysis

In this section, we theoretically analyze the Type-I
and Type-II error of our proposed detection method.
Specifically, we compare EWD with two previous
detection methods, KGW and SWEET.

To do so, we adopt the same steps as in KGW
(Kirchenbauer et al., 2023a). Each token in both
watermarked and non-watermarked texts can either
be green or red, so we can model it as a binomial
distribution. While Zhao et al. (2023) set the win-
dow size in the watermark generator as zero (one
universal green list for all tokens) and exhibits ma-
jor token dependence, i.e., the same tokens in the
text are of the same color, in our case, where a non-
zero window size is adopted, the token dependence
is significantly weakened. For example, the same
token with different prefix would exhibit different
sampling result.

Therefore, to simplify and facilitate the process
of theoretical analysis, we make the reasonable
assumption that the sampling of each token is in-
dependent. Hence, the sum of green tokens in the
text can be approximated with a normal distribu-
tion N (µ, σ2) with different sets of mean µ and
variance σ2 for different detection schemes. Fi-
nally, we calculate and compare the probability
of the sum surpassing or falling behind the detec-
tion threshold |s̃|G, which is the |s|G value in each
detection function with a fixed z.

5.1 Type-I Error

Type-I error measures the likelihood a human-
written text is incorrectly identified as being gener-
ated by a watermark algorithm.

In a human-written text T , each token is inde-
pendent of the watermark algorithm. Therefore,
its probability to be included in the green list is γ.
Therefore, KGW’s sum of green tokens is approxi-
mated by N (γ|T |, γ(1− γ)|T |). For SWEET that
only considers high-entropy tokens, such distribu-
tion is modelled as N (γ ˜|T |, γ(1 − γ) ˜|T |), where
T̃ is the text excluding low-entropy tokens. Our
method EWD assign weights to tokens based on en-
tropy, leading to a weighted binomial distribution.
We could also approximate it to a normal distri-
bution with mean µ = γ

∑|T |−1
i=m Wi and variance

σ2 = γ(1− γ)
∑|T |−1

i=m Wi
2.

The theoretical Type-I errors for all detection
methods are the same. When the detection thresh-
old is set to 2, the probabilities for |s|G under each
method to surpass its detection threshold |s̃|G is
identically 2.28%.

5.2 Type-II Error

Type-II error measures the likelihood a machine-
generated text is incorrectly identified as human-
written. For analysis, we assume that a sequence
generated by the watermark algorithm has a length
of |T | = 200 tokens and the watermark algorithm
has hyper-parameters γ = 0.5 and δ = 2.

Originally, KGW samples over 500 watermark-
generated news scripts and reports an average
spike entropy of 0.807. In this section, we fo-
cus specifically on cases with a much lower av-
erage spike entropy. Based on our data, we ap-
proximate the distribution of spike entropy in low-
entropy watermarked texts with a power law dis-
tribution f(x) = axa−1, where the parameters are
a = 0.106, loc = 0.566, scale = 0.426. Un-
der this distribution, the average spike entropy is
0.608. The following probability from KGW shows
a lower bound of the probability of a token k being
sampled from the green list:

P[k ∈ G] ≥ γα

1 + (α− 1)γ
SE(k), (6)

where α = exp(δ). We would utilize this probabil-
ity later in the calculation of µ and σ2.

KGW. Based on Eq. (6), the statistical µ and
upper bound of σ2 can be obtained as

∑
k P[k ∈ G]

and
∑

k P[k ∈ G] · (1 − P[k ∈ G]). When the

11728

Table 2: This table summarizes our calculated theoreti-
cal Type-I and Type-II error using different methods in
low-entropy detection scenarios. The data in the table is
presented in percentages (%). Lower values indicates
better detection accuracy.

Methods Type-I Error Type-II Error
KGW 2.28 84.1

SWEET 2.28 41.7
EWD 2.28 33.4

average entropy SE∗ given by the simulated power
law distribution is 0.608, we approximate |s|G by
N (107.10, 49.70). If we set a threshold of z = 2
(corresponding to |s̃|G = 114.14) for detection, the
false negative rate exceeds 84.1%. This means that
KGW is not good at detecting the watermarked
texts in cases of low entropy.

SWEET. Following SWEET, we set the entropy
threshold at 0.695 and exclude all tokens below
this threshold during detection. The average spike
entropy SE∗ and remaining text length ˜|T | then
change to 0.82 and 24, respectively. Using the
equations from KGW, we can get the approxima-
tion as N (17.48, 4.84). If we set a threshold of z
= 2 (corresponding to |s̃|G = 17.02) for detection,
the false negative rate exceeds 41.7%.

EWD. EWD assigns higher influence weights to
tokens with high spike entropy. Note that in experi-
ments, we use several weight functions, and here,
for analysis purposes, we use a linear weight func-
tion for each token k: W (k) = SE(k)−C0, where
C0 is a constant. Based on Eq. (6), the statistical µ
and σ2 can be obtained as

∑
k P[k ∈ G]·W (k) and∑

k W (k)2P[k ∈ G] · (1− P[k ∈ G]). Therefore,
we can approximate the |s|G detected by EWD
with N (5.79, 0.31). If we set a threshold of z′

= 2 (corresponding to |s̃|G = 5.55) for detection,
the false negative rate exceeds 33.4% (details in
Appendix A).

Table 2 summarizes our calculated theoretical
Type-I and Type-II error using different methods
in low-entropy detection scenarios. Overall, our
method achieves the lowest Type-II error among all
methods while maintaining the same Type-I error.

6 Experiments

In this section, we first introduce the tasks and
datasets used for watermarked text generation.
Then, we compare the performance of our EWD
against several baselines on those datasets. Next,
we analyze the role of our proposed entropy-based
weight and study the performance of EWD us-

ing different weight computing functions. Finally,
we evaluate the detection performance without the
original prompt, detection speed and robustness of
our EWD.

6.1 Experiment Settings
Tasks and Datasets. There are various text genera-
tion tasks in the field of Natural Language Process-
ing, and here we aim to generate watermarked text
of both low-entropy and high-entropy distributions.
Since our focus is on comparing different detec-
tion methods, we utilize the same KGW watermark
generation algorithms in all the following tasks and
datasets.

For low-entropy scenarios, we target at the task
of code generation by adopting two datasets fol-
lowing Lee et al. (2023), HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021). The two
datasets contain test cases of python programming
problems and corresponding reference answers,
which are utilized as human-written samples. Code
generation is conducted by StarCoder (Li et al.,
2023). During evaluation, the length of both sam-
ples are restricted to be at least 15 tokens.

The first common high-entropy scenario is the
news report generation. Our input prompts to the
pre-trained OPT-1.3B (Zhang et al., 2022) are from
the C4 (Raffel et al., 2020) dataset. Besides, we
include another high-entropy data-to-text genera-
tion task by utilizing Wu et al. (2021)’s version of
the Rotowire dataset (Wiseman et al., 2017). The
dataset consists of NBA game records, presented
as tables, and human-written descriptions. We fine-
tune a T5-small (Raffel et al., 2023) model for text
generation and input the table information to the
fine-tuned model. We generate 200 samples of
length 200 ± 5 tokens for each high-entropy tasks,
using binomial sampling and beam search.
Baselines and Evaluation Metrics. Two detec-
tion methods are selected as baselines. The first is
KGW detector. The second is SWEET’s detector,
which excludes low-entropy tokens during detec-
tion. Note that SWEET proposes both selective
watermark generation and detection, while here
we only adopt the detection part. The selection of
the entropy threshold follows the instructions in
SWEET. For evaluation, we set the false positive
rate (FPR) under 5%, following Zhao et al. (2023)’s
instruction. We report the true positive rate (TPR)
and F1 score for each method.
Hyper-parameters. For the KGW generator, γ
and δ is set to 0.5 and 2, respectively. Binomial

11729

Table 3: Main results on different datasets using KGW, SWEET and our EWD for detection.

Code Detection (Low-entropy Scenario)
HumanEval MBPP

Methods 1%FPR 5%FPR Best 1%FPR 5%FPR Best
TPR F1 TPR F1 F1 TPR F1 TPR F1 F1

KGW 0.331 0.494 0.414 0.567 0.772 0.115 0.205 0.348 0.498 0.744
SWEET 0.455 0.622 0.667 0.778 0.842 0.409 0.577 0.650 0.765 0.865

EWD 0.466 0.633 0.692 0.797 0.859 0.567 0.720 0.744 0.830 0.878
Rotowire (High-entropy Scenario)

Sampling Beam-search
Methods 1%FPR 5%FPR Best 1%FPR 5%FPR Best

TPR F1 TPR F1 F1 TPR F1 TPR F1 F1
KGW 1.000 0.995 1.000 0.976 1.000 1.000 0.995 1.000 0.976 1.000

SWEET 1.000 0.995 1.000 0.976 1.000 1.000 0.995 1.000 0.976 1.000
EWD 1.000 0.995 1.000 0.976 1.000 1.000 0.995 1.000 0.976 1.000

C4 (High-entropy Scenario)
Sampling Beam-search

Methods 1%FPR 5%FPR Best 1%FPR 5%FPR Best
TPR F1 TPR F1 F1 TPR F1 TPR F1 F1

KGW 0.985 0.990 1.000 0.980 0.992 0.995 0.993 1.000 0.980 0.997
SWEET 1.000 0.997 1.000 0.978 1.000 0.995 0.993 1.000 0.976 0.997

EWD 1.000 0.997 1.000 0.978 1.000 0.995 0.993 1.000 0.976 0.997

sampling sets the sampling temperature to a com-
mon value of 0.7. Beam-search sampling sets the
number of beams to 8. To avoid excessive repeti-
tion of text, "no_repeated_ngrams" is set to 16.

6.2 Main Results

Before detection, we measure the generation qual-
ity of all generated texts. Specifically, we are able
to achieve 31.0% and 30.4% in pass@1(Chen et al.,
2021) for the HumanEval and MBPP dataset, re-
spectively, comparable to Lee et al. (2023)’s. For
the Rotowire and C4 dataset, our generated output
can achieve 7.24 and 3.25 in text perplexity (PPL)
using OPT-6.7B (Zhang et al., 2022).

Table 3 shows that for the low-entropy scenario,
watermarked code detection, our detector would
achieve the best detection accuracy against other
baselines. Specifically, for HumanEval and MBPP,
respectively, our method could achieve a 2.5% and
9.4% improvement than SWEET in TPR while
maintaining a low-than 5% FPR.

For the high-entropy scenarios using the Ro-
towire and C4 datasets, the detection performance
of our method is overall very similar to other base-
lines, sometimes even better than some baselines.

6.3 Empirical Analysis

Impact of Entropy-based Weights. In Figure 2,
we provide a few visualizations to show the rea-
son why EWD surpasses other baselines in detec-
tion performance. Figure 2(a) shows the z-scores
of both watermarked and human texts in different
datasets, detected by different methods. Our EWD
method would result in overall higher z-scores for
watermarked texts, and slightly lower z-scores for
human texts. The z-score increase is more signifi-
cant in low-entropy code generation tasks than in
the Rotowire dataset. By enlarging the gap between
the z-scores of watermarked and human texts, our
detector could better distinguish the watermarked
texts. In Figure 2(b), we plot the relationship of
a token’s entropy-based weight and probability of
that token being sampled from the green list. In
human-written texts, there does not exist a relation-
ship between the probability and token weights,
explaining why the z-scores of human text remain
low. Meanwhile, in watermarked texts, the prob-
ability is proportional to the token weight, which
means the tokens assigned with a large weight are
very likely to be sampled from the green list and
contribute to a larger z-score. This proves that our
entropy-based weights can help more accurately
reflect the watermark level in low-entropy texts.

11730

(a) (b)

Figure 2: Subfigure (a) shows the z-scores of watermarked and human texts in the Rotowire, HumanEval and
MBPP datasets, respectively, each being detected with 3 different methods. Subfigure (b) shows the relationship
between token weights and the probability of being green in both watermarked and human texts.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Entropy

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

We
igh

t

Functions
Sigmoid 2
Sigmoid 4
Sigmoid 8
Sigmoid 10
Linear
Exp 2
Exp 4
Exp 8
Exp 10

1 2 4 8 10
Function Strength

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F1
(FP

R<
1%

)

HumanEval Sigmoid (EWD)
HumanEval Linear (EWD)
HumanEval Exp (EWD)
MBPP Sigmoid (EWD)
MBPP Linear (EWD)
MBPP Exp (EWD)
HumanEval (SWEET)
MBPP (SWEET)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Entropy

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

We
igh

t

Functions
Sigmoid 2
Sigmoid 4
Sigmoid 8
Sigmoid 10
Linear
Exp 2
Exp 4
Exp 8
Exp 10

1 2 4 8 10
Function Strength

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F1
(FP

R<
1%

)

HumanEval Sigmoid (EWD)
HumanEval Linear (EWD)
HumanEval Exp (EWD)
MBPP Sigmoid (EWD)
MBPP Linear (EWD)
MBPP Exp (EWD)
HumanEval (SWEET)
MBPP (SWEET)

(b)

Figure 3: We utilize two additional weight functions other than Linear and measured their performance in the code
detection datasets. Subfigure (a) is a visualization of all studied functions, with normalized spike entropy as input.
Subfigure (b) shows each function’s detection F1 under 1% FPR with comparison to the SWEET baseline. Each
data point can correspond to the illustrated function on the left figure by looking at its shape and x-axis value.

Performance with Different Weight Functions.
In the experiments, we utilize a linear function to
gain the entropy-based weights for each token. We
also study two more monotonic increasing func-
tions, the Sigmoid and the Exponential function.
As shown in Figure 3(a), we further change the
function strength to 4 different values in each func-
tion, which represents how far the function deviates
from being linear, for example, "Sigmoid 10" de-
viates from linear more than "Sigmoid 8". The
abovementioned functions are applied in Eq. (4) as
f . Specifically, each function’s gradient is differ-
ent. For our custom Sigmoid functions, the gradient
starts off high and gradually decreases, meaning
that tokens with relatively low entropy will have

significant differences in weights, while tokens
with relatively high entropy will exhibit smaller
differences. Similarly, for our custom Exponential
functions, the gradient starts off low and gradually
increases, meaning that tokens with relatively low
entropy will have smaller differences in weight,
while tokens with relatively high entropy will ex-
hibit larger differences.

Figure 3(b) demonstrates that the two listed
functions with different strength could surpass the
SWEET baseline in terms of detection F1. This
reflects the versatility of our method, as it is appli-
cable to more functions.

Performance without Original Prompts. The
entropy calculation during detection of our EWD

11731

Table 4: Detection performance of watermarked code
using the general prompt instead of original prompts.

Detection w/ General Prompt
Methods F1 under 5%FPR Best F1

KGW 0.498 0.741
SWEET 0.580 0.762

EWD 0.600 0.764

Table 5: This table shows the average time taken to
generate 200-token texts using KGW generator, as well
as the average time taken for detection using different
methods, measured in seconds. The experiment is con-
ducted on a NVIDIA RTX A6000 GPU.

Method Generation Detection
KGW 0.0391

SWEET 9.489 0.0830
EWD 0.0831

and SWEET is conducted with the original prompts.
There exists many real-world scenarios where the
original prompts are available, e.g., some program-
ming assignment/exams, in such cases, our detec-
tion method would produce the most accurate en-
tropy and detection performance. However, it is
possible that the original prompts are not avail-
able during detection. Therefore, we design ex-
periments on MBPP dataset where we use a gen-
eral prompt "def solution(*args):\n”’Generate
a solution\n”’" to replace the original prompt
during entropy calculation. The detection result
can be found in Table 4. Even without the original
prompt, our EWD could achieve better detection
performance against other baselines. However, the
detection performance by both SWEET and EWD
has dropped compared to using original prompts.

Detection Speed. Compared to the KGW de-
tection, both SWEET and our proposed EWD
would demand extra time to compute token en-
tropy. Specifically, our detector would also com-
pute weights given the token entropy before cal-
culating the final z-score. According to Table 5,
the detection time per text is 0.0391, 0.0830 and
0.0831 seconds for KGW, SWEET and our EWD,
respectively. In spite of being double the value of
KGW, our detector remains highly efficient, and the
difference with SWEET is virtually insignificant.

Performance against the Back-translation At-
tack. Watermarked texts usually would be edited
before being detected, which would remove part
of the watermark and cause detection performance
drop. Here we also evaluate the baseline meth-
ods and our EWD under this setting by utilizing
back-translation as the attack to remove watermark.

Table 6: Detection performance of back-translated wa-
termarked texts using different detection methods.

Detection w/ Back-translation

Methods 1%FPR 5%FPR
TPR F1 TPR F1

KGW 0.894 0.940 0.950 0.952
SWEET 0.890 0.938 0.930 0.940

EWD 0.900 0.943 0.942 0.947

Specifically, we firstly generate watermarked texts
using the C4 dataset, then translate them from En-
glish to French, and later back to English again for
detection. In Table 6, our EWD would achieve the
best detection accuracy under 1% FPR and similar
results with KGW under 5% FPR.

7 Conclusion

In this work, we propose a text watermark detec-
tion method called EWD that fully considers the
influence of token entropy. We first establish the
positive influence-entropy relation in the detection
process, then utilize entropy for weight customiza-
tion to fully reflect the proposed relation. We pro-
vide theoretical analysis on the detection proper-
ties of different methods in low-entropy scenarios.
Experiments validate the detection performance of
our method in the low-entropy code generation task
with a number of weight functions. Furthermore, in
high-entropy scenarios, our method would achieve
similar performance as previous works in detection
accuracy, detection speed and robustness.

Limitations

Our method mainly includes two limitations. The
first one is that the low-entropy datasets tested are
limited. We utilize two code generation datasets for
evaluation. In the future, we aim to include more
low-entropy tasks and datasets.

Secondly, our method should be theoretically
effective for various types of watermark methods,
such as token sampling-based methods. In the fu-
ture, we aim to implement our method on more
types of text watermarking frameworks.

Acknowledgement

We sincerely appreciate the insightful comments
from all reviewers. Their help has greatly con-
tributed to the improvement of this work.

The work described in this paper was partially
supported by the Research Grants Council of the
Hong Kong Special Administrative Region, China
(CUHK 14222922, RGC GRF 2151185).

11732

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Miranda Christ, Sam Gunn, and Or Zamir. 2023. Un-
detectable watermarks for language models. arXiv
preprint arXiv:2306.09194.

Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed
Mahloujifar, Mohammad Mahmoody, and Mingyuan
Wang. 2023. Publicly detectable watermarking for
language models. Cryptology ePrint Archive, Pa-
per 2023/1661. https://eprint.iacr.org/2023/
1661.

Christiane Fellbaum. 1998. WordNet: An electronic
lexical database. MIT press.

Zhiwei He, Binglin Zhou, Hongkun Hao, Aiwei Liu,
Xing Wang, Zhaopeng Tu, Zhuosheng Zhang, and
Rui Wang. 2024. Can watermarks survive transla-
tion? on the cross-lingual consistency of text wa-
termark for large language models. arXiv preprint
arXiv:2402.14007.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023a.
A watermark for large language models. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research,
pages 17061–17084. PMLR.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli
Shu, Khalid Saifullah, Kezhi Kong, Kasun Fer-
nando, Aniruddha Saha, Micah Goldblum, and Tom
Goldstein. 2023b. On the reliability of water-
marks for large language models. arXiv preprint
arXiv:2306.04634.

Rohith Kuditipudi, John Thickstun, Tatsunori
Hashimoto, and Percy Liang. 2023. Robust
distortion-free watermarks for language models.
arXiv preprint arXiv:2307.15593.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2023. Who wrote this code? watermarking for
code generation. arXiv preprint arXiv:2305.15060.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Aiwei Liu, Leyi Pan, Xuming Hu, Shuang Li, Lijie Wen,
Irwin King, and Philip S. Yu. 2024a. An unforge-
able publicly verifiable watermark for large language
models. In The Twelfth International Conference on
Learning Representations.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and
Lijie Wen. 2024b. A semantic invariant robust wa-
termark for large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming
Hu, Lijie Wen, Irwin King, and Philip S Yu. 2023.
A survey of text watermarking in the era of large
language models. arXiv preprint arXiv:2312.07913.

David Megías, Minoru Kuribayashi, Andrea Rosales,
and Wojciech Mazurczyk. 2021. Dissimilar: To-
wards fake news detection using information hiding,
signal processing and machine learning. In Proceed-
ings of the 16th International Conference on Avail-
ability, Reliability and Security, pages 1–9.

Travis Munyer and Xin Zhong. 2023. Deeptextmark:
Deep learning based text watermarking for detec-
tion of large language model generated text. arXiv
preprint arXiv:2305.05773.

Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong
Zhao, Yijian Lu, Binglin Zhou, Shuliang Liu, Xum-
ing Hu, Lijie Wen, et al. 2024. Markllm: An open-
source toolkit for llm watermarking. arXiv preprint
arXiv:2405.10051.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang
Wang, Dawei Yin, and Jiliang Tang. 2023. A
robust semantics-based watermark for large lan-
guage model against paraphrasing. arXiv preprint
arXiv:2311.08721.

Umut Topkara, Mercan Topkara, and Mikhail J Atallah.
2006. The hiding virtues of ambiguity: quantifi-
ably resilient watermarking of natural language text
through synonym substitutions. In Proceedings of
the 8th workshop on Multimedia and security, pages
164–174.

Shangqing Tu, Yuliang Sun, Yushi Bai, Jifan Yu, Lei
Hou, and Juanzi Li. 2023. Waterbench: Towards
holistic evaluation of watermarks for large language
models. arXiv preprint arXiv:2311.07138.

11733

https://eprint.iacr.org/2023/1661
https://eprint.iacr.org/2023/1661
https://eprint.iacr.org/2023/1661
https://eprint.iacr.org/2023/1661
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://openreview.net/forum?id=gMLQwKDY3N
https://openreview.net/forum?id=gMLQwKDY3N
https://openreview.net/forum?id=gMLQwKDY3N
https://openreview.net/forum?id=6p8lpe4MNf
https://openreview.net/forum?id=6p8lpe4MNf
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou,
Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun.
2023. Towards codable text watermarking for large
language models. arXiv preprint arXiv:2307.15992.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document genera-
tion. arXiv preprint arXiv:1707.08052.

Xueqing Wu, Jiacheng Zhang, and Hang Li. 2021. Text-
to-table: A new way of information extraction. arXiv
preprint arXiv:2109.02707.

Xi Yang, Kejiang Chen, Weiming Zhang, Chang Liu,
Yuang Qi, Jie Zhang, Han Fang, and Nenghai Yu.
2023. Watermarking text generated by black-box
language models. arXiv preprint arXiv:2305.08883.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang, Ze-
hua Ma, Feng Wang, and Nenghai Yu. 2022. Tracing
text provenance via context-aware lexical substitu-
tion. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 36, pages 11613–11621.

KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun
Kwak. 2023a. Robust multi-bit natural language
watermarking through invariant features. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2092–2115.

KiYoon Yoo, Wonhyuk Ahn, and Nojun Kwak. 2023b.
Advancing beyond identification: Multi-bit wa-
termark for language models. arXiv preprint
arXiv:2308.00221.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and
Yu-Xiang Wang. 2023. Provable robust water-
marking for ai-generated text. arXiv preprint
arXiv:2306.17439.

11734

A Proof of Type-II Error for EWD

Here we demonstrate how we obtain the theoretical
Type-II error for EWD. First of all, we attempt to
calculate the theoretical µ and σ2 based on Eq. (6).
The theoretical µ is the weighted sum of green
tokens in the watermarked text, using |s|Gk to rep-
resent the weighted number of green tokens from
each token k,thus we can obtain:

µ =
∑

k

|s|Gk, (7)

=
∑

k

P[k ∈ G] ·W (k), (8)

= TE
γαSE

1 + (α− 1)γ
(SE − C0), (9)

= T
γα

1 + (α− 1)γ
(E[SE2]− C0E[SE]).

(10)

Given the simulated power law of spike entropy,
we can obtain E[SE2] and E[SE] as 0.377 and
0.608, respectively, producing µ equal to 5.79. And
for σ2, we first obtain the variance for each token
k:

σk
2 = E[(|s|Gk − E[|s|Gk])

2], (11)

= E[|s|G2
k]− E[|s|Gk]

2, (12)

= P[k ∈ G] ·W (k)2 − P[k ∈ G]2 ·W (k)2,
(13)

= W (k)2 · (P[k ∈ G])(1− P[k ∈ G]). (14)

Therefore, if we represent γα
1+(α−1)γ by C1, the

variance of the whole text can be formulated as:

σ2 =
∑

k

W (k)2 · (P[k ∈ G])(1− P[k ∈ G]),

(15)

= TE[W (k)2C1SE(1− C1SE)], (16)

= TC1E[(SE − C0)
2SE(1− C1SE)], (17)

= TC1(−C1E[SE4] + (2C0C1 + 1)E[SE3]

− (2C0 + C0
2C1)E[SE2] + C0

2E[SE]).
(18)

Given the simulated power law of spike entropy,
we can obtain E[SE4] and E[SE3] as 0.24 and
0.158, respectively, producing σ equal to 0.56.
When the detection threshold z′ is set as 2 (cor-
responding to |s̃|G = 5.55), the probability of
|s|G ∼ N (5.79, 0.31) falling below 5.55 is 33.4%,
i.e., the Type-II error.

11735

