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Abstract

Recent research on sequence labelling has been
exploring different strategies to mitigate the
lack of manually annotated data for the large
majority of the world languages. Among oth-
ers, the most successful approaches have been
based on (i) the cross-lingual transfer capabili-
ties of multilingual pre-trained language mod-
els (model-transfer), (ii) data translation and la-
bel projection (data-transfer) and (iii), prompt-
based learning by reusing the mask objective to
exploit the few-shot capabilities of pre-trained
language models (few-shot). Previous work
seems to conclude that model-transfer outper-
forms data-transfer methods and that few-shot
techniques based on prompting are superior to
updating the model’s weights via fine-tuning.
In this paper, we empirically demonstrate that,
for Argument Mining, a sequence labelling task
which requires the detection of long and com-
plex discourse structures, previous insights on
cross-lingual transfer or few-shot learning do
not apply. Contrary to previous work, we show
that for Argument Mining data transfer obtains
better results than model-transfer and that fine-
tuning outperforms few-shot methods. Regard-
ing the former, the domain of the dataset used
for data-transfer seems to be a deciding factor,
while, for few-shot, the type of task (length and
complexity of the sequence spans) and sam-
pling method prove to be crucial.

1 Introduction

Transfer learning and pre-trained language models
are closely related as the knowledge learned for one
or more tasks in one specific language can be ap-
plied to other tasks or languages (Wang et al., 2023).
In this paper, we analyze how this feature can be
applied in scenarios where not much data is acces-
sible as it is the case of argument mining in the
clinical domain. In data-transfer approaches, data
can be translated and the required annotations pro-
jected to train supervised models. Model-transfer

methods avoid the long process of generating the
training data by applying multilingual pre-trained
language models to learn the annotations in one
language and generate the predictions in a differ-
ent one (Pikuliak et al., 2021; Garcia-Ferrero et al.,
2022a; Chen et al., 2023). Alternatively, by few-
shot prompting there is a possibility to reach com-
parable results by providing a few examples from
the problem at hand to pre-trained language models
(Maet al., 2022). In sequence labelling tasks, these
methods have shown to be effective with a minimal
loss in performance based on a very few annotated
examples.

These few-shot methods have widely been tested
on popular benchmark datasets, such as in those
for Named Entity Recognition (NER) (CoNLL
2003 (Tjong Kim Sang and De Meulder, 2003),
OntoNotes 5.0 (Weischedel et al., 2013), MIT-
Movie (Liu et al., 2013)) concluding that model-
transfer outperform data-transfer methods and that
few-shot techniques based on prompting are supe-
rior to updating the model’s weights via fine-tuning.
However, such conclusions have been based on re-
sults obtained on sequence labelling tasks for which
the sequence spans are commonly short and quite
homogeneous in terms of the structure and content
of the label words.

In this paper we explore whether these conclu-
sions still hold for Argument Mining, a task in Nat-
ural Language Processing (NLP) aimed at extract-
ing long and complex discourse structures from
text. Argument Mining usually involves two dis-
tinct subproblems: (1) argument component de-
tection, focusing on locating the spans of argu-
ments and identifying their types (e.g., claims and
premises), and (2) classification of argument rela-
tions, which involves classifying the relationship
between two argument components as Supporting
or attacking.

In order to do so, we use AbstRCT (Mayer et al.,
2021) a corpus of medical abstracts annotated for
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the detection of argument components. The orig-
inal corpus is published in English and has been
extended it into a parallel multilingual corpus of
medical arguments in Spanish, Italian, and French'
by translating with state-of-the-art language mod-
els and projecting the annotations to the target lan-
guages using the technique of Garcia-Ferrero et al.
(2022a).

Summarizing, we investigate the following two
research questions to address data scarcity in Argu-
ment Mining:

* RS1: What approach is better to overcome
data scarcity: data-transfer, model-transfer or
few-shot learning?

* RS2: What is the influence of the type of task
(Iength and complexity of the sequence spans)
and sampling methods for optimal results in
few-shot settings?

In this paper we empirically demonstrate that,
for Argument Mining (AM), a sequence labelling
task that requires the detection of long and complex
discourse structures, previous insights on cross-
lingual transfer or few-shot learning do not ap-
ply. Contrary to previous work, we show that
for Argument Mining data-transfer obtains better
results than model-transfer and that fine-tuning
outperforms few-shot methods. Regarding the
former, the domain of the dataset used for data-
transfer seems to be a deciding factor, while, for
few-shot, the type of task (length and complexity
of the sequence spans) and the sampling method
proves to be crucial. Data and code for the exper-
iments described in this paper are publicly avail-
able in: https://github.com/anaryegen/few_
shot_argument_mining.

2 Related Work

In this section, we review the closest work to the
paper’s main topics, namely, Argument Mining,
cross-lingual transfer and few-shot learning.

2.1 Argument Mining

The are a number of different theoretical ap-
proaches to describe the argument structures that
can be inferred from text analysis. For instance,
Toulmin (1958) identified different functional roles
in arguments (evidence, warrant, backing, qualifier,

1https://huggingface.co/datasets/HiTZ/
multilingual-abstrct

rebuttal, and claim) based on how the conclusion
is drawn from evidence in the text. Furthermore,
Freeman (2011) investigated how to transfer argu-
ments via diagramming techniques of the informal
logic tradition. Others (Dung, 1995) tried to cre-
ate a graph-based representation of argumentation
by applying non-monotonic reasoning in Artificial
Intelligence (AI) and logic programming. Finally,
Peldszus and Stede (2013) introduced a diagram
structure with models of the textual representation
of arguments and globally optimized argumenta-
tive relations. They argued that support and attack
relations are sufficient to describe the overall re-
lationships between argument components. More-
over, they identified five different types of argument
graphs based on the connections that exist between
them, namely, one claim having relations with mul-
tiple premises, a claim followed by another claim,
etc.

In Natural Language Processing Argument Min-
ing (AM) is focused on automatically identifying
the argument components and classifying the rela-
tions that may exist between them. Following the
theoretical models proposed, a number of empiri-
cal approaches have been developed in the last few
years. Thus, Stab and Gurevych (2017) tackled
AM in two different steps. First, they try to locate
the span argumentative text and classify the type of
component at token level. Second, they classify the
relations linking the identified argument spans. In
addition to the two step system to address AM, they
also generate Persuasive Essays, perhaps the most
popular NLP dataset manually annotated with argu-
ment structures (Stab and Gurevych, 2017). Later
on, Eger et al. (2017) introduced an end-to-end
AM system based on a bi-directional sequence-to-
sequence model.

Other work includes Toledo-Ronen et al. (2020),
which provides an in detail analysis at argument
level of various multilingual datasets, while Rocha
et al. (2018) experimented with cross-lingual argu-
mentative relation identification from English to
Portuguese.

Finally, Mayer et al. (2020) introduced the first
dataset of English medical abstracts annotated for
argument component detection and argument re-
lation classification. Subsequently, Mayer et al.
(2021) introduced a Transformer-based solution
with Gated Recurrent Units (GRU) and Conditional
Random Field (CRF) classification layers.
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2.2 Few-shot Learning Approaches for
Sequence Labelling

The availability of pre-trained language models al-
lows to apply supervised methods with less amount
of annotated data which is why some research in
different NLP tasks has focused on few-shot train-
ing (Hofer et al., 2018; Fritzler et al., 2019; Li
et al., 2022), namely, learning supervised models
with very few manually annotated samples. The
rise of prompt-based models (Radford et al., 2019;
Brown et al., 2020) further increased the interest
in learning the task describing the classification
objective. This usually involves transforming tradi-
tional classification tasks into cloze tasks using tex-
tual templates and a predefined set of label words,
highlighting the importance of template design in
prompt-based learning.

In this line of work, Schick and Schiitze (2021)
presented a semi-supervised training approach
that reformulates input instances into cloze-style
phrases. Cui et al. (2021) proposed a template-
based method for Named Entity Recognition
(NER) by generating templates for each entity from
a given example. However, template-based ap-
proaches are better suited to sentence-level tasks
where the complexity of the templates remain man-
ageable. As an alternative, EntLM (Ma et al.,
2022) proposed a template-free few-shot learn-
ing approach for sequence labelling tasks. Their
method is based on computing a set of label words
from the input text and replacing the entity-specific
tokens with these label words in the training sam-
ple. EntLM obtains state-of-the-art results which
is why we use it in this paper as the representative
of few-shot learning for argument component de-
tection. Huang et al. (2022) and Das et al. (2022)
propose few-shot learning for NER involving con-
trastive learning via prompt-based meta-learning.
However, their methods require large amounts of
data to first train the model before adapting it with
a handful of examples for various label sets.

2.3 Cross-lingual Sequence Labelling

Previous work on cross-lingual sequence tagging
mainly focuses on tasks such as part-of-speech
(POS) tagging, named-entity-recognition (NER)
(Gaddy et al., 2016; Yang et al., 2017; Agerri et al.,
2018; Chen et al., 2018; Liu et al., 2020), and Opin-
ion Target Extraction (OTE) (Agerri and Rigau,
2019). Garcia-Ferrero et al. (2022a) compared
model-transfer and data-transfer approaches on a

variety of sequence labelling tasks, datasets, and
languages. They conclude that model-transfer us-
ing pre-trained multilingual language models such
as XLM-RoBERTa-large (Conneau et al., 2019)
outperform data-transfer methods.

Closer to our work, Eger et al. (2018) gener-
ated parallel German and Chinese versions from
English by applying manual and automatic transla-
tion and label projection to experiment with data-
transfer approaches based on cross-lingual embed-
dings. They concluded that, while machine trans-
lated data degraded results when used for training
a supervised model for the target language, results
were promising enough to continue working on that
research direction. Thus, Sousa et al. (2021) trans-
lated Persuasive Essays into Portuguese for further
cross-lingual experimentation. However, it should
be noted that current model-transfer, few-shot and
supervised techniques based on multilingual pre-
trained language models are clearly superior to the
methods used at the time, which makes the purpose
of our work rather relevant.

3 Data

The starting point for experimentation on argument
mining in data scarce settings is AbstRCT, a dataset
of Randomized Controlled Trials (RCT) manually
annotated with argument components and relations
(Mayer et al., 2021). The original AbstRCT con-
sists of abstracts of clinical trials in English col-
lected from the MEDLINE database and manually
annotated with two types of argument components:
Claims and Premises. A ‘claim’ is a concluding
statement about the outcome of the study. In the
medical domain it typically refers to a judgement
regarding a possible diagnosis or a treatment. A

‘premise’ corresponds to an observation or measure-

ment in the study (ground truth), which supports
or attacks another argument component, usually a
claim. It is important to stress that premises are
observed facts, therefore, credible without further
evidence.

The training set consists of 350 abstracts that
cover the neoplasm disease, 50 more abstracts
about neoplasm are used for development, while
the three evaluation sets are composed of: 100
abstracts about neoplasm, 100 abstracts about glau-
coma and finally a mixed set of 100 abstracts with
20 abstracts for each of the diseases in the Ab-
sRCT dataset (i.e. neoplasm, glaucoma, hyperten-
sion, hepatitis and diabetes). The number of the
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sequences with Premise and Claim argument com-
ponents in these sets is shown in Table 1.

Data # of Premise # of Claim
Train: Neoplasm 1535 730
Dev: Neoplasm 438 228
Test: Neoplasm 438 248
Test: Glaucoma 404 190
Test: Mixed 388 212

Table 1: Number of sequences with Premise and Claim
argument components in the train, dev, and test sets.

We machine-translated with the state-of-the-art
machine translation model No Language Left Be-
hind (NLLB) (Costa et al., 2022) into Spanish, Ital-
ian, and French. Subsequently, we projected the
annotations from the original dataset into the trans-
lated versions using the annotation projection tool
developed by Garcia-Ferrero et al. (2022a). In the
last phase, native speakers manually corrected the
projections of the argument component labels. This
was required to have gold standard evaluation data.
While it would had been interesting to project the
dataset to other languages, we only had in-house
expertise to manually check the annotations for
Spanish, Italian and French.

We also generated a post-processed version by
programatically correcting systematic errors per-
formed during the automatic projection of the an-
notations. This post-processed version fixed rela-
tively simple but repetitive issues such as omitting
the labelling of articles as argument types. As a
result, we obtained three versions of the projected
data: auto projected, post-processed and manually
corrected.

Table 2 reports the evaluation of the auto-
projected and post-processed annotations with re-
spect to the gold standard (manually corrected). Re-
sults show that manually corrected data is crucial
at least for evaluation although the post-processed
version of the projections gets close enough to the
gold standard.

The full training data is used for multilingual
and cross-lingual experiments. To perform few-
shot experiments the data is randomly sampled
following different sampling approaches.

3.1 Sampling Data for Few-shot Learning

The main objective of Few-Shot Learning (FSL) is
to generalize while learning from a small portion
of data. In order to perform FSL, the data is sam-

Test set Spanish French Italian
auto-projected
Neoplasm 83.95 94.18 92.44
Glaucoma 67.97 90.43 93.79
Mixed 83.45 90.89 91.42
post-processed
Neoplasm 95.54 97.87  98.97
Glaucoma 97.88 97.89 99.41
Mixed 95.78 96.97 97.65

Table 2: F1-score of auto-projected and post-processed
data compared with manually corrected data in Spanish,
French, and Italian.

pled into smaller subsets and provided to the model.
While state-of-the-art methods on few-shot for se-
quence labelling have been focused on the training
method, they have not usually paid any attention
to the data sampling technique (Ma et al., 2022).
In this paper, we demonstrate the importance of
data sampling for a sequence labelling task such as
Argument Mining.

We sample the data in two ways, using a
method called k-shot (based on Ma et al. (2022))
and another one named k-percent, where k €
{5,10,20,50}. In the k-shot method, each of the
subsets contains exactly k argument component se-
quences of Claim and Premise. With the k-percent
sampling method we calculate the k proportion
for each argument component from the full data
to reflect the distribution. The distribution of the
sequences sampled with k-percent method and k-
shot are shown in Table 3. The sequences in every
sample are selected randomly in a greedy manner.

AbstRCT contains texts annotated with labels
Claim, Premise, and O (Outside). One sentence
could belong to one or more argument component
classes from the beginning until the end. In many
sequence labelling tasks, the span of the compo-
nents to predict consists of several words that make
up only a part of the sentence, whereas in argu-
ment mining argument components can constitute
a whole sentence. Hence, for the few-shot training,
it is crucial to include examples without any argu-
ment components separately, namely, examples in
which every token in the sequence is labeled with
the O class. If such examples are not included, the
few-shot model fails to learn to classify sequences
as non-arguments.

The data has a sentence-by-sentence split, where
each token in the sentence is annotated with the la-
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K B-Claim B-Premise I-Claim I-Premise (0]
5 shot 5 5 108 165 143
10 shot 10 10 187 273 258
20 shot 20 20 348 554 594
50 shot 50 50 1000 1371 1389
5% 36 76 712 2111 3106
10% 73 153 1421 4231 6108
20% 146 307 2832 8308 12252
50% 365 767 7283 21205 30322
100% 730 1535 14396 42466 61173

Table 3: Average number of token-level Argument Com-
ponents with k-shot and k-percent sampling in the En-
glish training set among 3 sampled files for each k-
sample.

bels following the IOB2 schema, meaning that the
beginning of the argument is tagged as B- followed
by the argument component class name (Claim or
Premise), the rest of the argumentative tokens are
labelled with /-, and non-argumentative sequences
are labelled as O. Since one sentence holds one or
more argument types, and they tend to be lengthy,
a considerable imbalance between B- and I- tokens
is created. In Table 3, we provide the distribution
of the data at token level to show the imbalance in
the number of tokens that are marked as B-, I- or
0.

Along with sampling the training data for each
language, we additionally merge all the training
sets from every k-percent sampling into one to per-
form multilingual experiments. Therefore, the mul-
tilingual k-percent sample is a combination of k
examples from each language from the k-percent
sample.

4 Experimental Setup

An important feature of AM with respect to other
sequence labelling tasks is that arguments are con-
siderably long and composed by a variety of word
types.

The experiments are based on the three different
techniques that we will be comparing to establish
which one is the optimal one for AM in data-scarce
settings: (i) data-transfer, (ii) model-transfer and
(iii), few-shot learning for sequence labelling.

Results are reported using F1 macro-averaged
score calculated at sequence level, namely, the F1-
score is computed for each argument component
following the usual method for sequence labelling
tasks as formulated for Named Entity Recognition
(Tjong Kim Sang and De Meulder, 2003).

4.1 Data-Transfer and Model-Transfer

Data-transfer involves generating training data in
the target language by translating and projecting
the annotations from the original English language
to Spanish, French and Italian. This process was de-
scribed in Section 3. The translated and projected
training data is then used to fine-tune pre-trained
encoder language models.

Initially, we separately fine-tune multilingual
BERT (Devlin et al., 2019), on the training sets
of English, Spanish, French, and Italian AbstRCT
corpora and evaluate the resulting models for each
of the languages in a monolingual setting®.

We also tested data-transfer in a multilingual set-
ting by fine-tuning multilingual BERT on the train-
ing sets for the 4 languages. Finally, both mono-
lingual and multilingual settings were evaluated
using both post-processed and manually corrected
versions of the data (French, Italian and Spanish).

Model-transfer is facilitated by pre-trained mul-
tilingual language models such as mBERT by en-
abling them to label sequences in languages on
which they have not been explicitly trained on, re-
lying on their multilingual or crosslingual abilities.
Thus, model-transfer allows to perform AM for
languages for which no annotated data is avail-
able by training in English and generating predic-
tions in the target language (French, Italian and
Spanish). In our experiments, this amounts to fine-
tuning mBERT using English data and evaluating
its performance on test data from the other three
languages.

4.2 Few-shot Learning

Few-shot learning exploits limited annotated exam-
ples to train models, striking a balance between
data scarcity and task complexity.

Ma et al. (2022) proposed a template-free
method for few-shot prompting for Named En-
tity Recognition (NER) by tackling it as a Lan-
guage Model (LM) task with an Entity-oriented
LM (EntLM) objective to solve the NER task. This
avoids generating a new template corpus for each
example in the data. We use this method in our
experiments as it represents current state-of-the-art,
at the time of writing, for sequence labelling in
few-shot settings. Their approach consists of first
retrieving class-specific words called label words

“Preliminary experimentation showed that mBERT out-
performed other multilingual encoder-only models such as
XLM-RoBERTa or mDeBERTa-v3-base. See mDeBERTa
results in Appendix D.
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Test set English Spanish French Italian Avg.
gold monolingual data-transfer
Neoplasm  61.34(1.83) 58.54(0.49) 60.28(1.57) 57.29(1.12) 59.36
Glaucoma 64.35(0.81) 60.63(1.56) 64.81(2.64) 61.95(1.18) 62.94
Mixed 60.57(2.33) 57.27(1.36) 57.79(1.07) 56.84(0.51) 58.12
gold monolingual data-transfer (post)
Neoplasm  61.34(1.83)  58.88(1.76) 55.79(1.68) 57.64(1.63) 57.44
Glaucoma 64.35(0.81) 62.86(1.48) 62.24(1.53) 62.37(1.74) 62.49
Mixed 60.57(2.33) 57.92(0.72) 55.75(2.01) 55.54(1.77) 56.40
multilingual data-transfer
Neoplasm  61.89(1.41) 59.96(1.79) 61.17(2.25) 59.95(2.29) 60.74
Glaucoma  66.97(2.04) 65.94(1.19) 67.14(1.62) 60.69(0.99) 65.19
Mixed 62.28(0.81) 60.86(1.96) 60.68(1.67) 60.08(2.68)  60.98
multilingual data-transfer (post)
Neoplasm  55.86(2.16)  58.89(2.82) 59.19(0.97) 58.03(1.67) 59.50
Glaucoma 64.86(1.31) 66.98(2.07) 64.65(2.35) 66.24(1.36) 66.21
Mixed 57.65(2.59) 58.49(0.70) 58.72(2.07) 58.06(0.66)  59.39
cross-lingual model-transfer

Neoplasm - 55.80(1.04) 53.75(1.32) 50.83(0.60) 55.43
Glaucoma - 58.39(1.57) 57.25(1.48) 56.52(0.77) 59.13
Mixed - 52.25(0.41) 54.36(0.76) 47.88(1.09) 53.77

Table 4: Fl-scores and their averages per test set from the argument component detection results of monolingual,
monolingual post-processed (described as post), multilingual, multilingual post-processed (post), and cross-lingual

experiments.

from a pre-trained model, and predict those label
words at the position of each entity. They propose
several ways of computing these label words, and
in this work, we used the method based on the fre-
quency, namely, we select the words that are the
most frequent for the given class. We generate 10
such label words for each class.

Following EntL.M’s methodology (Ma et al.,
2022), for every k sample three randomly sampled
training sets are created. Training is then performed
on each of these datasets over four iterations, and
subsequently, sequence-level Fl-scores and stan-
dard deviations are calculated.

In addition to the monolingual experiments, we
also carry out multilingual experiments by combin-
ing all the French, Spanish, Italian, and English
data. More specifically, we merge one sampled
training file from each language of the k-percent
sampling method. Evaluation is then conducted
separately for each language.

Finally, we also compare EntLM with fine-
tuning mBERT on few-shot settings.

5 Results

Following the completion of the experiments out-
lined in Section 4, this section reports the obtained

results using mBERT?.

5.1 Model-transfer and Data-transfer

Table 4 displays the Fl-scores derived from the
argument component detection experiments us-
ing full in-domain data across all the experiments.
The rows corresponding to the monolingual data-
transfer category present the results obtained from
training and evaluating in the corresponding lan-
guage. Similarly, multilingual data-transfer refers
to the merged training set consisting of all 4 lan-
guages and evaluating each language separately.
Cross-lingual refers to model-transfer, namely,
training in English and evaluating in the other 3
languages. The last column corresponds to the av-
erage between all the results per language across all
test sets. For a fair comparison, the average of the
cross-lingual model transfer includes the F1-score
of the monolingual English.

Results show that, contrary to previous work
on crosslingual transfer (Garcia-Ferrero et al.,
2022b), monolingual data-transfer clearly outper-
forms cross-lingual model-transfer for argument
component detection. Another interesting point is
that multilingual data-transfer obtains the overall

3Results obtained by training mDeBERTa-v3-base are in
Appendix D.
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Figure 1: Fl-score per k-shot and k-percent for Neoplasm from EntLLM (dots and lines) and fine-tuning (triangles

and dashed lines).

best results outperforming also the original English
gold results. This means that data-transfer may
be employed as a cost-free data-augmentation tech-
nique.

If we look at the results obtained when fine-
tuning with the post-processed data, results indicate
that data-transfer may be used in a fully automatic
way, restricting the manual correction of the pro-
jected labels to the generation of evaluation sets.

5.2 Few-shot

Figure 1 reports the results of few-shot using both
sampling methods (k-shot and k-percent) for the
data trained by means of both EntLM and fine-
tuning techniques.

The first point to mention is that data-transfer
also outperforms the few-shot prompting approach
for sequence labelling proposed by EntLLM. Further-
more, and quite surprisingly, fine-tuning remains
competitive with respect to EntLM with the k-shot
sampling while it is quite superior when tested on
the percentage sampling. We hypothesized that k-
percentage sampling produces better performance
due to the higher proportion of outside tokens. In
fact, when fine-tuned with 20% and 50% of the data
performance is comparable to that of data-transfer
and model-transfer results.

EN | Neoplasm
5% | 41.92(8.39)
10% | 52.86(3.10)
20% | 57.14(1.19)
ES | Neoplasm
5% | 40.74(3.13)
10% | 51.68(1.71)
20% | 59.04(0.58)
FR | Neoplasm
5% | 37.45(7.38)
10% | 50.46(1.75)
20% | 57.45(1.29)
IT | Neoplasm
5% | 37.07(8.43)
10% | 50.78(1.61)
20% | 55.85(1.54)

Mixed
39.27(4.92)
55.23(1.75)
57.33(0.66)

Mixed
38.96(5.04)
51.93(1.27)
55.27(1.78)

Mixed
29.01(4.48)
50.71(1.63)
56.57(1.35)

Mixed
37.59(9.49)
49.48(4.81)
54.75(1.61)

Glaucoma
47.60(9.43)
55.18(3.37)
60.34(1.62)
Glaucoma
39.33(8.59)
55.83(2.09)
57.39(1.92)
Glaucoma
42.42(3.51)
53.03(2.17)
55.70(2.55)
Glaucoma
47.96(2.95)
53.91(3.65)
57.53(2.92)

Avg.
42.93
54.42
58.27
Avg.
39.68
53.15
57.23
Avg.
36.29
51.40
56.57
Avg.
40.87
51.39
56.04

Table 5: F1-scores and standard deviation of multilin-
gual few-shot fine-tuning mBERT with k-percent.

With respect to the multilingual experiments,
one training sample from each k-percent sampling
was merged into one training set, fine-tuned, and
tested on each language (Table 5). As observed in
Figure 1, fine-tuning with 50% of the data (dash
lines) produces results almost as high as 100%.
Furthermore, results demonstrate that merging 20%
of the data performs slightly worse than the model
trained on the full data.
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6 Error Analysis

In general, fine-tuning the model on the complete
dataset often results in misclassifications with a ten-
dency to assign Claim labels in place of Premise.
Additionally, dealing with long sequences poses
challenges in accurately identifying both bound-
aries and classes for the system. This pattern per-
sists in zero-shot results, and it can be attributed to
an inherent imbalance in the data, particularly in
terms of the disparity between the number of Claim
and Premise labels and the length of arguments in
the sequences.

Each sequence predominantly corresponds to a
single argument type, and instances where a se-
quence contains compound arguments, or when the
argument span is only a proportion of the input,
are less frequent. Consequently, in such exam-
ples, the most prevalent error involves misidenti-
fying Claim as Premise and recognizing only one
argument component in sequences with multiple
components. These errors tend to occur more sys-
tematically in classifications under the zero-shot
setting.

In k-shot scenarios, the model consistently strug-
gles to accurately identify both the correct spans
and class labels. Furthermore, as the number of k
decreases, there is an increase in randomness in the
assigned classes for each token, meaning that each
token in a sequence may be classified differently.
In particular, it is notable in the 5- and /0-shot.
Under k-shot the model struggles to predict B- to-
kens. Whereas in the k-percent the opposite occurs,
namely, the model learns to predict the beginning
of the sequence and fails to predict O sequences
correctly. Nevertheless, it is observed that as the
amount of data increases, the quality of the pre-
dicted outcomes improves.

The described errors persist consistently in the
case of EntLM. Additionally, when dealing with
smaller training sets, the trained model tends to
assign a single argument type to all examples in a
document. As the value of k increases, the random-
ness in predictions also grows proportionally. In
other words, a larger amount of data leads to more
unpredictable assigning of labels by the model on
the token level.

A potential explanation for such behavior may
be the selection of the label words. The concept
involves computing label-specific words to later
substitute them for few-shot learning. Given that
the length of an argument is usually long enough,

one selected label word may not represent the ar-
gument type correctly.

7 Concluding Remarks

In this paper, we address the argument component
identification task in the clinical domain in a sce-
nario of lack of manually annotated data for lan-
guages other than English. We address the prob-
lem by applying cross-lingual transfer and prompt-
based learning strategies in the AbstRCT corpus.
Experimentation was facilitated by the generation
of multilingual dataset by machine-translating and
projecting the annotations of the original English
AbstRCT into French, Italian, and Spanish.

The results of our experiments show that for long
and structurally complex sequence labelling, as it
is the case of component identification in Argu-
ment Mining, data-transfer is a better strategy than
model-transfer (RS1). Thus, fine-tuning mBERT
in monolingual and multilingual settings showed
results on an average of around 60 F1-scores for
three test sets, outperforming any other approach,
be that model-transfer or few-shot learning.

Furthermore, we have addressed the question of
how much data is required to obtain similar results
to those using the full data for training (RS2) by
performing experiments in a few-shot learning ap-
proach. Thus, corpus splits of different granularity
(5, 10, 20, and 50 shot or percentage) were used
in the experimentation with EntLM and mBERT.
The models in general perform better when trained
with data sampled using the k-percent method (in
comparison to k-shot) and by fine-tuning a pre-
trained language model (instead of using a prompt-
ing method such as EntLM). Finally, empirical re-
sults indicate that by fine-tuning the multilingual
model mBERT with 20% of the data performance
is competitive with data- and model-transfer ap-
proaches.

8 Limitations

Our evaluation focuses on Argument Mining, and
it would be interesting to compare it with other
sequence labelling tasks where the spans are also
complex and heterogeneous. Furthermore, we ex-
periment only in the medical domain, which may
affect the results on the data-transfer method. We
note, however, that our results clearly contradict
previous results on model-transfer vs data-transfer
previously obtained for other sequence labelling
tasks (Garcia-Ferrero et al., 2022b). Furthermore,
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we also demonstrate the importance of the data
sampling method in few-shot scenarios (Ma et al.,
2022). In any case, it would be interesting to per-
form similar experiments on different domains and
for other languages with the aim of providing a
similar comparison to corroborate that our findings
also apply more broadly.
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Appendix

A EntLLM and Fine-tuning Results per
Test Set

Results for all test sets obtained from few-shot train-
ing using EntL.M and fine-tuning mBERT are pre-
sented in Tables 6 (Neoplasm), 7 (Glaucoma), and
8 (Mixed).

EntLM EN FR IT ES Avg.
5shot | 13.98(3.39) 8.24(5.22) 11.14(345) 8.29(5.98) 11.16
10shot | 16.37(4.73) 13.17(3.41) 14.523.91) 12.103.43) 14.04
20shot | 15.81(3.69) 14.32(3.23) 11.97(2.46) 12.11(4.65) 13.55
50 shot | 28.20(2.76) 26.58(3.63) 20.81(3.34) 24.50(2.49) 25.02
5% | 28.52(2.93) 24.18(2.17) 23.79(2.19) 24.55(2.05) 25.26
10% | 35.62(3.04) 33.66(1.49) 31.02(1.71) 33.84(2.09) 33.54
20% | 43.49(2.25) 37.97(2.02) 37.49(1.73) 38.44(1.67) 39.35
50% | 48.44(2.06) 46.37(2.55) 43.84(1.83) 44.29(1.92) 45.74
mBERT EN FR IT ES Avg.
5shot | 6.193.28) 3.98(3.21) 223(1.76) 3.77(2.38) 4.04
10shot | 17.21(7.68) 4.04(452) 636(437) 6.05(6.19) 8.42
20shot | 33.66(9.94) 19.15(7.48) 24.51(8.99) 21.92(9.91) 24.81
50 shot | 40.28(3.24) 39.67(4.88) 35.36(5.77) 37.85(5.57) 39.29
5% | 40.64(7.32) 32.18(7.06) 28.66(5.02) 36.88(6.32) 34.59
10% | 46.67(6.94) 45.62(3.33) 46.38(4.12) 44.97(4.93) 45.91
20% | 57.87(1.34) 54.09(1.86) 52.95(2.33) 55.36(2.83) 55.07
50% | 62.18(1.35) 59.37(1.89) 57.91(1.79) 58.79(1.52) 59.56

Table 6: Average F1-scores and standard deviation of
few-shot EntLM and fine-tuning on k-shot and k-percent.
(Neoplasm)

B Results from Training on Multilingual
Post-processed data

In Table 9, the results of training on multilingual
post-processed data (without manual correction)
are reported.

EntLM EN FR IT ES Avg.

5shot | 12.87(644) 847(4.01) 10.76(3.85) 9.06(7.04) 10.29
10shot | 18.09(3.75) 13.18(3.63) 14.59(5.88) 12.35(5.59) 14.55
20 shot | 17.86(6.86) 19.75(3.41) 16.18(3.81) 14.87(2.34) 17.17
50 shot | 26.38(2.99) 28.39(2.06) 25.06(3.48) 27.34(2.15) 26.79
5% | 30.36(2.19) 27.33(3.06) 25.51(3.92) 26.25(1.86) 27.36
10% | 38.28(2.73) 36.19(3.03) 33.38(6.08) 33.45(2.79) 35.33
20% | 48.51(2.06) 40.69(2.02) 41.22(1.99) 39.97(3.60) 42.59
50% | 51.98(3.07) 48.71(2.73) 50.44(2.60) 50.87(2.58) 50.50

mBERT EN FR IT ES Avg.

5shot | 4.19(5.91) 3.65(2.95) 1.76(1.16) 3.79(2.63) 3.35
10shot | 14.83(9.45) 5.43(2.83) 6.56(5.07) 7.708.29)  8.63
20shot | 31.11(9.64) 23.79(7.74) 27.52(5.31) 23.24(6.26) 26.41
50 shot | 38.01(7.75) 39.42(8.77) 38.60(7.49) 39.99(5.65) 39.01
5% | 42.14(6.57) 41.56(6.54) 34.37(9.17) 39.18(6.12) 39.31
10% | 44.73(8.78) 46.66(3.66) 47.14(6.43) 43.71(6.20) 45.56
20% | 58.29(1.73) 55.74(2.97) 53.79(3.56) 54.99(3.12) 55.70
50% | 61.89(3.16) 62.66(2.41) 61.03(2.32) 61.79(3.05) 61.84

Table 7: Average F1-scores and standard deviation of
few-shot EntLM and fine-tuning on k-shot and k-percent.
(Glaucoma)

EntLM EN FR IT ES Avg.
Sshot | 11.75(3.91) 0.16(5.53) 11.09(4.22) 7.24(694) 9.81
10shot | 17.25(4.35) 14.48(4.28) 14.17(431) 12.20(3.45) 14.53
20shot | 14.87(5.31) 18.37(2.39) 13.193.84) 11.99(4.19) 14.61
50shot | 26.06(1.49) 24.17(2.96) 22.75(3.05) 23.31(2.53) 24.07
5% | 26.82(3.15) 22.76(2.45) 21.99(1.76) 25.35(1.74) 24.23
10% | 3473(2.64) 32.05(2.51) 30.96(2.62) 32.56(2.70) 32.58
20% | 42.90(2.65) 36.82(1.92) 37.47(1.79) 37.98(2.22) 38.79
50% | 4647(2.03) 43.13(2.18) 42.37(2.29) 43.73(2.12) 43.93

mBERT EN FR IT ES Avg.

Sshot | 2.80442) 4.03(242) 1.53(1.59 2.38(256) 2.69
10shot | 13.59(6.00) 3.77(4.78) 8.45(530) 6.62(6.94)  8.11
20shot | 31.41(8.41) 22.26(8.57) 26.38(6.25) 26.80(9.01) 26.71
50 shot | 40.97(3.43) 39.79(6.65) 35.78(7.41) 38.94(6.46) 38.87
5% | 39.82(691) 38.51(9.42) 32.31(6.45) 38.38(548) 37.26
10% | 47.91(7.75) 44.49(7.23) 44.01(4.07) 39.38(6.62) 43.95
20% | 57.01(347) 52.32(2.26) 51.92(2.64) 53.98(2.46) 53.81
50% | 61.44(1.97) 59.19(2.72) 57.61(2.23) 58.51(2.07) 58.19

Table 8: Average F1-scores and standard deviation of
few-shot EntLM and fine-tuning on k-shot and k-percent.
(Mixed)

C Cross-lingual Few-shot results

Results obtained from zero-shot cross-lingual few-
shot experiments using k=20 (shot and percent)
with EntLM and fine-tuning mBERT are reported
in Table 10.

D Monolingual, multilingual and
cross-lingual mDeBERTa results

Monolingual, multilingual, and cross-lingual mDe-
BERTa results.
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ES | Neoplasm  Glaucoma Mixed Avg.
5% | 36.95(8.49) 37.75(17.94) 38.71(7.99) 37.80
10% | 45.11(7.21)  46.89(2.82)  38.79(4.05) 43.59
20% | 54.21(1.37) 57.83(0.95) 52.30(1.21) 54.78
FR | Neoplasm  Glaucoma Mixed Avg.
5% | 44.57(2.29) 45.25(5.29) 46.93(4.73) 45.58
10% | 42.86(8.49) 39.34(6.96) 42.77(3.29) 41.66
20% | 53.21(2.27) 56.89(0.96) 53.01(1.14) 54.37
IT | Neoplasm  Glaucoma Mixed Avg.
5% | 44.57(2.53) 49.16(3.41) 39.11(6.56) 44.28
10% | 44.09(2.65) 47.37(3.58) 46.12(2.09) 45.86
20% | 54.78(0.56)  55.69(1.13)  52.41(1.09) 54.29

Table 9: Average Fl-scores and standard deviation
of multilingual few-shot fine-tuning mBERT with k-
percent with post-processed data.

EntLM | FR IT ES Avg.
Neoplasm
20 shot 5.67(1.99) 6.68(3.18) 9.713.89) 7.35
20% 28.99(3.04) 28.76(2.10) 35.05(1.48) 30.93
Glaucoma
20 shot 8.90(2.65) 9.21(4.39) 11.59(2.93) 9.90
20% 31.51(2.34)  31.73(3.92) 36.11(2.01) 33.12
Mixed
20 shot 8.11(2.79) 6.90(2.74) 11.37(2.85) 8.79
20% 27.25(2.49) 26.98(3.64) 30.21(2.58) 28.15
mBERT FR IT ES Avg.
Neoplasm
20 shot | 10.07(7.62) 20.42(8.27) 17.92(8.68) 16.04
20% 46.69(0.29) 47.86(5.75) 51.79(3.81) 48.78
Glaucoma
20 shot | 14.35(10.03) 10.39(4.11) 17.31(8.56) 14.02
20% 49.38(0.43) 46.66(2.06) 52.98(1.83) 49.67
Mixed
20 shot | 10.17(6.42)  9.87(9.48) 24.32(3.87) 14.79
20% 46.47(1.92) 47.94(0.66) 49.86(2.64) 48.09

Table 10: Average F1-scores and standard deviation of
cross-lingual few-shot results using EntLM and fine-
tuning mBERT with 20-shot and 20%.
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Test set English Spanish French Italian Avg.
gold monolingual data-transfer
Neoplasm  59.29(0.57) 58.46(2.53) 60.66(1.99) 58.19(1.11) 59.15
Glaucoma 64.38(1.21) 64.84(0.69) 63.17(1.45) 67.39(1.04) 64.95
Mixed 59.75(2.33) 57.14(1.24) 57.05(1.47) 56.71(0.70) 57.66
gold monolingual data-transfer (post)

Neoplasm  59.29(0.57) 58.83(1.44) 55.39(1.20) 58.19(1.26) 57.93
Glaucoma 64.38(1.21)  63.12(2.15)  60.36(0.65) 64.38(2.56)  63.06
Mixed  59.75(2.33) 57.78(1.77) 53.51(0.98) 55.30(2.32) 56.59

multilingual data-transfer

Neoplasm  63.16(0.66) 61.21(0.47)  56.44(1.69) 54.16(1.62) 58.74
Glaucoma 69.53(1.24) 67.92(1.17)  64.62(0.58) 60.58(1.33)  65.66
Mixed  61.96(2.27) 61.81(0.53) 52.61(0.63) 53.36(0.38) 57.44

multilingual data-transfer (post)

Neoplasm  65.68(0.24)  62.52(0.51) 57.81(0.78) 55.03(0.41) 60.26
Glaucoma  70.26(1.21)  68.25(0.37) 63.67(0.98) 64.97(1.43) 66.79
Mixed 65.66(0.88) 60.76(1.18)  57.88(0.62) 57.31(3.30) 60.40

cross-lingual model-transfer

Neoplasm - 57.292.11)  53.91(0.64) 53.72(0.77)  56.05
Glaucoma - 62.07(0.52)  55.27(1.61) 57.54(331) 59.82
Mixed - 54.95(2.03) 50.63(0.30) 52.35(1.57) 54.42

Table 11: F1-scores and their averages per test set from the argument component detection results of monolingual,
monolingual post-processed, multilingual, multilingual post-processed, and cross-lingual experiments using mDe-
BERTa.
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