SAPT: A Shared Attention Framework for Parameter-Efficient
Continual Learning of Large Language Models

Weixiang Zhao!, Shilong Wang', Yulin Hu', Yanyan Zhao'*, Bing Qin!,
Xuanyu Zhang?, Qing Yang?, Dongliang Xu?, Wanxiang Che'
Harbin Institute of Technology, Harbin, China
’Du Xiaoman (Beijing) Science Technology Co., Ltd.

{wxzhao, yyzhao, qinb, car}@ir.hit.edu.cn

Abstract

The continual learning (CL) ability is vital for
deploying large language models (LLMs) in the
dynamic world. Existing methods devise the
learning module to acquire task-specific knowl-
edge with parameter-efficient tuning (PET)
block and the selection module to pick out the
corresponding one for the testing input, aiming
at handling the challenges of catastrophic for-
getting and knowledge transfer in CL. However,
these methods tend to address only one of the
challenges, ignoring the potential of aligning
the two modules to effectively address catas-
trophic forgetting and knowledge transfer si-
multaneously. To this end, we propose a novel
Shared Attention Framework (SAPT), to align
the PET learning and selection via the Shared
Attentive Learning & Selection module. Ex-
tensive experiments on two CL benchmarks
demonstrate the superiority of SAPT. Moreover,
SAPT consistently demonstrates its superiority
when we scale it to different model sizes (from
770M to 13B), different model architectures
(T5 and LLaMA-2) and unseen tasks.!

1 Introduction

Endowing the continual learning (CL) ability for
large language models (LLMs) (Brown et al.,
2020; Raffel et al., 2020; Touvron et al., 2023)
to learn different tasks sequentially is crucial for
their deployment in the real-world, which allows
them to dynamically adapt to novel tasks and ac-
quire additional knowledge (Luo et al., 2023; Zhai
et al.,, 2023; Wu et al., 2024). However, this
scenario presents two significant challenges: (1)
Catastrophic Forgetting (CF), referring to the loss
of previously acquired knowledge when learning
new tasks (McCloskey and Cohen, 1989), and (2)
Knowledge Transfer (KT), involving the efficient
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Figure 1: The conceptual framework for the learning
and the selection module to achieve the continual learn-
ing of large language models based on PET blocks 9
when the new Dialogue Generation task arrives. Dashed
lines represent the working process of existing works
while solid lines are for that of our SAPT in this work.

utilization of knowledge from past tasks to facili-
tate the learning of new ones (Ke and Liu, 2022).

Due to the heavy burden on computation re-
sources, recent attempts study the CL of LLMs
based on parameter-efficient tuning (PET) methods
(Hu et al., 2021; Ding et al., 2022). Inspired by
the parameter isolation CL methods (Rusu et al.,
2016; Fernando et al., 2017), existing methods can
be conceptualized as two pivotal components work-
ing in the pipeline fashion. As shown in Figure 1
(dashed lines), when a new Dialogue Generation
task arrives, a private PET block is allocated by the
learning module to acquire task-specific knowledge
and then saved to the PET pool for the following
selection module to pick it out when a test sample
is coming. However, the designs of each module
in current works exhibit certain limitations in effec-
tively dealing with KT and CF challenges.

On one hand, the design of learning module is
supposed to function to facilitate KT among dif-
ferent tasks. Unfortunately, for existing works, the
learning of PET block is either performed seper-
ately within each single task (Wang et al., 2023b),
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or kept orthogonal to each other to minimize inter-
ference (Wang et al., 2023a). Such isolation cuts off
the potential transfer of acquired knowledge stored
in the previous PET blocks and hinders them to
assist the current acquisition of new knowledge.

On the other hand, the selection module plays
the pivotal roles in mitigating CF because only
when it is capable of automatically selecting the
PET block to which the current input belongs can
the LLM backbone successfully accomplish the
current task. However, it would make LLMs vul-
nerable to CF by simply implementing such selec-
tion process via the summation (Wang et al., 2023a)
or concatenation (Razdaibiedina et al., 2023) of all
existing PET blocks or selecting them from a fixed
PET pool (Wang et al., 2022b).

More importantly, they ignore the opportunity
of aligning the two modules to address challenges
of CF and KT simultaneously. The intuition is that
(illustrated by solid lines in Figure 1), in order to
facilitate KT in the learning of the new task, the
learning module should rely on task correlations to
leverage the most relevant knowledge in previous
PET blocks. And such attentive process, expressed
as shared attention in our study, could be natu-
rally repeated by the selection module to resist CF
through the combination of the corresponding PET
blocks belonging to each testing input. As a result,
the end-to-end alignment of these two modules is
established via such shared attention.

To this end, we propose a novel Shared Attention
Framework for Parameter-efficient conTinual
learning (SAPT) of large language models. In
SAPT, the Shared Attentive Learning & Selection
Module (SALS) is devised, where each training
sample is navigated to utilize the optimal combi-
nations of existing PET blocks for completing the
current task. This is achieved through an attention
weight obtained via instance-level shared attention
operation. Then inputs in the testing time are capa-
ble of following the same shared attention opera-
tion to reach the attention weight and pick out the
appropriate PET blocks accordingly.

However, continually updating the SALS leads
to the optimal attentive combination only for the
newest task, resulting in the forgetting for that of
previous ones. Thus, we introduce Attentive Re-
flection Module (ARM) to help SALS recall what
the shared attention operation of inputs from pre-
vious tasks should be originally performed with
pseudo samples. And the success of ARM offers
a new perspective for the utilization of generated

pseudo samples instead of just blindly mixing them
with samples of new tasks for multi-task training.

We conduct extensive experiments to evalu-
ate SAPT on SuperNI (Wang et al., 2022a) and
Long Sequence (Razdaibiedina et al., 2023) bench-
marks. State-of-the-art performance is achieved by
SAPT compared with recent PET-based CL meth-
ods. Moreover, SAPT also exhibits superior per-
formance when we scale it to different model sizes
(from 770M to 13B), different model architectures,
including T5 (Raffel et al., 2020) (encoder-decoder)
and LLaMA-2 (Touvron et al., 2023) (decoder-
only) and previously unseen tasks.

The main contributions of this work are summa-
rized as follows:

* We propose a novel framework SAPT, includ-
ing SALS and ARM, to align the PET learning
and selection process to effectively handle the
CF and KT challenges simultaneously.

* A novel perspective for the utilization of
pseudo generated samples is offered in ARM,
exhibiting both improved effectiveness and
efficiency than naive (generative) replay.

* Results of extensive experiments on the bench-
mark datasets demonstrate the effectiveness
of SAPT to mitigate CF and facilitate KT.

2 Related Works

2.1 Parameter-Efficient Tuning

Recently, parameter-efficient tuning (PET) (Ding
et al., 2022) has become an appealing research
topic which aims at minimizing computational re-
sources when adapting LLMs to specific tasks. Var-
ious approaches have emerged in this field, includ-
ing adapter (Houlsby et al., 2019), prompt-based
tuning (Lester et al., 2021; Li and Liang, 2021), Bit-
Fit (Zaken et al., 2022) and LoRA (Hu et al., 2021).
Since LoRA has exhibited superior performance
compared to many mainstream PET methods, our
experiments will primarily concentrate on LoRA
as a representative method. To ensure a fair com-
parison with previous prompt-based methods, we
also implement a prompt-version of SAPT.

2.2 Continual Learning for LLMs

Conventional Continual Learning (CL) are di-
vided into three categories. (1) Rehearsal-based
methods introduce the fixed memory to store real
samples (Lopez-Paz and Ranzato, 2017; Isele and
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Figure 2: The overall architecture of our proposed SAPT. We assume that SAPT is currently at the time step 3 to
learn the task 73. (1) In the SALS, as illustrated by the solid lines, the resulting attention weight ag of task 73 is first
obtained via the instance-level shared attention operation between the input 3 and PET key vectors {k1, k2, k3},
to perform weighted combination of all PET blocks { By, Ba, B3} for the attentive learning of the current task 7.
And dashed lines display the process of attentive selection, following the same process of shared attention to reach
the attention weight ag and utilizing it to handle given inputs at the testing time. (2) In the ARM, for previous tasks
71 and 73, the current attention weights of them (a7 and d3), are pulled back to their original states (a; and as),

with the introduction of generated pseudo samples Z; and Zo.

Cosgun, 2018) or pseudo-generative examples
(Shin et al., 2017; Sun et al., 2019) of previous
tasks. (2) Regularization-based methods impose
constraints on the loss function to penalize changes
regarding the knowledge of previous tasks (Kirk-
patrick et al., 2017; Li and Hoiem, 2017; Farajtabar
et al., 2020; Wu et al., 2022; Chen et al., 2023). (3)
Parameter isolation methods dynamically expand
model capacity or isolate existing model weights
to mitigate interference between new and old tasks
(Rusu et al., 2016; Fernando et al., 2017).

Continual Learning for LLMs with PET.
Based on PET methods, current approaches for
the CL of LLMs inherit the idea of parameter iso-
lation, exhibiting a pipeline fashion to learn and
select PET blocks for each task. However, most of
them assume task-ids are available at testing time
so that they directly use the oracle PET block of
each task and just skip the selection process (Qin
and Joty, 2022; Zhang et al., 2022; Qin et al., 2023).
These lines of works simplify the problems of CL
and could not be applied for real-world applica-
tion of LLMs where the task-ids are unavailable.
Thus, another branches of attempts focus on the
more practical settings where the process of PET
selection must be involved due to the unavailable
task-ids during testing time. However, they are
limited in effectively dealing with CF and KT chal-
lenges. For the PET learning, Wang et al. (2023b)

allocate private prompt for each task and Wang
et al. (2023a); Smith et al. (2023) constrain the
learning of PET block to keep orthogonal. They re-
strict the knowledge transfer among different tasks.
And simply implementing the PET selection via
the summation (Wang et al., 2023a) or concatena-
tion (Razdaibiedina et al., 2023) of all existing PET
blocks or select them from a fixed pool (Wang et al.,
2022b) make LLMs vulnerable to CF.

Our proposed SAPT stands out from them in that
we attempt to align the learning and selection of
PET blocks so that CF and KT can be effectively
addressed simultaneously.

3 Problem Definition and Setup

Continual learning seeks to address challenges
within ongoing sequences. Formally, a sequence
of tasks {771, ..., 7} arrive in a streaming fashion.
Each task 7; = { (az%, yé) }?;1 contains a separate
target dataset with the size of n;. At any time step
t, the model not only needs to adapt to the ¢-th task,
but also keep performances on all previous tasks.
In this study, we delve into the more challeng-
ing and practical settings, addressing: (1) Di-
verse task types: Unlike previous approaches that
merely focus on classification problems (Wang
et al., 2023a,b), the model would encounter a se-
quence of tasks encompassing various types, such
as dialogue generation, information extraction, etc.
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(2) Absence of task identifiers: During the test-
ing phase, the model confronts samples without
knowing which specific task they belong to.

4 Methodology

4.1 Overview of the Framework

We propose SAPT, a novel framework for the CL.
of LLMs, offering an effective solution to address
the challenges of catastrophic forgetting (CF) and
knowledge transfer (KT) simultaneously. The over-
all architecture of SAPT is illustrated in Figure 2,
comprising two key components: (1) Shared At-
tentive Learning & Selection Module (SALS) and
(2) Attentive Reflection Module (ARM). In SALS,
attentive learning (solid lines) and attentive selec-
tion (dashed lines) are aligned through the shared
attention operation. Then in ARM, we assist SALS
in recalling the exact attentions of inputs from pre-
vious tasks with generated pseudo samples.

4.2 Shared Attentive Learning & Selection
Module

We devise the SALS module to align the learning
and selection processes for PET blocks, where chal-
lenges of catastrophic forgetting and knowledge
transfer could be effectively addressed.

PET Methods. We adopt two representative PET
methods, Prompt Tuning (Lester et al., 2021) and
LoRA (Hu et al., 2021) in SAPT. The additional
trainable parameters introduced by them are re-
ferred to as PET blocks. Please refer to Appendix
A for more details of the two PET methods.

Attentive Learning. In order to transfer the
knowledge acquired from previous tasks, when the
t-th task arrives, parameters of all previous PET
blocks {B1, B, ..., B;_1} and the current one B,
are aggregated via weighted combination for the at-
tentive learning of task 7;. Specifically, we allocate
a key vector k; for each PET block B; (i € [1,t])
and calculate instance-level input-key attentions.’
Such input-key attention ensures the process of at-
tentive learning to be PET-agnostic and compatible
with both prompt tuning and LoRA in SAPT.

The process of shared attention begins when the
j-th input of the current ¢-th task passes through the
embedding layer of the LLM backbone to obtain
EJ (we will omit the superscripts j for simplicity).
Since E; € R™*? and each key vector k; € R

2 This process is called shared attention because it will be
repeated by the following attentive selection.

are of different sequence length, we first perform
the max-pool operation on the length dimension
of E;, and obtain e; € R%. Then e; is fed to a
sub-network to project it as a query into the spaces
of the key vectors for better feature alignment. This
consists of down and up projection:

h?own _ Wdown ( et)
h{® = W' (NonLinear(h{*")) (1)
q; = LayerNOI‘In(hgp)

where Wdn ¢ R%*d and W' ¢ R¥>% are
learnable projection parameters. Following Asai
et al. (2022), we use SiL.U (Elfwing et al., 2018)
for the non-linear and apply Layer Norm (Ba et al.,
2016) on h,” to stabilize the learning process.
Then, the attention weights ay =

{ay,a9,...,a;} are calculated by the prod-

uct between g, and each k; with softmax:
eqtki/T

UG = =7 (2)

22:1 elhki/T

where T is a temperature factor to avoid making
the attention weights over-confident and hindering
the knowledge transfer. And the parameters of
aggregated PET blocks can be obtained:

t
0p = a;bp, 3)
=1

where 0, is the parameters of PET block B;.
The training loss for the attentive learning of the

current task 7; is:

D" 10g P (ye | 2t 0m. 05, Oprojs Or)
(ZL"t,yt)ETt
“

where 0,,,0p, 0p0; and 0), are parameters of the
LLM backbone, the aggregated PET block, the
query projection layer and the set of all key vectors,
respectively. And only those parameters belongs to
the current ¢-th task are updated during the training,
including 6, , Opro and Oy, .

Ltask = -

Attentive Selection. During the inference phase,
when testing data from different tasks arrives, the
correct PET blocks are supposed to be automati-
cally selected to execute the corresponding tasks.
Within the preceding attentive learning, each sam-
ple has already been guided to the optimal com-
binations of existing PET blocks through shared
attention. Thus, the attentive selection process is
inherently supposed to follow the same attention
operation to pick out the relevant PET blocks for
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the testing input accordingly. To be more specific,
attentive selection involves the same computation
process of Equations (1) - (3).

Shared Attentive Learning & Selection. In
summary, the shared attention succeeds to align
the attentive learning and selection of PET blocks,
leading to the shared attentive learning & selection
that is of the same computation process and exhibit-
ing promising insights to deal with the CF and KT
challenges simultaneously.

4.3 Attentive Reflection Module

With the sequential training of different tasks, the
query projection layer in Equation (1) is continu-
ally updated. The introduction of the Attentive Re-
flection Module ensures that inputs from previous
tasks can still correctly perform the corresponding
shared attention to identify the combination of PET
blocks specific to each of them. To achieve this,
we employ generative replay to constrain the pro-
jection layer with pseudo-samples. This approach
ensures that no real samples are involved, thereby
saving the cost associated with maintaining a fixed
memory (Sun et al., 2019; Qin and Joty, 2022).

At each time step ¢, a PET block BI*' is trained
to reconstruct input samples of task 7;. For each
sample (input-output pair), only the input part is
generated conditioned on an initial token [Gen].
Thus, we have { Bi*!, B¥!, ..., B*'} to obtain the
generated pseudo-samples {G1, Go, ..., G} (gen-
erated examples could be found in Appendix E.1).

To assist the query projection layer to reflect
or recall the correct shared attention for samples
from previous tasks at time step ¢, every instance
Z; from G; is fed to the query projection layer and
performs input-key attention operation following
Equation (1) - (2) to obtain the current attention
weight a;. To pull @; to what it should originally
be, we minimize a KL divergence loss:

t—1 n;

Ly =YY Dxi(dilla;) 5)

i=1 j=1

where 7; is the number of pseudo samples from 7;.
Here, a; is the average attention weights of the test
samples from 7;, representing the overall attention
weight of it. Notably, a; is preserved immediately
after the completion of learning 7;, and the position
of (i,t] in a; is padded with O when it participates
the calculation in Equation (5).

It is worth to mention that our ARM exhibits
both improved effectiveness and efficiency than

naive (generative) replay, which is verified by the
experimental results in the following Section 6.

Finally, we jointly minimize the task loss and
the KL loss in the multi-task learning fashion:

L= Ltask + /\LKL (6)

where ) is a hyper-parameter that functions to bal-
ance the two parts.

5 Experiments

5.1 Dataset and Evaluation Metrics

5.1.1 Dataset

SuperNI Benchmark (Wang et al., 2022a): a
benchmark of diverse NLP tasks and their expert-
written instructions, enabling rigorous benchmark-
ing of the more practical settings for the CL of
LLMs. Specifically, in the types of dialogue gen-
eration, information extraction, question answer-
ing, summarization, and sentiment analysis, we
select three tasks for each type, forming a sequence
comprising a total of 15 tasks to evaluate various
methods. For each task, 1,000 instances from the
dataset are randomly sampled for training and 100
instances for validation and testing.

Long Sequence Benchmark (Razdaibiedina
et al., 2023): a continual learning benchmark of
15 classification datasets. Following Razdaibiedina
et al. (2023); Wang et al. (2023a), we select 1,000
random samples for training each task and hold out
500 samples per class for validation and testing.

We explore two different task orders for each
benchmark. Please refer to Appendix B for more
details about the tasks and orders.

5.1.2 Metrics

Let a; ; be the testing performance (Accuracy for
classification task and Rouge-L. (Lin, 2004) for
others) on the j-th task after training on ¢-th task,
the metrics for evaluating are:

(1) Average Performance (AP) (Chaudhry et al.,
2018). The average performance of all tasks after
training on the last task, i.e., A7 = + ST ars

(2) Forgetting Rate (F.Ra) (Chaudhry et al.,
2018) measures how much knowledge has been
forgotten across the first 7 — 1 tasks, i.e., Fiy =
= ;r;ll(max;z;ilak,t —ary);

(3) Forward Transfer (FWT) (Lopez-Paz and
Ranzato, 2017) measures how much knowledge
from previous tasks transfers to a new task, i.e.,
FWTs = % Z;rzl(am — ag¢), where ag; refers
to the performance of training task ¢ individually;
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SuperNI Benchmark Long Sequence Benchmark

APt FRal FWT{ BWT{ | APt FRa| FWT{ BWTY!
SeqLoRA 6.43 3339 -1358 -3094 | 9.72  78.61 0.81 -73.37
Replay 3537 1692 -1.35 -15.79 | 71.28  13.05 1.28 -12.18
L2P 1273 11.87 -19.14 -7.95 | 57.98 2249 1.36 -16.63
LFPT5 3437 15.80 -0.46 -14.47 | 67.01 13.89 2.48 -12.80
ProgPrompt 334 3557 -3.29 -33.18 | 798  71.55 -2.63 -66.71
EPI - - - - 75.15 1.61 -0.77 -1.42
O-LoRA 25.89  26.37 -0.14 -2459 | 69.24  7.00 -8.15 -4.05
SAPT-Prompt | 41.11 1.32 1.95 -0.65 | 79.14 1.68 3.29 -1.48
SAPT-LoRA 51.54 091 1.88 -0.57 | 82.02 1.50 1.86 -1.25

Table 1: The overall results on two continual learning benchmarks with T5-Large model. Performance of continual
learning (AP), forgetting rate (F.Ra), forward transfer (FWT) and backward transfer (BWT) are reported after
training on the last task. All results are averaged over two different orders of each benchmark.

(4) Backward Transfer (BWT) (Ke and Liu,
2022) measures how much the learning of subse-
quent tasks influences the performance of a learned
task, i.e., BWT7 = -5 37 Mar, — ary).

5.2 Baselines and Comparison Models

We evaluate SAPT against the following PET-
based continual learning baseline methods: (1) Se-
gqLoRA: sequentially trains the LoRA on the task
orders. (2) Replay: replays real samples from old
tasks when learning new tasks to avoid forgetting.
(3) L2P (Wang et al., 2022b): uses the input to dy-
namically select and update prompts from a fixed
prompt pool. (4) LFPTS (Qin and Joty, 2022):
continuously trains a soft prompt for each task with
generative replay and an auxiliary loss. (5) Prog-
Prompt (Razdaibiedina et al., 2023): sequentially
concatenates previous learned prompts to the cur-
rent one during the training and testing time. (6)
EPI (Wang et al., 2023b): trains prompts for each
task and selects them via the distance between the
input and distributions formed by labels of differ-
ent classification tasks. (7) O-LoRA (Wang et al.,
2023a): learns tasks in different LORA subspaces
that are kept orthogonal to each other and sums all
LoRA weights up at testing time.

5.3 Implementation Details

SAPT is a model- and PET-agnostic CL method
that is compatible with any transformer-based gen-
erative LLM. In our experiments, all methods are
performed with instruction tuning (Wei et al., 2021;
Ouyang et al., 2022) to leverage the task instruc-
tion provided in the two benchmarks. To ensure
a fair comparison with recent works, we imple-
ment SAPT with both prompt tuning and LoRA
based on the pre-trained encoder-decoder T5-large

model (Raffel et al., 2020). We also scale SAPT
to the backbone with larger model size (up to 11B
and 13B) and the decoder-only LLaMA-2 model
(Touvron et al., 2023). For the baselines, since
they only report the AP metric in their original pa-
pers, we carefully re-implement them with their
official codes to report metrics of F.Ra, FWT and
BWT, providing a thorough insight of how existing
methods deal with CF and KT. For more detailed
settings, please refer to the Appendix C.

6 Results and Analysis
6.1 Opverall Results

Table 1 demonstrates the performance comparison
of SAPT and recent PET-based continual learn-
ing baselines on the SuperNI and Long Sequence
benchmarks. All results are averaged over the two
different orders of each benchmark. Detailed re-
sults of each order and each task within a specific
order are provided in Appendix D.

Our SAPT could effectively deal with the chal-
lenges of CF and KT simultaneously. Com-
pared to both prompt-based methods (SAPT-
Prompt v.s LFPT5/ProgPrompt/EPI) and LoRA-
based methods (SAPT-LoRA v.s Replay/O-LoRA),
SAPT performs better in addressing the two critical
challenges, CF (highest AP and lowest F.Ra) and
KT (highest FWT and BWT) when learning dif-
ferent tasks sequentially. Moreover, for the replay-
based methods, the better performance of SAPT
over Replay and LFPTS5 offers a new perspective
for the utilization of pseudo samples instead of just
blindly mixing them with samples of new tasks
for joint training. Please refer to Appendix E.2 for
more detailed results and analysis regarding the
utilization of replayed samples.
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SuperNI Benchmark Long Sequence Benchmark
APt FRal FWT{ BWTt | APt FRa] FWT{ BWT?
SAPT-LoRA | 51.54 091 1.88 -0.57 | 82.02 1.50 1.86 -1.25
- ARM 11.12 4283 0.70 -40.44 | 10.18 78.45 1.93 -73.22
+ Replay 45.41 7.70 1.26 -6.79 | 7693  6.86 1.21 -6.41
— Alignment | 4590 2.98 -2.42 -255 | 77.61  2.83 -3.92 -2.48
-SA 4436  4.16 -2.95 -3.56 | 67.81 8.24 -8.60 -7.59

Table 2: Results of ablation study on two benchmarks. ARM, Alignment and SA refer to the attentive reflection
module, the alignment of the learning and selection in SAPT and shared attentive learning & selection, respectively.
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Figure 3: Visualization on shared attention of SAPT-
Prompt on the Long Sequence benchmark during the
training for each task (left) and testing for all tasks after
the training of the last task (right).

The alignment of learning and selection of PET
is better than previous pipeline fashion. SAPT
outperforms the state-of-the-art pipeline method,
EPI, which verifies the effectiveness of aligning
the learning and selection with a shared attention
weight. Since EPI is specifically designed for the
CL of classification tasks where the selection of
PET is based on the label information of each task,
it can not be directly applied to the SuperNI bench-
mark covering various types of tasks other than
classification. This manifests that SAPT is more
practical to the real-world applications of LLMs.
In addition, the best results of SAPT in terms of
AP and F.Ra demonstrate the great potential that
such attention-guided soft selection of PET are
more resistant to CF, compared with previous meth-
ods of concatenation (ProgPrompt), summation (O-
LoRA) and top-1 selection (EPI).

6.2 Visualization on Shared Attention

Figure 3 displays the heat maps for shared atten-
tion during the training and testing time. We can
observe that: (1) the learning and selection pro-
cesses of PET blocks are exactly aligned that the
two heatmaps nearly have the same layout. (2)
KT do happens in the attentive learning process to
assist SAPT acquire new knowledge. These fur-
ther verify the effectiveness of SAPT to deal with
CF and KT. Please refer to Appendix F for more

discussions and visualization results.

6.3 Ablation Study

We conduct ablation studies to verify the effective-
ness of different modules proposed in SAPT-LoRA.
Results are shown in Table 2.

Effect of Attentive Reflection. After removing
the attentive reflection module (“— ARM”, imple-
mented by discarding the Lk ), the significant de-
cline highlights its crucial role in assisting different
input samples to recall the correct shared attention
for the corresponding PET blocks they should orig-
inally combine. When replacing ARM with naive
Replay (“+ Replay”), the decline of F.Ra further
verifies our claim that ARM offers a more effective
solution to apply pseudo samples. Please refer to
Appendix E.2 for more detailed results and analysis
regarding the efficiency of ARM module.

Effect of the Alignment. We transform the align-
ment of PET learning and selection in SAPT into
an independent format. This involves initially per-
forming attentive learning to obtain weights that
represent the combination of existing PET blocks.
Subsequently, a separate PET selector is trained
with these weights and generated pseudo samples.
The comprehensive decline in model performance
validates our claim that the learning and selection
processes of PET are inherently capable of aligning
together to collaborate seamlessly.

Effect of Shared Attentive Learning & Selection.
Furthermore, we remove the shared attentive mech-
anism based on the above pipeline settings, where
each PET block is learned within a single task and
the selector are required to pick the most confi-
dent top-1 block for inference. The model’s per-
formance has suffered significantly, especially in
terms of knowledge transfer. This demonstrates
that leveraging acquired knowledge comprehen-
sively, whether in PET learning or selection, is
crucial for effectively addressing CF and KT.
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Figure 4: Performance of SAPT and baseline methods based on different size of T5-model in terms of performance
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Figure 5: Comparison of SAPT and baselines based on

different architectures of LLM backbones, including TS
(encoder-decoder) and LLaMA-2 (decoder-only).

6.4 Power of Scale

Scale to larger backbone. We empirically ana-
lyze how increasing the backbone TS5 size affects
the performance of SAPT. Figure 4 displays the
performance of SAPT, O-LoRA and Replay in
terms of AP, F.Ra and FWT, based on the ascend-
ing backbone sizes, Large (770M), XL (3B) and
XXL (11B). Overall, with the increased sizes of
the backbone model, SAPT could always demon-
strate superior performance over baseline models
in resisting catastrophic forgetting and facilitating
knowledge transfer. It is worth noting that even
with the largest backbone model, O-LoRA (11B)
still falls short in terms of Average Performance
compared to the smallest version of SAPT-LoRA
(770M). This further underscores the crucial impor-
tance of selecting the pertinent PET blocks for each
input sample in real-world application scenarios.

Scale to different architectures. The results of
SAPT and baseline methods on the SuperNI Bench-

Unseen Tasks

‘Dialog IE QA Sum sA | A%
T5-ZS 749 670 428 1214 454 7.3
O-LoRA 439 9389 2538 826 5041 19.67
LFPTS5 696 3532 3500 1326 2151 2241
SAPT-LoRA | 11.56 29.66 38.04 13.77 50.62 28.73

Table 3: Results on unseen tasks based on the TS5-Large
backbone model. We report the average Rouge-L of the
3 tasks under each category.

mark based on different sizes of T5 and LLaMA-2
are shown in Figure 5. It can be observed that
SAPT is capable of effectively mitigating CF and
promoting KT across different model architectures.
Moreover, the average performance improves with
the enhancement of the model’s basic capabilities
(LLaMA-2 > T5). This further demonstrates the
generality of our proposed SAPT. Please refer to
Appendix G for more detailed results.

Scale to unseen tasks. We further select 3 tasks
from each one of the above task category to as-
sess the SAPT’s cross-task generalization ability.
This is also a crucial dimension for evaluating CL
algorithms. Table 3 shows the results. T5-ZS rep-
resent the zero-shot approaches for task adapta-
tion, respectively. SAPT yields the best perfor-
mances, which can be attributed to its superiority
in effectively combining acquired knowledge to
address novel tasks. This suggests that we should
actively promote knowledge transfer between dif-
ferent tasks during the process of CL.

7 Conclusion

In this paper, we propose SAPT, a novel frame-
work for the parameter-efficient continual learning
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of LLMs. In SAPT, we ingeniously align the two
key processes of parameter-efficient block learning
and selection through the shared attention, allowing
it to effectively alleviate catastrophic forgetting and
promote knowledge transfer simultaneously. More
importantly, SAPT works under the practical set-
tings where no task-ids are provided for the inputs
to select their corresponding parameters. Experi-
mental results also demonstrate the applicability of
SAPT across different parameter-efficient tuning
methods, models of varying scales and architec-
tures, highlighting its universality.

8 Limitations

There are several limitations to consider for future
directions of continual learning of large language
models. Firstly, when the learning sequence scales
to hundreds of tasks, continually expanding the
PET pool to allocate a PET block for each one
of them would lead to large computation and stor-
age costs. Thus, how to prune and merge similar
PET blocks in the continual learning process can
be an interesting direction to explore. Secondly,
although SAPT exhibits the best performance of
Backward Transfer (BWT), it still fails to allow
subsequent tasks to impose the positive impacts
on the learned ones. This could be a critical direc-
tion to further explore more advanced CL methods.
Finally, even though our approach do not depend
on identifying task-ids during the testing phase, it
still necessitates the identification of tasks during
training to establish distinct PET parameters for
each task. Investigating techniques for training that
is independent of task identification could prove to
be a promising avenue for future research, which
could favor the application of continual learning
upon on the online streams of data.
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A Parameter-Efficient Tuning Methods

We adopt two representative PET methods, Prompt
Tuning (Lester et al., 2021) and LoRA (Hu et al.,
2021) in our proposed SAPT, which are referred to
as PET blocks in this study.

In prompt tuning, a series of virtual tokens,
called soft prompt P is prepended to the input
text x, while keeping the LLM parameters frozen.
In this case, during the training on the down-
stream tasks, gradient updates are preformed on
the prompt parameters independently.

In LoRA, the pre-trained weight matrix of LLMs
is updated with a low-rank decomposition. For a
linear layer h = Wy, the forward pass with LoRA
is modified to be:

h =Wpyx + BAx @)

where Wy € Rk B € R4 A € R™¥F with
the rank » < min(d, k). The pre-trained weight
matrix Wy remains fixed during training, while A
and B contain trainable parameters.

B Dataset Details

B.1 Datasets

Table 4 & 5 show details of the datasets we used
for our experiments, along with their evaluation
metrics. Overall, in SuperNI, we choose 3 tasks
from dialogue generation (Dialog) (Zhang et al.,
2018a; Zang et al., 2020; Peskov et al., 2020), in-
formation extraction (IE) (Santus et al., 2015; Nye
et al., 2018; Mostafazadeh et al., 2020), question
answering (QA) (Dasigi et al., 2019; Talmor et al.,
2019), summarization (Sum) (Narayan et al., 2018;
Gliwa et al., 2019; Kim et al., 2019) and sentiment
analysis (SA) (Socher et al., 2013; Saravia et al.,
2018), respectively.

For the Long Sequence benchmark, this includes
five tasks from the standard CL benchmark (AG
News, Amazon reviews, Yelp reviews, DBpedia
and Yahoo Answers) (Zhang et al., 2015), four
from GLUE benchmark (MNLI, QQP, RTE, SST2)
(Wang et al., 2018), five from SuperGLUE bench-
mark (WiC, CB, COPA, MultiRC, BoolQ) (Wang
et al., 2019), and the IMDB movie reviews dataset
(Maas et al., 2011).

And unseen tasks from the SuperNI benchmark
are displayed Table 6. They also from the five cate-
gories of Dialog (Wei et al., 2018; Cho and May,
2020; Aliannejadi et al., 2021), IE (Mausam et al.,
2012; Zlabinger et al., 2020; Radev et al., 2020),

QA (Levy et al., 2017; Zhang et al., 2018b; Min
et al., 2020), Sum (Henderson et al., 2014; Syed
et al., 2020; Hasan et al., 2021) and SA (Sheng and
Uthus, 2020; Lowphansirikul et al., 2020).

B.2 Task Sequence Orders

We report 4 different task orders used for our ex-
periments in Table 7.

C Implementation Details

Our experiments are implemented with PyTorch
(Paszke et al., 2019) and Transformer library (Wolf
et al., 2020). The T5-Large is trained on a sin-
gle NVIDIA Tesla A800 GPU and the larger
backbones T5-XL, T5-XXL, LLaMA-2-7B and
LLaMA-2-13B are performed on 4 NVIDIA Tesla
A800 using DeepSpeed repository.

For our prompt-based methods, the length of
prompts is set to 10. Following Lester et al. (2021),
they are initialized from sampled vocabulary of the
backbone model and trained using the Adafactor
optimizer. On the SuperNI benchmark, we train
SAPT-Prompt with 100 epochs, the constant learn-
ing rate of 3e-2 and the batchsize of 32 per GPU. As
for the hyper-parameter A in Equation (6), it func-
tions to balance the share attention in the process
of attentive learning for the newest task and that in
the process of attentive reflection for previous tasks.
The larger A means that the attentive reflection con-
tributes more to assist SALS in recalling the shared
attention of previous tasks. However, excessive A
can impair attentive learning for the current task,
thereby weakening knowledge transfer. Here, A is
set to 1, which is the relatively optimal balance of
the attentive learning and reflection. The hidden
dimension d,, of the query projection layer is 100.
On the Long Sequence benchmark, the model is
trained for 10 epochs with a hierarchical learning
rate, 3e-1 for prompts and le-2 for the query pro-
jection layer. We always keep the total batchsize to
32. And the X and d,, for order3 and order4 is (1.5,
200) and (1.3, 150), respectively. The attention
temperature in Equation (2) is d x exp(1), where
d is the LLM backbone dimension size.

For our LoRA-based methods, we use AdamW
optimizer to train the model with the learning rate
of 3e-4 for T5-Large, 1e-4 for those larger T5-XL
and T5-XXL models, 5e-5 for LLaMA-2-7B and
le-5 for LLaMA-2-13B. For TS5 series, the batch
size is set to 32 per GPU. On the SuperNI bench-
mark, the low rank 7, A and d,, are 4, 0.5 and 100,
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while they are set to 8, 0.1 and 100 for the Long
Sequence benchmark. For LLaMA-2 family, and
the batch size is 32 in total. The low rank r, A and
dy, are both 4, 2 and 100 for the Superni and Long
Sequence benchmarks. The attention temperature
in Equation (2) is sqrt(d), where d is the LLM
backbone dimension size.

To obtain pseudo samples for our ARM, the
prompt length is 300 and is trained for 80 epochs
utilizing Adafactor with learning rate of 0.5. And in
LoRA, the low-rank r is 8. We train it with AdamW
with the learning rate of 0.001 for 5k steps. Batch
size is set to 16 for both methods.

Further, we carefully evaluate the official imple-
mentations of all baselines, in order to make the
comparison as fair as possible. We strictly follow
the hyper-parameter settings in their original code,
where the prompt size is all set to 10 (except that
for LFPTS5 of 300) and the LoRA rank is set to 8. If
this could not reach the expected performance, we
carry out the hyper-parameter search of the learn-
ing rate and batchsize for them. Following Sun
et al. (2019); Qin and Joty (2022), the volume of re-
play samples is 0.02 of the original training set for
SAPT and all replay baseline methods (Replay and
LFPTS5). Please refer to Appendix E.2 for deeper
analysis for the volume of pseudo samples. All the
methods are evaluated for 3 random runs.

D Fine-grained Results for the Main
Experiments

We report the results of each task order on the two
benchmark in Table 8 and Table 9. And results
of the average performance at each time step is
displayed in Figure 8. Overall, the our proposed
SAPT demonstrates excellent capabilities in ad-
dressing CF and KT.

E More Results and Analysis on
Generated Pseudo-Samples

E.1 Examples of Pseudo Samples

Table 12 shows several pseudo samples generated
by SAPT for the SuperNI an Long Sequence Bench-
mark. Since there are tasks instructions in these
two benchmarks, the input-output format of real
samples is consists of three elements: [INS] task
instruction, [IN] task input and [OUT] task out-
put. And we only generate the input part, [INS]
and [IN], to perform attentive reflection in SAPT,
which is a novel ways of pseudo-samples usage
and greatly different from previous works where

complete pseudo samples are generated and mixed
with the current task data for multi-task learning.
We can see that SAPT can indeed generate high-
quality pseudo samples to assist samples from pre-
vious tasks in correctly identify the combination of
PET blocks specific to each of them.

ARM’s efficiency is demonstrated by its need to
generate only the input part of samples, unlike pre-
vious generative replay methods (Sun et al., 2019;
Qin and Joty, 2022) that required generating com-
plete (input-output) pairs.

E.2 Different Volumes and Types of Replayed
Samples

In SAPT, the Attentive Reflection Module (ARM)
provides a novel perspective for utilizing generated
pseudo-data. We conduct additional experiments
to analyze the impact of using varying scales of
pseudo-data and real data on SAPT and the base-
line models Replay and LFPT5. The results are
shown in Figure 6. We have the following two
observations that are worth to discuss:

(1) Regardless of whether real data or pseudo-
data is used, SAPT demonstrates computational
efficiency during replay, showing superior perfor-
mance even with the minimum replay scale 2%
compared to the maximum replay scale 100% of
LFPTS5 and Replay. It is worth mentioning that
when the replay data volume of Replay is 100%,
it corresponds to the setting of multi-task learning,
which is commonly considered as the upper bound
of continual learning. SAPT is able to surpass this
upper bound, demonstrating its ability to flexibly
handle different inputs, enabling them to be pro-
cessed by corresponding parameters.

(2) For SAPT, there is no significant difference in
performance between using real data and pseudo-
data. This firstly indicates the reliability of the
pseudo-data we generated and the sufficient ro-
bustness of our proposed ARM, which can utilize
pseudo data of different qualities to accomplish
reflection on shared attention.

F Visualization on Shared Attention

We demonstrate the visualization on shared atten-
tion operation of SAPT-Prompt on the SuperNI
(Figure 9) and the Long Sequence (Figure 10)
Benchmark, and the SAPT-LoRA on the SuperNI
(Figure 11) and the Long Sequence (Figure 12)
Benchmark. And the resulting attention weights is
obtained through the average attention weights of

11654



—e— SAPT-Pseudo —e— SAPT-Real

Average Performance (AP)

LFPT5-Pseudo

Forgetting Rate (F.Ra)

LFPT5-Real —e— Replay

Forward Transfer (FWT)

:7%;:74: 17.51 2<:>-<:><o=—<:7<:
50
150 0‘._.’./\
451 12.51 =21
10.0 4
401 61
7.5
_8<
35 1 5.0
-10
2.5
30 S~ —121
, : : : : 0.01, : . : ; , : : : :
002 0.05 0.1 0.5 1 0.02 0.05 0.1 0.5 1 002 0.05 0.1 0.5 1

Figure 6: Comparison of SAPT-LoRA and baselines based on different types (real and pseudo) and volumes of
replayed data, in terms of Average Performance (AP), Forgetting Rate (F.Ra) and Forward Transfer (FWT).
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Figure 7: Comparison of SAPT and baselines based on
different architectures of LLM backbones on the Long
Sequence benchmark, including TS5 (encoder-decoder)
and LLaMA-2 (decoder-only).

the testing samples from a specific task.

Overall, whether based on Prompt or LoRA,
SAPT can maintain the alignment for the learn-
ing and selection process of PET blocks through
shared attention on both benchmarks. Even as the
task sequences become longer, it does not affect
the ability to identify suitable combinations of PET
modules. This directly demonstrates its effective-
ness in addressing CF and KT.

Furthermore, both methods demonstrate varying
degrees of knowledge transfer on the two bench-
marks. Overall, the PET blocks in the current task
contribute more significantly, as indicated by the
darkest color of the diagonal elements. However,
there are also interesting observations where the
PET blocks for other tasks have weights higher
than the current task, surpassing the higher simi-
larity between these tasks (yelp & amazon, mnli
& cb). Additionally, the knowledge transfer of

Prompt appears slightly more pronounced than
LoRA, but overall, LoRA outperforms Prompt in
terms of the overall performance. This may be
attributed to LoRA’s superior representation and
learning of task-specific knowledge in the low-rank
space, aligning with the conclusions in previous
works (Hu et al., 2021; Ding et al., 2022).

G Scale to LLaMA-2 Model

The results of SAPT and baseline methods on the
Long Sequence Benchmark based on different sizes
of TS and LLaMA-2 are shown in Figure 7. It can
be observed that our proposed SAPT still exhibits
superiority to effectively mitigating CF and pro-
moting KT over baseline methods.

Selecting O-LoRA as the baseline method for
experiments based on LLaMA-2 is because it is the
only work among numerous baselines that experi-
mented with LLaMA-2 in the original paper, while
other baselines are almost originally implemented
with T5 or BERT in their paper. Here we addition-
ally supplement the experimental results of EPI,
LFPTS5 based on LLaMA2-7B and -13B. Results
are shown in Table 10 and Table 11.

11655



Dataset name Task Metric

1. task639_multi_woz_user_utterance_generation  dialogue generation Rouge-L
2. task1590_diplomacy_text_generation dialogue generation Rouge-L
3. task1729_personachat_generate_next dialogue generation Rouge-L
4. task181_outcome_extraction information extraction Rouge-L
5. task748_glucose_reverse_cause_event_detection information extraction Rouge-L
6. task1510 _evalution_relation_extraction information extraction Rouge-L
7. task002_quoref_answer_generation question answering Rouge-L
8. task073_commonsenseqa_answer_generation question answering Rouge-L
9. task591_sciq_answer_generation question answering Rouge-L
10. task511_reddit_tifu_long_text_summarization = summarization Rouge-L
11. task1290_xsum_summarization summarization Rouge-L
12. task1572_samsum_summary summarization Rouge-L
13. task363_sst2_polarity_classification sentiment analysis accuracy
14. task875_emotion_classification sentiment analysis accuracy
15. task1687_sentiment140_classification sentiment analysis accuracy

Table 4: The details of 15 datasets in the SuperNI Benchmark (Wang et al., 2022a).

Dataset name Category Task Domain Metric

1. Yelp CL Benchmark sentiment analysis Yelp reviews accuracy
2. Amazon CL Benchmark sentiment analysis Amazon reviews accuracy
3. DBpedia CL Benchmark topic classification Wikipedia accuracy
4. Yahoo CL Benchmark topic classification Yahoo Q&A accuracy
5. AG News CL Benchmark topic classification news accuracy
6. MNLI GLUE natural language inference various accuracy
7. QQP GLUE paragraph detection Quora accuracy
8. RTE GLUE natural language inference news, Wikipedia accuracy
9. SST-2 GLUE sentiment analysis movie reviews accuracy
10. WiC SuperGLUE word sense disambiguation lexical databases accuracy
11. CB SuperGLUE natural language inference various accuracy
12. COPA SuperGLUE question and answering blogs, encyclopedia accuracy
13. BoolQA SuperGLUE boolean question and answering  Wikipedia accuracy
14. MultiRC SuperGLUE question and answering various accuracy
15. IMDB SuperGLUE sentiment analysis movie reviews accuracy

Table 5: The details of 15 classification datasets in the Long Sequence Benchmark (Razdaibiedina et al., 2023).
First five tasks correspond to the standard CL benchmark (Zhang et al., 2015).
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Dataset name Task Metric

1. task360_spolin_yesand_response_generation dialogue generation Rouge-L
2. task574_air_dialogue_sentence_generation dialogue generation Rouge-L
3. task1714_convai3_sentence_generation dialogue generation Rouge-L
4. task180_intervention_extraction information extraction Rouge-L
5. task678_ollie_actual_relationship_answer_generation information extraction Rouge-L
6. task1410_dart_relationship_extraction information extraction Rouge-L
7. task339_record_answer_generation question answering Rouge-L
8. task670_ambigqa_question_generation question answering Rouge-L
9. task1327_qa_zre_answer_generation_from_question  question answering Rouge-L
10. task522_news_editorial_summary summarization Rouge-L
11. task1356_xlsum_title_generation summarization Rouge-L
12. task1499_dstc3_summarization summarization Rouge-L
13. task421_persent_sentence_sentiment_classification sentiment analysis accuracy
14. task833_poem_sentiment_classification sentiment analysis accuracy
15. task929_products_reviews_classification sentiment analysis accuracy
Table 6: The details of unseen tasks from the SuperNI benchmark.
Order Model Task Sequence
task1572 — task363 — task1290 — task181 — task002 —
1 T5, LLaMA-2 task1510 — task639 — task1729 — task073 — task1590 —

task748 — task511 — task591 — task1687 — task875

task748 — task073 — task1590 — task639 — task1572 —
2 T5, LLaMA-2 task1687 — task591 — task363 — task1510 — task1729 —

task181 — task511 — task002 — task1290 — task875

mnli — cb — wic — copa — qqp — boolqa — rte — imdb —
yelp — amazon — sst-2 — dbpedia — ag — multirc — yahoo
yelp — amazon — mnli — cb — copa — qqp — rte — imdb —
sst-2 — dbpedia — ag — yahoo — multirc — boolgqa — wic

3 TS, LLaMA-2

4 TS, LLaMA-2

Table 7: Four different orders of task sequences used for our experiments. Orders 1-2 correspond to the SuperNI
benchmark. Orders 3-4 are long-sequence orders following Razdaibiedina et al. (2023).

Order 1 Order 2

APt FRal FWT{ BWTT | APt FRa] FWTT BWT?
SeqLoRA 5.05 3094 -17.01 -28.88 7.80 3584 -10.15 -32.99
Replay 3437 18.09 -1.26 -16.89 | 36.37 15.74 -1.44 -14.69
L2P 15.18 6.23 -20.97 -3.65 1027 17.51 -17.30 -12.24
LFPT5 39.03 10.87 -0.41 -9.85 29.70  20.72 -0.51 -19.08
ProgPrompt 2.83 35.65 -3.70 -33.27 3.85 35.48 -2.87 -33.09
EPI - - - - - - - -
O-LoRA 20.95 30091 -0.43 -28.83 | 30.82 21.83 0.15 -20.35
SAPT-Prompt | 41.88 1.41 2.83 -0.75 40.34 1.23 1.07 -0.54
SAPT-LoRA 52.25 0.57 2.26 -0.23 50.82 1.24 1.50 -0.90

Table 8: The overall results on each task order of the SuperNI benchmark with T5-Large model. Performance of
continual learning (AP), forgetting rate (F.Ra), forward transfer (FWT) and backward transfer (BWT) are reported
after training on the last task.
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Order 3 Order 4
APt FRal FWT{ BWT! | APt FRal] FWT{ BWT}

SeqLoRA 6.71 82.07 1.19 -76.60 | 12.73  75.15 0.43 -70.14
Replay 68.20 16.21 1.20 -15.13 | 7425  9.89 1.36 -9.23
L2p 58.61  21.55 1.01 -15.43 | 57.34 2342 1.70 -17.82
LFPT5 66.62  14.57 2.89 -13.60 | 67.40 13.20 2.06 -11.99
ProgPrompt 6.14 7464  -1.65 -69.53 | 9.83 6845 -3.61 -63.89
EPI 75.19  0.77 -1.54 -0.60 | 7510 244 0.00 -2.23
O-LoRA 69.22  8.30 -1.79 -442 | 6926 5.0 -8.51 -5.09

SAPT-Prompt | 80.20 091 3.63 -0.76 | 78.08  2.45 2.95 -2.20
SAPT-LoRA 8344  0.75 1.99 -0.66 | 80.60  2.25 1.72 -1.94

Table 9: The overall results on each task order of the Long Sequence benchmark with T5-Large model. Performance
of continual learning (AP), forgetting rate (F.Ra), forward transfer (FWT) and backward transfer (BWT) are reported
after training on the last task.
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Figure 8: The average performance of SAPT and baseline models at each time step on the SuperNI (left) and the
Long Sequence (right) benchmark.

S DAV Y
S E S NP

1.0
task1572

task363 -
task1290 -
task181 -
task002 -
task1510 -
task639
task1729 -
task073
task1590 -
task748 -
task511
task591 -
task1687
task875

task1572
task363
task1290 -
task181
task002 -
task1510 -
task639 -
task1729 -
task073 -
task1590 -
task748
task511 -
task591 -
task1687
task875 -

0.8

0.6

r0.4

r0.2

—0.0

Figure 9: Visualization on shared attention of SAPT-Prompt on the SuperNI benchmark during the training (left)
and testing time (right).
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Figure 10: Visualization on shared attention of SAPT-Prompt on the Long Sequence benchmark during the training
(left) and testing time (right).
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Figure 11: Visualization on shared attention of SAPT-LoRA on the SuperNI benchmark during the training (left)
and testing time (right).
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Figure 12: Visualization on shared attention of SAPT-LoRA on the Long Sequence benchmark during the training
(left) and testing time (right).
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SuperNI Benchmark Long Sequence Benchmark
APt FRa] FWT{ BWT{ | APt FRa] FWT{ BWTY

Replay 3948 14.86 0.19 -26.47 | 7143 13.64 0.97 -12.73
LFPT5 38.71  16.81 0.32 -15.42 | 70.31 5.63 0.51 -4.32
EPI - - - - 7227  5.04 -3.12 -0.50
O-LoRA 2426  27.56 -6.09 -25.773 | 5495 2236 -8.38 -19.86

SAPT-Prompt | 4739  2.12 0.92 -2.02 | 77.62  3.29 0.33 -2.98
SAPT-LoRA 56.23 1.07 0.81 -0.65 | 81.75 2.81 1.09 -2.53

Table 10: The overall results on two continual learning benchmarks with LLaMA-2-7B model. Performance of
continual learning (AP), forgetting rate (F.Ra), forward transfer (FWT) and backward transfer (BWT) are reported
after training on the last task. All results are averaged over two different orders of each benchmark.

SuperNI Benchmark Long Sequence Benchmark

APt FRal FWT{ BWT{ | APt FRa|] FWT{ BWTY!
Replay 4399 11.64 0.72 -9.75 | 76.63  7.92 0.02 -14.86
LFPT5 4126 14.67 -0.52 -12.31 | 71.61  6.51 -1.34 -3.78
EPI - - - - 76.66 491 -0.09 -1.03
O-LoRA 31.18  24.26 -4.05 -22.64 | 6121 19.03 -10.4 -17.54
SAPT-Prompt | 52.31 1.57 1.49 -1.41 78.54  3.26 0.14 -2.98
SAPT-LoRA 5695 1.39 0.81 -0.56 | 8232 1.98 0.78 -1.57

Table 11: The overall results on two continual learning benchmarks with LLaMA-2-13B model. Performance of
continual learning (AP), forgetting rate (F.Ra), forward transfer (FWT) and backward transfer (BWT) are reported
after training on the last task. All results are averaged over two different orders of each benchmark.
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Benchmark Task Name

Type

Data S; Il

task002_quoref_answer_generation

SuperNI

Real

[INS] In this task, you’re expected to write answers to questions involving multiple references to the same entity. The
answer to the question should be unambiguous and a phrase in the paragraph. Most questions can have only one correct
answer. [IN] Passage: Phaedra is a poor Greek sponge diver on the island of Hydra. She works from the boat of her
boyfriend, Rhif, an illegal immigrant from Albania. She accidentally finds an ancient Greek statue of a boy riding a dolphin
on the bottom of the Aegean Sea. Her efforts to sell it to the highest bidder lead her to two competing individuals: Dr.
James Calder, an honest archaeologist who will surrender it to Greek authorities, and Victor Parmalee, an aesthete and an
unscrupulous dealer with a history of trying to acquire works of art stolen by the Nazis from their owners.\nCalder and
Parmalee each try to win Phaedra’s cooperation. She works in concert with Parmalee, while developing feelings for Calder.
When she seems to waver, Rhif decides to make the deal with Parmalee work. The film reaches a happy conclusion, with
virtue rewarded, the statue celebrated by the people of Hydra, and Phaedra and Calder in each other’s arms. Parmalee, a
man with no apparent national loyalties or heritage, sets course for Monte Carlo. \nQuestion: Who is dating an illegal
immigrant? [OUT] Phaedra.

Pesudo

[INS] In this task, you’re expected to write answers for questions involving multiple references to the same entity. The
answer to the question should be unambiguous and a phrase in the paragraph. Most questions can have only one correct
answer. [IN] Passage: In 1899 British President Johnston (now known as John Marshall) is charged with running riots
against officers of the Royal Navy. After two days of debriefing, Admiral Sir William Rogers Jr. becomes interested in
Robert RobJohnson, another officer on staff, who finds out that Johnson was not present at the rehearsals for the film;
however, his father also claims that he has been fired from the navy because Mr Williams had been shot before him. He then
went off to see an officer looking after the military. He later admitted himself guilty—for failing which he became involved
in the crime? Although no arrest was made during his service they served less than 40 days. He does remain behind but
never gets away or die first. He takes control over

task875_emotion_classification

Real

[INS] In this task, you are given a sentence containing a particular emotion. You must classify the sentence into one of the
six emotions: "joy’, "love’, anger’, *fear’, or "surprise’. [IN] i could clearly feel my adomen muscles contract everytime i
cough like some adomen exercise haha and im aching from it now sigh [OUT] sadness

Pesudo

[INS] In this task, you are given a sentence containing monetary hardship. You must classify the sentence into one of the
six emotions: 'joy’, ’love’, "anger’, fear’, or’surprise’. [IN] i feel like it is worthwhile to support local artists and so does
clay so im amazed by how supportive and passionate artistic writers can be

task1572_samsum_summary

Real

[INS] In this task, you are given a conversation, and your task is to generate a summary from the information present in the
given conversation. Generate a summary in such a way that the context should be present in the conversation. It should
cover the complete context of the conversation. [IN] Mary: Can you pick up the kids?, John: Sure. You’ve already asked
me this morning., Mary: Really? I don’t remember. , John: Ok, doesn’t matter. [OUT] John will pick up the kids at Mary’s
request.

Pesudo

[INS] In this task, you are given a conversation, and your task is to generate a summary from the information present in the
given conversation. Generate a summary in such a way that the context should be present in the conversation. It should
cover the complete context of the conversation. [IN] Leda: Ok, so first Homo Faber., Gaby: I've already booked the tickets.,
Ivan: Where exactly?, Leda: Isola San Giorgio., Gaby: They have limited spaces., Ivan: They are always full, but we can
ask around it., Gaby: So for us? We won’t make it all day., Marc: OK, what about Giardini or Arsenale? I think we won’t
make it to see both. We can ask around., Gaby: I'll go back!, Ivan: Me too. We could also go different places... There are a
lot of satellitanni: What about the transportation? Same ticket

amazon

Real

[INS] Given a review text from an e-commerce platform, please analyze the sentiment polarity expressed in the text.
Choose one from the following sentiment categories: very negative, negative, neutral, positive and very positive.\n[IN]
Title: Great\nText: Jim Cramer is the best - his stock tips and philosophy of investing is truly outstanding.Thanks Jim for all
of your insight\n[OUT] positive

Pesudo

[INS] Given a review text from an e-commerce platform, please analyze the sentiment polarity expressed in the text. Choose
one from the following sentiment categories: very negative, negative, neutral, positive and very positive! [IN] Title: Just not
as cool as I thought it would be Text: This was just too cool to give up on this movie! Unfortunately, there are way more
people with bad taste than Meg McConnell here or even Amy Schumer who make some of her own movies instead of being
a good mommy.

Long Sequence

imdb

Real

[INS] Classify the sentiment polarity expressed in the following movie reviews.\n [IN] The Japanese Run Lola Run,his is
one offbeat movie which will put a smile on just about anyone’s face. Fans of Run Lola Run, Tampopo, Go!, and Slacker
will probably like this one. It does tend to follow a formula that is increasingly popular these days of separate, seemingly
unrelated vignettes, all contributing the the overall story in unexpected ways. catch it if you see it, otherwise wait for the
rental. [OUT] Good

Pesudo

[INS] Classify the sentiment polarity expressed in this movie reviews. [IN] Well, I've just got back from watching this
film for my birthday and it’s been an incredible experience to see how well done that film is! The production values are
unbelievable; not only does it look really good, but they have amazing acting: John Wayne makes one of the best actors on
his career, and when he plays Jack Ryan (Scott Stierlin) there can be very few performances you would want him to lose
weight because he is over 50 pounds. It should all appeal to everybody. There must also explain why such great cinema was
important at the time so many years ago. This picture is another highlight which shows how bad James Bond could be like
with anything else. We know what we were facing before leaving our country after 24 hours or 48 days...and now we have
had some real talent in this film!!

yahoo

Real

[INS] I will give you a pair of question and answer, please categorize the topic discussed within.\n [IN] Question: who is the
actress from india at da vinci premiere?\nAnswer: Aishwarya Rai, the former Miss World.\n [OUT] Entertainment & Music

Pesudo

[INS] I will give you a pair of question and answer, please categorize the topic discussed within. [IN] Question: what is the
word "butterfly"? Answer: It means butterfly-like flower that grow in a basket or vase with lilies on it

Table 12: Examples of generated pseudo samples of the SuperNI and the Long Sequence benchmarks. [INS], [IN]
and [OUT] represent the task instruction, task input and task output, respectively.
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