
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11608–11620
August 11-16, 2024 ©2024 Association for Computational Linguistics

ChunkAttention: Efficient Self-Attention with Prefix-Aware KV Cache
and Two-Phase Partition

Lu Ye Ze Tao Yong Huang Yang Li
Microsoft

{luye,zetao,yohuan,yali2}@microsoft.com

Abstract

Self-attention is an essential component of
large language models (LLM) but a significant
source of inference latency for long sequences.
In multi-tenant LLM serving scenarios, the
compute and memory operation cost of self-
attention can be optimized by using the proba-
bility that multiple LLM requests have shared
system prompts in prefixes. In this paper,
we introduce ChunkAttention, a prefix-aware
self-attention module that can detect matching
prompt prefixes across multiple requests and
share their key/value tensors in memory at run-
time to improve the memory utilization of KV
cache. This is achieved by breaking mono-
lithic key/value tensors into smaller chunks
and structuring them into the auxiliary prefix
tree. Consequently, on top of the prefix-tree
based KV cache, we design an efficient self-
attention kernel, where a two-phase partition
algorithm is implemented to improve the data
locality during self-attention computation in
the presence of shared system prompts. Exper-
iments show that ChunkAttention can speed
up the self-attention kernel by 3.2-4.8× com-
pared to the start-of-the-art implementation,
with the length of the system prompt ranging
from 1024 to 4096. 1

1 Introduction

Over the last few years, Large Language Models
(LLM) have developed various capabilities, from
in-context learning (Dong et al., 2023) to chain-
of-thought reasoning (Chu et al., 2023; Wei et al.,
2022), and achieved remarkable success in a wide
range of natural language processing related tasks
(Chang et al., 2023). Representive models are the
GPT (Radford et al., 2018, 2019; Brown et al.,
2020; OpenAI, 2023c), LLaMA (Touvron et al.,
2023b), PaLM (Anil et al., 2023) and Gemini (Gem-
ini, 2023) series. Following the success of Chat-

1Code is publicly available at https://github.com/
microsoft/chunk-attention

GPT and GPT store, LLM-based applications start
to surge, and the demand to optimize LLM’s infer-
ence cost has been a new area of research interest
(Kim et al., 2023; Sheng et al., 2023; Aminabadi
et al., 2022).

The self-attention module, as one of the criti-
cal components in LLMs, has poor performance
during inference (Table 1) since it performs inten-
sive memory operations on key/value tensors of
context tokens (KV cache) and is memory-bound
(Williams et al., 2009; Jin et al., 2023). The mem-
ory complexity grows linearly with context length.
As the demand for more context tokens has been a
trend (32K for GPT-4), the performance gets worse
(OpenAI, 2023c). KV cache additionally restricts
the batch size and system throughput. For instance,
using FP16, the KV cache for each token in GPT-
3(175B) requires 4.5MB of memory. The memory
of an inference server with 8*A100 (80G) can only
hold 70000 tokens or 35 sequences of 2K context
tokens.

On the other hand, the shared system prompt
in LLM-based applications leads to redundancy in
KV cache (Anthropic, 2023). Typically, LLMs are
pre-trained and deployed in a multi-tenant architec-
ture for multiple applications to share. Due to the
in-context learning abilities of LLMs, using the sys-
tem prompt to guide LLMs with instructions and
few-shot examples is a common practice in design-
ing LLM-based applications (White et al., 2023;
Zhou et al., 2023). The system prompt is shared
between multiple requests and can be very long.
This can be observed in various LLM-based appli-
cations, from online chatbots to offline experiments
(§ 2.1). For instance, gyudoza (2023) shows that
system prompts of various LLM-based applications
have more than 1K tokens. For a ChatGPT-like on-
line chatbot, the system prompt can be as long as
1766 tokens with only 6 plugins activated, and all
requests sent to the chatbot share one single system
prompt (Appendix A). In the Chameleon (Lu et al.,

11608

https://github.com/microsoft/chunk-attention
https://github.com/microsoft/chunk-attention


2023a) work, 4 system prompts are shared by 4241
queries to run the ScienceQA benchmark (Lu et al.,
2022), and 7 system prompts are shared by 7685
queries to run the TabMWP benchmark (Lu et al.,
2023b).

An important question is whether we can lever-
age the sharing characteristic of system prompts
to make the self-attention module faster and more
memory efficient. To our knowledge, the only re-
lated work is a proposal by Kwon et al. (2023), in
which the service provider reserves memory for
key/value tensors of a set of predefined system
prompts from application developers. The proposal
has limitations: i) predefined system prompts are
static and inflexible in frequent refreshes for large-
scale deployments since both application develop-
ers and the service provider are involved in the
operation loop; ii) there is memory waste in case of
long system prompts and low hit rate; iii) no work
has been done to optimize the self-attention kernel
in the presence of shared system prompts.

To fill the gap, we propose ChunkAttention, a
novel self-attention module featuring the prefix-
aware KV cache (PAKV) and two-phase parti-
tion (TPP). KV cache in ChunkAttention is a pre-
fix tree built with chunked context tokens and
key/value tensors. Thus, the KV cache is prefix-
aware and can dynamically detect and remove re-
dundancy at runtime without human involvement.
The KV cache only stores key/value tensors of se-
quences currently in decoding and has zero mem-
ory waste. In addition, the prefix-tree structure
provides context for ChunkAttention to redesign
a highly-optimized self-attention kernel with two-
phase partition: chunk-first phase and sequence-
first phase. Query tensors from sequences with
matching prompt prefixes are batched together to
perform attention with key/value tensors.

The main contributions of this paper are as fol-
lows: i) we reveal that system prompts can be long
(§2.1), providing opportunities for optimizing self-
attention; ii) we propose to use prefix tree to imple-
ment KV cache, which is out-of-the-box, scalable
and robust in terms of redundancy removal; iii) we
implement a two-phase partition algorithm to speed
up self-attention kernel on prefix-aware KV cache;
iv) we prove the feasibility and empirically quantify
the gain self-attention can achieve from shared sys-
tem prompts under various system configurations.
Our experiments show that ChunkAttention can be
significantly faster as the length of shared system
prompts grows and has no performance degrada-

Batch Size Roofline QKV Projection Self Attention MLP

1
FLOPs(×106) 100.66 33.57 270.53
MOPs(×106) 100.70 33.85 270.62

Arithmetic Intensity 1.00 0.99 1.00
Latency(µs) 88.44 17.82 160.77

32
FLOPs(×106) 3221.23 1074.27 8657.04
MOPs(×106) 101.71 1083.18 273.43

Arithmetic Intensity 31.67 0.99 31.66
Latency(µs) 90.02 687.74 209.82

64
FLOPs(×106) 6442.45 2148.53 17314.09
MOPs(×106) 102.76 2166.36 276.33

Arithmetic Intensity 62.69 0.99 62.66
Latency(µs) 98.04 1358.40 217.79

Table 1: Complexity analysis of key modules in each
decoder layer when decoding one single token. Llama2
7B, 2048 context tokens, FP16, A100 (80G). The self-
attention module has low arithmetic intensity (Williams
et al., 2009) and high latency. FLOPs: floating point op-
erations. MOPs: memory operations or memory bytes
accessed. Arithmetic Intensity: FLOPs/MOPs.

tion without shared system prompts, compared to
existing highly optimized implementations.

2 Preliminaries

2.1 Shared System Prompt

One paradigm in designing LLM-based applica-
tions has been the introduction of system prompt
(Anthropic, 2023). It provides instructions, few-
shot examples (Dong et al., 2023), and external
knowledge as context for LLMs to generate better
results. The final prompt to LLMs is a concatena-
tion of system prompt and task-specific input. The
system prompt is shared between multiple requests
and can be very long. This can be observed in vari-
ous LLM-based applications, from online chatbots
to offline experiments.

Toolformer or using external tools becomes an
essential skill for LLMs to get up-to-date informa-
tion or perform precise math calculations (Schick
et al., 2023; Li et al., 2023). It is implemented
by plugins in ChatGPT-like online chatbot appli-
cations (OpenAI, 2023a). Equivalent capability is
provided by GPT series models through function
calling (OpenAI, 2023b). Under the hood, avail-
able function specifications are silently injected
into the system prompt (OpenAI, 2023d). Exper-
iments indicate that with 6 plugins activated, the
token length of the shared system prompt can reach
up to 1766 (Appendix A).

Another source of shared system prompts is the
offline research-focused experiments conducted on
LLMs. In these scenarios, researchers frequently
create a large number of templated requests with
identical instructions, examples, or external knowl-

11609



System Usage of Prompt
#shared prompt tokens

avg max

Chameleon Tools definition and examples 1 1324 2626
CREATOR CoT examples 2 879 2492
PDFTriage PDF document metadata 4257 N.A.
ToolQA Tools definition and examples 3 1432 1432

Table 2: Shared prompt tokens in system prompt, to-
kenized by OpenAI’s tiktoken tokenizer library (Ope-
nAI, 2023e).

edge and issue them to LLMs quickly. Example
work includes: i) Chameleon (Lu et al., 2023a)
reuses policy planning and tool invocation prompts
for compositional reasoning on the ScienceQA
and TabMWP datasets; ii) CREATOR (Qian et al.,
2023) constructs a collection of questions from
TabMWP and MATH datasets using a chain-of-
thought (CoT) prompt template; iii) PDFTriage
(Saad-Falcon et al., 2023) injects the PDF doc-
ument metadata into prompt and runs multiple
question-answering (QA) tasks over the document;
iv) ToolQA (Zhuang et al., 2023) further releases a
QA dateset and reuses the system prompt for eval-
uations of QA with LLMs. Table 2 shows statistics
on shared token counts of system prompts.

2.2 LLM Inferencing

The typical inference process of LLMs consists of
two stages: prefilling and decoding (Sheng et al.,
2023). After receiving a sequence S = [t1, ..., tnp ],
the server starts to prefill. During prefilling, it feeds
all np prompt tokens t1, ..., tnp into LLMs, com-
putes the attention key/value tensors, and caches
them to speed up subsequent computations. Then,
the server performs decoding. Decoding is auto-
regressive, and the input token to LLMs is the com-
pletion token(or output token) generated from the
previous decoding iteration. The process contin-
ues until the end-of-sequence token or maximum
completion tokens are generated.

When the server is decoding b (batch size) se-
quences S1, ..., Sb simultaneously, although they
are in different iterations, the server can still
perform batching at the granularity of iteration
and predict the next tokens for all sequences to-
gether, rather than separately, which is known as

1https://github.com/lupantech/chameleon-llm/
blob/main/run_tabmwp/demos/prompt_policy.py

2https://github.com/qiancheng0/CREATOR/blob/
main/MATH/prompt_lib/prompt_cot.md

3https://github.com/night-chen/ToolQA/blob/
main/benchmark/chameleon/run_toolqa/demos/
prompt_policy.py

iteration-based batching (Gao et al., 2018; Yu et al.,
2022; Silfa et al., 2022). Specifically, iteration-
based batching concatenates last input tokens
of multiple sequences (one token per sequence)
t(1), ..., t(b)(t(i) ∈ Si) into a single input T , and
computes the QKV projection before self-attention,
the output projection and multilayer perceptron af-
ter self-attention. The self-attention in the middle
has no shared weights and needs to be computed
independently for each sequence. During decoding,
new sequences can join, and completed sequences
can leave, significantly increasing the possibility of
forming big batches. Iteration-based batching has
been implemented by vLLM (Kwon et al., 2023)
and the text-generation-inference server (Hugging-
Face, 2023). The ChunkAttention in this paper
assumes that iteration-based batching is enabled to
form batches for its kernel to run efficiently.

3 Our Approach

3.1 Prefix Aware KV Cache (PAKV)

Traditionally, KV cache is stored in dense tensors
of size b× h×n× d where b is the batch size, h is
the number of heads, n is the sequence length, and
d is the head dimension size.

When multiple sequences share common prefix
tokens, key/value tensors are the same and thus
can be shared in memory. For example, a par-
ticular LLM inference server receives sequence
Si = [t1, ..., tns , tns+1, ..., tnp ] first, and then re-
ceives sequence Sj = [t1, ..., tns , t

′
ns+1, ..., t

′
np
].

KV cache for t1, ..., tns can only have one physical
copy in memory.

Given the property, we argue that the KV cache
should be made prefix-aware, which is to orga-
nize the KV cache of all sequences under decoding
into a prefix tree. Precisely, we slice monolithic
key/value tensors contiguous in memory along the
sequence length dimension. Figure 1 shows the
structure of the KV cache stored in a prefix tree.
Each node defines a chunkC storing three essential
elements: i) a segment of c context tokens shared
by sequences Si, ..., Sj to enable prefix tree opera-
tions; ii) a slice of key tensor of size b×h×c×d for
the c tokens; iii) the corresponding slice of value
tensor. Each path in the prefix tree defines a se-
quence. Multiple trees (a forest) may exist in the
server simultaneously. For instance, application
developers design different system prompts.

There are three possible scenarios during infer-
ence: i) new sequence joins, ii) completed sequence

11610

https://github.com/lupantech/chameleon-llm/blob/main/run_tabmwp/demos/prompt_policy.py
https://github.com/lupantech/chameleon-llm/blob/main/run_tabmwp/demos/prompt_policy.py
https://github.com/qiancheng0/CREATOR/blob/main/MATH/prompt_lib/prompt_cot.md
https://github.com/qiancheng0/CREATOR/blob/main/MATH/prompt_lib/prompt_cot.md
https://github.com/night-chen/ToolQA/blob/main/benchmark/chameleon/run_toolqa/demos/prompt_policy.py
https://github.com/night-chen/ToolQA/blob/main/benchmark/chameleon/run_toolqa/demos/prompt_policy.py
https://github.com/night-chen/ToolQA/blob/main/benchmark/chameleon/run_toolqa/demos/prompt_policy.py


Instructions Examples Q0S0

Instructions Examples Q1S1

Instructions Examples Q2S2

C0

C1

C2

C3

S0

C4 C5

C6

S1

C7

S2

tokens
keys

values

S
ystem

P
rom

pt
Q

0/1/2

padding

Prompt:
[Instructions]
You are an AI chatbot. You are having a conversation with a human by following rules:
- You do not have a name.
- You are helpful, creative, clever, and friendly
...
[Examples]
Human: Hello, who are you?
AI: I am an AI chatbot. How can I help you?
...
[Question]
Human: Tell me about the second world war.

0

1

2

3 4 5 6

7 8S0

S1 S2

S3

(1) Insert: new S3 received

0

1

2

3 4 5 6

31 7 8

S0 S1 S2

S3

(2) Append: S0 grows a new chunk

0

1

2

3 4 5 6

31 7 8

S0 S1 S2

S3

(3) Delete: S0, S1 finished

S3

S2

S4 S5

(4) Insert: new S4, S5 received

Figure 1: KV cache in prefix tree. The instructions and examples in prompts of S0, S1, S2 are common and
sharable. Questions are different and not sharable. Some memory is unused due to alignment.

leaves, and iii) all sequences decode one token to-
gether. Each scenario can be translated into prefix
tree operations. When a new sequence joins, the
prefix tree is searched and updated to insert a new
path. When a completed sequence leaves, the prefix
tree is updated to delete its path. At each decoding
iteration, we append new tokens into leaf chunks
or grow a new chunk when the leaf chunk is full.

Given a fixed chunk size c, memory management
is efficient. In ChunkAttention, the pool-based
memory allocator is adopted by default (Hill, 1992;
Trebino, 2016). It keeps track of both a used and
a free chunk list. When a new chunk is requested,
the allocator returns a chunk from the free list or
allocates fresh memory from the operating system
(OS). Unused chunks are returned to the allocator
once a sequence is completed, but the allocator
does not release memory to the OS, preventing
unnecessary memory allocations. Some memory
space for alignment is unused. Given that the se-
quence length is n, the memory loss is bounded by
(c− 1)/n.

By sharing common prefixes, the number of se-
quences that can be processed simultaneously is
increased by approximately 1/(1 − r). The shar-
ing ratio r is defined by the percentage of shared
tokens ns/(np + nc), and nc is the completion to-
ken count. In memory-limited inference scenarios,
this helps increase the batch size and thus improve
throughput.

The parent-child relationship defines the subset
of sequences each chunk covers. The root node
covers all sequences, and the leaf nodes cover only
one. A key property of the prefix tree is that se-
quences covered by each chunk in the prefix tree
are contiguous in the sequence index dimension.

Therefore, slicing the query tensor in self-attention
is particularly efficient during kernel computation,
which will be discussed in more detail in the next
section.

3.2 Two-phase Partition (TPP)
In this section, we dive into the self-attention kernel
implementation on top of the unique prefix-aware
KV cache storage.

During prefilling, we perform a prefix lookup
to avoid repeated computation of KV projection
and position embedding for matched prompt pre-
fixes. For mismatched suffix tokens, KV projection
and position embedding are still computed, and the
key/value tensors are chunked and inserted into the
prefix tree. Then we apply existing highly opti-
mized self-attention kernels, e.g., FlashAttention
(Dao, 2023), on the entire key/value tensors.

During iterative decoding, self-attention is di-
vided into chunk-first and sequence-first phases.
The two phases focus on different slices of the
query tensor, KV cache chunks, and use different
parallelization strategies. The process is shown in
Figure 2. Since the head dimension is always parti-
tioned, it is omitted and implicit in our discussion.

Chunk-first Phase. In the chunk-first phase, we
only process chunks shared by multiple sequences.
Since GPUs have more streaming multiprocessors
(108 for A100) than the number of heads (32 for
Llama 7B), and partitioning by heads under-utilizes
hardware resources, we perform additional parti-
tion on keys/values. Chunking already provides
convenience. The online softmax algorithm is
adopted to avoid the synchronization requirement
between partitions (Milakov and Gimelshein, 2018;
Dao, 2023).

The computation is performed by traversing

11611



C0

C1

C2

C3 C4 C5

C6 C7
S0

S1 S2

Kernel context (CPU → GPU)

Chunk slice of Q covered

Start Idx(i) End Idx(j)

C0 0 2
C1 0 2
C2 0 2
C3 0 0
C4 1 1
C5 2 2
C6 1 1
C7 2 2

a1: partial_attn(Q, i, j), batched
a2: partial_attn(qi)
r: attn_reduce(qi)

Q C0

a1

(O m n)(C0)

Chunk First Phase

Q C1

a1

(O m n)(C1)

Q C2

a1

(O m n)(C2)

q0 C3

a2

o0 m0 n0

Sequence First Phase

q1 C4 C6

a2

o1 m1 n1

O
r

q2 C5 C7

a2

o2 m2 n2

Figure 2: Two-phase partition kernel in ChunkAttention. The server is decoding sequences S0, S1, and S2. They
share chunks C0, C1 and C2. In the chunk-first phase, queries q0, q1 and q2 are batched for self-attention with
C0, C1 and C2. Partial attention result O(C), m(C) and n(C) are saved into memory. In the sequence-first phase,
oi, mi, and ni for each sequence are restored, and we continue processing the remaining chunks with respect to qi
only.

shared chunks in the prefix tree, executing the par-
tial attention kernel partial_attn and saving the
partial attention results into memory, as shown in
Algorithm 1. The number of sequences (batch size)
is denoted by b. Q ∈ Rb×d is the queries formed
by concatenating the last token of all b sequences
in the latest decoding iteration.

Algorithm 1 Self Attention: Chunk First (partition chunks)

Require: Q ∈ Rb×d (query), T (prefix tree)
Ensure: O ∈ Rb×d (attention output)

function ATTNCHUNKFIRST(Q, T )
Get chunks C1, ..., Ck in T that are shared by multiple sequences
O,m,n← 0, 0, 0
for C← C1 to Ck do

K(C), V (C)← key, value cache stored in C
i, j← start index, end index of sequences covered by C

O(C),m(C),n(C)← partial_attn(Q, K(C), V (C), i, j)
Save partial attention result O(C),m(C),n(C) to memory

end for
end function

The implementation of partial_attn is given by
Eqn. (1). It computes the partial attention result
(O,m,n)(C) with respect to each chunk C inde-
pendently, thus it can be parallelized. Qi:j,: is
a slice of Q for sequences ranging from i to j
which share the KV cache stored in chunk C. The
maximum attention weights vector M (C) is the
row-wise max over the last dimension of attention
weights W (C). The softmax normalization term
n(C) is the row-wise sum over the last dimension
of E(C). M (C) and n(C) are auxiliary variables
introduced to further cumulate partial attention re-
sults of multiple chunks.

W (C) = Qi:j,:K
(C) ∈ R(j−i)×c

m(C) = max
(
W (C)

)
∈ R(j−i)

E(C) = exp
(
W (C) −m(C) · 1T

)
∈ R(j−i)×c

n(C) = sum
(
E(C)

)
∈ R(j−i)

O(C) = E(C)V (C) ∈ R(j−i)×d

(1)

The partial_attn efficiently accesses shared KV

cache memory since self-attentions for multiple
sequences are batched. The batching happens
at a granularity of dot-product between queries
Qi,:, ...,Qj,: of sequences Si, ..., Sj and shared
K(C)/V (C). In addition to improved data locality,
another advantage of batching is to turn the query
from a vector into a matrix, allowing efficient ma-
trix multiplications with tensor cores (Choquette
et al., 2021).

Sequence-first Phase. In the sequence-first
phase, we load partial attention results of shared
chunks from the chunk-first phase and continue
processing chunks related to one specific sequence.
We partition sequences, and each q handled by the
sequence-first kernel is a vector by selecting the
i-th row of Q, as shown in Algorithm 2.

Algorithm 2 Self Attention: Sequence First (partition sequences)

Require: Q ∈ Rb×d (query), T (prefix tree)
Ensure: O ∈ Rb×d (attention output)

function ATTNSEQFIRST(Q, T )
for q← q1 to qb do

o,m, n← 0, 0, 0
Get partial attn results (O,m,n)(C1) , ..., (O,m,n)(Ck)

for (O,m,n)(C)← (O,m,n)(C1) to (O,m,n)(Ck) do
Partial attn of q: (o,m, n)(C)← slicing (O,m,n)(C)

attn_reduce(o(C), m(C), n(C), o, m, n)
end for
Get chunks Ck+1, Ck+2..., Cl in T with respect to q only
for C← Ck+1 to Cl do

K(C), V (C)← key, value cache stored in C
i← sequence index of q
(o,m, n)(C)← partial_attn(q, K(C), V (C), i, i + 1)
attn_reduce(o(C), m(C), n(C), o, m, n)

end for
end for

end function

The attn_reduce repeatly merges partial atten-
tion result of one chunk (o,m, n)(C) produced by
the partial_attn into the cumulative attention result
(o,m, n) by scaling them with x(C) and y(C) re-
spectively. Eqn. (2) shows the process. Oi,:, mi

and ni are slices for sequence of index i. The final
attention output is given by O/n element-wise.

11612



The sequence-first phase is efficient in concur-
rency since partial_attn and attn_reduce are per-
formed locally, without communication between
thread blocks. However, without the partial atten-
tion results generated by the chunk-first phase, it
needs to load shared chunks from RAM b times,
which adds significant MOPs. The two-phase parti-
tion algorithm balances parallelization and cache
locality.

x(C) = exp
(
m(C) −max

(
m(C),mi

))
∈ R

y(C) = exp
(
mi −max

(
m(C),mi

))
∈ R

Oi,: = x(C)o(C) + y(C)Oi,: ∈ Rd

ni = x(C)n(C) + y(C)ni ∈ R

mi = max
(
m(C),mi

)
∈ R

(2)

3.3 Further Optimizations

The prefix tree structure is maintained in CPU mem-
ory. To run the two-phase partition kernel on GPU,
we must generate certain context from the prefix
tree, including the chunk C, the start index i and
end index j of its covered sequences, and copy
the context (C, i, j) from CPU to GPU memory.
For example, in Figure 2, we need to generate and
copy (C0/C1/C2, 0, 2), (C3, 0, 0), (C4/C6, 1, 1),
and (C5/C7, 2, 2). ChunkAttention manages the
overhead in two ways: i) latency hiding. The con-
text generation step on CPU can be overlapped with
other kernels on GPU prior to self-attention. ii) lazy
context copy. The prefix tree does not change at
every decoding iteration. We can cache the con-
text in GPU memory and only trigger memory copy
when the tree structure changes. Triggers are chunk
full for every c iterations, new sequence joining,
and completed sequence leaving. The overhead is
amortized.

The temporary memory allocated for partial at-
tention results in the chunk-first phase can be elim-
inated by executing attn_reduce right after par-
tial_attn to directly merge partial attention results
into the final result. Since multiple shared chunks
with a parent-child relationship in the prefix tree
write into the same slice of (O,m,n), attn_reduce
needs to be serialized. On GPU devices, atomic
operations are heavy, and we do not use this ap-
proach. However, on CPU devices, the overhead
of serializing is insignificant, and reduction can be
implemented using spin locks.

4 Experiments

The evaluations are conducted at both the self-
attention microkernel level and the end-to-end GPT-
style model level. The microkernel level evalua-
tions only capture time spent in the self-attention
CUDA kernel. The side effects of PAKV and TPP,
e.g., prefix tree operations, are captured in end-
to-end evaluations. We run all experiments with
NVIDIA A100 GPU (80G) and CUDA 11.8.

4.1 Microkernel Evaluation

Baselines. We select four self-attention imple-
mentations as baselines: Naive PyTorch imple-
mentation by the formula softmax(QKT /

√
d)V ,

the memory-efficient self-attention implemented
in xformers (Lefaudeux et al., 2022), FlashAtten-
tion integrated in PyTorch (Dao et al., 2022), and
PagedAttention in vLLM (Kwon et al., 2023).

Since Naive, xformers, and FlashAttn are all
built on monolithic KV tensors, they cannot be
prefix-aware by partially sharing KV cache of
prompt prefixes. PagedAttn does not implement
PAKV either. However, its paging design enables
us to manually create a fixed page table, mapping
virtually non-shared memory to the same physi-
cal memory. It simulates the KV cache sharing
scenario and helps us observe the performance of
PagedAttn’s CUDA kernel, which is denoted as
PagedAttn*. None of the kernels support the TPP
algorithm.
Workload. Sequences are processed in batch
mode, and the batch size is b. All sequences within
the same batch start and finish simultaneously.
Each sequence is prefilled with np prompt tokens,
and the leading ns tokens are common prefixes.
The task is to decode the next nc completion to-
kens iteratively. We measure the decoding latency
t and the throughput defined by token rate(tokens
per second or TPS, nc ∗ b/t). For all experiments,
the head dimension d is 128, the number of heads
h is 32, and the chunk size c is 64. All tensors are
in FP16.
Results. We run experiments to observe the perfor-
mance gain brought by PAKV and TPP by varying
the following system hyperparameters: prompt and
shared token count, completion token count, and
batch size.

Table 3 shows the latency of self-attention imple-
mentations given various prompt and shared token
counts. ChunkAttn and PagedAttn* outperform
Naive, xformers, FlashAttn, and PagedAttn, which

11613



np ns
Latency (µs)

Naive xformers FlashAttn PagedAttn PagedAttn* ChunkAttn

1024 0 363.35 378.19 1586.73 356.17 355.82 332.50
1024 512 364.73 385.79 1587.14 355.88 257.74 198.87
1024 768 362.43 378.50 1591.61 356.02 215.18 131.21
1024 1024 361.76 379.36 1586.90 355.44 154.46 56.00

2048 0 686.40 816.44 3175.25 702.98 703.50 655.44
2048 1024 687.52 828.76 3173.53 703.35 505.32 384.37
2048 1536 685.78 820.19 3174.96 702.90 421.25 247.14
2048 2048 688.41 823.60 3152.25 703.72 338.41 110.48

4096 0 1369.52 1720.00 6289.55 1400.61 1400.17 1301.78
4096 2048 1370.47 1722.42 6303.21 1400.99 998.78 747.56
4096 3072 1369.74 1725.57 6301.41 1400.30 828.98 477.66
4096 4096 1370.41 1713.13 6300.65 1399.51 663.84 206.22

Table 3: Latency of self-attention kernel given np con-
text tokens and ns prefix tokens are shared. Chunk size
c=64, batch size b=32.

are agnostic to shared token count. The Naive is
6.6× and 2.1× slower than ChunkAttn and Page-
dAttn*, respectively (ns=4096). By comparing
PagedAttn* and PagedAttn, we observe the perfor-
mance gain brought by sharing KV cache memory
physically. Although PagedAttn* does not imple-
ment PAKV or TPP, the hardware cache helps re-
duce its latency by up to 52% compared to Page-
dAttn (ns=4096): repeatedly accessing the same
physical memory blocks provides significant per-
formance gain. The benefit of TPP can be further
seen by comparing PagedAttn* and ChunkAttn.
ChunkAttn outperforms PagedAttn* by 2.8-3.2×,
with a range of ns from 1024 to 4096. TPP does
not cause performance regression when no token
is shared (ns=0, ChunkAttn vs. PagedAttn* in Ta-
ble 3). As a result, TPP should always be enabled.

As the decoding proceeds, sequences start to
diverge, and the performance gain of ChunkAttn
gradually decreases, as shown in Figure 3. Given
2048 shared tokens, ChunkAttn yields 3.6× token
rate improvement compared to PagedAttn when nc
reaches 512, and the speedup drops to 2.3× when
nc reaches 2048. However, it is still a significant
improvement. The improvement of ChunkAttn
over PagedAttn* is lower since PagedAttn* bene-
fits from physically shared KV cache memory, and
only TPP makes a difference here. However, given
ns=2048, ChunkAttn is still 2.0× (145K against
73K) and 1.5× (70K against 46K) faster than Page-
dAttn* when nc reaches 512 and 2048 respectively.

Figure 4 focuses on varying the batch size. For
all implementations except ChunkAttn and Page-
dAttn*, the throughput peaks when the batch size
reaches 16 due to memory-bound. Given ns is
2048, ChunkAttn’s throughput continues to grow
from 155K to 224K toks/s for the batch size rang-
ing from 16 to 96 due to better data locality and

ns nc
Token Rate(×103) (toks/s)

Paged Chunk Speedup

1024

256 76.35 241.93 3.2 ×
512 69.15 186.44 2.7 ×
1024 58.12 127.85 2.2 ×

2048

512 39.85 145.41 3.6 ×
1024 36.18 107.37 3.0 ×
2048 30.17 70.33 2.3 ×

4096

512 21.04 101.69 4.8 ×
1024 19.85 81.69 4.1 ×
2048 17.98 58.33 3.2 ×
4096 15.12 37.05 2.4 ×

Figure 3: Throughput in token rate when generating
up to nc completion tokens, given ns prefix tokens are
shared. Chunk size c=64, batch size b=32.

(a) ns=1024 (b) ns=2048

Figure 4: Token rate when decoding up to nc=64 com-
pletion tokens given various batch sizes. Chunk size
c=64.

improved arithmetic intensity.

4.2 End-to-end Evaluation

ChunkLlama is built on top of Huggingface Llama
and vLLM’s optimized kernels (layer normaliza-
tion and rotary embedding) under Apache-2.0 li-
cense, but the attention module is substituted by
ChunkAttn. We run all experiments on the Open
Llama2 7B model in FP16 (Geng and Liu, 2023;
Computer, 2023; Touvron et al., 2023a).
Baselines. We select two widely used and opti-
mized LLMs serving toolkits with proven produc-
tion usages: the start-of-the-art vLLM 0.2.7 (Kwon
et al., 2023) and Huggingface’s Text Generation
Inference (TGI) 1.3.4 (HuggingFace, 2023).
Workload. Requests arrive at the server randomly
following the Poisson arrival process (Hill, 1992)
parameterized by λ, which is the average requests
per second (RPS). The actual batch size is adjusted
dynamically by each system during decoding, and
we configure its maximum to 32 equally. Appli-
cation developers provide no information about
the shared prompt prefix for the service provider
to pre-configure. We measure the normalized la-
tency (ms/tok or 1/TPS) as in vLLM, which is the
mean of each request’s end-to-end latency t (in-
cluding queuing time) divided by the completion
token count nc, and the peak memory bytes used

11614



by KV cache.
Results. ChunkLlama yields the fastest infer-
ence speed, as shown in Figure 5. ChunkLlama
can achieve 1.6× (2.9 against 1.8) and 2.3× (2.3
against 1.0) higher throughput compared to vLLM
when 1024 and 2048 prefix tokens are shared while
maintaining a normalized latency of less than 40
ms/token. Table 4 compares the latency and KV
cache memory usage of our ChunkLlama to vLLM.
No performance regression is observed in ChunkL-
lama without shared prefix tokens. The KV cache
memory usage is reduced by 70%-90% with long
shared prefixes. The peak batch size is also reduced
by 20%-40% since ChunkLlama can decode faster.

(a) np=1024

(b) np=2048

Figure 5: Normalized latency given different request
arrival rates (RPS). Each line is marked by the system
and shared prompt token count: system(ns).

np ns nc RPS
Latency (ms/tok) Peak KV Cache (GB) Peak Batch Size

vLLM ChunkLlama vLLM ChunkLlama vLLM ChunkLlama

1024 0 512 1.0 19.92 19.11 14.73 11.90 23 18
1024 1024 512 1.0 20.80 14.07 14.79 3.28 23 14

2048 0 512 0.6 21.90 19.43 21.70 22.41 19 20
2048 2048 512 0.6 21.61 15.20 21.09 3.40 19 12

4096 0 512 0.4 26.23 26.88 34.59 35.13 16 16
4096 4096 512 0.4 27.62 17.16 35.42 4.00 16 11

Table 4: Normalized latency, peak KV cache memory,
and batch size reached during decoding.

5 Related Work

The most relevant work on optimizing the memory
utilization of KV cache is PagedAttention in vLLM
(Kwon et al., 2023). It introduces the paging tech-
nique in OS to solve the problem of memory waste
caused by dynamic and unknown sequence lengths
during decoding. However, only a proposal on ser-
vice providers to pre-configure shared prompts is

mentioned, and it is not implemented in vLLM re-
leases (up to 0.2.7). Our solution, which differs
from the paging one, uses the prefix tree to manage
memory and aims to discover redundancy in KV
cache across user requests at runtime automatically.
The solution is more practical for multi-tenant de-
ployment scenarios where service providers cen-
trally host models and have requirements on scala-
bility. According to vLLM, the shared KV cache
is similar to the dynamic link library shared by
multiple processes. vLLM’s strategy is to compile
before publishing (AoT). We expect to compile in
real-time (JIT). Based on the context captured in
the prefix tree, our work further proposes a two-
phase partition algorithm to explore the optimiza-
tion opportunities shared system prompts bring to
the self-attention kernel, which is another differ-
ence between our work and the existing work.

Partition strategies in ChunkAttention are built
on online softmax (Milakov and Gimelshein, 2018)
and inspired by FlashAttention (Dao et al., 2022;
Dao, 2023), which adopted the same algorithm.
FlashAttention thoroughly researched and imple-
mented various tiling techniques, accelerating self-
attention by 2-4× while cutting memory opera-
tions by 10-20×. FlashAttention-2 altered tiling
strategies and additionally doubled the speed. How-
ever, FlashAttention is inflexible regarding non-
contiguous memory or variable sequence lengths,
making it more suitable for model training than
inference. There is little gain when the query token
count is always one during decoding. ChunkAt-
tention handles variable sequence lengths during
decoding and batches attention operations of sev-
eral sequences to reduce memory operations. As
a result, our work and FlashAttention are comple-
mentary.

6 Conclusion

In this paper, we propose ChunkAttention, a novel
self-attention module, to efficiently manage KV
cache and accelerate the self-attention kernel for
LLMs inference. We successfully adopt the prefix
tree to create a prefix-aware KV cache. It addresses
the challenge of detecting and removing redundant
KV cache at runtime. We evaluate ChunkAttention
in various configurations and at different levels,
proving its feasibility and the side effects can be
managed. Experiments show that the ChunkAt-
tention kernel can achieve comparable throughput
with SOTA PagedAttention kernel without shared

11615



system prompts and can outperform it by 3.2-4.8×
with a shared system prompt of 1024 to 4096 to-
kens on A100 (80G) by applying prefix-aware KV
cache and two-phase partition.

7 Limitations

The Position of System Prompt. To share the
key/value tensors in memory, the shared system
prompt must appear at the beginning of the se-
quence. Although this is the most common prac-
tice in many works and systems (Lu et al., 2023a;
Qian et al., 2023; Saad-Falcon et al., 2023; Zhuang
et al., 2023), it is not mandatory. Liu et al. (2023)
reveals that language model performance degrades
significantly when changing the position of rele-
vant information, indicating that models struggle to
access and use information in long input contexts
robustly. In particular, performance is often lowest
when models must use information in the middle of
long input contexts. As a result, when application
developers do not put the system prompt at the be-
ginning for performance concerns after evaluations
or unintentional mistakes, KV caches of the entire
sequences are different, and PAKV cannot save
memory in this case, although they have a large
number of tokens in common.
Fine Tuning. In addition to using system prompts,
fine-tuning is another promising way to infuse do-
main knowledge into LLMs (Houlsby et al., 2019;
Hu et al., 2023). Due to the high training and de-
ployment cost, LLMs are typically pre-trained and
centrally hosted for multiple applications to share.
It is not cost-efficient for each application to fine-
tune models and deploy private instances. However,
fine-tuning may become more practical and popu-
lar as hardware and software environments evolve.
In this case, we no longer need to design long sys-
tem prompts for each application, and the sharing
opportunities of system prompts are reduced. As
of today, we have not seen promising and cost-
efficient fine-tuning and hosting solutions in this
direction than using system prompts.
Model and Hardware Compatibility. To achieve
the best performance, ChunkAttention implements
the two-phase partition kernel with the low-level
CUDA programming instead of leveraging high-
level primitives in cuDNN (oneDNN Contributors,
2023) or PyTorch. We tune its performance for the
most common LLM configurations, e.g., 128 head
dimension size, and hardware, e.g., NVIDIA A100,
GeForce RTX 4090, and Intel Xeon CPU. For other

configurations and hardware, we need to tune and
verify the performance case by case, which adds
significant development costs. We believe commu-
nity efforts are needed to generalize the two-phase
partition algorithm and make it compatible with
more model configurations and hardware.

References
Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-

mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, and Yuxiong He. 2022. Deepspeed infer-
ence: Enabling efficient inference of transformer
models at unprecedented scale. In SC22: Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–15.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
e-prints, pages arXiv–2305.

Anthropic. 2023. How to use system prompts.
https://docs.anthropic.com/claude/docs/
how-to-use-system-prompts.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.
2023. A survey on evaluation of large language mod-
els.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux,
Nick Stam, and Ronny Krashinsky. 2021. Nvidia
a100 tensor core gpu: Performance and innovation.
IEEE Micro, 41(2):29–35.

Zheng Chu, Jingchang Chen, Qianglong Chen, Wei-
jiang Yu, Tao He, Haotian Wang, Weihua Peng,
Ming Liu, Bing Qin, and Ting Liu. 2023. A survey
of chain of thought reasoning: Advances, frontiers
and future.

Together Computer. 2023. Redpajama-data: An open
source recipe to reproduce llama training dataset.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

11616

https://doi.org/10.1109/SC41404.2022.00051
https://doi.org/10.1109/SC41404.2022.00051
https://doi.org/10.1109/SC41404.2022.00051
https://docs.anthropic.com/claude/docs/how-to-use-system-prompts
https://docs.anthropic.com/claude/docs/how-to-use-system-prompts
http://arxiv.org/abs/2307.03109
http://arxiv.org/abs/2307.03109
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.1109/MM.2021.3061394
http://arxiv.org/abs/2309.15402
http://arxiv.org/abs/2309.15402
http://arxiv.org/abs/2309.15402
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data


Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei
Li, and Zhifang Sui. 2023. A survey on in-context
learning.

Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li.
2018. Low latency rnn inference with cellular batch-
ing. In Proceedings of the Thirteenth EuroSys Con-
ference, pages 1–15.

Gemini. 2023. Gemini: A family of highly capable
multimodal models.

Xinyang Geng and Hao Liu. 2023. Openllama: An
open reproduction of llama.

gyudoza. 2023. jujumilk3/leaked-system-
prompts: Collection of leaked system
prompts. https://github.com/jujumilk3/
leaked-system-prompts.

Steve Hill. 1992. A simple fast memory allocator. In
DAVID KIRK, editor, Graphics Gems III (IBM Ver-
sion), pages 49–50. Morgan Kaufmann, San Fran-
cisco.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning,
pages 2790–2799. PMLR.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters: An
adapter family for parameter-efficient fine-tuning of
large language models.

HuggingFace. 2023. huggingface/text-generation-
inference: Large language model text generation
inference. https://github.com/huggingface/
text-generation-inference.

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-
Yeon Wei. 2023. S3: Increasing gpu utilization
during generative inference for higher throughput.
arXiv preprint arXiv:2306.06000.

Sehoon Kim, Coleman Hooper, Thanakul Wat-
tanawong, Minwoo Kang, Ruohan Yan, Hasan
Genc, Grace Dinh, Qijing Huang, Kurt Keutzer,
Michael W. Mahoney, Yakun Sophia Shao, and Amir
Gholami. 2023. Full stack optimization of trans-
former inference: a survey.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention.

Benjamin Lefaudeux, Francisco Massa, Diana
Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan
Zhang, Patrick Labatut, and Daniel Haziza. 2022.

xformers: A modular and hackable transformer
modelling library.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language
models use long contexts.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. Advances in Neural Informa-
tion Processing Systems, 35:2507–2521.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023a. Chameleon: Plug-and-play
compositional reasoning with large language mod-
els. In Advances in Neural Information Process-
ing Systems, volume 36, pages 43447–43478. Cur-
ran Associates, Inc.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2023b. Dynamic prompt learn-
ing via policy gradient for semi-structured mathe-
matical reasoning. In International Conference on
Learning Representations (ICLR).

Maxim Milakov and Natalia Gimelshein. 2018. Online
normalizer calculation for softmax. arXiv preprint
arXiv:1805.02867.

oneDNN Contributors. 2023. oneapi deep neural
network library (onednn). https://github.com/
oneapi-src/oneDNN.

OpenAI. 2023a. Chatgpt plugins. https://platform.
openai.com/docs/plugins/introduction.

OpenAI. 2023b. Function calling - openai api.
https://platform.openai.com/docs/guides/
function-calling.

OpenAI. 2023c. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

OpenAI. 2023d. How to call functions with chat mod-
els. https://cookbook.openai.com/examples/
how_to_call_functions_with_chat_models.

OpenAI. 2023e. openai/tiktoken: tiktoken is a fast bpe
tokeniser for use with openai’s models. https://
github.com/openai/tiktoken.

Cheng Qian, Chi Han, Yi R. Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023. Creator: Tool creation
for disentangling abstract and concrete reasoning of
large language models.

11617

http://arxiv.org/abs/2301.00234
http://arxiv.org/abs/2301.00234
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://github.com/jujumilk3/leaked-system-prompts
https://github.com/jujumilk3/leaked-system-prompts
https://doi.org/https://doi.org/10.1016/B978-0-08-050755-2.50022-1
http://arxiv.org/abs/2304.01933
http://arxiv.org/abs/2304.01933
http://arxiv.org/abs/2304.01933
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
http://arxiv.org/abs/2302.14017
http://arxiv.org/abs/2302.14017
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2307.03172
https://proceedings.neurips.cc/paper_files/paper/2023/file/871ed095b734818cfba48db6aeb25a62-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/871ed095b734818cfba48db6aeb25a62-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/871ed095b734818cfba48db6aeb25a62-Paper-Conference.pdf
https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN
https://platform.openai.com/docs/plugins/introduction
https://platform.openai.com/docs/plugins/introduction
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://doi.org/10.48550/arXiv.2303.08774
https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models
https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models
https://github.com/openai/tiktoken
https://github.com/openai/tiktoken
http://arxiv.org/abs/2305.14318
http://arxiv.org/abs/2305.14318
http://arxiv.org/abs/2305.14318


Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Jon Saad-Falcon, Joe Barrow, Alexa Siu, Ani Nenkova,
David Seunghyun Yoon, Ryan A. Rossi, and Franck
Dernoncourt. 2023. Pdftriage: Question answering
over long, structured documents.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì,
Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. 2023. Tool-
former: Language models can teach themselves to
use tools.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Daniel Y Fu, Zhiqiang Xie, Beidi
Chen, Clark Barrett, Joseph E Gonzalez, et al. 2023.
High-throughput generative inference of large lan-
guage models with a single gpu. arXiv preprint
arXiv:2303.06865.

Franyell Silfa, Jose Maria Arnau, and Antonio
González. 2022. E-batch: Energy-efficient and high-
throughput rnn batching. ACM Trans. Archit. Code
Optim., 19(1).

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. 2023b.
Llama: Open and efficient foundation language mod-
els.

Mariano Trebino. 2016. mtrebi/memory-allocators:
Custom memory allocators in c++ to im-
prove the performance of dynamic memory
allocation. https://github.com/mtrebi/
memory-allocators#pool-allocator.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–
24837.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn,
Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse
Spencer-Smith, and Douglas C. Schmidt. 2023. A
prompt pattern catalog to enhance prompt engineer-
ing with chatgpt.

Samuel Williams, Andrew Waterman, and David Pat-
terson. 2009. Roofline: An insightful visual perfor-
mance model for multicore architectures. Commun.
ACM, 52(4):65–76.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for {Transformer-Based}
generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), pages 521–538.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2023. Toolqa: A dataset for llm
question answering with external tools.

11618

http://arxiv.org/abs/2309.08872
http://arxiv.org/abs/2309.08872
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
https://doi.org/ebatch
https://doi.org/ebatch
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://github.com/mtrebi/memory-allocators#pool-allocator
https://github.com/mtrebi/memory-allocators#pool-allocator
http://arxiv.org/abs/2302.11382
http://arxiv.org/abs/2302.11382
http://arxiv.org/abs/2302.11382
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
http://arxiv.org/abs/2211.01910
http://arxiv.org/abs/2211.01910
http://arxiv.org/abs/2306.13304
http://arxiv.org/abs/2306.13304


A System Prompt for Chatbot Applications with Plugins

The following system prompt teaches the chatbot to use Bing Search, Expedia, OpenTable, and Spotify
APIs to answer user queries. The token count is 1766.

System Prompt and User Query
Instructions: Given the following list of API specifications and user query, you will choose the most appropriate API to
invoke and try to parse the corresponding parameters from the user query.

• If none of the API descriptions match the user query intent, you will return not_found().
• If a parameter is required but not included in the user query, then return not_found().
• Your response must strictly follow the syntax of: api_chosen(param1=PARSED_PARAM1, ...).

Following are the list of API definitions and their parameters:

• bing_web_search(count, offset, q, safe_search, set_lang): The Web search API lets you send a search
query to Bing and get back search results that include links to webpages, images, and more. If the user explicitly or
implicitly wants to find the latest information from the web, you must use this API.
Parameters:

- count: [optional] The number of search results to return in the response. The default is 10 and the maximum value
is 50.

- offset: [optional] The zero-based offset that indicates the number of search results to skip before returning results.
- q: [required] The user search query term. The term may not be empty.
- safe_search: [optional] A filter used to filter results for adult content. “Off”: Return webpages with adult text,

images, or videos. “Moderate”: Return webpages with adult text, but not adult images or videos. “Strict”: Do not
return webpages with adult text, images, or videos. The default is “Moderate”.

- set_lang: [optional] The language to use for user interface strings. You may specify the language using either a
2-letter or 4-letter code. Using 4-letter codes is preferred.

• bing_images_search(count, offset, q, safe_search, set_lang): The Image Search API lets you send a
search query to Bing and get back a list of relevant images.
Parameters:

- count: [optional] The number of image results to return in the response. The actual number delivered may be less
than requested. The default is 35. The maximum is 150.

- offset: [optional] The zero-based offset that indicates the number of image results to skip before returning results.
- q: [required] The user’s search query term. The term may not be empty. The term may contain Bing Advanced

Operators. For example, to limit images to a specific domain, use the “site:” operator.
- safe_search: [optional] A filter used to filter results for adult content. “Off”: Return webpages with adult text,

images, or videos. “Moderate”: Return webpages with adult text, but not adult images or videos. “Strict”: Do not
return webpages with adult text, images, or videos. The default is “Moderate”.

- set_lang: [optional] The language to use for user interface strings. You may specify the language using either a
2-letter or 4-letter code. Using 4-letter codes is preferred.

• expedia_search_hotel(city, hotel_name, price_buckets, star_ratings, guest_ratings): Search for a
hotel based on the user query.
Parameters:

- city: [required] A string to identify the city to search for.
- hotel_name: [optional] Hotel name used to filter the search results.
- price_buckets: [optional] Used to define custom price filter buckets. If not provided then the default price filter

buckets for the POS will be used.
- star_ratings: [optional] Used to filter by star rating. Must be in increments of 5 and separated by commas

(minStarRating=0 and maxStarRating=50). Ex. “0,5,10” means 0, 0.5 and 1 star hotels.
- guest_ratings: [optional] Used to filter by amenities. Must be as a list of amenity ids separated by commas.

Please note that there is no way at this time to validate the ids are actually valid.

• expedia_search_flights(departure_date, return_date, departure_airport, arrival_airport,
number_of_adult_travelers, child_traveler_age, non_stop_flight, airline_preference): Flight
search for one-way and round-trip scenarios.
Parameters:

- departure_date: [required] Date the customer wants to leave for their flight on, in ISO format.
- return_date: [optional] Date the customer wants to return on. If present, indicates a round trip search. If not

supplied, then it’s a one-way search.
- departure_airport: [required] The three-letter airport code for where the customer is leaving from.

11619



- arrival_airport: [optional] The three-letter airport code to where the customer is going.
- number_of_adult_travelers: [optional] Number of Adult Travelers (Default: 1).
- child_traveler_age: [optional] “childTravelerAge” represents the age of a single child traveler. You are re-

quired to specify the age of all child travelers. That means you must specify this parameter for each child
that will be flying. Valid values are 0-17 (0 for an infant under the age of one year). If you would like to
specify 3 child travelers with the ages of 1, 3 and 8 years, then your query string should contain: “childTraveler-
Age=1&childTravelerAge=3&childTravelerAge=8”

- non_stop_flight: [optional] Set to true to return only nonstop flights in the search response (Default: False).
- airline_preference: [optional] Optional parameter to get specific airline carrier information. By default, the

preference is all.

• opentable_search_restaurants(name, category, city, day): Returns a list of restaurants.
Parameters:

- name: [optional] Name of the restaurant to search for.
- category: [optional] Category of the restaurant to search for.
- city: [optional] City to search in.
- day: [optional] Date to search for.

• spotify_search_catalog(q, type, limit, offset): Get Spotify Catalog information about albums, artists,
playlists, tracks, shows or episodes that match a keyword string.
Parameters:

- q: [required] Search query. Keywords and optional field filters and operators.
- type: [required] A comma-separated list of item types to search across. Valid types are: album, artist,

playlist, track, show and episode. Search results include hits from all the specified item types. For example:
“q=name:abacab&type=album,track” returns both albums and tracks with “abacab” included in their name.

- limit: [optional] Maximum number of results to return. Default: 20 Minimum: 1 Maximum: 50. Note: The limit is
applied within each type, not on the total response. For example, if the limit value is 3 and the type is “artist,album”,
the response contains 3 artists and 3 albums.

- offset: [optional] The index of the first result to return. Default: 0 (the first result). Maximum offset (including
limit): 1,000. Use with limit to get the next page of search results.

Below are some examples of choosing the API that matches the user query:

datetime_now=2023-11-17T10:45:07+08:00
user_query=Do you believe in God?
api_call=not_found()

datetime_now=2023-11-17T10:50:00+08:00
user_query=What is the price of the iPhone 15 Pro Max?
api_call=bing_web_search(q=“price of iPhone 15 Pro Max”, set_lang=“en”)

datetime_now=2023-11-17T11:09:10+08:00
user_query=OpenAI’s logo
api_call=bing_images_search(q=“OpenAI logo”, set_lang=“zh”)

datetime_now=2023-11-17T13:21:30+08:00
user_query=What is Taylor Swift’s latest album?
api_call=spotify_search_catalog(q=“Taylor Swift”, type=“album”, limit=1)

datetime_now=2023-11-17T11:21:42+08:00

user_query=Looking to eat vegan food in San Francisco this weekend, could you get me one great restaurant suggestion

for Saturday?

api_call=

11620


