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Abstract

Large Language Models (LLMs) have revolu-
tionized the field of natural language process-
ing, but they fall short in comprehending bi-
ological sequences such as proteins. To ad-
dress this challenge, we propose InstructPro-
tein, an innovative LLM that possesses bidi-
rectional generation capabilities in both hu-
man and protein languages: (i) taking a pro-
tein sequence as input to predict its textual
function description and (ii) using natural lan-
guage to prompt protein sequence generation.
To achieve this, we first pre-train an LLM on
both protein and natural language corpora, en-
abling it to comprehend individual languages.
Then supervised instruction tuning is employed
to facilitate the alignment of these two distinct
languages. Herein, we introduce a knowledge
graph-based instruction generation framework
to construct a high-quality instruction dataset,
addressing the annotation imbalance and the
absence of instructional signals in the exist-
ing protein-text corpus. In particular, the in-
structions inherit the structural relations be-
tween proteins and annotations in knowledge
graphs, which empowers our model to engage
in the causal modeling of protein functions,
akin to the chain-of-thought processes in natu-
ral languages. Extensive experiments on bidi-
rectional protein-text generation tasks show
that InstructProtein outperforms state-of-the-
art LLMs by a large margin. Our code is
publicly available at https://github.com/HICAI-
ZJU/InstructProtein.

1 Introduction

The landscape of Natural Language Processing
(NLP) research, and indeed the broader Artificial
Intelligence (AI) community, has recently been rev-
olutionized by generative Large Language Models
(LLMs) (Peters et al., 2018; Devlin et al., 2019;
Brown et al., 2020), such as ChatGPT (Ouyang

*Corresponding author.

et al., 2022). The expansion of parameter size and
training corpora has empowered these models to
acquire versatile, general-purpose data represen-
tations that seamlessly transcend linguistic tasks
encompassing comprehension and generation in a
multitude of languages. Beyond natural languages
(a.k.a., human languages), recent investigations
have illuminated the potential of these LLMs to
serve as a versatile interface for processing mul-
timodal data, including but not limited to images,
videos and speech (Chen et al., 2021; Reed et al.,
2022; Gong et al., 2023; Huang et al., 2023).

However, general LLMs fall short of capturing
the intricate realm of biological sequences, a do-
main abundant with its own unique linguistic nu-
ances. The biological sequences, particularly pro-
teins, represent a distinctive facet of what could be
referred to as “life language”, exerting a significant
influence on signal transduction pathways, enzy-
matic catalysis, and gene regulation (Lee and Yaffe,
2016; Huber, 2001; Durek and Walther, 2008;
Luzarowski et al., 2021; Jiang et al., 2022). Exist-
ing LLMs like ChatGPT or GPT4 (OpenAI, 2023)
fail to accurately model the biological sequences,
resulting in limitations on protein understanding
and generation (AI4Science and Quantum, 2023).

To unlock the potential within LLMs for de-
ciphering proteins, researchers have put rich ef-
forts into developing protein language models
(PLMs) (Alley et al., 2019; Elnaggar et al., 2021;
Rives et al., 2021; Rao et al., 2021; Lin et al.,
2023). These specialized models are tailored to
ingest amino acid sequences as inputs, predict pro-
tein functionalities, or even design de novo pro-
teins. Notwithstanding, it is crucial to highlight that
while PLMs exhibit competence in comprehending
amino acid sequences, they are unable to compre-
hend the intricacies of human languages. Recent
studies (Abdine et al., 2023; Luo et al., 2023) can
accept both protein sequences and textual descrip-
tions as input, aiming to enhance protein function
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prediction. Nevertheless, these endeavors to align
the realms of protein and human languages are
unidirectional and remain in their nascent stages;
they fall short of being able to generate protein se-
quences based on textual instructions. In essence,
there exists an unaddressed void in the current land-
scape of LLMs, wherein the ability to swiftly tra-
verse between human and protein languages.

To enable an LLM to adeptly comprehend both
human and protein languages, we contend that the
limitations imposed by existing models primarily
stem from their training corpora. Notably, many
existing models are trained on either human lan-
guages or protein sequences, rendering them pro-
ficient in only one of these linguistic realms. This
unilateral training approach is insufficient to imbue
an LLM with a comprehensive vocabulary encom-
passing both languages. Moreover, it is important
to recognize that the existing protein-text corpus
used in previous studies (Luo et al., 2023; Abdine
et al., 2023; Xu et al., 2023; Taylor et al., 2022) has
its limitations. (1) The imbalance of annotations:
Researchers tend to focus on well-studied proteins,
leading to a significant disparity in the availability
of annotations (Kustatscher et al., 2022). Training
LLMs directly on such a corpus introduces model
bias, which ultimately results in suboptimal perfor-
mance. (2) The absence of instructional signals:
Protein-related textual content is primarily com-
prised of descriptive narratives, often devoid of in-
structional signals specifically designed for training
LLMs. This inherent disparity obstructs a holistic
understanding of a wide range of tasks, ultimately
resulting in subpar zero-shot performance (Wei
et al., 2022a). In short, the fundamental hurdle
of current LLMs involves curating an elaborate
training corpus that seamlessly bridges the gap
between human and protein languages.

In this work, we introduce InstructProtein, a pi-
oneering study that aligns human and protein lan-
guages through knowledge instruction, enabling an
LLM with bidirectional generation capabilities be-
tween these two languages. Specifically, to equip
LLMs with the ability to understand protein lan-
guage, InstructProtein adopts a two-step training
approach. It initiates with pre-training on protein
and natural language corpora, followed by fine-
tuning with the established protein knowledge in-
struction dataset. To construct such an instruction
dataset, we first transform raw protein-text corpora
into a structured knowledge graph (KG). Inspired
by the idea of chain-of-thoughts, we enrich KG
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Figure 1: We visualized the top-5 subcellular location
categories and their respective proportions, in compar-
ison to the least frequently used annotations, which
accounted for only 0.000224%.

with knowledge causal modeling, which involves
establishing causal relationships between triples,
indicating causality within annotations. We then
propose a debiased sampling strategy to select KG
triples, effectively addressing the issue of annota-
tion imbalance. Finally, we mimic KG completion
tasks, leverage general LLMs to convert KG triples
into instructions, and conduct supervised instruc-
tion tuning. Extensive experiments have demon-
strated that the introduced protein knowledge in-
structions significantly improve the performance of
LLMs on protein understanding and design tasks.
Our contributions can be summarized as follows:

1. We propose InstructProtein, an innovative
LLM with bidirectional generation between
protein and human languages, effectively fill-
ing the gap between the two languages.

2. We introduce a protein instruction generation
framework based on knowledge graphs, result-
ing in the first high-quality protein instruction
dataset for tuning LLMs.

3. InstructProtein outperforms state-of-the-art
LLMs by a substantial margin, representing a
crucial advancement toward text-guided pro-
tein function prediction and sequence design.

2 A Closer Look at Annotation Imbalance

Much of life science research is dedicated to unrav-
eling the biological functions of proteins. While
certain proteins have undergone extensive investi-
gation, there still exist tens of thousands of proteins
remaining categorized as understudied. This phe-
nomenon implies an imbalance in protein function
annotation. To clearly illustrate this problem, we
take the subcellular location as an example, and
show its annotation distribution in Figure 1. The
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Table 1: The results of querying existing LLMs for
factual knowledge. We prompt LLMs to predict subcel-
lular location, but their results are biased to a certain
category, which suggests that these LLMs have been
contaminated by annotation imbalance.

Models Prediction
Cytoplasm Nucleus Cell membrane Others

OPT 2 115 1691 0
LLaMA 0 1806 2 0
Galactica 1807 1 0 0
Alpaca 1808 0 0 0

results reveal a notable concentration of research at-
tention on proteins residing in the cytoplasm, while
other subcellular locations lack comprehensive la-
beling and study. The annotation imbalance has a
detrimental effect on the performance of existing
LLMs. To demonstrate this, we collect the same
number of proteins in each subcellular location
category from UniProtKB (Consortium, 2019), re-
sulting in 1,808 proteins in total, and prompt LLMs
to predict the subcellular location. The outcomes
of LLMs are presented in Table 1, from which one
can observe that these LLMs are biased in a certain
category, due to the annotation imbalance in the
training corpus of LLMs.

3 InstructProtein

This section presents the method of InstructProtein.
We first pre-train it in a self-supervised manner
on natural language and protein sequence datasets
respectively, and then conduct supervised tuning
using the created knowledge instruction dataset.

3.1 Multilingual Pre-Training
InstructProtein is designed to comprehend both
the protein and human languages. An intuitive
approach involves incrementally pre-training an
LLM using the protein corpus P and text sequences
T . Given X = P ∪ T and {x1, x2, . . . , xn} ∈ X ,
the training objective of a generative LLM (e.g.,
OPT (Zhang et al., 2022a)) is defined as

L(X ) =
∑

i

logP (xi|xi−k, . . . , xi−1; θ), (1)

where the prediction of each token depends on pre-
vious tokens x<i, k is the context window size, and
the conditional probability P is modeled using a
neural network parameterized by θ.

3.2 Instruction Tuning
After pre-training, the model acquires an extensive
comprehension of both natural language and pro-

tein sequences; however, it still falls short in align-
ment between these two different languages. We
fill this gap through supervised instruction tuning.

3.2.1 Knowledge Instruction Generation
We propose an instruction generation method based
on KGs and LLMs, aiming to construct a factual,
logical, diverse, and well-balanced protein instruc-
tion dataset. Figure 2 illustrates the pipeline of
three kinds of instruction generation frameworks.
Conventional approaches directly utilize LLMs to
generate instruction data from seed tasks or raw
documents, which may introduce hallucination and
bias from internal knowledge of LLMs. In the pro-
posed method, KGs are incorporated as intermedi-
aries to address these limitations. In specific, a KG
encompassed with knowledge causal modeling is
constructed to provide factual protein knowledge,
based on which a debiased sampling strategy is
proposed to pick KG triples. It is worth noting
that LLMs simply need to accurately translate the
triples into instructional data, without assuming
any prior knowledge about proteins.

KG Construction. We use UniProtKB as our
data source to construct the protein knowledge
graph denoted as G = {P,R, T }. Here, P , R,
and T are sets of protein sequences, relations, and
textual annotations. Note that the textual descrip-
tion of proteins in UniProtKB is structured, making
it easy to transform them into a knowledge graph.
In pursuit of a high-quality instruction dataset, we
augment KG to provide informative relationships.
With chain-of-thoughts (Wei et al., 2022b), we rec-
ognize that a logical chain also exists within protein
annotations. For example, the biological processes
in which a protein can participate are intricately
linked to its molecular function and subcellular
location, with the molecular function itself being
influenced by the protein’s domain. To represent
this causal chain of protein knowledge, we intro-
duce a novel concept called Knowledge Causal
Modeling (KCM). Specifically, a knowledge causal
model comprises multiple interconnected triples or-
ganized in a directed acyclic graph, where the edge
direction signifies causal relationships. This graph
organizes the triples, moving from the micro-level,
encompassing characteristics of protein sequences
(e.g., domains), to the macro-level, encompassing
biological functions. In Figure 3, we show an ex-
ample of KCM retrieved from InterPro (Paysan-
Lafosse et al., 2023) based on a given triple.

KG Triple Sampling. To generate instruction
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Figure 2: Overview of Instruction generation methods. The red text represents what relies on the internal knowledge
of LLMs. (a) Given a seed task, prompting an LLM to produce new instruction data.(b) Utilizing LLMs to generate
the instruction data corresponding to the raw documents. (c) Our KG-based instruction generation framework. We
first construct a KG with knowledge causal modeling, and introduce a debiased sampler to pick informative triples,
which are then translated into instruction data through the use of LLMs in conjunction with KG completion tasks.

data, we need to sample triples from the con-
structed KG. Considering the annotation imbalance
problem in the KG, we propose a debiased sam-
pling strategy as an alternative to uniform sam-
pling. In specific, we first cluster proteins based
on their sequence and property similarities, and
then uniformly pick triples in each cluster. For se-
quence similarity, we employ MMseqs2 (Steineg-
ger and Söding, 2017) to calculate the editing dis-
tance ds(·, ·) (see Appendix B.1.1). For property
similarity, since the protein properties are exten-
sive and many of them remain unexplored, we only
consider the known annotations in KG. Specifi-
cally, given an annotation t and a relation r, we
denote Ct = {p : p ∈ P ∧ (p, r, t) ∈ G} and
C/t = {p : p ∈ P ∧ (p, r, t) /∈ G} are the protein
set based on the presence or absence of t. The ba-
sic idea is to maximize agreement within Ct and
minimize agreement between Ct and C/t, via op-
timizing protein KG embeddings. In practice, we
minimize a margin-based ranking criterion over the
knowledge graph:

L = [γ + dp(pt, t+ r)− dp(p/t, t+ r)], (2)

where pt ∈ Ct, p/t ∈ C/t, γ is the margin, and
dp(·, ·) is a dissimilarity measure of properties,
which is implemented as the ℓ2-norm.

We define the identity threshold of sequence
and property similarities as δp and δs, respectively.
We denote two proteins to be similar p1 ≃ p2
as ds(p1, p2) < δs and dp(p1, p2) < δp. C =
{C1, . . . , Cm} represents the aggregation of pro-
teins with m clusters, and the cluster Ci can be
formulated as: Ci = {p : p ≃ pcenterCi

}, where
pcenterCi

is the center protein of Ci. Then, the proba-
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Figure 3: An example of converting a KG triple to in-
structions. Given a triple with corresponding KCM, we
use an LLM in conjunction with KG completion tasks
to generate factual, logical, and diverse instructions.

bility of sampling a triple (p, r, t) is:

P ((p, r, t)) =
1

m
× 1

||Ci||
× 1

||p|| , (3)

where p ∈ Ci, ||Ci|| denotes the size of Ci, and
||p|| are the number of annotations on p.

KG Triple to Instruction. By employing the
debiased sampling strategy, a large number of well-
balanced KG triples can be sampled. We then trans-
late these triples into instructions. While the gener-
ation of creative tasks requires domain knowledge,
the KG completion tasks offer a comprehensive
template for proposing domain-specific tasks based
on triples. Therefore, we simulate KG comple-
tion, and employ general LLMs (e.g., ChatGPT)
to transform KG triples with retrieved KCM into
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Table 2: Performance comparison between InstructProtein and baselines (open-source LLMs) on Held-In and
Held-Out protein sequence understanding tasks.

Models Params. GO-BP GO-MF GO-CC Location MIBACC AUPR ACC AUPR ACC AUPR Bin Sub

OPT 1.3B 51.83 64.76 56.10 74.50 51.94 71.90 57.52 29.06 49.40
LLaMA 7.0B 56.96 61.85 54.58 58.06 51.57 53.53 57.52 29.14 50.00
Alpaca 7.0B 61.69 65.13 59.37 73.02 57.98 61.71 57.52 18.32 50.38
Galactica 1.3B 55.11 57.08 61.30 61.93 51.17 54.54 57.52 18.32 51.58
Mol-Instructions 7.0B 50.00 49.15 50.00 47.45 50.00 47.72 57.52 18.36 50.00
BioMedGPT 10B 50.31 50.82 51.02 50.81 49.41 49.39 59.51 56.39 54.42
BioT5 252M 53.23 52.96 50.02 50.68 52.94 49.74 65.58 42.15 49.77

InstructProtein 1.3B 71.49 83.16 85.83 93.68 79.79 86.37 85.19 70.79 62.68

instructions, which contain an instruction describ-
ing the protein-related task about and an output
result reflecting a correct response of the instruc-
tion. Figure 3 shows an example of converting the
triple to instructions. The detailed implementation
is depicted in Figure 7 and Table 6 in Appendix.

3.2.2 Tuning LLMs with Instructions.
Instruction tuning involves further training LLMs
in a supervised manner on an instruction dataset
comprising of (instruction, output), bridging the
gap between the LLMs’ next-word prediction ob-
jective and users’ goal of ensuring adherence to
human instructions. With the proposed knowl-
edge instruction dataset I, we finetune the pre-
trained LLM to align the protein and human lan-
guages. Given an instruction Z ∈ I and its tokens
{x1, x2, . . . , xn} ∈ Z, the training objective is the
same as that defined in Eq.(1).

4 Experiments

4.1 Experimental Setup
The pre-training corpus contains protein sequences
from UniRef100 (Suzek et al., 2015) and sentences
from PubMed abstracts. Following the methodol-
ogy described in Section 3.2.1, We first constructed
a protein knowledge graph based on UniProt/Swiss-
Prot(Consortium, 2019). Specifically, we select
nine property fields: biological process, molecular
function, cellular component, family, superfamily,
domain, conserved site, active site, and binding
site. The resulting KG consists of 464,333 proteins
as head entities, 58,725 annotations as tail entities,
and 5,207,841 triples. Knowledge causal modeling
is sourced from the InterPro (Paysan-Lafosse et al.,
2023) and Gene Ontology (Aleksander et al., 2023)
database, containing 30,446 causal relationships.
We then sample 2.8 million triples and use Chat-
GPT to convert these triples into instructions. Par-

Table 3: Performance comparison between InstructPro-
tein and closed-source LLMs on Held-In and Held-Out
protein sequence understanding tasks.

Models GO(BP) GO(BP) GO (CC) Location(Sub)

ChatGPT 44.69 48.26 43.82 15.38
Claude-2 54.73 54.04 52.56 23.15
GPT-4 47.12 57.45 51.29 18.66

InstructProtein 71.49 85.83 79.79 70.79

ticular care is required to prevent potential data con-
tamination between training and evaluation data.
We use mmseqs2 to cluster proteins with an iden-
tity surpassing the 70% threshold, then remove the
clusters containing the proteins in the test set, for a
total of 19,455 sequences. Detailed experimental
setups and discussion on addressing potential data
contamination are described in Appendix B.2.

4.2 Protein Sequence Understanding

Datasets and Metrics. We evaluate LLMs on
three widely-used protein property classification
tasks: (1) Protein Function Annotation, aiming
to predict the correct functions of proteins. We
choose Gene Ontology (GO) dataset (Gligorijević
et al., 2021), which has three branches: molecular
function (MF), biological process (BP), and cellu-
lar component (CC). This is a "Held-In" task as
the training instructions are derived from the GO
dataset. (2) Protein Localization Prediction, which
involves the prediction of the subcellular location
of a given protein. We address two subproblems
from DeepLoc (Almagro Armenteros et al., 2017),
the subcellular localization prediction (Abbr., Sub)
with 10 location categories and the binary localiza-
tion prediction (Abbr., Bin) with 2 location cate-
gories. This is also a "Hold-In" task since cellular
component exist in our instruction data. (3) Metal
Ion Binding (MIB) Prediction, a binary classifi-
cation task where the model needs to determine
whether there are metal ion-binding sites in the
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protein, which is a "Held-Out" task as the proteins
and labels are sourced from Protein Data Bank
(PDB) (wwp, 2019). We use the dataset from Hu
et al. (2022). Detailed downstream task setting can
be found in Appendix C

Baselines. We adopt seven state-of-the-art open-
source LLMs as the baselines. OPT (Zhang et al.,
2022a) and LLaMA (Touvron et al., 2023) are
trained on massive text corpus. Alpaca (Taori et al.,
2023) and Mol-Instructions (Fang et al., 2023) refer
to LLaMA-based LLMs fine-tuned with other hu-
man/protein language datasets. Galactica (Taylor
et al., 2022), BioMedGPT (Luo et al., 2023), and
BioT5 (Pei et al., 2023) are domain-specific LLMs,
which are trained on a large corpus of humanity’s
scientific knowledge, such as research papers about
proteins and genes. Note that, the training cor-
pora of Mol-Instructions, Galactica, BioMedGPT,
BioT5 all contain annotations from Swiss-Prot.

Results. We present the evaluation results in
Table 2. Compared with all baselines, InstructPro-
tein achieves new state-of-the-art performance on
all tasks. There are two key observations. First,
InstructProtein clearly outperforms the LLMs (i.e.,
ChatGPT, LLaMA, Alpaca) which are stemmed
from natural language training corpora. These
results demonstrate that training with the corpus
where proteins and natural language coexist is ben-
eficial to LLMs, enhancing their proficiency in
protein language understanding. Second, Instruct-
Protein performs consistently better than Galactica,
BioMedGPT, Mol-Instructions, and BioT5 on Held-
In and Held-Out tasks, proving that the model has
the ability to generalize both protein sequences and
protein-related tasks. The instruction templates of
Mol-Instructions are not adequately diverse, thus
unable to understand the tasks in the GO and MIB
benchmarks, leading to all negative predictions. It
is worth noting that in the protein subcellular lo-
calization (Bin) task, there exists a severe bias in
LLMs, leading to the classification of all proteins
into a single group and resulting in the same accu-
racy of 57.52%.

Since the closed-source models such as Chat-
GPT, Claude-2 and GPT4 often refused to follow
the instructions as illustrated in Appendix 15, we
only consider the occasional cases when they re-
sponded to and report their results in Table 3. We
discover that these models’ predictions solely en-
compassed cytoplasm, nucleus, cell membrane, and
secreted locations in the protein localization pre-
diction task. This finding underscores that annota-

Table 4: Accuracy of instruction-protein pairing.

Models Fold Rank
Fold SuperFamily Family

OPT 7.79 6.45 6.68
LLaMA 9.33 5.90 10.30
Alpaca 5.43 3.90 4.71
Galactica 11.00 10.12 10.37
Mol-Instructions 12.81 12.57 12.44
BioMedGPT - - -
BioT5 14.20 12.91 27.83

InstructProtein 55.57 65.07 79.24

tion imbalance impacts even these closed-source
models, further emphasizing the significance of the
high-quality instruction dataset. We provide case
studies in Figure 16 in Appendix.

4.3 Protein Sequence Design

Generating proteins following human instructions
is a highly exciting area of research. With the
incorporation of the protein as part of the language
capabilities in LLMs, InstructProtein is capable of
generating protein sequences. However, the lack
of standardized computational metrics to properly
assess the quality of proteins generated by LLMs
poses challenges for advancing protein generation
models. In this study, we present our endeavor to
build a computational evaluation framework.

4.3.1 Instruction-Protein Pairing
Datasets and Metrics. We design an instruction-
protein pairing task to assess the consistency
between the instruction and the generated pro-
tein. Specifically, we employ the dataset proposed
by Hou et al. (2018) to provide fold-related in-
structions and proteins. Given a protein p and the
corresponding instruction Z0, we randomly sam-
ple other n instructions {Z1, Z2, ..., Zn} (n = 9
in this experiment), and the likelihood L of the
protein given the various instructions is computed.
The minimization of L(p|Zi) at i = 0 signifies a
correct pairing, and vice versa.

Results. Table 4 reports the accuracy of the
instruction-protein pairing task. One can observe
that InstructProtein surpasses the baselines by a
large margin. BioMedGPT focuses solely on con-
verting proteins to texts and lacks protein design
capabilities. Galactica exhibits limited zero-shot
performance in aligning instructions with proteins,
since it is trained with narrative protein corpus.
Mol-Instructions lacks pre-training on protein cor-
pora, which makes it difficult for the model to dis-
tinguish the nuances of proteins, resulting in poor

1119



−5 0 5

−4

−3

−2

−1

0

1

2

3
Globin-like(1.3b)

Immunoglobulin-like(1.3b)

Globin-like(350m)

Immunoglobulin-like(350m)

Globin-like(125m)

Immunoglobulin-like(125m)

Loading [MathJax]/extensions/MathMenu.js

G
lobin-like

Im
m

unoglobulin-like

TIM
 barrel

40

60

80

100

InstructProtein 125m

InstructProtein 350m

InstructProtein 1.3b

n
o
r
m

a
li
z
e
d
 m

o
is

t
u
r
e

Loading [MathJax]/extensions/MathMenu.js

G
lobin-like

Im
m

unoglobulin-like

TIM
 barrel

40

60

80

100

InstructProtein 125m

InstructProtein 350m

InstructProtein 1.3b

n
o
r
m

a
li
z
e
d
 m

o
is

t
u
r
e

Loading [MathJax]/extensions/MathMenu.js

G
lobin-like

Im
m

unoglobulin-like

TIM
 barrel

40

60

80

100

InstructProtein 125m

InstructProtein 350m

InstructProtein 1.3b

n
o
r
m

a
li
z
e
d
 m

o
is

t
u
r
e

Loading [MathJax]/extensions/MathMenu.js

������������
����������

�

������������
����������

������������
����������

(a) (b)

(c)

(125m) (350m) InstructProtein (1.3b)


�
��

��

�
�	
��

�
�

��

���

��

��
��

�
�
�

�

���

����������������α ���������������β

All   -helix (  1.3b,  350m,  125m)α
All   -sheet (  1.3b,  350m,  125m)β

������α �������β

Figure 4: Visualization of structure instruction-based protein sequence de novo design. We prompt our models
with different scales (125m, 350m and 1.3b) to generate three kinds of proteins (all α-helix, all β-sheet, and a
combination of α-helix and β-sheet), respectively. (a) We visualize the pLDDT of generated sequences predicted by
AlphaFold2 to assess the protein foldability. (b) The embeddings of sequences prompted with all α-helix and all
β-sheet instructions, which are extracted from ESM2 and visualized by the MDS algorithm. (c) The structure of
generated proteins with the highest confidence in each class.

results. These results confirm the superiority of our
model in instruction-following for protein design.

4.3.2 Protein Sequence De Novo Design
Designing proteins with specified structures. We
investigate whether InstructProtein could generate
new protein sequences that are individually valid
and consistent with instructions. SCOPe (Chando-
nia et al., 2022) classifies protein structures accord-
ing to the content and organization of secondary
structures, including all α-helix, all β-sheet, and
the combination of α-helix and β-sheet. We sample
100 sequences from each class and assess the fold-
ability of individual sequences by predicting their
corresponding structures using ColabFold (Mirdita
et al., 2022; Jumper et al., 2021) and computing
the average predicted local distance difference test
(pLDDT) across the whole structure (Figure 4 (a)).
pLDDT increases with model scale, suggesting that
scaling up the parameter size results in the gener-
ation of sequences with fewer intrinsically disor-
dered regions. We leverage ESM2 (Lin et al., 2023)
as a feature extractor to obtain the generated all α-
helix and all β-sheet protein representations, which
are then visualized using multi-dimensional scaling
(MDS) algorithm (Kruskal, 1964) (Figure 4 (b)).
We observe that the representations are divided into
two groups according to instructions, indicating
the instruction-following ability of the proposed
model. We visualize the predicted structure of
the proteins with the highest confidence in each
class (Figure 4 (c)). To evaluate the novelty of the
generated sequences, we utilize HHblits to search
for homologs against the Uniclust30 dataset. Our

analysis revealed that the highest identity of each
alignment ranged from 0.313 to 0.880, with a one-
standard deviation range of 0.437 to 0.732, demon-
strating the generated sequences are not merely
based on mutation or the combination of existing
sequences but exhibit a degree of novelty. These re-
sults demonstrate that InstructProtein establishes a
close correlation between natural language and pro-
tein language, verifying the effectiveness of protein
de novo design based on structure-related instruc-
tions.

Designing proteins binding with specified lig-
ands. To verify the ability to follow function-
related instructions, we employ InstructProtein to
design heme binders, which are proteins capable
of binding to a specific compound, and visualize
3D structures of three generated proteins. In Fig-
ure 5, we present the docking result (docked by
DiffDock (Corso et al., 2023)), the binding affin-
ity (predicted by Smina (Koes et al., 2013; Trott
and Olson, 2010), the lower the better), and the
pLDDT score (predicted by ColabFold; the higher
the absolute value, the better). We can observe the
resulting proteins exhibit notable binding affinity,
confirming the efficacy of InstructProtein in heme
binder design. We provide more case studies and
comparisons with ChatGPT, Claude-2, and Mol-
Instructions in Appendix E.

4.4 Ablation Study

We conduct ablation studies on the sampling strat-
egy and knowledge causal modeling (KCM) used
in our knowledge instruction generation method.
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GoundTruth:
• Affinity: -6.6 (kcal/mol)
• PDB id: 2N91-A

Design 2:
• Affinity: -6.3 (kcal/mol)
• pLDDT: 93.8

Design 3:
• Affinity: -8.9 (kcal/mol)
• pLDDT: 87.4

Design 1:
• Affinity: -8.7 (kcal/mol)
• pLDDT: 96.9

(a) (b) (c) (d)

Figure 5: Visualization of functional instruction-based protein sequence de novo design. We prompt our model with
the instruction “I would like a protein that enables heme binding”. (a) is the ground-truth protein that binds with
heme. (b), (c) and (d) are generated proteins with decent binding affinity.

Table 5: Ablation of Knowledge Instruction.

Sampling KCM Location (Sub) GO (MF)

Unclustering No 58.12 85.58
Seq. only No 62.77 83.70
Seq. & Prop. (Edit) No 66.57 84.34
Seq. & Prop. (KGE) No 69.95 85.92

Seq. & Prop. (KGE) Yes 70.79 85.83

From the results in Table 5, we observe that cluster-
ing similar proteins in annotation imbalance-related
tasks (Location) can effectively improve model
performance. However, for tasks where annota-
tion imbalance is not significant (GO), the clus-
tering method based on sequence alone degrade
model performance, which is reasonable because
this method reduces the frequency of hard samples
(proteins with similar sequences but different func-
tions). This problem can be avoided by considering
both sequence and property similarities. We com-
pare property clustering methods based on KGE
distance and edit distance, and the results prove
that KGE has a stronger ability to model property
similarity. We also observe that the causal rela-
tionship between annotations introduced by KCM
improves the performance.

5 Related Works

Large Language Models (LLMs) have achieved
breakthrough performance in NLP (Brown et al.,
2020; Rae et al., 2021; Hoffmann et al., 2022; Black
et al., 2022; Zhang et al., 2022a; Chowdhery et al.,
2022; Touvron et al., 2023). However, these LLMs
are primarily tailored for human language com-
prehension, which limits their utility in decoding
protein language. To align these two distinct lan-
guages, multimodal approaches (Taylor et al., 2022;
Abdine et al., 2023; Luo et al., 2023; Fang et al.,
2023) train LLMs on a corpus where natural and
protein language co-exist. For example, Luo et al.

(2023) integrate protein encoders into LLMs within
an encoder-decoder framework. Notwithstanding,
these architectures predominantly exhibit a unidi-
rectional cross-modal capability, focusing solely
on converting protein language to textual descrip-
tion. Taylor et al. (2022) treats protein language
and human language as a unified modality. How-
ever, the lack of instruction signals and annotation
imbalance hinder the alignment.

Instruction Tuning is a supervised approach to
align language models with user intention (Mishra
et al., 2022; Wang et al., 2022; Wei et al., 2021;
Ouyang et al., 2022). It is worth noting that acquir-
ing large-scale instruction data can be a resource-
intensive and time-consuming endeavor, thereby
motivating the exploration of automatic data gen-
eration techniques. A prevalent strategy (Anaby-
Tavor et al., 2020; Andreas, 2020; Kaushik et al.,
2019) involves augmenting existing datasets. Alter-
natively, several fully automatic datasets have been
proposed to eliminate the need for labeled data.
Schick and Schütze (2021); Ye et al. (2022) ad-
vocate for leveraging pre-trained language models
to generate comprehensive labeled datasets from
scratch, tailored to predefined tasks. Honovich et al.
(2023a),Wang et al. (2023) and Honovich et al.
(2023b) used pre-trained LLMs to automatically
construct instructions by a handful of examples.
Li et al. (2023) proposes to construct instruction
data in a way that a LLM generates tasks based
on outputs. However, these methods may intro-
duce hallucination and bias into the instruction data.
Fang et al. (2023) construct a template-based in-
struction dataset, which lacks diversity. Inspired by
KG-enhanced LLMs (Sun et al., 2021; Liu et al.,
2020; Zhang et al., 2022b), we propose knowledge
instruction that can construct factual, logical, and
diverse instruction datasets.
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6 Conclusion
InstructProtein explores the feasibility of bidirec-
tional generation between human and protein lan-
guages within a single large language model. Our
approach involved the transformation of a raw
protein-text corpus into a structured knowledge
graph, from which KG triples were sampled and
converted into instructions. This KG-based instruc-
tion generation method resulted in a high-quality
instruction dataset, facilitating the LLM to align
protein language with human language.

7 Limitations

It is important to acknowledge that there are some
limitations inherent in our model. One such limita-
tion, shared with large language models, is that In-
structProtein encounters challenges with handling
numerical values. In the field of protein modeling,
a significant proportion is dedicated to quantitative
tasks, including the determination of 3D structure,
stability assessment, and fitness evaluation. Inade-
quate quantitative language modeling hinders the
understanding of proteins and more granular con-
trollable generation.

In the future, we will incorporate a broader spec-
trum of instructions, including quantitative descrip-
tions, empowering our model to provide quantita-
tive outputs. These developments will open up new
avenues for further advancing the integration of
protein and human languages, as well as expanding
its practical utility in diverse applications.
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A Detailed Analysis of Protein
Understudying Problems

Much of life science research is dedicated to unrav-
eling the biological functions of proteins. While
certain proteins, such as the well-studied tumor
suppressor p53 (Dolgin, 2017), have undergone ex-
tensive investigation, tens of thousands of proteins
remain categorized as understudied. This classi-
fication implies that their biological functions are
poorly elucidated, and they lack comprehensive
annotation of their molecular properties.

In Figure 6, we present an analysis conducted
on UniProtKB/Swiss-Prot, a highly reputable and
manually curated protein knowledge repository.
Figure 6 (a) depicts the relationship between the
distribution of proteins and their annotation scores.
These results emphasize the substantial variation
in protein distribution corresponding to different
annotations. This variance implies that the annota-
tion of proteins is biased. To illustrate this problem
more clearly, we analyze the subcellular location
annotation. Figure 6 (b) illustrates the distribution
of such annotations. The data reveals a notable con-
centration of research attention on proteins residing
in the cytoplasm, with other subcellular locations
significantly lacking in comprehensive labeling.

B Detailed Method

B.1 In-Context Examples

Knowledge Instruction relies on examples to teach
language models understand how to convert infor-
mation extracted from the knowledge graph into
instruction data. Here we provide our example
(Figure 7). We notice that when only two exam-
ples of different expressions are provided for each
KGC task, the language capabilities of LLMs are
activated, generating a variety of instruction data
as illustrated in Table 6

B.1.1 Sequence Distance Algorithm

We denote A = a1a2 . . . an and B = b1b2 . . . bn
as two sequences to be aligned, where n and m are
the lengths of A and B, respectively. Before calcu-
lating the editing distance, we have to determine
the substitution matrix to calculate the replacement
score s(·, ·) ∈ (0, 1] and the gap penalty scheme
Wk, where k is the gap length. Then the distance

matrix H can be formulated as:

Hi,j = min{Hi−1,j−1 + s(ai, bj);

Hi−k,j −Wk;

Hi,j−1 −W1;

1}

(4)

where Hk,0 = H0,l = 0 for 0 ≤ k ≤ n and
0 ≤ l ≤ m. We leverage Hn,m/max(n,m) as the
sequence distance between A and B.

B.2 Detailed Experimental Setups
To learn protein KE embedding, following the
TransE approach, we initiate embeddings for en-
tities and relationships through a random initial-
ization procedure. We employ the SGD optimizer
with a learning rate of 1.0. The dimensions of
entities and relations’ embeddings are set to 200.
After 1000 epochs, the loss eventually converges
to 0.168. The ℓ2 distance utilized for clustering
proteins is set to 1.4. For sequence similarity, we
use mmseqs2 (GPL-3.0 license) with –cov-mode
0 –min-seq-id 0.8 parameter.

We perform incremental training on OPT-1.3b.
We wrap the protein sequence with <protein> and
</protein> and apply character-based tokenization,
treating each amino acid as a single token. For
text corpus, we tokenize them using the GPT-2
byte level BPE tokenizer. We utilize Pytorch to
conduct experiments with 8 32G V100 GPUs. We
use a batch size of 128 and a context length of
1,024 tokens. We adopt the Fully Sharded Data
Parallel (FSDP) acceleration strategy alongside the
fp16 data format. We adopt the AdamW optimizer
with β = (0.9, 0.98). We set the weight decay
to 0.01 and the dropout rate to 0.1. The learning
rate increases to 1e-4 for the first 5000 warming-up
steps and decays linearly to 0 for the rest of the
training steps. We pre-train InstructProtein for the
first 40,000 steps, and fine-tune it with instruction
data in the next 20,000 steps.

B.3 Detailed Data Preprocessing
An instruction data consists of a sequence of pro-
teins, as well as textual questions and correspond-
ing answers. We consider the data to be contami-
nated if the protein sequence appears in both the
evaluation set and the training set. To avoid such
a problem, we filtered proteins based on sequence
identity. Specifically, we first collected a total of
9,373 protein sequences used in the test set for all
downstream tasks. Then we clustered the proteins
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Figure 6: The overview of the problem of understudied proteins. (a) We visualized the protein length distribution
for different annotation scores. The annotation score provides a heuristic measure of the annotation content (Score 5
is associated with the best-annotated entries, and a score 1 denotes an entry with rather basic annotation.). (b) We
visualized the ten most used categories in subcellular location annotations.

Example 1
KGC Task: Head Prediction
Triple: ({protein}, family, Insulin-like receptor)
Answer:
Instruction: I would like a protein in insulin-like receptor.
Output: One of the protein that meets the demand is {protein}

Example 2
KGC Task: Triple Classification
Triple: ({protein}, family, insulin-like receptor) -> Yes
Answer:
Instruction: Does {protein} belong to insulin-like receptor?
Output: Based on the record, the answer is yes.

Example 3
KGC Task: Tail Entity Prediction
Triple:  ({protein}, function, insulin receptor substrate binding)
KCM: ({protein}, family, insulin-like receptor) -> 
          ({protein}, function, insulin receptor substrate binding)
Answer:
Instruction: What function does  {protein} have?
Output: Since the protein in insulin-like receptor family, 
             the protein enables insulin receptor substrate binding.

Example 4

KGC Task: Tail Entity Prediction
Triple: ({protein}, locate, nucleus)
KCM: ({protein}, family, retinoid x receptor/hnf4) -> 
          ({protein}, locate, nucleus)

��������������������������

Answer:
Instruction: Where is {protein} located?
Output: Since the protein is in the retinoid x receptor/hnf4 family, 
             it is located in the nucleus.


������������������������

Figure 7: Our data generation prompt. We provide
three in-context examples with and external knowledge
needed to generate the next instruction data. Purple:
One of the model’s generations for the given prompt.

in the training set based on sequence identity (70%
as threshold), and deleted each cluster containing
the sequence in the test set (a total of 19,455 protein
sequences), which ensures that there is no overlap
between the proteins in the training and test sets
and avoid the potential for data contamination.

C Downstream Task

Similar to reading comprehension problems, we
transform all data in protein sequence understand-
ing tasks into a Question&Answer (QA) format
where each item consists of a protein sequence, a
question about that protein, and a list of possible an-
swers. LLMs are required to predict which answers
are true. Following Brown et al. (2020), we use a
classification approach where, for example, only
two outputs ("yes" and "no") are considered and
the higher probability one is taken as the model’s
prediction.

We list the detailed definition of downstream
tasks. {protein} and {label} are used as placehold-
ers. The licenses of all datasets allow scientific
research. Dataset statistics are summarized in Ta-
ble 7.

Subcellular Localization Prediction is a
sequence-level classification task. Each input se-
quence x is mapped to a label y which represents
the subcellular location.

• Prompt template (InstructProtein, OPT,
LLaMA, Alpha, BioMedGPT, Mol-
Instructions): {protein} Instruction: What
cellular components is the protein located in?

• Prompt template (Galactica): {protein} ##
Subcellular Location
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Table 6: Example of instructions in the Knowledge Instruction dataset. We leverage {protein} as a placeholder for
the corresponing protein sequence.

Task Instruction

Family Generation Instruction: Can you provide me with a protein belonging to the secretoglobin family?
Output: Sure, here’s a protein from the secretoglobin family: {protein}.

Superfamily Prediction
Instruction: Could you please provide information about the superfamily to which

{protein} belongs?
Output: {protein} is likely a member of the rho GTPase activation protein superfamily.

Domain Generation

Instruction: Could you provide me with a protein that contains the
nad(p)-binding rossmann-fold domain?
Output: Certainly, here is a protein that contains the nad(p)-binding rossmann-fold

domain: {protein}.

Family Prediction
Instruction: What family does {protein} belong to?
Output: The protein belongs to the alpha-1b-glycoprotein/leukocyteimmunoglobulin-

like receptor family.

Function Prediction
Instruction: protein Does the protein have the molecular function of zinc ion binding?
Output: Yes, based on the information that the protein belongs to the Retinoid X

receptor/HNF4 family, it indeed has the molecular function of zinc ion binding.

Process Prediction

Instruction: I’m interested in learning about the biological process associated with
{protein}. Could you provide information on this?

Output: Given its association with the Retinoid X receptor/HNF4 family, {protein} is
likely involved in the regulation of DNA-templated transcription.

Binding Site Generation
Instruction: Provide me with a protein associated with the IQ motif EF-hand binding site.
Output: Sure, the protein that interacts with the IQ motif EF-hand binding site and

exhibits a protein binding molecular function is {protein}.

Family Prediction Instruction: Does {protein} belong to nfat activation molecule 1?
Output: Based on the record, the answer is yes.

• Label words (sub): {0: "plasma membrane",
1: "cytoplasm", 2: "endoplasmic reticulum",
3: "golgi", 4: "vacuole", 5: "mitochondrion",
6: "nucleus", 7: "peroxisome", 8: "chloro-
plast", 9: "extracellular"}

• Label words (bin): {0: ["plasma mem-
brane", "golgi", "vacuole", "endoplasmic
reticulum"], 1: ["extracellular", "peroxi-
some", "nucleus", "cytoplasm", "mitochon-
drion", "chloroplast"]}

Protein Function Annotation is a sequence-
level classification task to annotation protein with
functional labels. Each example consists of a pro-
tein, a label. They system must predict whether the
label belongs to the protein.

• Prompt template: {protein} Instruction: Does
the protein associate with label?

• Label words: {0: "No", 1: "Yes"}

Metal Ion Binding Prediction is a sequence-
level classification task to predict whether a protein
can bind to ion.

• Prompt template: {protein} Instruction: Does
the protein associate with metal ion binding?

• Label words: {0: "No", 1: "Yes"}

Instruction-Protein Pairing Accuracy probe
the insturction-following capabilities in protein
generation. Protein are decoded under 10 different
instructions (9 randomly sampled instructions and
1 true corresponding instruction). The system must
predict which one is the most relevant instruction.

• Prompt template: Instruction: I would like a
protein that is in {label}. Output: One of the
protein that meets the demand is {protein}"

D Additional Experiments

D.1 Generalization ability on free-form
questions

In addtion to template-based Q&A, We also experi-
ment with creating question in a free-form manner
using ChatGPT for the Subcellular Localization
task (e.g., “Where within the cell can the protein be
found?” or “Which parts of the cell contain the pro-
tein?”). As shown in Table 8, comparative analysis
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Table 7: Dataset Statistics for downstream tasks.

Dataset # Test Task Type

Protein Function Annotation - Biological Process 104,794 Held-In
Protein Function Annotation - Molecular Function 22,372 Held-In
Protein Function Annotation - Cellular Component 38,594 Held-In
Subcellular Localization Prediction - bin 1,749 Held-In
Subcellular Localization Prediction - sub 2,773 Held-In
Metal Ion Binding Prediction 1,332 Held-Out
Instruction-Protein Pairing Accuracy - Fold 718 Held-Out
Instruction-Protein Pairing Accuracy - Family 1,272 Held-In
Instruction-Protein Pairing Accuracy - Superfamily 7,408 Held-In

Table 8: Performance on subcellular localization (sub)
tasks on free-form questions.

Models Subcellular Localization
Bin Sub

Alpaca 57.52 18.31
Mol-Instructions 57.52 19.43
BioMedGPT 59.77 58.85

InstructProtein 83.24 68.61

Table 9: Performance on contact map prediction task.

Models OPT InstructProtein TAPE

Contact Map 0.13 0.26 0.28

with instruction-tuned baselines demonstrates the
model’s ability to generalize across diverse ques-
tions.

D.2 Evaluation of protein representations
output by InstructProtein

Because the structure of a protein determines its
functions, the accuracy of a model’s structure pre-
diction directly reflects its ability to understand
function. We conduct analysis using the contact
map prediction task from the TAPE (Rao et al.,
2019) benchmark. We compared the performance
of our model, InstructProtein, with its base model
OPT, as well as with the TAPE Transformer, a well-
established benchmark model for structure-related
tasks. We report precision at L/5 (P@L/5) in Ta-
ble 9. We observe that InstructProtein significantly
outperforms its base model (OPT) in understanding
protein structure, demonstrating the efficacy of pre-
training and instruction tuning stages in enhancing
structural understanding. These findings provide
valuable insights into the model’s ability to reason
about protein structure.

Table 10: Ablation of training stages.

Models GO-BP GO-MF GO-CC

OPT (base model) 51.83 56.10 51.94
Pre-training only 50.41 55.79 54.33
Instruction tuning only 65.13 76.98 72.53

InstructProtein 71.49 85.83 79.69

D.3 Ablation study on pre-training and
instruction tuning stages

To substantiate the advantages of pre-training and
instruction tuning stages, we are providing ad-
ditional experimental results in Table 10. The
pre-training is conducted with the UniRef100 and
Pubmed datasets that respectively contain proteins
and biomedical literature, while the instruction tun-
ing is conducted using the proposed Knowledge
Instruction approach with aligned natural language
and protein language corpora. We can observe
that the improvement in performance is mainly
due to the fine-tuning phase. However, the lack of
pre-training for modeling protein language lead to
suboptimal performance.

E More Examples

We provide more illustrative examples of protein
understanding and protein de novo design to show
the superiority of our InstructProtein over existing
LLMs.
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What superfamily does 
the protein belong to?

BioMedGPT

Belongs to the MqsS/MqsR
family.

Galactica

Belongs to the RlmN family.
### KeywordsCytoplasm, 
GTP-binding, Initiation factor, 
Nucleotide-binding, Protein 
biosynthesis, RNA-binding

InstructProtein

The protein is in signal transduction
histidine kinase, dimerisation/phos-
phoacceptor domain superfamily.

Ground Truth

1. histidine kinase/hsp90-like 
atpase superfamily 

2. signal transduction histidine kinase, 
dimerisation/phosphoacceptor 
domain superfamily.

What domain does 
the protein have?

In the C-terminal section; belongs
to the transferase hexapeptide 
repeat family.

The C-terminal region (residues 
470-550) is predicted to be a 
transmembrane domain, 
suggesting that it may be located
in the outer membrane.

The protein has glmu, c-terminal 
lbh domain and moba-like ntp 
transferase domain.

1. glmu, c-terminal lbh domain 
2. moba-like ntp transferase domain

What is the function
of this protein?

Catalyzes the last two sequential 
reactions in the de novo biosynthe-
tic pathway for UDP-N-acetylgluc-
osamine.  

Part of the ABC transporter 
complex MetNIQ involved in 
methionine import. Responsible 
for energy coupling to the 
transport system.

The protein enables magnesium
ion binding, glucosamine-1-pho-
sphate n-acetyltransferase activity, 
and udp-n-acetylglucosamine 
diphosphorylase activity.

1. magnesium ion binding
2. glucosamine-1-phosphate n-acetylt-

ransferase activity
3. udp-n-acetylglucosamine diphosph-

orylase activity

Does the protein have
proteinase, inhibitor i2,
kunitz, conserved site?

Has a Kunitz-type B chain.Answer: No Based on the record,
the answer is yes.

The protein has proteinase inhibitor i2, 
kunitz, conserved site.

Figure 8: More examples of protein understanding.

Instruction: I would like a protein that has cystatin domain. Output: 

GoundTruth:
• UniProt ID: B2Z449

Design 2:
• Length: 115 residues

Design 3:
• Length: 107 residues

Design 1:
• Length: 165 residues

Instruction: I would like a protein that enables GTP binding. Output: 

GoundTruth:
• Affinity: -6.0 (kcal/mol)
• PDB id: 5C1S-A

Design 2:
• Affinity: -8.2 (kcal/mol)
• pLDDT: 44.4

Design 3:
• Affinity: -8.9 (kcal/mol)
• pLDDT: 40.3

Design 1:
• Affinity: -7.9 (kcal/mol)
• pLDDT: 96.4

Figure 9: More examples of function-instruction-based protein de novo design.
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Instruction: I would like a protein that is in metallothionein family. Output: 

GoundTruth:
• UniProt ID: A0A024R6T4

Design 2:
• Length: 61 residues

Design 3:
• Length: 54 residues

Design 1:
• Length: 61 residues

Instruction: I would like a protein that is in retroviral VpR/VpX protein family. Output: 

GoundTruth:
• UniProt ID: A0A023HIS7

Design 2:
• Length: 96 residues

Design 3:
• Length: 96 residues

Design 1:
• Length: 126 residues

Instruction: I would like a protein that is in SsrA-binding protein family. Output: 

GoundTruth:
• UniProt ID: A0ALD2

Design 2:
• Length: 150 residues

Design 3:
• Length: 151 residues

Design 1:
• Length: 153 residues

Instruction: Instruction: I would like a protein that is in kappa casein family. Output: 

GoundTruth:
• UniProt ID: P02668

Design 2:
• Length: 145 residues

Design 3:
• Length: 192 residues

Design 1:
• Length: 98 residues

Figure 10: More examples of family-instruction-based protein de novo design (colored by pLDDT).
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Figure 11: More examples of structure-instruction-based protein de novo design (colored by pLDDT).
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Figure 12: Comparing the embedding of proteins designed based on structural instructions and native proteins.
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Prompt:
I would like a protein that enables metal ion binding.

Design 1:
MNKKLVVFDTTLRDGEQSPGASMTKEEKVRIAKQLERMKVDVIEAGFAAASEGDFEAVKAIAQAIKHSTVCSLARANDK
DIARAAEALKPANSFRIHTFIATSALHMEKKLRMTPDQVYEQAVKAVRFARKFTDNVEFSPEDAGRSDPEFLCQVVEAV
INEGASTINIPDTVGYSIPSQFGQLIATIRGRVPNSDKAIWSVHCHNDLGMAVANSLAGVKIGGARQIECTINGLGERA
GNCSLEEIVMAVKTRKDYFGLDVGIDAQHILPASKLVSQITGFVVQPNKAVVGANAFAHASGIHQDGVLKARDTYEIMR
AEDVGWSANKIVLGKLSGRNAFKQRLQELGVQLESEAELNAAFMRFKDLADRKAEIFDEDIIAIVSEECALAQEQEHFK
FVSLSQRSETGEQPQAKVVFAVEGKEVTGEARGNGPVDATFNAIEGEVGSGSELLLYSVNAISTGTQAQGEVTVRLSKS
GRIVNGVGTDPDIVAASAKAYISALNKLHSKDDKLNPQRA

Design 2:
MSDTLFRQLDILRAELDQHNYRYYVDDAPSVPDAEYDRLMQELVALEAEHPELLTPDSPTQRVGGEALAAFRQVRHRIP
MLSLGNAFEDGDLEAFKRRVDRLTGELPGGPLELVCEPKLDGLAVSLLYRDGQLVRGATRGDGTTGEEVSTNVRTIRNI
PLRLHGKGWPAVLEVRGEVYMSRAGFDRLNAAQAEAGGKTFANPRNAAAGSLRQLDSKITASRPLEFCCYGIGQVSECF
DGHQQGLLARLRAWGLPINQELRHAEGLEACLAFYRKVGERRASLPYEIDGAVFKLDERARQRLGFRARAPRWAIAHKF
PAMEELTELLDVEFQVGRTGAITPVARLKPVQVAGVTVSNATLHNMDEIARLGLRPGDRVIVRRAGDVIPQVVQVVLER
RPEGARPIPLPAHCPVCGSEAVREPGEVAVRCVGGLYCEAQRKEALRHFASRRALDVEGLGDKLVDQLVDRELVGSPAD
LYRLTYEQLVGLEGFAEVSSKKLAEAIASSRQPSLARFIYALGIREVGEATAKDLARHFGTLDALMAADEEALLAVPDV
GPVVAHNIRHFFAQPHNLEVVDALLTAGVHWPQVEAVADEAPLAGQTWVLTGTLDSMSRDDAKAQLEALGARVSGSVSK
KTAAVVAGEAAGSKLAKAQELGVKVLDEEELLRLLAAP

Design 3:
MERKSKNPELSSKAFAIAYCAVCGLSRSRNQVFIHKKGLNICRQCFYKKFVSEIISEEKIRQKQRTATKTLPLKDCSDD
IKLKIDPKLKQDKTFEVIEDYEEEIKIEDTIWETNAINEISTCSVCGREEGGFFEAVVQVRAADLLYPTGAQENDELNR
QVREKLQSLRQKVATAKKEFNHIDEYAKHIQKILEEKGVSHDLVRLSTYDLAAAQSLGAVPSEGQKKPGTDEKLRIPRS
GLGLKASLISTYADKVRAARAKLKKAGDIDAQFINGIIKILVPMRPSAVHLDLLENLGCKKVLPENPQIDVLSTRKYPT
LLHGGEPLKEAPLIAPSLIQLLKPYMEGQGLVVVDSFLLSSSRVLRLLKEGALDYLIIEGKYRILSIEKGKFEIDFEGK
PDCVGGSEDLAKLAEVVGAEYLGEDALEVVKLGNQDVTKVKNVQSLEIEEIIRNESIKVKTILQEKYEDIESIIKTKER
LDKLKKEKRKKEIKKNKLTDNANKLEPIETEQELQKLESRNIPLEELLELTNELRPLILANVAERVRKELEIQKIPTEK
NE

Design 1:
  Similar Protein: A0A1Z5HSR0
  Metal Ion Binding: Enable

Design 2:
  Similar Protein: A0A7C4E6S4
  Metal Ion Binding: Enable

Design 3:
  Similar Protein: None

Figure 13: More examples of designed proteins that enable metal ion binding.
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Figure 14: Visualize proteins generated by ChatGPT, Claude-2, Mol-Instructions, and InstructProtein.
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Instruction: I would like a protein that has bifunctional inhibitor/plant lipid transfer protein/seed storage helical domain.

Output (ChatGPT): The combination of a bifunctional inhibitor domain, a plant lipid transfer protein (LTP) domain, and a seed storage 
helical domain in a single protein is a very specific and specialized request. As of my last knowledge update in January 2022, I do not 
have access to a database of specific proteins with this exact combination of domains.
Output (GPT4): To design a protein with a bifunctional inhibitor/plant lipid transfer protein/seed storage helical domain, you would 
typically need to combine elements from each of these distinct protein domains into a single molecule. Here's a general approach to 
achieving this: 1. Understand the Individual Domains; 2. Domain Fusion; 3. Consider Structural Stability and Function; 4. Computational 
Modeling and Simulation; 5. Synthesis and Testing

����������������������������
�

Instruction: What family does the protein belong to?
MAFSDLTSRTVHLYDNWIKDADPRVEDWLLMSSPLPQTILLGFYVYFVTSLGPKLMENRKPFELKKAMITYNFFIVLFSVYM
CYEFVMSGWGIGYSFRCDIVDYSRSPTALRMARTCWLYYFSKFIELLDTIFFVLRKKNSQVTFLHVFHHTIMPWTWWFGVKF
AAGGLGTFHALLNTAVHVVMYSYYGLSALGPAYQKYLWWKKYLTSLQLVQFVIVAIHISQFFFMEDCKYQFPVFACIIMSYSF
MFLLLFLHFWYRAYTKGQRLPKTVKNGTCKNKDN

Output (ChatGPT): To determine the classification of this protein, you would need to perform a bioinformatics analysis, which may 
involve using tools like BLAST or Pfam to search for homologous sequences or conserved domains. Additionally, you may need to 
consult with experts in the field of protein bioinformatics and structural biology for further characterization and classification.
Output (GPT4): However, without access to bioinformatics tools or databases in this environment, I cannot directly determine the 
family of the protein based on its sequence. If you have access to these tools, you can input the sequence into one of the aforementioned 
databases to get a detailed analysis. Alternatively, if you provide more context or information about the protein, such as its source, 
function, or any known characteristics, I might be able to offer more insights.

��������������������������
�����

Instruction: Does the protein enable  carboxyl- or carbamoyltransferase activity?
KVQLKGRDLLTLKNFTGEEIKYMLWLSADLKFRIKQKGEYLPLLQGKSLGMIFEKRSTRTRLSTETGFALLGGHPCFLTTQDIHL
GVNESLTDTARVLSSMADAVLARVYKQSDLDTLAKEASIPIINGLSDLYHPIQILADYLTLQEHYSSLKGLTLSWIGDGNNILHSIM
MSAAKFGMHLQAATPKGYEPDASVTKLAEQYAKENGTKLLLTNDPLEAAHGGNVLITDTWISMGREEEKKKRLQAFQGYQVT
MKTAKVAASDWTFLHCLPRKPEEVDDEVFYSPRSLVFPEAENRKWTIMAVMVSLLTDYSPQLQKPKF

Output (ChatGPT): The protein sequence you provided does not contain information about its specific enzymatic activities, such as 
carboxyl- or carbamoyltransferase activity. Determining the enzymatic activities of a protein typically requires experimental studies, 
structural analysis, and functional assays.
To understand the enzymatic activities of a protein, researchers would typically perform biochemical experiments to investigate its 
function and substrate specificity. Additionally, structural analysis, such as X-ray crystallography or NMR spectroscopy, can provide 
insights into the protein's active sites and potential catalytic mechanisms.
Based solely on the protein sequence, it is not possible to determine its enzymatic activities or functions with certainty. If you are 
working with this protein and need to know more about its function, I recommend conducting experimental studies or consulting with 
experts in the field of protein biochemistry and enzymology.

Output (GPT4): To determine if a protein has carboxyl- or carbamoyltransferase activity based solely on its amino acid sequence is 
challenging without additional context or experimental data. Carboxyltransferases and carbamoyltransferases are enzymes that catalyze 
the transfer of carboxyl or carbamoyl groups, respectively, to their substrates. These enzymes are typically characterized by specific 
active sites and motifs in their amino acid sequences that are necessary for their catalytic activity.
Without access to bioinformatics tools in this environment, I cannot directly analyze this sequence for such activities. To proceed, you 
would typically use the aforementioned tools, or if you have additional information about the protein (such as its source, structure, or 
known functions), it could help in making a more informed guess regarding its potential enzymatic activities.

Figure 15: Examples of closed-source LLMs that often refuse to answer protein-related questions.
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MHHHHHHSSGVDLGTENLYFQSNAMDFPQQLEACVKQANQALSRFIAPLPFQNTPVVETMQYGALLGGKR
LRPFLVYATGHMFGVSTNTLDAPAAAVECIHAYSLIHDDLPAMDDDDLRRGLPTCHVKFGEANAILAGDALQ
TLAFSILSDANMPEVSDRDRISMISELASASGIAGMCGGQALDLDAEGKHVPLDALERIHRHKTGALIRAAVR
LGALSAGDKGRRALPVLDKYAESIGLAFQVQDDILDVVGDTATLGKRQGADQQLGKSTYPALLGLEQARKK
ARDLIDDARQALKQLAEQSLDTSALEALADYIIQRNK

User: Does the protein enable transferring alkyl or aryl groups, other than methyl groups? [Yes/No]
ChatGPT: No. The provided amino acid sequence does not contain known motifs or domains associated with enzymes 
that transfer alkyl or aryl groups. The sequence lacks characteristics of methyltransferases, which are enzymes involved 
in the transfer of methyl groups. Additionally, there are no specific functional annotations or signatures indicating a role
 in alkyl or aryl group transfer. Therefore, based on the given sequence, it is not likely that the protein enables the 
transfer of alkyl or aryl groups other than methyl groups.
GroundTruth: Yes

User: Does the protein enable (2E,6E)-farnesyl diphosphate synthas? [Yes/No]
ChatGPT: No. The absence of such motifs or homology in the provided sequence suggests that this protein is not likely 
to be (2E,6E)-farnesyl diphosphate synthase. It's important to note that a definitive answer would require experimental 
validation or more detailed bioinformatic analysis.
GroundTruth: Yes

User: Does the protein enable poly(A)-specific ribonuclease? [Yes/No]
ChatGPT: No, based on the provided amino acid sequence, there is no indication or motif suggesting that the protein 
enables poly(A)-specific ribonuclease. The sequence doesn't contain known motifs associated with poly(A)-specific 
ribonuclease activity. 
GroundTruth: No

MAHHHHHHMALVSMRQLLDHAAENSYGLPAFNVNNLEQMRAIMEAADQVNAPVIVQASAGARKYAGAPF
LRHLILAAVEEFPHIPVVMHQDHGASPDVCQRSIQLGFSSVMMDGSLLEDGKTPSSYEYNVNATRTVVNFSH
ACGVSVEGEIGVLGNLETGEAGEEDGVGAAGKLSHDQMLTSVEDAVRFVKDTGVDALAIAVGTSHGAYKFT
RPPTGDVLRIDRIKEIHQALPNTHIVMHGSSSVPQEWLKVINEYGGNIGETYGVPVEEIVEGIKHGVRKVNIDT
DLRLASTGAVRRYLAENPSDFDPRKYLGKTIEAMKQICLDRYLAFGCEGQAGKIKPVSLEKMASRYAKGELN
QIVK

User: Does the protein enable fructose-bisphosphate aldolase? [Yes/No]
ChatGPT: No. The provided sequence appears to be a longer peptide with no recognizable motifs or domains associated 
with aldolase activity. Additionally, the sequence does not align with known fructose-bisphosphate aldolase sequences.
GroundTruth: Yes

User: Does the protein enable aldehyde-lyases? [Yes/No]
ChatGPT: No. The provided amino acid sequence does not exhibit clear motifs or conserved residues associated with 
aldehyde-lyases. Aldehyde-lyases are enzymes that catalyze the cleavage of carbon-carbon bonds in aldehydes. 
Typically, these enzymes have specific motifs and active site residues that are essential for their catalytic activity. 
The sequence you provided does not contain these characteristic features associated with aldehyde-lyases.
GroundTruth: Yes

User: Does the protein enable non-chaperonin molecular chaperone ATPase? [Yes/No]
ChatGPT: No. The provided amino acid sequence does not exhibit characteristics or motifs commonly associated with 
non-chaperonin molecular chaperone ATPase activity. Molecular chaperones, including chaperonin ATPases, typically 
possess specific domains and motifs involved in ATP binding and hydrolysis, as well as substrate binding. The absence 
of such features in the given sequence suggests that it is not likely to function as a non-chaperonin molecular chaperone 
ATPase.
GroundTruth: No

Figure 16: ChatGPT prediction results of whether a protein can catalyze a reaction.
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