
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11442–11459
August 11-16, 2024 ©2024 Association for Computational Linguistics

Aligning Large Language Models by On-Policy Self-Judgment

Sangkyu Lee1,∗ Sungdong Kim2,3,† Ashkan Yousefpour1
Minjoon Seo3 Kang Min Yoo2,4 Youngjae Yu1,†

Yonsei University1 NAVER Cloud2 KAIST AI3 SNU AI Center4

Abstract

Existing approaches for aligning large language
models with human preferences face a trade-off
that requires a separate reward model (RM) for
on-policy learning. In this paper, we present
a novel alignment framework, SELF-JUDGE
that (1) does on-policy learning and 2) is pa-
rameter efficient, as it does not require an ad-
ditional RM for evaluating the samples for on-
policy learning. To this end, we propose Judge-
augmented Supervised Fine-Tuning (JSFT) to
train a single model to act as both a policy and
a judge. Specifically, we view the pairwise
judgment task, choosing the better response
from a response pair, as a special case of the
instruction-following task. The resulting model
can judge preferences of on-the-fly responses
from current policy initialized from itself. Ex-
perimental results show the efficacy of SELF-
JUDGE, outperforming baselines in preference
benchmarks. We also show that the rejecting
sampling by itself can improve performance
further without an additional evaluator1.

1 Introduction

Research on aligning Large Language Models
(LLMs) with human preference has increasingly
gained attention in recent years (Askell et al., 2021;
Ouyang et al., 2022; Bai et al., 2022a; Rafailov
et al., 2023). Reinforcement Learning from Hu-
man Feedback (RLHF) is the most dominant ap-
proach for the alignment of LLMs for human pref-
erences (Ziegler et al., 2020). It utilizes a reward
model (RM) to estimate the human preference
scores for the generated responses from policy. The
policy is updated with on-policy Reinforcement
Learning (RL) to maximize the estimated rewards
of sampled responses regularized with the KL di-
vergence between the current policy and reference

∗ Work done during internship at NAVER Cloud
† Corresponding authors

1The code is available at github.com/oddqueue/self-judge

A You need to go to a 
blood donor clinic.

Have you read the 
terms on a website?

Feedback with the preference order of 
on-policy samples by single token prediction

B

A  >  B

Current
Policy

Q: I have never donated blood before. How can I do it?

Q: Which is the better?

Reference
Policy

🔥

Figure 1: In our framework, SELF-JUDGE, a single
model is trained not only to generate responses but also
to perform a judgment task, where it selects the better
of the two responses through a single token prediction.
This enables on-policy self-training by performing judg-
ments on current policy for improving itself.

policy. However, RLHF requires a complex setup
for on-policy updates because of its simultaneous
use of an RM with the reference model.

In contrast, a line of research (Rafailov et al.,
2023; Azar et al., 2023) proposes discarding on-
policy learning and optimizing from preference
orders in static datasets without RMs (i.e., offline
learning), whereas other studies propose construct-
ing datasets with responses sampled from the initial
policy and labeled by separated evaluators (i.e., off-
policy learning) (Zhao et al., 2023; Liu et al., 2023;
Xu et al., 2023; Gulcehre et al., 2023; Dong et al.,
2023). However, offline learning can lead to sub-
optimal results due to the lack of exploration (Medi-
ratta et al., 2023), and off-policy learning could
cause degeneration if an appropriate replay buffer
strategy is not used (Zhang and Sutton, 2017).

In this paper, we present SELF-JUDGE, a simpli-
fied on-policy training scheme that trains a single
model to perform on-the-fly feedback for current

11442

https://github.com/oddqueue/self-judge


Augment the SFT 
dataset by a 
pairwise judgment 
task whose 
instruction is to 
select the chosen 
response in a single 
choice token

Prompt

Chosen Response

Rejected Response

Train a Judge 
Model that can
act as both
policy and judge

Sample response 
pairs from the 
policy model

Policy Reference Sample N 
responses from 
the policy model 
at inference

Construct a 
tournament tree 
with oversampled 
responses

Choose the winner 
of the tournament 
as a final response

Regard the prompt 
and chosen 
response from the 
preference dataset 
as a training 
instance for SFT

Judge

1) Judge-augmented Supervised Fine-tuning 2) Self-Training by On-Policy Judgment 3) Self-Rejection by Tournament

Feedback

Policy

Judge preference 
orders on sampled 
responses by the 
reference model

:

: A > B

Initialize the policy 
model and fixed 
reference model 
by a single
Judge Model 

: A , B

:

Reference

A > B

PolicyReference

Policy

:

Policy

:

...

Which is the better?

SFT Dataset

A: B:

⋯

⋯
⋮

Judge each 
match on the 
tournament tree Policy

Preference Dataset

Augment

A > B:

Judge

Feedback to policy 
model with 
predicted 
preference orders

🔥

🔥

🔥

Figure 2: An overview of SELF-JUDGE. 1) We train an LLM to act as a Judge Model (JM), which can both generate
responses and compare response pairs. We train the JM with a SFT dataset augmented with the pairwise judgment
task where the better response can be selected by a single token. 2) We initialize a policy and a fixed reference model
from the trained JM. Then, the policy model samples response pairs, and the reference model performs judgments
on the pairs for giving feedback with preference orders. 3) We perform a rejection sampling by a tournament on
responses from the policy through the judgments by itself for further improvements at inference time.

policy for improving itself. To this end, we in-
troduce Judge-augmented Supervised Fine-tuning
(JSFT) to obtain a model that can both generate a re-
sponse and perform pairwise comparison, as shown
in Figure 1. Specifically, we regard the pairwise
judgment task, choosing the better response from a
response pair, as a special case of the instruction-
following task, which can be answered in a single
token and optionally with a rationale. SELF-JUDGE

initializes the current policy and reference policy
from JSFT’s resulting model. SELF-JUDGE sam-
ples a response pair from the current policy and
chooses a better response in the pair by the refer-
ence policy, then updates the current policy with
preference orders without an RM (Rafailov et al.,
2023; Zhao et al., 2023; Azar et al., 2023).

Experimental results show that SELF-JUDGE

outperforms RLHF and other offline and off-policy
approaches (Rafailov et al., 2023; Liu et al., 2023;
Gulcehre et al., 2023; Dong et al., 2023) on pref-
erence benchmarks. Unlike existing approaches,
SELF-JUDGE leverages on-policy learning while
not introducing an additional evaluator. The re-
sults demonstrate the effectiveness and parameter
efficiency of SELF-JUDGE performing on-policy
self-training for LLM alignment. Furthermore, we
show that SELF-JUDGE can maximize performance
through self-rejection that selects the best response
from its own responses using its judgment capabil-

ities learned through JSFT. In particular, the per-
formance gains are significant when the pairwise
judgment task of JSFT involves comparisons based
on principles with rationale for the decision.

In summary, our main contributions are:

• We propose a parameter-efficient on-policy
learning framework, SELF-JUDGE, with JSFT
for obtaining an initial policy that can judge.

• We analyze the efficacy of the JSFT for judg-
ment and suggest the best practices to exploit
the improved judgment ability.

• We show resulting models from JSFT can self-
improve by acting as a judge: on-policy self-
training and self-rejection at inference time.

2 Preliminaries

Aligning by Reinforcement Learning To align
LLMs with human preferences, RLHF (Ziegler
et al., 2020) follows three stages: 1) obtaining an
initial policy πref through SFT from the pre-trained
LLM, 2) training an RM from human preference
triplets (x, yw, yl), where yw is a chosen response,
and yl is a rejected response for a given prompt x,
3) fine-tuning the initial policy by Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017),
with KL divergence between current policy π and
reference policy πref as a regularization for the re-
ward maximization objective. Generally, RMs are

11443



trained by Bradley-Terry model (Bradley and Terry,
1952), which minimizes negative log-likelihood of
score difference, logσ(rθ(x, yw) − rθ(x, yl)), to
compute a pointwise scalar reward for the response
sampled from the current policy. This on-policy
rollout procedure provides the frequent exploration
of responses but introduces an additional training
stage and memory usage due to the RMs.

Aligning from Preference Orders It has been
observed that RM is susceptible to language bi-
ases such as the response length, preferring longer
responses over shorter ones (Shen et al., 2023).
Askell et al. (2021) suggest a language model-
ing loss on preferred context (x, yw) during the
training of the RM to address this issue. This ap-
proach, however, necessitates another pre-training
stage of the RM. Direct Preference Optimization
(DPO) (Rafailov et al., 2023) and Sequence Like-
lihood Calibration with Human Feedback (SLiC-
HF) (Zhao et al., 2023) introduce objectives that
can be trained by only preference orders yw ≻ yl
without scalar rewards and need for RMs. How-
ever, offline learning methods optimized on static
datasets inherently reach sub-optimal results com-
pared to online learning (Mediratta et al., 2023).
Xu et al. (2023); Yuan et al. (2024) propose
an online learning approach that iteratively con-
structs datasets by responses sampled from the
policy. However, this off-policy approach with a
large buffer size can induce performance degenera-
tion (Zhang and Sutton, 2017).

3 SELF-JUDGE

In this section, we describe our proposed alignment
framework, SELF-JUDGE, which utilizes a single
model that acts as both policy and judge: sampling
responses and judgment over response pairs. It
can provide feedback on the response pairs sam-
pled from the current policy for improving itself
in an on-policy manner and also perform rejection
sampling by itself, as depicted in Figure 2.

3.1 Judge Model
Using LLMs to evaluate responses of another LLM,
LLM-as-a-judge, is shown promising (Zheng et al.,
2023; Bai et al., 2022b; Kim et al., 2023). In-
spired by these studies, we leverage the genera-
tive pairwise evaluator, which we refer to as Judge
Model (JM), for aligning LLMs with human pref-
erence (Ethayarajh et al., 2023; Zhao et al., 2023;
Liu et al., 2023). Unlike an RM, which produces

User

Assistant

Which response is better
when following [principle]? 

Prompt: [prompt]
Response A: [response A] 
Response B: [response B]

Judgment
Template

Target
Sequence

Decision: Response [A or B]

Evaluation of A: [rationale A]
Evaluation of B: [rationale B]

Figure 3: An example of a judgment template C. The
judgment template asks which of the two responses is
better for a given prompt and requests to select the judge
token J ∈ {A,B} corresponding to the better response.
Optionally, a principle for the judgment can be added to
the judgment template, and the rationale can be included
in the target sequence for training.

a scalar score for a single response, JM simply
chooses the better response between the two re-
sponses. Specifically, the JM π is trained by
maximizing the log-likelihood of the judge token
J ∈ {A,B} corresponding ground-truth prefer-
ence label for a given judgment template C. Fig-
ure 3 illustrates an example of a judgment template.

Judge-augmented Supervised Fine-tuning Typ-
ically, the chosen response yw is used for tar-
get sequence of prompt x in training prefer-
ence dataset D on the SFT stage, i.e., DSFT =
{(x, yw)|(x, yw, yl) ∈ D}. In addition, we
treat the pairwise judgment task as a spe-
cial case of instruction-tuning, e.g., DJudge =
{
(
C(x, yw, yl),J

)
|(x, yw, yl) ∈ D}. As a re-

sult, we train the pairwise judgment task as a re-
sponse generation using the augmented dataset
D+

SFT = DSFT ∪ DJudge. We refer to the pro-
cess of fine-tuning the LLMs on the augmented
dataset D+

SFT as Judge-augmented Supervised
Fine-tuning (JSFT). With JSFT, we can obtain
a JM that can not only compare pairwise prefer-
ences but also generate responses. Also, we can
expect a better understanding of language-relevant
features on preference comparison since the JM is
trained to mimic good behavior yw, similar to the
observation found on RMs (Askell et al., 2021).

Principle-aware Judgment with Rationale One
advantage of JM compared to the conventional
method with RM is that the JM can adapt the
judgment template C according to multiple aspects
of human preferences, reflecting diverse princi-
ples (Sun et al., 2023; Cui et al., 2023). Also,

11444



the generative nature of JM makes it easy to uti-
lize rationale, the justification for the judgment
in natural language, for more precise judgments,
similar to the observations on instruction-tuning
of LLMs (Mukherjee et al., 2023). For a given
principle p ∈ P where the P is a principle set, we
devise different judgment templates Cp for each p.
Also, we can optionally include a rationale R in
the target sequence for the judgment task when it
is available. The JM first produces a judge token
J ∈ {A,B} which corresponds to the ground-
truth label of the better response, then rationale
R is followed. Formally, π(J ,R | Cp(x, yw, yl)).
As a result, principle-aware judgment can be con-
ducted by simply adjusting the judgment template.

Judging Self-Generated Responses Since JM
is trained by JSFT, it can judge its own response
by playing the roles of the policy and judge: this is
the intuition behind the name SELF-JUDGE. As
a policy, the JM first samples responses ya, yb for
a given x. Then, the JM, as a judge, chooses a
better response between the two responses, π(J |
C(x, ya, yb)). More precisely, it averages the likeli-
hoods of corresponding judge tokens, J , utilizing
a position-swapped judgment template to mitigate
position bias (Chiang et al., 2023). From the rela-
tive likelihoods of these judge tokens for each re-
sponse, a pseudo-preference triplet label (x, ŷw, ŷl)
for the self-training and self-rejection can be de-
duced. For the principle-aware judgments, we can
first check the winning rate across principles and
then the mean likelihood of judge tokens across
principles for deciding orders when a tie happens.

3.2 Self-Training by On-Policy Judgment

Ethayarajh et al. (2023) uses JM’s predicted like-
lihood of judge tokens as the reward for on-policy
evaluation in RLHF framework, comparing with
a blank baseline response 2. This approach has a
significant limitation; the likelihood inferred by a
language model cannot be regarded as confidence
without calibration (Zhou et al., 2023; Zhu et al.,
2023). Conversely, to leverage JMs properly, we
adopt objectives that perform optimizations on pref-
erence orders since these objectives do not require
pointwise scalar scores (Rafailov et al., 2023; Zhao
et al., 2023; Azar et al., 2023). In our framework,
we regard the reference policy πref as a judge to
evaluate the preference order between generated

2huggingface.co/stanfordnlp/SteamSHP-flan-t5-xl

samples from current policy πθ, as follows:

ya ∼ πθ(· | x), yb ∼ πθ(· | x),
(x, ŷw, ŷl)← πref(J | C(x, ya, yb)).

That is, a single JM with JSFT is initialized for
both πθ and πref, but the latter one is frozen for
the likelihood normalization (Liu et al., 2023) and
on-policy judgments. This setup enjoys on-policy
learning without introducing an additional model
for the evaluation as RLHF. If we adopt the DPO
objective, the following loss is used for optimiza-
tion, where σ is the sigmoid function, and β is a
coefficient for KL divergence regularization,

−E
[
log σ

(
β log

πθ(ŷw|x)
πref(ŷw|x)

− β log
πθ(ŷl|x)
πref(ŷl|x)

)]
.

3.3 Self-Rejection by Tournament
RMs can also be utilized at inference time for re-
jection sampling such as Best-of-N sampling (Sti-
ennon et al., 2020), selecting the best response
according to the reward score among oversampled
N responses. However, this approach requires
a separate RM in addition to the policy model
during inference. In contrast, JM trained within
SELF-JUDGE does not require an additional RM
for evaluating responses, as it can evaluate the self-
generated responses by itself.

However, judging all the possible comparison
pairs to get the average winning rate requires
O(N2) forward passes for

(
N
2

)
comparisons. Thus,

we adopt the tournament (Zhao et al., 2023; Liu
et al., 2023) for rejection sampling at inference
time. We construct a tournament tree whose leaf
nodes are sampled responses, and the non-leaf
nodes are chosen by the winner on judgment be-
tween the child nodes. Since the tournament tree
has less than N −1 non-leaf nodes, we can find the
best response by O(N) forward passes, the same
as the Best-of-N sampling with a separated RM.

4 Experimental Setup

In this section, we discuss the experimental setup
for validating our proposed framework, SELF-
JUDGE. We use two datasets: Anthropic-HH (Yuan
et al., 2023) and UltraFeedback (Cui et al., 2023).
In the experiments, we choose DPO (Rafailov
et al., 2023), RSO (Liu et al., 2023), ReST (Gul-
cehre et al., 2023), RAFT (Dong et al., 2023), and
RLHF (Ziegler et al., 2020) as baselines for compar-
ing with SELF-JUDGE. We evaluate the resulting

11445

https://huggingface.co/stanfordnlp/SteamSHP-flan-t5-xl


Method Policy Evaluator On-Policy
Learning

On-Memory
Parameters

AlpacaEval
(% Win)

VicunaEval
(% Win)

MT-Bench
(Score)

SFT ✗ ✗ ✗ p 24.75 50.00 4.63

DPO SFT ✗ ✗ 2p 35.14 60.63 4.73
RSO SFT JM ✗ 2p 34.27 64.38 4.42
ReST SFT RM ✗ p 27.43 55.00 4.53
RAFT SFT RM ✗ p 32.50 59.38 4.43
RLHF SFT RM ✓ 3p 33.46 53.75 4.29

SELF-JUDGE
(Ours)

JM ✓ 2p 44.88 76.25 4.80

Table 1: Evaluation results of models trained on HH-Helpful (Bai et al., 2022a). The best result and second best
result on each benchmark are represented as bold and underline. We report theoretical memory usage of model
parameters required for each method where p denotes the number of parameters of the base model. We use base
and online splits but used the online split only for constructing the training instances of SFT. SELF-JUDGE
outperforms baselines on all benchmarks with a single JM, which can act as both policy and judge.

models from each experiment by AlpacaEval (Li
et al., 2023), VicunaEval (Chiang et al., 2023), and
MT-Bench (Zheng et al., 2023). The implementa-
tion details are in Appendix A.

4.1 Datasets
Anthropic-HH Anthropic-HH (Bai et al., 2022a)
is a human preference dataset on 170k dialogues,
which consists of two subsets, HH-Helpful and
HH-Harmless, which are labeled by the helpfulness
and harmlessness principle. We focus on the HH-
Helpful to better isolate and understand the benefits
of SELF-JUDGE due to the conflicting nature of
helpfulness and harmlessness principles (Bai et al.,
2022a). HH-Helpful contains various data splits
corresponding to the development stages of an AI
assistant. We use the base split and include the
pair (x, yw) from the online split in the SFT
dataset for analyzing transition effects on JSFT.

UltraFeedback As obtaining human-labeled
feedback is costly, utilizing AI feedback is a widely
investigated alternative (Bai et al., 2022b; Sun et al.,
2023; OpenAI, 2023). UltraFeedback (Cui et al.,
2023) is one of the datasets that consists of AI
feedback where GPT-4 (OpenAI, 2023) rates re-
sponses obtained from four different language mod-
els for the 64k prompts, based on four principles
of helpfulness, instruction-following, truthfulness,
and honesty. Each rating contains the rationale
obtained from GPT-4, which represents an explana-
tion for the quality and rating of the corresponding
response based on the given principle. We ran-
domly split 10% of the prompts of the dataset and
use them as a test set for further analysis.

4.2 Baselines

We choose DPO (Rafailov et al., 2023) as an offline
learning baseline and use DPO objective for self-
training in SELF-JUDGE. We include RSO (Liu
et al., 2023) with the DPO objective as an off-
policy learning baseline, which utilizes the JM as
a separate evaluator. We include baselines that
utilize RMs, ReST (Gulcehre et al., 2023) and
RAFT (Dong et al., 2023) for off-policy learn-
ing approach and RLHF (Ziegler et al., 2020) for
on-policy learning approach. We choose Llama-2-
7B (Touvron et al., 2023) as a base model for all
experiments for fair comparisons.

4.3 Evaluations

We evaluate the resulting models based on the three
benchmarks, AlpacaEval (Li et al., 2023), VicunaE-
val (Chiang et al., 2023), and MT-Bench (Zheng
et al., 2023). AlpacaEval is an alignment bench-
mark that compares the quality of two responses
on 805 questions sampled from a diverse dataset,
rated by GPT-4 (OpenAI, 2023). We use the
text-davinci-003 (Ouyang et al., 2022) as
the baseline model for measuring winning rates.
VicunaEval is another benchmark utilizing GPT-4
as a judge for comparing two models’ responses
from 80 questions on various topics. We use the
SFT model on each dataset as the baseline model
for measuring winning rates. MT-Bench is a multi-
turn benchmark consisting of 80 instances of 2-turn
questions from 8 different domains, which is evalu-
ated by GPT-4 on a scale of 1 from 10. We report
the average scores obtained on each turn.

11446



5 Experimental Results

5.1 Main Results
SELF-JUDGE is a strong alignment method. In
Table 1, we can see that SELF-JUDGE outperforms
all baselines. Notably, SELF-JUDGE consistently
shows the highest performance on all three bench-
marks while not introducing additional parameters
compared to DPO, which is trained in an offline
setting. In addition, SELF-JUDGE also shows sig-
nificant strength compared to all of the baselines
utilizing separate evaluators for off-policy and on-
policy learning (Liu et al., 2023; Gulcehre et al.,
2023; Dong et al., 2023; Ziegler et al., 2020). Qual-
itative examples can be found in Appendix B.

5.2 Analysis of Judge Models
We conduct an ablation study with HH-Helpful
to verify two hypotheses about SELF-JUDGE: 1)
JSFT improves JM’s judgment ability, and 2) JM is
more compatible with direct preference optimiza-
tion than RL. To this end, we train three JMs with
different strategies: 1) training solely on judgment
task induced from base split, 2) JSFT on base
split, and 3) JSFT on base split with additional
SFT data from online split. We report the per-
formance of each JM as a policy and a judge. We
further examine the resulting models on RLHF re-
garding the predicted likelihood of label tokens on
JM as rewards similar to Ethayarajh et al. (2023).
We also investigate how different sampling strate-
gies in self-training influence the final performance.

JSFT improves JM’s judgment ability. Table 2
shows the results regarding the first hypothesis. We
can see that JM has only a marginal difference in
prediction accuracy on the test split of HH-Helpful
compared to RM when it is not trained by JSFT.
From this observation, we confirm that the transi-
tion effects of imitation learning to judgment task
occur when the judgment task is trained with canon-
ical SFT tasks. On the other hand, including the
online split for JSFT significantly improves the
performance as a policy, but performance as a judge
is slightly decreased compared to the JM that is
only trained on the base split. We conjecture
that the distribution gap between online split
and base split influences the transition effects, as
online split is obtained from a language model
already aligned with human preferences.

On-policy learning with preference orders is the
best strategy for JM. In Table 3, we observe that

Type JSFT
(+ DSFT)

Judge
(% Accuracy)

Policy
(% Win)

RM ✗ 66.11 ✗

JM
✗ 66.49 ✗

+ base 68.32 5.78
+ base / online 67.84 20.26

Table 2: Prediction accuracy on test split of HH-Helpful
and winning rate on AlpacaEval using JM as a judge or
a policy. JSFT improves not only the performance as a
policy but also the performance as a judge of JM.

RLHF with JM as an evaluator results in a lower
performance compared to conventional RM pro-
ducing scalar rewards, which implies that the judge
token likelihood obtained from a judgment could
not be regarded as a pointwise preference score on
the Bradley-Terry model (Bradley and Terry, 1952).
Table 4 shows that on-policy learning outperforms
offline and off-policy learning approaches using
a single JM on self-training. Therefore, we can
conclude that on-policy learning with preference
orders, such as DPO objective, is the best strategy
for JM in order to leverage JM’s superior perfor-
mance on judgments compared to the RM.

Policy Evaluator JSFT
(+ DSFT)

AlpacaEval
(% Win)

SFT

RM ✗ 33.46

JM
✗ 26.18

+ base 29.63
+ base / online 28.46

Table 3: Evaluation results of models trained with dif-
ferent evaluator types for RLHF. With JMs, we regard
the likelihood of judge token comparing with chosen re-
sponse yw as a reward3. JM’s token likelihoods are not
appropriate for the pointwise reward function in RLHF.

5.3 Effects of Principle and Rationale
In this subsection, we compare JMs trained by
three different JSFT strategies to verify the effect of
principle-aware judgment and rationale through Ul-
traFeedback (Cui et al., 2023). The three different
strategies include 1) judgment derived from over-
all scores across the principles, 2) principle-aware
judgments, and 3) principle-aware judgments with
rationales. We check the performance of each JM
as a policy and a judge. We also examine how
principle-aware judgment and rationale affect the
performance as a judge after a self-training stage.

3We found that using the blank response fails on the as-
sessment of response since the reward is always close to 1.

11447



Type AlpacaEval
(% Win)

VicunaEval
(% Win)

MT-Bench
(Score)

Offline 28.57 58.75 4.68
Off-Policy 32.03 64.38 4.59
On-Policy 44.88 76.25 4.80

Table 4: Effect of learning strategy on self-training. On-
policy learning yields the best performance.

We further report the statistics of selected responses
on self-rejection according to the sampled number
of responses. Additionally, we investigate the fea-
sibility of iterative training, which regards the JM
after the self-training as the initial policy and con-
ducts several iterations of self-training.

Type P R Judge
(% Accuracy)

Policy
(% Win)

RM ✗ ✗ 79.9 ✗

JM ✗ ✗ 80.5 67.4
JM-P ✓ ✗ 81.6 59.3
JM-PR ✓ ✓ 84.0 65.7

Table 5: Performance as a judge or a policy by test
split of UltraFeedback and AlpacaEval according to the
usage of principle (P) and rationale (R) for pairwise
judgment task. Principle-aware judgment with ratio-
nale (JM-PR) boosts the performance as a judge while
slightly sacrificing the ability as a policy.

Involving principles and rationale improves
JM’s performance as a judge but not as a policy.
Table 5 shows that JM’s performance as a judge in-
creases when the JM is trained for principle-aware
judgment (JM-P), and it increases more when the
rationale is also used for training (JM-PR). This
confirms that the pairwise judgment task can be
treated as instruction, inheriting the benefits of
instruction-tuning. However, we observe that de-
generation in JM’s performance as a policy occurs
when JM is trained solely on principle-aware judg-
ment but recovered when JM is trained with ratio-
nale. We presume this trade-off comes from the
bias in task distribution caused by increased pair-
wise judgment task instances for training principle-
aware judgment. However, we speculate that ratio-
nale can mitigate performance degradation caused
by response distribution mismatch between the pair-
wise judgment task and other tasks.

JM-PR excels in self-improvement. In Table 6,
we can observe that JM-PR achieves comparable
performance on benchmarks even though JM-PR

shows the degradation as an initial policy model
in Table 5. When self-rejection is applied for JM-
PR, the winning rate on AlpacaEval is reliably im-
proved up to 8.4% with shorter response lengths
and fewer repetitions compared to JM as Figure 4
although LLM-as-a-judge is likely to prefer longer
responses (Zheng et al., 2023). We further experi-
ment with an iterative training scheme that regards
the JM-PR after self-training as an initial policy.
We observe that the performance as a policy im-
proves while the capability as a judge is maintained,
as shown in Figure 5. We find that the increase in
performance as a policy diminishes with more itera-
tions, but the performance degeneration as an initial
policy can be overcome with iterative training.

Method AlpacaEval
(% Win)

MT-Bench
(Score)

SFT 68.99 5.08

DPO 80.25 5.74
RSO 77.67 5.69
ReST 72.95 5.47
RAFT 71.08 5.32
RLHF 71.68 5.40

SELF-JUDGE (JM) 80.75 6.00
+ Self-Rejection (N = 16) 84.47 6.08

SELF-JUDGE (JM-PR) 79.98 6.12
+ Self-Rejection (N = 16) 88.39 6.14

Table 6: Evaluation results of models trained on Ul-
traFeedback by AlpacaEval and MT-Bench. The best
result and second best result without a rejection sam-
pling are represented as bold and underline. Note that
applying self-rejection on resulted models from SELF-
JUDGE does not require a separate evaluator.

6 Related Work

Learning from Preference Scores There are
several approaches utilizing an RM for align-
ment learning. RLHF (Ziegler et al., 2020) uti-
lizes an RM for on-policy reinforcement learning.
RRHF (Yuan et al., 2023) maximizes the margin
of log-likelihood by the rank of responses deter-
mined by the score from RM and human annotators.
RAFT (Dong et al., 2023) and ReST (Gulcehre
et al., 2023) apply rejection sampling on sampled
responses through the RM to perform self-imitation
learning. SALMON (Sun et al., 2023) trains LLMs
to generate scores for responses through principle-
driven synthetic preference data utilizing the SFT
model. However, all these approaches require a

11448



1 2 4 8 16
N

80

82

84

86

88

W
in

ni
ng

 R
at

e 
(%

)

1 2 4 8 16
N

1500

1600

1700

R
es

po
ns

e 
Le

ng
th

1 2 4 8 16
N

0.09

0.10

0.11

4-
gr

am
s 

R
ep

et
iti

on

JM JM-PR

Figure 4: Winning rate, average response length, and 4-gram repetition on AlpacaEval according to the number of
sampling (N ) for self-rejection on JM and JM-PR after self-training. Even though LLM-as-a-judge tends to favor
verbose responses (Zheng et al., 2023), JM-PR reliably improves the winning rate as N increases, with smoother
increments of response lengths and lower repetitions compared to JM.

1 2 3
Iteration

75

80

85

90

W
in

ni
ng

 R
at

e 
(%

)

N = 1 N = 16

Figure 5: Result of iterative self-training on AlpacaEval
using JM-PR. Performance as a policy increases as it-
erations proceed without losing the capacity as a judge
for applying self-rejection.

separate RM for the alignment procedure.

Optimizing on Preference Orders From pref-
erence orders in the static dataset, DPO (Rafailov
et al., 2023) optimizes LLMs by implicit rewards
without a separated RM. IPO (Azar et al., 2023)
proposes a modified objective using an unbounded
preference mapping function to mitigate overfit-
ting on deterministic preferences in the dataset.
PCO (Xu et al., 2023) utilizes cringe loss for op-
timization, which considers the token-level likeli-
hood of rejected samples as contrastive training.
SPIN (Chen et al., 2024) performs iterative train-
ing considering the distribution gap between SFT
datasets and the model’s responses as preference
orders. Self-Rewarding Language Models (Yuan
et al., 2024) trains LLMs to generate scores for a
given response by chain-of-thought reasoning to
construct preference datasets by self-generated re-
sponses. All these approaches differ from our work

in that they do not perform on-policy learning.

Generative Pairwise Evaluator The generative
pairwise evaluator, which we refer to as JM, has
been utilized in previous approaches to alignment
learning. ILF (Scheurer et al., 2023) selects the
response that reflects human-requested feedback
through JM. SLiC-HF (Zhao et al., 2023) con-
structs a static preference dataset with responses
obtained from the SFT model ordered by JM.
RSO (Liu et al., 2023) approximates the opti-
mal policy of the RLHF objective with rejection
sampling through JM’s judge token likelihood.
OAIF (Guo et al., 2024) adopts pre-aligned LLMs
to perform the pairwise judgment task for on-policy
learning, not by fine-tuning to JM. All of these ap-
proaches focus on utilizing a separate evaluator and
do not address self-improvement.

7 Discussion

Concurrent Works Recent works such as Self-
Rewarding Language Models (Yuan et al., 2024)
and OAIF (Guo et al., 2024) have intersections
with SELF-JUDGE in aspects of self-training and
on-policy learning for pairwise preferences. Self-
Rewarding Language Models trains the initial pol-
icy to act as a judge, but evaluations are per-
formed through chain-of-thought reasoning, which
requires a significant computational cost for eval-
uation. Therefore, off-policy learning with an it-
erative training scheme was adopted, which can
yield inferior results compared to on-policy learn-
ing, as shown in Table 4. OAIF similarly utilizes a
large language model as a judge for on-policy learn-
ing but employs an already aligned large language

11449



Method Self-Training On-Policy

Self-Rewarding LMs
(Yuan et al., 2024)

✓ ✗

OAIF
(Guo et al., 2024)

✗ ✓

SELF-JUDGE
(Ours)

✓ ✓

Table 7: Comparison between SELF-JUDGE and recent
concurrent works on preference alignment learning. Un-
like the others, SELF-JUDGE achieves both self-training
without separated evaluators and on-policy learning.

model as the judge. This necessitates a superior
aligned language model and incurs additional com-
putational resources compared to this work, which
performs self-improvement using a single model.
Table 7 illustrates the difference between these ap-
proaches compared to SELF-JUDGE.

Effects of Parameter Size on JSFT Gao et al.
(2023) demonstrates that scaling of parameter size
enhances the robustness of RMs in the sense of
proxy for the ground truth reward. Similarly, we
believe parameter size might significantly affect
JMs since they act as a proxy for pairwise human
preferences. Table 8 shows that as the parameter
size increases, the performance of JM increases
without JSFT, but the performance gain from JSFT
grows correspondingly as parameter size increases.
This implies that the transition effects of imitation
learning to judgment task positively correlate with
parameter size. Therefore, SELF-JUDGE has the
additional advantage of obtaining a strong evaluator
from the overparameterization of the policy model,
since JSFT directly leads the scaling of the initial
policy to the scaling of the evaluator.

Model JSFT Judge
(% Accuracy)

Policy
(% Win)

Llama-2-7B
✗ 66.11 ✗

✓ 67.84 20.26

Llama-2-13B
✗ 66.86 ✗

✓ 72.13 24.00

Table 8: Prediction accuracy on test split of HH-Helpful
and winning rate on AlpacaEval with different sizes of
base model’s parameter size for JMs. We use base and
online splits of HH-Helpful for JSFT.

Policy Model as a Judge for Self-Training The
reference model is regarded as a judge for the pol-
icy model on the self-training by default in SELF-
JUDGE. This corresponds to the assumption of a
static environment during a single iteration of the
self-training stage. On the other hand, Figure 5
shows the policy model’s capacity as a judge re-
mained after the self-training stage. This implies
that self-training can be conducted even in a dy-
namic environment by regarding the policy model
as a judge whose judgment capability may be im-
proved during the self-training process. However,
we find that the policy model as a judge yields
slightly lower performances compared to the ref-
erence model, as shown in Table 9. Therefore, we
can conclude that the static evaluator has benefits
in the performance, while the dynamic evaluator
still can be utilized with comparable performance.

Policy Evaluator AlpacaEval
(% Win)

MT-Bench
(Score)

JM
✗ 20.26 4.19
πθ 42.38 4.67
πref 44.88 4.80

Table 9: Evaluation results of models trained on HH-
Helpful with different strategies on a judge for the self-
training stage. It shows that slight degeneration happens
when utilizing the policy model πθ as a judge compared
to the reference model πref as a judge.

8 Conclusion

We propose a parameter-efficient on-policy pref-
erence alignment framework, SELF-JUDGE, intro-
ducing Judge-augmented Supervised Fine-tuning
(JSFT). A model trained by JSFT can perform feed-
back to the current policy for improving itself by
acting as a judge. This self-training does not re-
quire additional training stages and parameters for
a reward model during the policy updates. Our re-
sulting model outperforms RLHF, offline, and off-
policy baselines in preference benchmarks, demon-
strating the advantages of on-policy learning and
parameter efficiency of SELF-JUDGE. Besides, we
provide various analyses on the best configurations
and efficacy of the proposed JSFT. Specifically,
JSFT boosts performance as a judge, and involv-
ing comparisons based on principle with rationale
about decision leads to further improvement. This
enhanced judging capability leads to further self-
improvement as a policy at inference time by self-
rejection over the model’s own responses.

11450



Limitations

To achieve parameter-efficient on-policy self-
training, SELF-JUDGE assumes the presence of a
human preference dataset of examples for pairwise
judgment tasks on JSFT. Therefore, if human pref-
erence datasets (Bai et al., 2022a) or strong teacher
models for constructing AI Feedback datasets (Cui
et al., 2023) are not available, SELF-JUDGE can
not be utilized. This means that SELF-JUDGE has a
limitation compared to self-alignment approaches
that can construct a preference dataset when there
is no preference dataset at all (Bai et al., 2022b;
Sun et al., 2023; Yuan et al., 2024). Additionally,
our experiments do not focus on safety. Thus, us-
ing SELF-JUDGE without reviewing safety guards
may lead to potentially inappropriate responses.

Acknowledgements

This work was partly supported by an IITP grant
funded by the Korean Government (MSIT) (No.
RS-2020-II201361, Artificial Intelligence Graduate
School Program (Yonsei University)) and the Na-
tional Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIT) (No. RS-
2024-00354218). The authors thank the members
of NAVER Cloud and Yonsei University for their
constructive comments. We are also grateful to
Seungju Han for valuable discussions and helpful
feedback on earlier drafts of this paper.

References
Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,

Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A
general language assistant as a laboratory for align-
ment. arXiv preprint arXiv:2112.00861.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal
Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. 2023. A general theoret-
ical paradigm to understand learning from human
preferences. arXiv preprint arXiv:2310.12036.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022a. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022b. Constitutional

ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–
345.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. arXiv preprint arXiv:2401.01335.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan,
Shizhe Diao, Jipeng Zhang, Kashun Shum, and
Tong Zhang. 2023. Raft: Reward ranked finetuning
for generative foundation model alignment. arXiv
preprint arXiv:2304.06767.

Kawin Ethayarajh, Yejin Choi, and Swabha
Swayamdipta. 2023. Understanding dataset
difficulty with V-usable information. In Proceedings
of the 39th International Conference on Machine
Learning. PMLR.

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal-
ing laws for reward model overoptimization. In In-
ternational Conference on Machine Learning, pages
10835–10866. PMLR.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, et al. 2023. Reinforced self-
training (rest) for language modeling. arXiv preprint
arXiv:2308.08998.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu,
Misha Khalman, Felipe Llinares, Alexandre Rame,
Thomas Mesnard, Yao Zhao, Bilal Piot, et al. 2024.
Direct language model alignment from online ai feed-
back. arXiv preprint arXiv:2402.04792.

Tom Hosking, Phil Blunsom, and Max Bartolo. 2023.
Human feedback is not gold standard. arXiv preprint
arXiv:2309.16349.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

11451

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2310.01377
http://arxiv.org/abs/2310.01377


Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang,
Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, et al.
2023. Prometheus: Inducing fine-grained evalua-
tion capability in language models. arXiv preprint
arXiv:2310.08491.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan
Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Al-
pacaeval: An automatic evaluator of instruction-
following models. https://github.com/
tatsu-lab/alpaca_eval.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman,
Mohammad Saleh, Peter J Liu, and Jialu Liu. 2023.
Statistical rejection sampling improves preference
optimization. arXiv preprint arXiv:2309.06657.

Ishita Mediratta, Qingfei You, Minqi Jiang, and
Roberta Raileanu. 2023. The generalization gap
in offline reinforcement learning. arXiv preprint
arXiv:2312.05742.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak,
Jun Shern Chan, Angelica Chen, Kyunghyun Cho,
and Ethan Perez. 2023. Training language models
with language feedback at scale.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Wei Shen, Rui Zheng, Wenyu Zhan, Jun Zhao, Shihan
Dou, Tao Gui, Qi Zhang, and Xuanjing Huang. 2023.
Loose lips sink ships: Mitigating length bias in re-
inforcement learning from human feedback. arXiv
preprint arXiv:2310.05199.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–
3021.

Zhiqing Sun, Yikang Shen, Hongxin Zhang, Qinhong
Zhou, Zhenfang Chen, David Cox, Yiming Yang, and
Chuang Gan. 2023. Salmon: Self-alignment with
principle-following reward models. arXiv preprint
arXiv:2310.05910.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason
Weston. 2023. Some things are more cringe than
others: Preference optimization with the pairwise
cringe loss. arXiv preprint arXiv:2312.16682.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
2024. Self-rewarding language models. arXiv
preprint arXiv:2401.10020.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2023. Rrhf: Rank
responses to align language models with human feed-
back without tears.

Shangtong Zhang and Richard S Sutton. 2017. A
deeper look at experience replay. arXiv preprint
arXiv:1712.01275.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman,
Mohammad Saleh, and Peter J Liu. 2023. Slic-hf: Se-
quence likelihood calibration with human feedback.
arXiv preprint arXiv:2305.10425.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena.

Kaitlyn Zhou, Dan Jurafsky, and Tatsunori B Hashimoto.
2023. Navigating the grey area: How expressions
of uncertainty and overconfidence affect language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 5506–5524.

Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong
Zhang, and Zhendong Mao. 2023. On the calibra-
tion of large language models and alignment. arXiv
preprint arXiv:2311.13240.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2020. Fine-tuning lan-
guage models from human preferences.

11452

https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.16755
http://arxiv.org/abs/2303.16755
http://arxiv.org/abs/2304.05302
http://arxiv.org/abs/2304.05302
http://arxiv.org/abs/2304.05302
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/1909.08593
http://arxiv.org/abs/1909.08593


A Implementation Details

A.1 Pre-processing of Datasets

Target HH-Helpful UltraFeedback

SFT 65842 57569

Preference 43835 57266
(+ Principle) ✗ 202887

Table 10: The number of training examples in each dataset according to the target datasets.

For the HH-Helpful4 (Bai et al., 2022a), we parse only the content of each turn through the role header
in the dataset itself. During this process, if a role header exists redundantly (e.g., Human: Assistant:
[content]), we remove all subsequent headers. We perform the roll-out procedures from the last assistant
turn in each dialogue. For the UltraFeedback5 (Cui et al., 2023), we use the mean score across principles
as the overall rank of the responses. We choose the longer response as a better response when we have a
tie (Hosking et al., 2023). We randomly sample one response as a rejected response yl that is inferior in
rank or score on each principle for principle-aware judgment. When a rationale is utilized in training, we
remove responses that include a comparative explanation against other responses. Table 10 shows the
number of resulted training examples on each dataset after the described pre-processing.

A.2 Hyperparameters

Hyperparameters Initial Feedback

Epoch 1 3
Batch Size 128 64
Learning Rate 2e-5 5e-6
LR Scheduler cosine constant
Warm-up Ratio 0.03 0.1
Temperature ✗ 1.0
Top-p ✗ 0.9
Max New Tokens ✗ 768

Optimizer AdamW
(β1, β2) (0.9, 0.999)
Gradient Clipping 1.0
Max Sequence Length 2048

LoRA

(r, α) (8, 16)
Dropout 0.1

RLHF

Mini-batch Size 32
Inner Epochs 1
KL Scheduler (0.2, 6.0)

ReST

τ [0.7, 0.8, 0.9]

DPO, RSO, SELF-JUDGE

β 0.1

Table 11: Hyperparameters of the experiments. Initial refers to the value of hyperparameters for SFT, RM, and JM.
Feedback refers the value of hyperparameters for baselines and SELF-JUDGE.

We apply ReST (Gulcehre et al., 2023) with G = 1, I = 3, regarding a single step of Improve step as
one epoch of training and τ as a quantile threshold on reward distribution. We sample 8 responses per
prompt for RAFT (Dong et al., 2023) and RSO (Liu et al., 2023). We randomly choose one of the sampled
responses as a baseline response for JMs and accepted a maximum of 1 response per prompt for RSO. We
do not conduct a hyperparameter search. Table 11 shows hyperparameters used in the experiments.

4huggingface.co/datasets/Anthropic/hh-rlhf, MIT License, Copyright (c) 2022 Anthropic
5huggingface.co/datasets/openbmb/UltraFeedback, MIT License, Copyright (c) 2023 THUNLP

11453

https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/datasets/openbmb/UltraFeedback


A.3 Training Details
We perform full fine-tuning to obtain the initial policy and evaluators, RM or JM initializing from
Llama-2-7B6 (Touvron et al., 2023). We apply LoRA (Hu et al., 2021) for computational efficiency of
fine-tuning the baselines and SELF-JUDGE. We calculate language modeling loss on responses of assistant
for SFT and sequences after the judgment template C for the judgment task. We train JM with both
position-swapped comparisons on the judgment template for given triplet (x, yw, yl) to avoid position
bias (Zheng et al., 2023). We use the prompt x used on the pairwise preference comparison for roll-out
procedures. Every experiment is conducted with a maximum of 8 NVIDIA A100 80GB VRAM GPUs for
up to 90 hours. The baselines are implemented based on the Transformers7, PEFT8 and TRL9 library.

A.4 Evaluation Details
We use the checkpoints from the end of training for evaluation without any model selections on every
method. Since VicunaEval (Chiang et al., 2023) and MT-Bench (Zheng et al., 2023) contain question
types that are forced to use greedy decoding in the pre-defined configuration for each benchmark, we only
apply the self-rejection on questions that do not require the greedy decoding on evaluation.

A.5 Prompt Templates

<|system|>
{system message}
<|user|>
{prompt at turn 1}
<|assistant|>
{response at turn 1}[EOS]
<|user|>
{prompt at turn 2}
<|assistant|>
{response at turn 2}[EOS]
· · ·

Table 12: The dialogue template for the experiments.

HH-Helpful

Below are a series of dialogues between a human user and an AI assistant. The AI
tries to be helpful, harmless, and honest.

UltraFeedback

Below are a series of dialogues between a human user and an AI assistant. The AI
tries to be helpful, honest, truthful and follows the instructions from human.

Table 13: The default system messages for each dataset.

Table 12 shows the dialogue template used for the experiments and Table 13 shows default system
messages used for each dataset. We use the default system message for both training and inference on
HH-Helpful. In the case of UltraFeedback, we use a custom system prompt for the chosen response in
the dataset when constructing training examples. We use the default system prompt for training on the
judgment task and inference. For the judgment template C, we use the template shown in Table 14 for
HH-Helpful and the template shown in Table 15 for UltraFeedback. For the principle-aware judgments on
UltraFeedback, we modify the guidance about principles as a system prompt as shown in Table 16 (Cui
et al., 2023). We use the principle-aware judgment template Cp shown in Table 17 and slightly modify this
when rationaleR is included in the training, as shown in Table 18.

6huggingface.co/meta-llama/Llama-2-7b, LLAMA 2 Community License, Copyright (c) 2023 Meta Platforms
7github.com/huggingface/transformers
8github.com/huggingface/peft
9github.com/huggingface/trl

11454

https://huggingface.co/meta-llama/Llama-2-7b
https://github.com/huggingface/transformers
https://github.com/huggingface/peft
https://github.com/huggingface/trl


<|system|>
{default system message}
<|user|>
Which is the more helpful, harmless, and honest assistant from a given context?

Context:
-----
User: {prompt at turn 1}

Assistant: {responses at turn 1}

· · ·

User: {prompt at turn N}
-----

Assistant A: {responses A at turn N}
Assistant B: {responses B at turn N}

Please choose either A or B.
<|assistant|>
Sure! The option which is more helpful, harmless, and honest would be Assistant {A
or B}

Table 14: The judgment template C for HH-Helpful. The target sequence for the training judgment task is in bold.
The default system message is shown in Table 13.

<|system|>
{default system message}
<|user|>
Which is the better response to be an assistant who is helpful, honest, truthful
and following the given instruction from user?

Instruction:
-----
{prompt}
-----

Response A:
-----
{response A}
-----

Response B:
-----
{response B}
-----

Please choose either A or B.
<|assistant|>
Sure! The option which is more helpful, honest, truthful and following the given
instruction from user would be Response {A or B}

Table 15: The judgment template C for UltraFeedback. The target sequence for the training judgment task is in bold.
The default system message is shown in Table 13.

11455



Helpfulness

Under the principle of ’helpfulness’, the assistant should provide users with
accurate, relevant, and up-to-date information, ensuring that the content is
positive, interesting, engaging, educational, and helpful.

Honesty

Under the principle of ’honesty’, the assistant should be honest about whether
it knows the answer and express its uncertainty explicitly. The assistant should
confident on questions it knows well and be modest on those it is unfamiliar with
using weakeners such as ’I guess’, ’I suppose’, ’probably’, and ’perhaps’ to
express uncertainty.

Instruction Following

Under the principle of ’instruction following’, the assistant should align the
output with intent of instruction, by understanding the task goal (intended
outcome) and restrictions (text styles, format or designated methods, etc.).

Truthfulness

Under the principle of ’truthfulness’, the assistant should answer truthfully and
be faithful to factual knowledge as well as given contexts, never making up any new
facts that aren’t true or cannot be grounded in the instruction.

Table 16: The principle-aware system messages for UltraFeedback.

<|system|>
{principle-aware system message}
<|user|>
Which is the better response for an assistant when following the principle of
’{principle}’ for a given instruction?

Instruction:
-----
{prompt}
-----

Response A:
-----
{response A}
-----

Response B:
-----
{response B}
-----

Please choose either A or B according to the principle of ’{principle}’.
<|assistant|>
Sure! The option which is better guided by the principle of ’{principle}’ would be
Response {A or B}

Table 17: The principle-aware judgment template Cp for UltraFeedback. The target sequence for the training
judgment task is in bold. The principle-aware system messages are shown in Table 16.

11456



<|system|>
{principle-aware system message}
<|user|>
Which is the better response for an assistant when following the principle of
’{principle}’ for a given instruction?

Instruction:
-----
{prompt}
-----

Response A:
-----
{response A}
-----

Response B:
-----
{response B}
-----

Please choose either A or B and evaluate each response according to the principle
of ’{principle}’.
<|assistant|>
Sure! Here is the decision of better response and evaluations of each response,
guided by the principle of ’{principle}’.

Decision: Response {A or B}

Evaluation of Response A: {rationale A}
Evaluation of Response B: {rationale B}

Table 18: The principle-aware judgment template Cp when rationaleR is included in UltraFeedback. The target
sequence for the training judgment task is in bold.

11457



B Qualitative Examples

We compare responses of the resulting models from baseline and SELF-JUDGE trained on HH-Helpful.
We further compare the difference after self-training between JM and JM-PR on UltraFeedback by the
results of self-rejection to understand the effects of principle-aware judgment and rationale. In Table 19,
we observe that SELF-JUDGE provides richer information requested by the prompt compared to other
baselines. Furthermore, we confirm that JM is likely to select a response that contains unnecessarily
verbose sentences as the best response compared to JM-PR, as shown in Table 20.

Prompt

what is the name of chris tucker first movie

DPO

The name of Chris Tucker’s first movie is “Friday”. It was released in 1995. The
movie was written by Tucker and Ice Cube, and also stars Ice Cube and Nia Long.

RSO

Chris Tucker’s first major film role was in the 1995 comedy film “Friday”. He also
had roles in “The Fifth Element” and “Money Train”. His most famous films include
“Rush Hour”, “The Best Man”, and “Rush Hour 2”.

ReST

The name of Chris Tucker’s first movie was “Friday”.

RAFT

The name of Chris Tucker’s first movie is “Friday”, which was released in 1995.

RLHF

His first film was "Friday", released in 1995. The film was a great success, and
helped launch him to fame. It earned him a Golden Globe nomination for Best Actor
in a Musical or Comedy, and received critical acclaim. It is considered a classic
modern comedy movie, and has become a cult film. A sequel was released in 2007,
and a third film in the franchise is planned for 2017.

SELF-JUDGE

The first movie that Chris Tucker starred in was the 1995 comedy film “Friday”,
directed by F. Gary Gray. The film is a classic urban comedy, centering around
the adventures of two friends, played by Tucker and Ice Cube, as they spend the
day hanging out in their Los Angeles neighborhood. The film was a breakout hit
for Tucker, establishing him as a prominent comedic actor, and was followed by a
successful sequel in 1997. Tucker then went on to star in several major Hollywood
films, including the hit comedy films “Boomerang” and “Tommy” as well as the drama
“Rush Hour” and its sequels. He has also had a successful career as a stand-up
comedian, performing sold-out shows worldwide.

Table 19: The response examples of resulting models from each method on AlpacaEval.

11458



Prompt

Take a look at the contract and extract the parties of the agreement from it.

As of the 13th day of December 2021, this Music Recording Agreement ("Agreement")
is made between Good Kid, a Toronto-based musical group ("Artist"), and Universal
Music Group, a record label with license number 545345 ("Record Label"). The
Artist and the Recording Label may be referred to in this Agreement individually
as "Parties" and collectively as "Parties." Work under this Agreement will begin on
March 15, 2022, and will last for the duration of the Agreement.

JM (N = 1)

The parties of the Music Recording Agreement are:

1. Good Kid, a Toronto-based musical group ("Artist")
2. Universal Music Group, a record label with license number 545345 ("Record
Label")

Both parties are referred to individually as "Parties" in the Agreement and
collectively as "Parties." This means that the Artist and the Record Label are the
two main participants in the agreement.

JM-PR (N = 1)

The parties involved in the Music Recording Agreement are:

* Good Kid, a Toronto-based musical group, represented by the artist.
* Universal Music Group, a record label with license number 545345, represented by
the record label.)

This agreement is effective as of the 13th day of December 2021 and will last until
the expiration of the agreement. The work under this agreement will begin on March
15, 2022, and will continue for the duration of the agreement.

JM (N = 16)

Based on the provided Music Recording Agreement, the parties involved in the
agreement are:

1. Good Kid, a Toronto-based musical group (Artist).
2. Universal Music Group, a record label with license number 545345 (Record
Label).

The Agreement refers to the Artist and the Record Label as "Parties" and
collectively as "Parties" throughout the document. Therefore, the parties to the
Music Recording Agreement are:

* Good Kid, a Toronto-based musical group (Artist)
* Universal Music Group, a record label with license number 545345 (Record Label)

The Agreement outlines the terms and conditions of the recording agreement between
the Artist and the Record Label, including the commencement date, the duration of
the agreement, and the scope of work.

JM-PR (N = 16)

Based on the provided contract, the parties involved in the Music Recording
Agreement are:

1. Good Kid, a Toronto-based musical group ("Artist")
2. Universal Music Group, a record label with license number 545345 ("Record
Label")

These two parties are involved in the agreement and are referred to individually
as "Parties" and collectively as "Parties" throughout the document.

Table 20: The response examples of JM and JM-PR by applying self-rejection on AlpacaEval.

11459


