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Abstract

The rapid advancement of large language
models (LLMs) has facilitated their transfor-
mation into conversational chatbots that can
grasp contextual nuances and generate perti-
nent sentences, closely mirroring human val-
ues through advanced techniques such as in-
struction tuning and reinforcement learning
from human feedback (RLHF). However, the
computational efficiency required for LLMs,
achieved through techniques like post-training
quantization (PTQ), presents challenges such
as token-flipping that can impair chatbot perfor-
mance. In response, we propose a novel prefer-
ence alignment approach, quantization-aware
direct preference optimization (QDPO), that
aligns quantized LLMs with their full-precision
counterparts, improving conversational abili-
ties. Evaluated on two instruction-tuned LLMs
in various languages, QDPO demonstrated
superior performance in improving conversa-
tional abilities compared to established PTQ
and knowledge-distillation fine-tuning tech-
niques, marking a significant step forward in
the development of efficient and effective con-
versational LLMs.

1 Introduction

As large language models (LLMs) advance in un-
derstanding the context of language and generating
relevant sentences, LLMs are evolving into con-
versational chatbots that can naturally respond to
a wide array of user requests (OpenAI, 2023; Chi-
ang et al., 2023; Team et al., 2023; Touvron et al.,
2023b). Particularly noteworthy is the remarkable
ability of LLMs to follow user instructions and
align with human values, such as providing helpful
and engaging responses through techniques like
instruction tuning and reinforcement learning from
human feedback (RLHF) (Taori et al., 2023; Long-
pre et al., 2023; Chung et al., 2022; Mukherjee
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Question from User
Explain what is meant by the circle of fifths.

Response by Assistant
(a) 16-bit Baseline (CSQA: 75.2%, MMLU: 46.6%)
The circle of fifths is a musical diagram that represents the 
relationship between the intervals of the octave, the fifth, and 
the fourth. 
Token probability: musical (46.1%) vs. visual (14.9%)

(b) W4A16 AWQ (CSQA: 74.8%, MMLU: 45.1%)
The circle of fifths is a visual representation of the 
relationship between the intervals of the circle of fifths, which 
is a circle divided into 360 degrees. 
Token probability: musical (17.4%) vs. visual (32.4%)

(c) W4A16 QDPO (CSQA: 74.3%, MMLU: 45.0%)
The circle of fifths is a musical diagram that represents the 
relationship between the notes of the octave in a musical scale.
Token probability: musical (29.5%) vs. visual (23.0%)

Figure 1: Example responses generated by Mi:dm-7B
on 16-bit and 4-bit quantized inference.

et al., 2023; Ouyang et al., 2022). These advance-
ments have greatly enhanced the capability to fine-
tune pre-trained LLMs for various tasks and user
preferences.

For the effective implementation of LLM-based
chatbots, addressing LLMs’ computational com-
plexity is essential. Weight load overhead, a critical
bottleneck in LLM deployment, has led to the de-
velopment of weight quantization techniques like
post-training quantization (PTQ). PTQ reduces stor-
age requirements by applying quantization to the
weights of trained LLMs, thereby decreasing the
necessary bit count for weight data storage (Fran-
tar et al., 2023; Lin et al., 2023). Techniques such
as AWQ (Lin et al., 2023) address quantization-
induced accuracy loss through methods like scal-
ing data distribution and weight updates aimed at
preserving accuracy. The effectiveness of these
quantization strategies has been measured by task-
dependent benchmarks to evaluate model accuracy
instead of multifaceted conversational qualities.

Evaluating the conversational abilities of LLM-
based chat assistants, especially for open-ended
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tasks requiring alignment with human preferences,
challenges traditional score-based benchmarks due
to the assistants’ varied capabilities. To address
this, new methods have been introduced for a more
objective assessment of LLM chatbot performance
(Chiang et al., 2023; Zheng et al., 2023). The "LLM
as a Judge" approach (Zheng et al., 2023) employs
advanced LLMs like GPT-4 (OpenAI, 2023) to
evaluate responsiveness in multi-turn conversations
across eight conversational categories, focusing on
conversational continuity and adherence to instruc-
tions. Furthermore, FLASK (Ye et al., 2023) offers
fine-grained evaluation criteria that dissect conver-
sational skills linguistically. Yet, these methods
mainly target full-precision chatbots, leaving the
performance of cost-efficient quantized LLM chat-
bots less explored.

To assess quantization’s effect on LLM-based
chatbots’ conversational abilities, we qualitatively
compared the responses of quantized LLMs with
a 16-bit baseline. Fig. 1 reveals that quan-
tized models often fail to maintain engaging dia-
logues with repetitive phrases. We identify "token-
flipping" — a phenomenon where quantization er-
rors skew token distribution, causing incorrect to-
ken selection — as a crucial factor for this qual-
ity degradation. Traditional task-dependent eval-
uation metrics, such as Common Sense Ques-
tion Answering (CSQA) (Talmor et al., 2019)
and Massive Multitask Language Understanding
(MMLU) (Hendrycks et al., 2020), may not fully
detect these nuances. For example, as shown in
Fig. 1(a) and (b), 16-bit and W4A16 inference
exhibit similar task accuracy, but W4A16 infer-
ence produces responses that are not helpful to the
user. This observation underscores the need for
a new quantization approach that preserves user-
perceived effectiveness beyond the task-dependent
benchmarks.

To address the issue of token-flipping in quan-
tized LLMs, we propose a novel preference align-
ment method that aligns quantized LLMs with
full-precision counterparts. Drawing inspiration
from direct preference optimization (DPO) strate-
gies (Rafailov et al., 2023; Liu et al., 2023a), our
approach generates preference datasets directly
from the quantized LLM and its full-precision
counterpart to implement quantization-aware op-
timization for preference-reflective weight adjust-
ments. Our quantization-aware direct preference
optimization (QDPO) method improves the dis-

parity between the top-1 and top-2 logits of token
distribution, reducing token-flipping, and foster-
ing more relevant and consistent text output. We
rigorously tested QDPO on two instruction-tuned
LLMs, Vicuna (Zheng et al., 2023) and Mi:dm (KT-
AI, 2023), assessing their conversational perfor-
mance in both English and Korean. The results,
as illustrated in Fig. 1(c), demonstrate that QDPO
markedly enhances conversational abilities beyond
those achieved with established quantization tech-
niques.

2 Background

2.1 Conversational Ability of LLM

In the pre-training phase, LLMs learn from a vast
corpus of text data collected from various sources,
including the internet, books, articles, and conver-
sations (Raffel et al., 2019; Zhu et al., 2015; Gao
et al., 2020; Penedo et al., 2023). Through this
process, they acquire extensive knowledge on a
wide range of topics, which forms the foundation
that enables LLMs to flexibly respond to diverse
conversational subjects (Zhang et al., 2022; Tou-
vron et al., 2023a,b; Brown et al., 2020). Subse-
quently, LLMs develop the capability to follow in-
structions through instruction fine-tuning and learn
to align with human preferences via RLHF (Taori
et al., 2023; Longpre et al., 2023; Chung et al.,
2022; Mukherjee et al., 2023; Ouyang et al., 2022).
Through such processes, LLM-based chatbots like
GPT-4 (OpenAI, 2023) and Vicuna (Chiang et al.,
2023) have acquired the conversational ability to
engage with humans on various topics over multi-
ple turns, distinguishing them from conventional
language models.

To evaluate LLM-based chatbots, it is essential
to assess their conversational ability, which is their
key capability. However, existing task-dependent
benchmarks such as MMLU (Hendrycks et al.,
2020) and HELM (Liang et al., 2023) do not ade-
quately capture human preferences, rendering them
insufficient for evaluating LLM-based chatbots. In
response, proposals for new benchmarks such as
MT-Bench (Zheng et al., 2023) and FLASK (Ye
et al., 2023) are emerging, focusing on multi-turn
questions or alignment with human preferences to
effectively evaluate conversational abilities.

2.2 LLM Quantization

LLMs demand high serving costs due to their ex-
tensive number of parameters (Brown et al., 2020).
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Weight quantization techniques (Lin et al., 2023;
Frantar et al., 2023; Lee et al., 2023a; Kim et al.,
2023; Lee et al., 2023b) address this issue by repre-
senting the model’s weights in lower bit-precision,
thereby reducing memory size, lowering memory
load time, and speeding up inference. Post-training
quantization (PTQ) changes the model’s weights
directly to lower precision without additional train-
ing, offering cost benefits. However, due to con-
cerns about accuracy loss, PTQ utilizes a portion
of the training samples to calibrate and minimize
the layer-wise quantization error through methods
such as AWQ (Lin et al., 2023). Quantization-
aware training (QAT), on the other hand, maintains
the performance of a quantized model by applying
quantization during the forward pass and training
the model accordingly. When applying QAT to
LLMs, due to the insufficient information from the
ground truth, techniques often use Knowledge Dis-
tillation (KD) by reducing the distance between the
logits of the quantized model and the full-precision
model (Kim et al., 2023; Liu et al., 2023b).

However, previous quantization studies have
evaluated their methods on task-dependent bench-
marks, which show a limited scope for compre-
hensive evaluation of conversational abilities. For
example, AWQ (Lin et al., 2023) emphasizes that
the quantized model achieves accuracy compara-
ble to the baseline on CSQA. However, they do
not analyze why only 35% of the sentences gen-
erated by the quantized model are considered as
good as those from the baseline, according to GPT-
4 (OpenAI, 2023)’s evaluation in assessing con-
versational abilities. In this research, we analyze
how the model’s quantization error impacts the con-
versational abilities of large language models and
propose methods to enhance these capabilities.

2.3 Alignment with Human Preferences

The RLHF is an advanced method to improve the
performance of LLMs by aligning with human pref-
erences. It comprises three stages:

Supervised Fine-Tuning (SFT). SFT utilizes a
dataset of human instructions to refine pre-trained
LLMs.

Reward Modeling. This stage develops a re-
ward model based on human preferences for LLM
response pairs, using the Bradley-Terry (BT) model
(Bradley and Terry, 1952) to quantify these prefer-
ences. It represents the distribution of preferences

distribution p∗ between y1 and y2:

p∗(y1 ≻ y2|x) =
er

∗(x,y1)

er∗(x,y1) + er∗(x,y2)
, (1)

r∗ is defined as the optimal reward function.
y1 and y2, assumed to be sampled from the
optimal preference distribution p∗ with prompt
x, the parameterized reward model estimates the
parameter using maximum likelihood.

Policy Optimization. The LLM policy opti-
mization is guided by the reward model to generate
responses that better align with human preferences
for the training prompts. The reinforcement learn-
ing (RL) objective function is defined as follows:

max
π

E
x∼D
y∼π

[r(x, y)]− βDKL [π(y|x)∥πref(y|x)] ,

(2)
π represents the LLM policy, β is a control param-
eter that regulates variations with respect to πref.
Recent approach (Ouyang et al., 2022) employs
Proximal Policy Optimization (Schulman et al.,
2017) for RL-based optimization, wherein the nec-
essary reward is derived from a previously trained
reward model.

DPO (Rafailov et al., 2023) aligns LLM policies
with human preferences via supervised learning,
leveraging Eq. (2) to relate the optimal reward to
the optimal policy directly.

r∗(x, y) = β log

(
π∗(y|x)
πref(y|x)

)
+β logZ(x), (3)

where Z(x) is the partition function. The optimal
reward function is fitted to the objective function
of BT model, defining DPO loss as follows:

E
x,yw,yl∼D

[
− log σ

(
β log

πθ(yw|x)
πref(yw|x)

−β log
πθ(yl|x)
πref(yl|x)

)]
, (4)

where σ is logistic function.
SRO (Liu et al., 2023a) criticizes the preference

sampling method of DPO. Sampling data yw and
yl from the π∗ is the optimal way for estimating
πθ. However, all experiments in DPO use prefer-
ence pairs not from the π∗ but from πref, and there
is a lack of research into the implications of this
approach. SRO proposes a solution by construct-
ing an additional reward-ranking model to directly
form preference pairs from an approximated opti-
mal policy and statistical rejection sampling.
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Figure 2: (a) Breakdown of factors influencing sentence generation in quantized models. (b) Case study on the
impact of each factor. The ROUGE-L score is used to measure changes in sentences. More results for ROUGE-1/2
are in Fig. 7. (c-d) Case-wise ROUGE scores in models where W4A16 PTQ is applied with (c) RTN and (d) AWQ.

3 Conversational Abilities of Quantized
LLMs

3.1 Observations
Recent advancements in PTQ have demonstrated
that 4-bit quantized LLMs are effective for a va-
riety of tasks, as evidenced by references such as
AWQ and OPTQ (Lin et al., 2023; Frantar et al.,
2023). However, our observations reveal that these
quantized LLMs struggle to sustain engaging con-
versations, particularly in multi-turn chatbot inter-
actions. For instance, Fig. 1 illustrates the contrast
between the 16-bit baseline and 4-bit quantized
LLMs in sentence generation. The baseline model
begins its responses with “The circle of fifths is a
musical diagram,” providing relevant answers. On
the other hand, the 4-bit quantized model starts
to deviate at the seventh token, switching its focus
from “musical” to “visual,” and often generates lim-
ited and repetitive phrases. Although both models
display similar task performance metrics, such as
accuracy in multiple-choice benchmarks, there’s a
noticeable difference in the logit probability for the
seventh token in the 4-bit model, causing a change
in the token from “musical” to “visual.” This issue
of altered text generation, observed across multi-
ple examples (see A.9 for additional examples),
prompts an investigation into its underlying causes.

3.2 Breakdown Analysis
To understand the cause of altered text generation
in quantized LLMs, we examine how quantization

impacts text production. We pinpoint the initial
deviation to a flipped token and identify three con-
tributing factors as shown in Fig. 2(a):

- Flipped token (TF): Occurs when a quan-
tized model selects a different token at
timestep t = i compared to the baseline, alter-
ing the input for subsequent token generation
and leading to deviations.

- Perturbated KV cache (KVPerturb): Despite
identical token sequences up to timestep t =
i − 1, quantization errors already affect the
Transformer’s key-value caches, contributing
to further deviations.

- Quantization error in generation (QError):
Starting from timestep t = i + 1, ongoing
quantization errors continue to influence token
generation, causing further divergence from
the baseline.

Setup. To evaluate the impact of each identified
factor, we analyze eight possible scenarios shown
in Fig. 2(b). Case 1, where all three factors are
present, mirrors the standard text generation of a
quantized LLM, whereas Case 8, devoid of these
factors, corresponds to the baseline model’s infer-
ence. For this analysis, we generate text using
both 4-bit and 16-bit models with 1,000 instruc-
tion samples randomly chosen from the Alpaca
dataset (Taori et al., 2023). We record the first to-
ken where discrepancies in text generation between
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Figure 3: (a) Auto-regressive inference probabilities
for baseline and quantized models, token by token. (b)
Difference in average probability between top-1 and
top-2 tokens per sample (Mi:dm, from MT-Bench). See
Fig. 9 for more on the AWQ case.

the two models occurred, along with the key-value
cache status up to that point for each scenario. To
quantify the deviation from the baseline text, we
utilize the ROUGE-L (Lin, 2004) as a metric (the
higher the better). More details of the implemen-
tation for the breakdown analysis are provided in
A.2.

Results. To assess the contribution of each fac-
tor to deviations in sentence generation from the
baseline, we contrast each scenario with Case 8. As
depicted in Fig. 2(b), sentences become more diver-
gent with the inclusion of additional factors. Specif-
ically, from Case 4, it is evident that the Flipped
Token (TF) significantly affects sentence variation,
as indicated by the largest decrease in ROUGE
scores. Conversely, the effects of perturbed KV
cache (KVPerturb) and quantization error in genera-
tion (QError) are comparatively minor. This pattern
is further highlighted in Fig. 2(c), where ROUGE
scores, sorted by samples, show that Cases 1-4 clus-
ter on the right, signifying greater deviation. This
suggests that even a single token difference, result-
ing from quantization-affected probability shifts,
can substantially alter the overall sentence structure
in quantized inference.

Ablation: Advanced Quantization. Advanced
quantization techniques designed to minimize er-

rors may not fully address the issue of deviated text
generation caused by flipped tokens. Recent PTQ
methods that employ calibration using a small sam-
ple by scaling weight channels or adjusting quan-
tization step sizes (Frantar et al., 2023; Lin et al.,
2023; Lee et al., 2023b) aim to lessen layer-specific
quantization errors. However, our observations
indicate that while these calibrated PTQ models
reduce quantization error effects, they do not miti-
gate the issues stemming from flipped tokens. The
case study for a 4-bit quantized model calibrated
with AWQ (Lin et al., 2023), shown in Fig. 2(d),
reveals that although calibration decreases the im-
pacts of KVPerturb and QError, sentence variations
are still predominantly influenced by TF. A similar
trend can be observed by KD-based QAT (Fig. 8),
highlighting the need for strategies that specifically
address flipped tokens.

3.3 Why Token-Flipping Happens?

We hypothesize that token-flipping occurs due to
inherently ambiguous token distributions in sen-
tence generation, which become prone to flipping
when quantization errors introduce alterations. To
empirically validate this, Fig. 3(a) demonstrates
token-flipping during text generation by a quan-
tized model. It shows the probabilities for the top-1
and top-2 tokens throughout the auto-regressive
generation. Notably, the 16-bit baseline and 4-bit
quantized models produce nearly identical proba-
bilities for most tokens. However, at certain points
(e.g., t = 0, 7, 11), the probability margin between
the top-1 and top-2 tokens is minimal. Token-
flipping occurs when quantization-induced devi-
ations in the probability distribution surpass this
narrow margin, altering subsequent sentence gener-
ation and leading to unnatural phrasing.

Fig. 3(b) shows the average probability margin
between the top-1 and top-2 tokens across each text
sample. By feeding identical inputs to each model,
we note that the 4-bit quantized model has a nar-
rower average probability margin between the top-
1 and top-2 tokens than the 16-bit baseline. This
indicates a higher likelihood of the 4-bit model ex-
periencing token-flipping due to quantization error-
induced deviations exceeding this margin. Addi-
tionally, our examination of beam search (Graves,
2012) in Section 5.5 reveals its limited effective-
ness in mitigating this issue. This underscores the
need for strategies that ensure the quantized model
retains clear decision-making capabilities.
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4 QDPO: Quantization-aware Direct
Preference Optimization

As described in Section 3, quantization signifi-
cantly degrades the conversational ability of LLMs.
To address this issue, we introduce an algorithm
named Quantization-aware Direct Preference Opti-
mization (QDPO), which aims to align the conver-
sational abilities of quantized LLMs with those of
LLMs prior to quantization. QDPO has two main
contributions: 1) Providing an efficient method for
generating the dataset DQDPO without costly hu-
man annotations. 2) Offering a theoretical founda-
tion that ensures the automatic distinction of pref-
erences during dataset generation.

4.1 Method
Drawing inspiration from the success of DPO in
aligning LLMs with human preferences, we have
developed a novel approach that extends its appli-
cation to overcome the challenges introduced by
quantization.

The challenge in preference dataset generation
arises from human labeling. To mitiagte this, we
introduce for efficiently creating dataset DQDPO,
which is composed of triplets {yw, yl, x}. Here, yw
denotes the response from the full-precision model
πfp, which is also referred to as the optimal pol-
icy. yl represents the corresponding response from
the quantized model πq. x serves as the prompt.
Specifically, yw is obtained as argmaxy πfp(y|x)
and yl as argmaxy πq(y|x). The preference of yw
over yl is ensured by Theorem 1. The proof is in
A.8. Unlike conventional DPO methods, QDPO
automatically distinguishes preferences without re-
lying on expensive human-annotated datasets.
Theorem 1. For any response y in the set of all pos-
sible responses Y , if y1 = argmaxy∈Y πfp(y|x)
and y2 = argmaxy∈Y πq(y|x), then it is guaran-
teed that p∗(y1 ≻ y2) ≥ p∗(y2 ≻ y1).

By precisely distinguishing preferences, we can
clearly eliminate errors in data labeling. This leads
to improved performance by accurately estimating
the policy model’s density. LQDPO is define with
high-quality preference data DQDPO as follows:

E
x∼DQDPO

yw∼πfp,yl∼πq

[
− log σ

(
β log

πθ(yw|x)
πq(yw|x)

−β log
πθ(yl|x)
πq(yl|x)

)]
. (5)
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Figure 4: Training dynamics of QDPO showing chosen
and rejected rewards (left), and loss (right) across steps.

Algorithm 1 Quantization-aware DPO

Input: prompt {x1, x2, . . . , xN}, full precision
policy πfp, quantized policy πq, KL penalty β
Output: Updated policy πθ
Initialize πθ from πq
Preference pairs dataset DQDPO = ∅
for i = 1 to N do

yiw = argmaxy πfp(y|xi)
yil = argmaxy πq(y|xi)
Add pair {yiw, yil , xi} to DQDPO

end for
for each pair {yw, yl, x} in DQDPO do

Calculate LQDPO from eq. (5)
Calculate the gradient with respect to θ
∂LQDPO

∂θ =
∂LQDPO
∂θq

· ∂θq
∂θ ≈

STE

∂LQDPO
∂θq

Update πθ by minimizing LQDPO
end for
return Updated policy πθ

4.2 Implementation

Given πθ as the quantized model’s policy, inte-
grating LQDPO with QAT adjusts for quantization
effects. The quantization technique we employ
uniformly quantizes each channel across its entire
min-max range, ensuring comprehensive accommo-
dation of the full spectrum of values within each
channel. To overcome the challenge posed by the
non-differentiable rounding within the quantiza-
tion process, we employ the Straight-Through Esti-
mator (STE) for gradient approximation, facilitat-
ing effective gradient approximation and ensuring
smooth training despite quantization. As shown in
Fig. 4, QDPO demonstrates an increase in the cho-
sen reward and a decrease in the rejected reward
throughout the training process, indicating effec-
tive loss convergence. The complete procedure of
QDPO is described in Algorithm 1. Details of the
training settings and hyperparameters for QDPO
can be found in A.1.
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5 Experiments

5.1 Experimental Settings
Models. We evaluate QDPO on two represen-

tative conversational LLMs. Vicuna-v1.5 (Zheng
et al., 2023), instruction-finetuned from LLaMA2
for improved conversational ability, and a bilingual
(English-Korean) LLM, Mi:dm (KT-AI, 2023), to
confirm QDPO’s effectiveness to support multiple
languages. All these models have 7B parameters.

Benchmarks. For a comprehensive evaluation
of conversational abilities, we employ three dis-
tinct benchmarks: MT-Bench (Zheng et al., 2023),
Vicuna-Eval (Chiang et al., 2023), and FLASK (Ye
et al., 2023). MT-Bench utilizes GPT-4 to evalu-
ate the quality of two responses obtained from an
initial question and an additional follow-up ques-
tion, offering an evaluation of multi-turn responses.
For assessing Korean capability, we also translate
the MT-Bench dataset into Korean using GPT-4.
Vicuna-Eval consists of 80 questions for evalua-
tion by GPT-4 to determine which model generates
better sentences. FLASK includes 1.7K samples
designed to assess LLM’s fine-grained language
skills, such as robustness and harmlessness.

Quantization Methods. To understand the im-
pact of quantization on conversational abilities, we
consider variations of quantization methods:

- Baseline: 16-bit floating-point weight

- RTN (Jacob et al., 2018): 4-bit round-to-
nearest weight quantization

- AWQ (Lin et al., 2023): 4-bit RTN with
weight scaling for improved quantization

- KD (Liu et al., 2023b): 4-bit quantization-
aware training with knowledge distillation
(KD) loss from Baseline

- QDPO (Ours): 4-bit RTN with QDPO for im-
proved conversational abilities

Details of the experimental settings for each case
can be found in A.1.

5.2 Experimental Results: MT-Bench
We evaluate quantized LLMs on MT-Bench to un-
derstand the impact of different quantization meth-
ods on conversational abilities. Following conven-
tion (Zheng et al., 2023), we report both pairwise
comparison and single-answer grading results (A.4
for detailed evaluation metrics).

Pairwise Comparison. Table 1 shows the
results of pairwise comparison on MT-Bench for
various quantized LLMs. Each quantized LLM

Lang. Model Method Win Tie Lose Lose-rate ↓

Eng

Mi:dm

RTN 24 6 66 0.69
AWQ 28 9 52 0.58
KD 31 16 52 0.53

QDPO 53 14 44 0.40

Vicuna
RTN 26 22 73 0.60
AWQ 39 22 47 0.44
QDPO 40 27 53 0.44

Kor Mi:dm
RTN 29 7 55 0.60
AWQ 25 5 48 0.62
QDPO 45 4 61 0.55

Table 1: Pairwise comparison results in MT-Bench be-
tween W4A16 quantized LLMs and 16-bit baseline
model.

Category 16-bit Inference
W4A16 Inference

RTN AWQ QDPO

Writing 5.82 4.13 5.39 4.74
Roleplay 5.61 5.53 5.00 5.13

Reasoning 3.37 3.06 3.61 4.31
Math 1.71 1.45 1.60 1.40

Coding 1.11 1.56 1.16 2.28
Extraction 3.63 2.56 3.50 3.08

STEM 5.24 4.39 4.68 5.69
Humanities 6.26 5.75 5.00 5.63

Average 4.09 3.55 3.74 4.03

Table 2: Category-wise scores of quantized LLMs ac-
cording to MT-Bench single-answer grading.

is compared with the Baseline (16-bit weight) by
GPT-4 for their multi-turn responses to the ques-
tions in various categories of MT-Bench. We fo-
cus on the lose-rate since our alignment objective
is to improve the answer quality of the quantized
LLM superior to (win) or comparable with (tie) the
16-bit weight baseline. In all the cases, RTN suf-
fers from the highest lose-rate compared to AWQ
due to its simplest quantization mechanism. How-
ever, lose-rate of the same RTN can be significantly
improved by QDPO; QDPO achieves the lowest
lose-rate in all the cases. We can further compare
QDPO with KD as they finetune the model weights
to be quantization-friendly. Interestingly, QDPO
outperforms KD with a noticeable increase in win-
ning cases. These results showcase that QDPO can
effectively align the answer quality to the 16-bit
weight baseline.

Single-Answer Grading. Table 2 presents the
single-answer grading results of Mi:dm on MT-
Bench across eight categories, each with 10 ques-
tions, and reports the average GPT-4 rating (higher
is better). Throughout the categories, RTN suf-
fers from the lowest grading due to the quantiza-
tion errors, which can be marginally improved by
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RTN                 52               23                      85    

AWQ               49              25                        86

QDPO                  67                  22                   71

■ Quantized Win    ■ Tie    ■ Quantized Lose

Figure 5: Vicuna-Eval results on Mi:dm.

AWQ. In contrast, QDPO significantly improves
the average grading from RTN, achieving the aver-
age grading on par with the 16-bit weight baseline.
This also highlights the effectiveness of QDPO
in recovering conversational abilities. Details on
category-wise analysis can be found in A.5.

5.3 Experimental Results: Vicuna-Eval

Since Vicuna-Eval is a widely used benchmark for
evaluating conversational abilities, we further em-
ploy it for evaluating QDPO. We take Mi:dm as a
target language model to apply different quantiza-
tion methods and evaluate its performance on 80
questions by GPT-4. As shown in Fig. 5, it can be
seen that models with QDPO applied exhibit the
highest wins and the lowest losses, demonstrating
a lose-rate of 50%, which indicates a near recovery
of the language capabilities of the baseline model.

5.4 Experimental Results: FLASK

We use the FLASK benchmark on Mi:dm to ver-
ify how the proposed method enhances the fine-
grained skills of the language model. Fig. 6 shows
the relative performance of different quantized
LLMs across the 12 fine-grained skills. RTN signif-
icantly diminishes certain capabilities of the model,
while AWQ and KD slightly improve performance
toward the 16-bit weight baseline. In contrast,
QDPO shows a significant enhancement in most
skills; in particular, QDPO significantly improves
metacognition skills, whereas RTN and AWQ sig-
nificantly fall short. (Details on skill-wise analysis
can be found in A.6.) Overall, QDPO achieves the
abilities closest to the 16-bit weight baseline, show-
casing the effectiveness of its alignment objective
in recovering conversational skills.

5.5 Ablation Studies

We further conduct ablation studies to provide in-
sights on QDPO for improving the conversational
skills of quantized LLMs.

Conversation Abilities vs. Task Accuracy.
As discussed, QDPO has the particular role of

Method CSQA MMLU DROP BBH MT-bench

Baseline 75.16 46.55 24.95 34.23 4.07

RTN 73.87 42.46 21.81 32.57 3.52
RTN+QDPO 73.11 42.69 21.50 32.05 3.96

AWQ 74.75 45.06 24.07 32.63 3.75
AWQ+QDPO 74.29 44.99 24.12 32.76 3.87

Table 3: W4A16 inference results on conventional
benchmarks (Mi:dm).

Robustness

Harmlessness

Conciseness

Readability

Metacognition

Completeness

Insightfulness

Comprehension

Commonsense

Factuality

Efficiency

Correctness

● 16-bit Baseline  ●W4A16 RTN  ●W4A16 AWQ

●W4A16 KD  ●W4A16 QDPO

Figure 6: Performance relative to baseline on FLASK.
Absolute performance results can be found in Table 9.

aligning the quantized LLMs to the 16-bit weight
baseline. What is the impact of this align-
ment on the task-specific performance of LLMs?
To answer this question, we further evaluate
the quantized LLMs on well-known benchmarks
that test the task-specific capability of language
models. In particular, Common Sense Ques-
tion Answering (CSQA) (Talmor et al., 2019)
and Massive Multitask Language Understanding
(MMLU) (Hendrycks et al., 2020) assess the
models’ reasoning and multitask-solving abilities
through multiple-choice questions. Furthermore,
DROP (Dua et al., 2019) and BBH (Srivastava
et al., 2023) evaluate the problem-solving abili-
ties of instruction-tuned models in logic and math.
(Details on the task-specific benchmarks are in
A.7.) Table 3 compares the task accuracy (CSQA,
MMLU, DROP, BBH) as well as the conversational
abilities (MT-Bench) on the quantized LLM with
and without QDPO. RTN suffers degradation on
the task accuracy as well as the conversational abil-
ities. Interestingly, AWQ significantly improves
task accuracy while its conversational abilities
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Languange Model Method PPL ↓ Lose-rate ↓

English

Mi:dm

16-bit Baseline 13.12 -
RTN 15.16 0.69
AWQ 14.23 0.58
QDPO 15.55 0.40

Vicuna

16-bit Baseline 6.78 -
RTN 7.53 0.60
AWQ 7.34 0.44
QDPO 7.36 0.44

Korean Mi:dm

16-bit Baseline 5.71 -
RTN 6.52 0.60
AWQ 5.97 0.62
QDPO 6.56 0.55

Table 4: Perplexity (PPL) evaluation and lose-rate from
MT-bench for W4A16 quantized LLMs.

are marginally improved. Meanwhile, QDPO im-
proves conversational ability while mostly preserv-
ing task accuracy, showcasing its usefulness.

Conversation Abilities vs. Perplexity. Per-
plexity is a key metric for evaluating language mod-
els, as it measures the exponentiated average neg-
ative log probability of predicted word sequences.
We examine whether the enhanced conversational
capabilities through QDPO are also reflected in per-
plexity by comparing the perplexity and the lose-
rate on the MT-bench. We measure perplexity using
Wikitext-2 (Merity et al., 2016) for English and Ko-
rean textbooks1 dataset for Korean. As shown in Ta-
ble 4, RTN significantly increases perplexity across
all models. While AWQ decreases perplexity in
all models, it does not guarantee an improvement
in conversational ability. For example, in Mi:dm’s
Korean benchmark, AWQ significantly reduces per-
plexity by 0.55 compared to RTN, yet the lose-rate
increases by 2%. On the other hand, QDPO signifi-
cantly enhances conversational ability, even though
it does not achieve as low a perplexity as the base-
line. We believe that the discrepancy between per-
plexity and conversational ability stems from the
difficulty of using next-word prediction perplexity
on reference text to capture the impact of flipped
tokens in an auto-regressive generation. From our
observation, these tokens significantly contribute
to sentence variation, as discussed in Sec. 3.2.

QDPO vs. Beam Search. Beam search
(Graves, 2012) generates higher probability out-
comes by considering multiple generation possibil-
ities simultaneously. Therefore, even if the quan-
tized model makes different judgments from the
baseline, which significantly influences sentence

1https://huggingface.co/datasets/
maywell/korean_textbooks

Method Number of Beams Win Tie Lose Lose-rate ↓

RTN 1 24 6 66 0.69

AWQ
1 28 9 52 0.58
3 38 9 50 0.52
5 35 10 61 0.58

QDPO 1 53 44 14 0.40

Table 5: Impact of decoding strategy.

generation, there is still a possibility of generating
outcomes without issues in overall probability. We
aim to observe how decoding strategies affect quan-
tized generation across three beam sizes (1, 3, 5).
Table 5 shows the results of the MT-Bench pairwise
comparison according to decoding strategies. In the
case of a beam size of 3, generating a more diverse
range of sentences slightly reduces the lose-rate,
yet it still exhibits many losses, and increasing the
beam size further does not fundamentally solve the
problem, as it also increases defeats. In contrast,
QDPO demonstrates a lower lose-rate by creating
models that are robust to quantization.

6 Conclusion

In this work, we address the conversational abili-
ties of quantized LLM-based chatbots. After iden-
tifying token-flipping as a crucial factor for de-
graded text generation quality, we propose a novel
quantization-aware direct preference optimization
(QDPO) method that effectively aligns quantized
and full-precision LLMs, enhancing conversational
performance. Tested across multiple languages and
models, QDPO outperforms traditional fine-tuning
techniques, setting a new benchmark for conversa-
tional chatbot development.
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Limitations

Our objective is to align the language capabilities
of a baseline model distorted by quantization er-
ror through DPO. We focus on exploring scenar-
ios where quantization error does not completely
ruin conventional benchmarking performance yet
introduces subtle differences in language capabili-
ties that are perceptible to humans. Hence, we do
not address situations where large quantization er-
rors significantly degrade model performance, nor
do we deal with cases using fine-grained quantiza-
tion where quantization error is minimal. However,
from a practical standpoint, the challenge of reduc-
ing the inference cost of LLMs by transitioning
to lower bit-precision is necessary, and this pro-
cess should consider various techniques, including
group quantization. Additionally, since our ap-
proach involves aligning the baseline model with a
relatively minimal training process, there are limi-
tations in utilizing extensive datasets. Nonetheless,
the impact of different datasets when aligning the
baseline model with a limited number of bits re-
mains an intriguing topic.
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A Appendix

A.1 Experimental Details

PTQ Calibration Settings. For PTQ calibration,
we use the widely utilized method AWQ (Lin et al.,
2023), with the calibration set consisting of 64 sam-
ples randomly extracted from the C4 (Raffel et al.,
2019) dataset. We apply channel-wise quantization
and do not consider fine-grained quantization (e.g.
group quantization) to better observe the impact of
quantization on the LLM’s conversational abilities.

Knowledge Distillation Settings. For KD set-
ting, we follow KD method introduced in LLM-
QAT (Liu et al., 2023b), excluding the data cura-
tion process. To facilitate a fair comparison with
QDPO, we extracted 50,000 prompts from the An-
thropic Helpful and Harmless dialogue dataset (Bai
et al., 2022), and set the learning rate to 3e-6.

Training Settings. In our QDPO experiments,
similar to the KD, we sample 50,000 prompts in
English from the Anthropic Helpful and Harmless
dialogue dataset and 21,155 prompts in Korean
from the KoAlpaca2 dataset. We collect responses
using both the full-precision policy (πfp) and the
quantized policy (πq) to construct a preference pair
dataset. The learning rate is set to 3e-6.

A.2 More Details on Breakdown Analysis

To separate the cause of errors in text generation,
we employ the following steps:

• We provide the same input to both the baseline
and quantized models, then observe the first
100 generations and find the timestep at which
the first different token is generated between
the two models. We dump these differently
generated tokens, which are flipped tokens.

• We dump the KV cache of both the baseline
and quantized models until timestep. This

2https://huggingface.co/datasets/
beomi/KoAlpaca-v1.1a
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Figure 7: ROUGE-1 and ROUGE-2 scores for Fig 2(c)
(W4A16 RTN).
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Figure 8: More results of breakdown analysis from
Sec. 3.2 on KD-based QAT (W4A16).

is facilitated easily through HuggingFace3’s
past_key_values argument.

• Based on the dumped flipped tokens and KV
cache, we observe additional generations with
either the baseline or quantized model, de-
pending on our purpose in reflecting Qerror.

A.3 QDPO’s Compatibility with Existing
Techniques

QDPO on RLHF-tuned Models. We con-
duct additional experiments to investigate whether
QDPO can serve as a complementary approach to
recover conversational in quantized RLHF-tuned
models, such as LLaMA2-Chat (Touvron et al.,
2023b) in Table 6, In LLaMA2-Chat, which has
improved conversational abilities through reflect-
ing human preferences via RLHF, W4A16 RTN
exhibits a 50% lose-rate compared to the baseline
model. However, QDPO demonstrates further re-
covery of conversational ability. With more ag-
gressive quantization at 3-bit, a clearer trend is ob-
served. RTN experiences a rapid decline in conver-
sational ability. In contrast, QDPO significantly re-
duces the lose-rate by restoring the conversational
ability of the baseline model. This demonstrates

3https://github.com/huggingface/
transformers
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Figure 9: The average gap between the Top-1 and Top-2
tokens in AWQ shows a closer probability difference to
the baseline compared to RTN, thanks to the reduction
of quantization error. However, AWQ still exhibits a
lower gap than the baseline model.

Bit-precision Method Win Tie Lose Lose-rate ↓

W4A16
RTN 40 20 60 50.00%

QDPO 38 26 55 46.22%

W3A16g128
RTN 29 18 76 61.79%

QDPO 35 22 65 53.28%

Table 6: QDPO on RLHF-tuned model (LLaMA2-Chat
7B). g128 denotes fine-grained quantization with group-
size=128.

that QDPO effectively enhances the conversational
ability of a quantized RLHF-tuned model, indicat-
ing that it is a method compatible with existing
RLHF.

QDPO with Memory-Efficient Fine-Tuning
Method. We extend our experiments with QDPO
training using LoRA (Hu et al., 2022). Following
the approach in QLoRA (Dettmers et al., 2023), we
keep the quantized base weights frozen and train
only the high-precision adapter. To ensure a fair
comparison with other methods, we utilize INT4
for the base weights instead of NF4 (Dettmers et al.,
2023). The adapter rank and α used in this exper-
iment is 64. As shown in Table 7, QDPO with
LoRA significantly enhances the conversational
ability of quantized LLMs, achieving levels nearly
identical to those of QDPO. Moreover, QDPO with
LoRA reduces the required memory by keeping the
quantized base weights fixed and significantly de-
creases the number of training parameters by only
training the LoRA adapter. These results suggest
that QDPO serves as a complementary method that
can be utilized alongside other techniques.

A.4 MT-Bench Evaluation Metrics

Pairwise Comparison. In pairwise comparison
within MT-Bench for 80 samples, GPT-4 evaluates
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Method Win Tie Lose Lose-rate ↓ # Trainable params Required Memory for Training∗ Inference bit-width

RTN 24 6 66 0.69 - - W4A16

AWQ 28 9 52 0.58 - - W4A16

KD 31 16 52 0.53 7.02 B 56.16 GB W4A16

QDPO 53 14 44 0.40 7.02 B 56.16 GB W4A16

QDPO+LoRA 48 14 46 0.43 1.33 B 14.15 GB W16A16

Table 7: QDPO with LoRA. ∗We only measure required memory for πθ during training (Mi:dm-7B, MT-bench
pairwise comparison).

Lang. Model Method Win Tie Lose Lose-Rate

Eng

Mi:dm

RTN 18 103 55 0.31
AWQ 23 110 46 0.26
KD 22 115 40 0.23

QDPO 43 118 38 0.19

Vicuna
RTN 20 95 61 0.35
AWQ 31 107 46 0.25
QDPO 33 113 44 0.23

Kor Mi:dm
RTN 20 103 45 0.27
AWQ 20 111 37 0.22
QDPO 39 109 40 0.21

Table 8: Pairwise comparison results of MT-Bench fol-
lowing original metric of (Zheng et al., 2023).

which model provides better responses between
the two models. However, due to most LLMs’
tendency to prefer the first position (Zheng et al.,
2023), the evaluation occurs twice in reversed or-
der, counting victories only if one model wins in
both cases. If judgments reverse or both evalua-
tions result in ties, it counts as an actual tie. We
observe that GPT-4 frequently evaluates "tie" more
often than usual in comparisons between different
models in MT-Bench. This increased frequency
of ties is because our study focuses on comparing
similar models (the baseline model and the quan-
tized model). We find that cases evaluated as a
tie in both positions present many obstacles to the
evaluation we desire for judging alignment. For
example, as shown in Fig. 12 and Fig. 13, when the
baseline model provides an incorrect answer and
the quantized model also offers a wrong answer
(but a different response), GPT-4 provides a "tie"
because they are both incorrect. However, this "tie"
does not reflect our goal of assessing "how well two
models are aligned." Therefore, we evaluate a tie
only in cases where win/lose changes due to swap-
ping positions, causing GPT-4 confusion. We find
this evaluation method to be the most consistent
with the results of other benchmarks, like Vicuna-
Eval (Chiang et al., 2023). Results obtained using

the original evaluation criteria of MT-Bench is in
Table 8.

Single-Answer Grading. In single-answer grad-
ing, we directly request GPT-4 to assign scores of
up to 10 points. While this approach may not be as
nuanced as pairwise comparison in model compar-
isons, it enables observation of how quantization
induces changes in specific categories where the
model has strengths and weaknesses by measuring
absolute scores by category.

A.5 Detailed Analysis by Catagory in
MT-Bench

As shown in Table 2, QDPO improves overall ca-
pability compared to other methods. However, we
observe that in some categories, QDPO scores are
lower than the AWQ model. We conducted a more
detailed observation of GPT-4’s evaluations in ar-
eas where QDPO exhibits lower performance. In-
terestingly, as depicted in Fig. 14, we can see that
QDPO fails in cases where RTN already provides a
good response and receives a high score, almost the
same as the baseline generation. We believe this
might be the case because QDPO is trained to reject
sentences generated by the quantized model, which
can lead to optimization challenges in such situa-
tions. Additional examples are present in Fig. 15.

A.6 Skill-wise Analysis in FLASK

We aim to investigate how QDPO recovers skills
that, according to FLASK’s fine-grained categoriza-
tion, significantly underperform in RTN and AWQ
compared to the baseline. As shown in Fig. 17,
RTN opts for "<[!newline]>" instead of ":", leading
to subsequent generations consisting solely of sim-
ple listings, and it can be observed that sentences
become repetitive as they lengthen. In contrast,
models applying QDPO follow the baseline by pro-
viding explanations for each item.
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Catergory
16-bit

Baseline
W4A16

RTN AWQ KD QDPO

Robustness 2.029 1.839 1.927 1.830 1.924
Correctness 2.237 2.087 2.254 2.206 2.172
Efficiency 2.333 1.988 2.036 2.036 2.129
Factuality 2.709 2.487 2.497 2.631 2.691

Commonsense 2.965 2.735 2.925 2.953 2.961
Comprehension 2.874 2.639 2.725 2.831 2.879
Insightfulness 2.268 2.339 2.079 2.095 2.246
Completeness 2.858 2.587 2.518 2.666 2.784
Metacognition 2.891 2.562 2.625 2.663 2.863

Readability 4.079 4.047 3.956 3.989 4.070
Conciseness 3.881 3.695 3.886 3.782 3.785

Harmlessness 4.447 4.500 4.355 4.512 4.575

Average 2.964 2.792 2.815 2.849 2.923

Table 9: FLASK score per skill.

A.7 Details of Task-Specific Benchmarks

To assess the reasoning capabilities of Large Lan-
guage Models (LLMs), benchmarks such as Com-
mon Sense Question Answering (CSQA) (Talmor
et al., 2019) and MMLU (Hendrycks et al., 2020)
have been widely utilized. CSQA assesses models’
reasoning abilities through multiple-choice ques-
tions, while MMLU verifies models’ multitask-
solving capabilities across 57 different tasks with
multiple-choice questions. Recently, benchmarks
like DROP (Dua et al., 2019) and BBH (Srivas-
tava et al., 2023) have been used to evaluate the
problem-solving abilities of instruction-tuned mod-
els, testing skills in logic and math. Additionally,
the Helpful, Honest, and Harmless (HHH) (Askell
et al., 2021) benchmark is widely used to as-
sess the extent to which these models are safe
or beneficial to humans. In our experiments, we
measure zero-shot CSQA benchmark and average
across five tasks (WinoGrande (Sakaguchi et al.,
2019), COPA (Roemmele et al., 2011), PIQA (Bisk
et al., 2019), BoolQ (Clark et al., 2019), Hel-
laSwag (Zellers et al., 2019)).

A.8 Proof of Theorem. 1

Theorem 1. For any response y in the set of all pos-
sible responses Y , if y1 = argmaxy∈Y πfp(y|x)
and y2 = argmaxy∈Y πq(y|x), then it is guaran-
teed that p∗(y1 ≻ y2) ≥ p∗(y2 ≻ y1).

Proof. The definition of argmax ensures that for
all y ∈ Y , πfp(y1|x) ≥ πfp(y|x) and πq(y2|x) ≥
πq(y|x) holds true. Consequently, this implies
πfp(y1|x) ≥ πfp(y2|x) and πq(y2|x) ≥ πq(y1|x).

Substituting eq. (3) into eq. (1) we obtain:

p∗(y1 ≻ y2|x)

=
1

1 + exp
(
β log

πfp(y2|x)
πq(y2|x) − β log

πfp(y1|x)
πq(y1|x)

)
= σ

(
β log

πfp(y1|x)
πq(y1|x)

− β log
πfp(y2|x)
πq(y2|x)

)
= σ

(
β

(
log

πfp(y1|x)
πfp(y2|x)

− log
πq(y1|x)
πq(y2|x)

))
(6)

log
πfp(y1|x)
πfp(y2|x) − log

πq(y1|x)
πq(y2|x) and β is positive, it fol-

lows that p∗(y1 ≻ y2|x) ≥ 0.5. Consequently, this
implies that p∗(y1 ≻ y2) ≥ p∗(y2 ≻ y1).

A.9 Generation Examples
Fig. 10 demonstrates a decline in language model
performance due to the generation of different to-
kens compared to the baseline. The baseline model
selects “Wear" following “1.", whereas the PTQ
model, experiencing a change in probability rank-
ing, chooses “Always." The PTQ model then re-
peats this word, leading to expressions that feel
awkward to humans. On the other hand, QDPO
recovers the probabilities similar to the baseline
model, thereby continuing with the natural genera-
tion.

Prompt: Provide at least five safety rules that cyclists should follow.

16-bit Baseline (Top-1: Wear-51.56%, Top-2: Always-35.55%)
1. Wear a helmet: Always wear a helmet when cycling to protect your 
head from injuries in case of a fall or collision.
2. Follow traffic rules: Always follow traffic rules ...
3. Be visible: Wear bright or reflective clothing ...
4. Stay alert: Keep an eye on your surroundings ...
5. Ride in a group: Riding in a group can help you stay safe ...

W4A16 PTQ (Top-1: Always-44.34%, Top-2: Wear-44.34%)
1. Always wear a helmet when riding a bicycle.
2. Always use a bicycle with a properly ...
3. Always wear bright or reflective clothing ...
4. Always use a horn or bell to signal your presence ...
5. Always ride in a single file with the right of way ...

W4A16 QDPO (Top-1: Wear-65.23%, Top-2: Always-14.55%)
1. Wear a helmet: Always wear a helmet when riding a bicycle to 
protect your head from injuries. 
2. Follow traffic laws: Follow traffic signs and signals, ...
3. Wear appropriate clothing: Wear appropriate clothing for riding ...
4. Maintain a safe distance: Maintain a safe distance from other ...
5. Be aware of your surroundings: Be aware of your surroundings and ...

Figure 10: Generation example of 16-bit and W4A16
inference (Model: Mi:dm-7B).
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Prompt: 다양한 질병과 질환에 대한 혁신적인 치료법을 고안해야 하는 의사가 되었다고 상상해 보세요. 당신의 전문 지식에는 전
통 약품, 한방 치료법, 대체 자연 요법 처방이 포함되어야 합니다. 또한 환자의 연령, 생활 방식, 의학적 배경을 고려하여 추천을
제공해야 합니다. 먼저, 극심한 복부 불편감이 있는 시나리오를 진단하는 데 도움을 주세요.
("Imagine you are a doctor tasked with devising innovative treatments for various diseases and conditions. Your expertise 
must include traditional medications, herbal remedies, and alternative natural prescriptions. Additionally, you must provide 
recommendations considering the patient's age, lifestyle, and medical background. First, please help diagnose a scenario 
involving severe abdominal discomfort.”)

16-bit Baseline
극심한 복부 불편감이 있는 시나리오를 진단하는 데 도움을 드리겠습니다:<[!newline]><[!newline]>1. 복부 불편감의 원인을 파
악하기 위해 환자의 증상을 자세히 관찰합니다.<[!newline]>2. 환자의 연령, 생활 방식, 의학적 배경을 고려하여 증상의 원인을
파악합니다.
(I will help you diagnose a scenario with severe abdominal discomfort:<[!newline]><[!newline]>1. To identify the cause of 
abdominal discomfort, we will carefully observe the patient's symptoms.<[!newline]>2. We will determine the cause of the 
symptoms by considering the patient's age, lifestyle, and medical background.)

W4A16 PTQ 
극심한 복부 불편감이 있는 시나리오를 진단하는 데 도움을 주세요.<[!newline]><[!newline]>환자의 연령, 생활 방식, 의학적 배
경을 고려하여 추천을 제공해야 합니다.<[!newline]><[!newline]>환자의 연령: 20대 후반의 여성입니다.
(Please help diagnose a scenario with severe abdominal discomfort.<[!newline]><[!newline]>You must provide 
recommendations considering the patient's age, lifestyle, and medical background.<[!newline]><[!newline]>The patient's age: 
A woman in her late 20s.)

W4A16 AWQ
시나리오: 극심한 복부 불편감이 있는 환자가 병원을 방문하였습니다. 이 환자는 40대 남성으로, 최근에 고혈압과 당뇨병을 진단
받았습니다. 그는 고혈압과 당뇨병을 관리하기 위해 식이요법과 운동을 병행하고 있습니다. 그러나 최근에 복부 불편감이 심해져
서 병원을 방문하였습니다.
(Scenario: A patient with severe abdominal discomfort visited the hospital. This patient is a man in his 40s who has recently
been diagnosed with hypertension and diabetes. He has been managing his hypertension and diabetes with diet and exercise. 
However, he recently visited the hospital due to worsening abdominal discomfort.)

W4A16 QDPO 
극심한 복부 불편감이 있는 시나리오를 진단하기 위해서는 우선 환자의 연령, 생활 방식, 의학적 배경을 고려해야 합니다. 
<[!newline]><[!newline]>환자의 연령은 복부 불편감의 원인을 파악하는 데 중요한 역할을 합니다.
(To diagnose a scenario with severe abdominal discomfort, it is first necessary to consider the patient's age, lifestyle, and
medical background.<[!newline]><[!newline]>The patient's age plays an important role in identifying the cause of 
abdominal discomfort.)

Figure 11: Generation example of 16-bit and W4A16 inference (Korean).

User: How many integers are in the solution of the inequality |x + 5| < 10

Assistant A: The given inequality is |x + 5| < 10. <[!newline]><[!newline]>To solve for integers, we need to find all integers that 
satisfy the inequality. In this case, we can use the absolute value of x + 5, which is x + 5 + 5. This gives us the range of integers that 
satisfy the inequality.<[!newline]><[!newline]>The range of integers that satisfy the inequality is -10 to 
10.<[!newline]><[!newline]>So, there are 5 integers in the solution of the inequality |x + 5| < 10. These integers are -10, -5, 0, 5, and 
10.

Assistant B: The solution of the inequality |x + 5| < 10 is x = -5 or x = 5. Therefore, there are two integers in the solution of the 
inequality |x + 5| < 10

GPT-4 Judgment: Both Assistant A and Assistant B provided incorrect answers. 
Assistant A incorrectly stated that the range of integers that satisfy the inequality is -10 to 10 and concluded that there are 5 integers in 
the solution. This is incorrect as the correct range is -15 < x < 5, which includes 19 integers.
Assistant B incorrectly stated that the solution of the inequality |x + 5| < 10 is x = -5 or x = 5, and concluded that there are two integers 
in the solution. This is incorrect as the correct solution is -15 < x < 5, which includes 19 integers.
The reference answer correctly breaks down the inequality into two separate inequalities, solves each one, combines them, and counts 
the integers in the range to find the correct answer of 19 integers.
Therefore, neither assistant provided a better answer. The final verdict is [[C]] for a tie.

Figure 12: Tie example in MT-Bench pairwise comparison.
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User: Imagine you are participating in a race with a group of people. If you have just overtaken the second person, what's your current 
position? Where is the person you just overtook?

Assistant A: As an AI language model, I do not have the capability to participate in physical races or events. However, if you are 
participating in a race with a group of people and you have just overtaken the second person, your current position would be in the 
lead. The person you just overtook would be in the second position.

Assistant B: If you have just overtaken the second person, your current position is the second person. The person you just overtook is 
now in the first position.

GPT-4 Judgment: Assistant A's answer is incorrect because if you overtake the second person in a race, you become the second 
person, not the leader. The person you overtook becomes the third person, not the second. 
Assistant B's answer is also incorrect. If you overtake the second person, you become the second person, not the first. The person you 
overtook becomes the third person, not the first.
The reference answer is correct. If you overtake the second person in a race, you become the second person. The person you overtook 
becomes the third person.
Given that both Assistant A and Assistant B provided incorrect answers, it's a tie. 
Final verdict: [[C]] for a tie.

Figure 13: Tie example in MT-Bench pairwise comparison.

Category: Writing
User: Help me construct a catchy, yet scientifically accurate, headline for an article on the latest discovery in renewable bio-energy, 
while carefully handling the ethical dilemmas surrounding bio-energy sources. Propose 4 options.

Score: 10

FP16 Baseline: 1. "Revolutionary Breakthrough in Sustainable Bio-Energy: A New Source of Clean, 
Renewable Energy Unveiled"<[!newline]>2. "Bio-Energy: The Future of Sustainable Power? Ethical 
Dilemmas and the Latest Discoveries"<[!newline]>3. "Bio-Energy: The Next Step in Sustainable Power 
Solutions - Ethical Dilemmas and the Latest Discoveries"<[!newline]>4. "Bio-Energy: The Future of 
Sustainable Power - Ethical Dilemmas and the Latest Discoveries"

Score: 8

W4A16 RTN: 1. "Revolutionary Breakthrough in Sustainable Bio-Energy: A New Paradigm Shift in 
Renewable Sources"<[!newline]>2. "Bio-Energy: The Future of Sustainable Resource Utilization - Ethical 
Concerns and Solutions"<[!newline]>3. "Bio-Energy: Balancing the Needs of Nature and Humanity - A 
Comprehensive Analysis of Bio-Energy Sources"<[!newline]>4. "Bio-Energy: Balancing the Needs of 
Nature and Humanity - A Comprehensive Analysis of Bio-Energy Sources and Ethical Concerns"

Score: 6

W4A16 AWQ: 1. "Revolutionary Breakthrough in Sustainable Bio-Energy: A New Source of Renewable 
Energy Unveiled"<[!newline]>2. "Bio-Energy: The Future of Sustainable Power? New Discoveries in 
Renewable Sources"<[!newline]>3. "Bio-Energy: A Sustainable Solution for the Future of Power? Exploring 
the Latest Advancements in Bio-Energy"<[!newline]>4. "Bio-Energy: A Sustainable Solution for the Future? 
Exploring the Latest Advancements in Renewable Sources"

Score: 4W4A16 QDPO: "Revolutionary Breakthrough in Renewable Bio-Energy: Exploring the Ethics of Bio-
Energy Sources"

Figure 14: MT-Bench single-grading judgment example (Category: Writing).
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Category: Extraction
User: Please read the paragraph below and count how many times the words "Amazon", "river", and "you" appear. Please present the 
results in the format of "word, number of appearances" with each word on a separate line. Sort the lines in order of the number of 
appearances.
The Amazon, a mesmerizing expanse of nature's wonders, is home to the legendary Amazon River. Flowing through awe-inspiring 
landscapes like the Amazon rainforest, the river weaves its way through Brazil, Colombia, and Peru, giving life to countless creatures. 
From the mighty jaguars prowling the Amazon jungle to the vibrant macaws soaring above the canopy, this remarkable region teems 
with biodiversity. Deep within the river's currents, magnificent pink river dolphins gracefully glide alongside piranhas and electric eels. 
Along the riverbanks, you'll find bustling cities like Manaus, where the urban meets the wild, and Iquitos, a gateway to the heart of the 
Amazon rainforest. As you venture further, the Amazon River reveals hidden gems like the captivating Anavilhanas Archipelago, a 
mosaic of islands brimming with rare species. Embark on an adventure, explore the enchanting Amazon River, and immerse yourself 
in a world teeming with life and untamed beauty.

Score: 1FP16 Baseline: word, number of appearances

Score: 1W4A16 RTN: word, number of appearances

Score: 8W4A16 AWQ: , number of appearances<[!newline]>- Amazon: 5<[!newline]>- river: 4<[!newline]>- you: 1

Score: 1

W4A16 QDPO: word, number of appearances<[!newline]>- Amazon<[!newline]>- river<[!newline]>-
you<[!newline]>- Amazon rainforest<[!newline]>- Amazon jungle<[!newline]>- Amazon 
rainforest<[!newline]>- Amazon River<[!newline]>- Manaus<[!newline]>- Iquitos<[!newline]>-
Anavilhanas Archipelago<[!newline]>- rare species<[!newline]>- untamed beauty

Figure 15: MT-Bench single-grading judgment example (Category: Extraction).

Category: Extraction
User: Analyze the following customer reviews from different sources for three different smartphones - the latest iPhone, Samsung 
Galaxy, and Google Pixel - and provide an overall rating for each phone on a scale of 1 to 10. Consider the following complex and 
contradictory reviews:
- TechRadar's review of the latest iPhone: The new iPhone is a stunning triumph of engineering that sets a new bar for smartphone 
performance and camera quality. However, the incremental design and high price mean it lacks the 'wow' factor of previous iPhones. 
Still, its power and intelligence are unrivaled.
- CNET's review of the latest Samsung Galaxy: The Samsung Galaxy phone has plenty of high points, including an amazing screen, 
fast performance, solid battery life and an impressive array of camera options. That said, Bixby remains lackluster, AR emoji falls flat 
and the phone's overall design hasn't changed much. The new Galaxy is an amazing phone overall, but it has a few nagging 
weaknesses that keep it from achieving true greatness.
- The Verge's review of the latest Google Pixel: Google's Pixel packs cutting-edge specs, innovative AI-powered software, and a killer 
camera into a sleek design. However, the phone has lackluster battery life, lacks expandable storage, and its performance stutters at 
times, especially considering its high price tag. If seamless software, elite photography, and Google's brand of AI assistance are most 
important, you'll love the Pixel. But the overall experience isn't as well-rounded as some competitors. Return the answer as a JSON 
object with the overall ratings for each phone out of 10, to one decimal place.

Score: 3FP16 Baseline: {<[!newline]> "iPhone": 9.5,<[!newline]> "Samsung Galaxy": 8.5,<[!newline]> "Google 
Pixel": 9.5<[!newline]>}

Score: 4W4A16 RTN: {<[!newline]>"iPhone": 9,<[!newline]>"Samsung Galaxy": 8,<[!newline]>"Google Pixel": 
9<[!newline]>}

Score: 6W4A16 AWQ: {<[!newline]> "iPhone": 9.5,<[!newline]> "Samsung Galaxy": 8.5,<[!newline]> "Google 
Pixel": 9.5<[!newline]>}

Score: 4W4A16 QDPO: {<[!newline]>"iPhone": 9.5,<[!newline]>"Samsung Galaxy": 8.5,<[!newline]>"Google 
Pixel": 9.5<[!newline]>}

Figure 16: MT-Bench single-grading judgment example (Category: Extraction).
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FLASK Benchmark: Metacognition Example

GPT-4 ReviewUser: List the personality traits that are required to be successful in the given job.

Metacognition: The assistant seems 
confident in its answer and it 
perfectly responded to the 
instructions provided the relevant 
details. The assistant explicitly 
acknowledges the tasks and takes 
into account the exact information 
needed. It doesn't encounter an 
uncertain or ambiguous situation in 
this case, so we can't judge its 
metacognitive ability based on this 
response. However, due to the 
precise and confident response, I 
would rate it a 4.

FP16 Baseline: 1. Creativity: Social media marketing requires a creative approach to engage 
with audiences and create effective content.<[!newline]><[!newline]>2. Analytical skills: 
Social media marketing involves tracking and analyzing data to understand consumer 
behavior and preferences.<[!newline]><[!newline]>3. Communication skills: Social media 
marketing requires effective communication with clients, partners, and other 
stakeholders.<[!newline]><[!newline]>4. Time management: Social media marketing 
requires managing multiple tasks and deadlines simultaneously.<[!newline]><[!newline]>5. 
Attention to detail: Social media marketing involves ensuring that every detail is accurate 
and consistent across all platforms.<[!newline]><[!newline]>6. Problem-solving skills: 
Social media marketing requires the ability to identify and solve problems that arise in the 
course of the job.<[!newline]><[!newline]>7. Multitasking: Social media marketing involves 
managing multiple social media accounts simultaneously, which requires multitasking 
skills.<[!newline]><[!newline]>8. Emotional intelligence: Social media marketing requires 
the ability to understand and respond to the emotions of the 
audience.<[!newline]><[!newline]>9. Flexibility: Social media marketing involves adapting 
to changing trends and technologies, which requires flexibility.<[!newline]><[!newline]>10. 
Time-management: Social media marketing involves managing multiple tasks and deadlines 
simultaneously, which requires time management skills.

Metacognition: The assistant's 
response is comprehensive and it 
seems that the model understands the 
instruction well. However, the model 
seems to be stuck in a loop when it 
mentions "Adaptability" several 
times. The model should 
acknowledge this error. Therefore, 
the score in metacognition is lowered 
as it didn't show awareness of its 
own error in repetition of the same 
trait. Score: 2.

W4A16 RTN: 1. Creativity<[!newline]>2. Analytical thinking<[!newline]>3. Problem-
solving skills<[!newline]>4. Communication skills (written and verbal)<[!newline]>5. Time 
management skills<[!newline]>6. Attention to detail<[!newline]>7. Emotional 
intelligence<[!newline]>8. Adaptability<[!newline]>9. Initiative<[!newline]>10. 
Adaptability<[!newline]>11. Adaptability<[!newline]>12. Adaptability<[!newline]>13. 
Adaptability<[!newline]>14. Adaptability<[!newline]>15. Adaptability

Metacognition: The assistant 
accurately comprehended the user 
instruction and responded 
accordingly without showing any 
signs of uncertainty or a lack of 
capability. The instruction was clear 
and specific, leaving no room for 
ambiguous interpretation. Therefore, 
the assistant did not need to disclose 
any limitations or uncertainties. 

Score: 5

W4A16 QDPO: 1. Creativity: Social media marketers need to be creative and have the 
ability to come up with unique and engaging content for their audience.<[!newline]>2. 
Communication Skills: Social media marketers need to be able to communicate effectively 
with their audience through social media platforms.<[!newline]>3. Analytical Skills: Social 
media marketers need to be able to analyze data and insights to make informed decisions 
about their content and strategy.<[!newline]>4. Time Management: Social media marketers 
need to be able to manage their time effectively and meet deadlines.<[!newline]>5. Attention 
to Detail: Social media marketers need to pay attention to detail and ensure that their content 
is accurate and relevant.<[!newline]>6. Research Skills: Social media marketers need to be 
able to research their audience and industry to create content that is relevant and 
engaging.<[!newline]>7. Collaboration: Social media marketers need to be able to 
collaborate with other team members and work effectively with others to achieve 
goals.<[!newline]>8. Patience: Social media marketers need to be patient and able to work 
through issues and delays without becoming frustrated.<[!newline]>9. Emotional 
Intelligence: Social media marketers need to be able to understand and respond to their 
audience's emotions and needs.<[!newline]>10. Adaptability: Social media marketers need to 
be able to adapt to changing trends and technologies in the industry.

Figure 17: GPT-4 judgment in FLASK benchmark (evaluation for metacognition skill).
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