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Abstract
The process of meaning composition, wherein
smaller units like morphemes or words com-
bine to form the meaning of phrases and sen-
tences, is essential for human sentence com-
prehension. Despite extensive neurolinguis-
tic research into the brain regions involved in
meaning composition, a computational metric
to quantify the extent of composition is still
lacking. Drawing on the key-value memory
interpretation of transformer feed-forward net-
work blocks, we introduce the Composition
Score, a novel model-based metric designed to
quantify the degree of meaning composition
during sentence comprehension. Experimental
findings show that this metric correlates with
brain clusters associated with word frequency,
structural processing, and general sensitivity to
words, suggesting the multifaceted nature of
meaning composition during human sentence
comprehension. 1

1 Introduction

When encountering words such as "milk" and "pud-
ding", the human mind effortlessly combines them
to form a complex concept, such as a milk-flavored
pudding. This combinatory process is a funda-
mental aspect of human language comprehension
and production, enabling us to generate an infi-
nite array of meanings from a finite set of words.
Despite extensive neurolinguistic research into the
localization of meaning composition in the human
brain (Bemis and Pylkkänen, 2011, 2013; Blanco-
Elorrieta et al., 2018; Flick and Pylkkänen, 2020; Li
and Pylkkänen, 2021; Zhang and Pylkkänen, 2015;
Li et al., 2024), understanding the detailed mech-
anism of how a complex meaning is constructed
from its components and how it is processed by
the human brain has become a challenging prob-
lem. One of the primary difficulties lies in the ab-
sence of a suitable computational metric to quantify

*Corresponding authors, equal contribution.
1Our code and data are released on GitHub.

Figure 1: Comparing Composition Scores with fMRI data
during naturalistic listening comprehension.

the extent of meaning composition. This absence
significantly complicates quantitative analyses of
meaning composition in the human brain.

Recent advancements in Large Language Mod-
els (LLMs) offer promising insights into this prob-
lem. By training on large-scale natural language
corpora and aligning with human preferences, these
computational models achieve unprecedented lev-
els of proficiency in understanding and generating
natural languages (OpenAI et al., 2023; Anil et al.,
2023; Touvron et al., 2023). In addition to their
high performance, studies have shown that their
internal states correlate with human behavioral and
neural data (Schrimpf et al., 2021; Caucheteux
et al., 2022), suggesting shared principles between
their algorithms and the human brain. Given this
background, it is natural to inquire whether we can
develop a computational metric to quantify mean-
ing composition from the internal states of LLMs.

Motivated by this inquiry, our study introduces a
novel model-based metric, the Composition Score,
to evaluate meaning composition in the human
brain. Leveraging the key-value memory interpre-
tation of the Feed-Forward Network (FFN) mod-
ules in the transformer model (Geva et al., 2021,
2022), this metric computes the composition of
memory-induced vocabulary distributions within
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the FFN blocks given an input prefix, thereby re-
flecting the degree of meaning composition of each
word. To assess its validity, we examine the pat-
terns of Composition Scores using the novel "The
Little Prince" in English and compare them with
other control variables such as word frequency and
syntactic node count based on top-down, bottom-
up, and left-corner parsing. Additionally, we corre-
late Composition Scores with an openly available
fMRI dataset where participants listened to "The
Little Prince" in the scanner (Li et al., 2022). Our
findings reveal that:

• The Composition Score exhibits partial corre-
lation with word frequency and syntactic node
counts but reveals more intricate patterns;

• The Composition Score is associated with a
broader brain cluster and exhibits a higher
regression score with the fMRI data compared
to the control variables;

• Brain regions associated with the Composi-
tion Score encompass those underlying word
frequency, structural processing, and gen-
eral sensitivity to words, indicating the multi-
faceted nature of meaning composition.

2 Related Work

2.1 Meaning composition in LLMs

Despite considerable efforts in interpreting trans-
former models and Large Language Models
(LLMs), e.g. Hewitt and Manning, 2019; Clark
et al., 2019; Voita et al., 2023, prior research has
not extensively focused on meaning composition in
LLMs. In their groundbreaking work interpreting
the Feed-Forward Network (FFN) block as key-
value memory, Geva et al. (2021) noted that the
block engages in "memory composition" and quan-
tified the degree of composition by examining the
overlap between neuronal predictions and block
predictions. Building on this, Geva et al. (2022)
and Voita et al. (2023) proposed that the FFN block
makes predictions by amplifying and suppressing
concepts in the vocabulary space, akin to compos-
ing meaning. Inspired by this interpretation, we
design the Composition Score to link the meaning
composition in models and the human brain.

2.2 Meaning composition in the human brain

The process of meaning composition in the hu-
man brain has been localized to regions in the left

temporal lobe. Studies have found that phrases
like "red boat" trigger increased activity in the
left anterior temporal lobe (LATL) compared to
non-compositional word lists (Bemis and Pylkkä-
nen, 2011, 2013), indicating LATL’s involvement
in conceptual combination. This effect is consis-
tent across different word orders and languages
(Westerlund et al., 2015), including American Sign
Language (Blanco-Elorrieta et al., 2018).

Although the LATL remains the most consis-
tently implicated locus for composition with the
highest replication rates, recent evidence suggests
a role for the surrounding temporal cortex as well.
Investigations into the functional intricacies of the
LATL have unveiled its conceptual, non-syntactic
functions (Bemis and Pylkkänen, 2013; Li and
Pylkkänen, 2021; Parrish and Pylkkänen, 2022;
Zhang and Pylkkänen, 2015). For instance, the
LATL can integrate concepts such as "boat red"
even without explicit syntactic combination (Be-
mis and Pylkkänen, 2013; Parrish and Pylkkänen,
2022). Conversely, the posterior temporal cortex
exhibits greater sensitivity to syntactic structures
(Flick and Pylkkänen, 2020; Hagoort, 2005; Lyu
et al., 2019; Matchin et al., 2019; Matchin and
Hickok, 2020; Li and Pylkkänen, 2021). As out-
lined in Pylkkänen (2019), composition may entail
syntactic, logico-semantic, and conceptual subrou-
tines, engaging multiple areas across the temporal,
parietal, and frontal cortex beyond the LATL (see
Pylkkänen, 2019 for a review).

2.3 Correlating model predictions with the
human brain

Previous studies comparing both symbolic models
and LLMs to the human brain have revealed some
shared principles between the two systems (e.g.,
Brennan et al., 2016; Caucheteux and King, 2022;
Caucheteux et al., 2022; Goldstein et al., 2022; Nel-
son et al., 2017; Schrimpf et al., 2021; Toneva et al.,
2022; Antonello et al., 2023; Gao et al., 2023). For
example, Nelson et al. (2017) correlated syntac-
tic complexity under different parsing strategies
with the intracranial electrophysiological signals
and found that the left-corner and bottom-up strate-
gies fit the left temporal data better than the most
eager top-down strategy; Goldstein et al. (2022)
and Caucheteux et al. (2022) both showed that the
human brain and the deep learning language mod-
els share the computational principles of predicting
the next word as they process the same natural nar-
rative. Toneva et al. (2022) constructed a compu-
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tational representation for "supra-word meaning".
They modeled composed meaning by regressing
word embeddings from its context embeddings in
ELMo (Peters et al., 2018), and found significant
LATL and LPTL activity correlating with this met-
ric. Antonello et al. (2023) and Gao et al. (2023)
examined the scaling law in the correlation between
model states (e.g. hidden states, attention matrices)
and human neural and behavioral data.

3 Methods

3.1 Composition Scores from LLMs

The Composition Score proposed in this paper
quantifies the compositionality of key-value mem-
ory stored in the FFN blocks of LLMs, building
upon the key-value memory interpretation of the
FFN blocks. We begin by formally describing the
key-value memory hypothesis and subsequently
introduce the definition of the Composition Score.

3.1.1 The key-value memory interpretation
Geva et al. (2021) first proposed the key-value
memory interpretation of FFN blocks in trans-
former models. An FFN block (e.g., for trans-
former layer l) can be expressed as:

FFl(x) = f(x ·K l⊤) · V l

where x ∈ Rd is the input vector, K,V ∈ Rdm×d

are the two linear layers inside the FFN block, and
f is the activation function. This formulation can
be viewed as a generalized expression of a neural
memory (Sukhbaatar et al., 2015):

MN(x) = softmax(x ·K⊤) · V

Consequently, the first linear layer K l corresponds
to the "keys" matrix in the neural memory, each
row of which (also referred to as a "neuron") is
a key vector that triggers activation of a certain
memory; and V l corresponds to the "values" ma-
trix, each row of which is a memory entry vl

i that
can affect the next-token prediction. The activation,
ml = f(x ·K l⊤), can then be viewed as a vector
that contains the unnormalized coefficient of each
memory entry in this FFN block. As a result, the
output of the FFN block is a weighted mixture of
memory values.

Geva et al. (2021, 2022) then translated the
aforementioned vector-space analysis into human-
readable representations, where x, the vector repre-
sentation of a word wj in a sentence, corresponds to

the input prefix w1, ..., wj . Additionally, the mem-
ory value of the i-th neuron vi can be mapped to a
vocabulary distribution pl

i by the output embedding
matrix E using:

pl
i = softmax(vl

i · E)

This same mapping can also be applied to the FFN
output. In this context, the FFN block receives a
sentence prefix, activates its stored memory accord-
ingly, and then combines the predicted next-token
distribution encoded by each neuron to produce the
final prediction.

3.1.2 Calculating Composition Score
The key idea of the Composition Score is to inter-
pret the memory combination process described
above as meaning composition, as manifested by
the predicted vocabulary distributions. Given the
predicted vocabulary distributions pl

1, ...,p
l
dm

of
each neuron, and the final predicted distribution pl

of the FFN block, we first calculate the Jensen-
Shannon distances (the square root of Jensen-
Shannon divergence) between them:

dist(pl
i,p

l) = D
1
2
JS(p

l
i∥pl)

=

[
1

2
DKL(p

l
i∥pl

m) +
1

2
DKL(p

l∥pl
m)

] 1
2

where DKL(·∥·) is the Kullback–Leibler diver-
gence between two distributions, and pl

m = 1
2(p

l
i+

pl). This quantifies the proximity of the final pre-
diction to the individual memory values. If the
distances are approximately equal across all the
neurons in the block, we interpret the output as
highly composed. Conversely, if the distance is
close to zero for one or two neurons and signifi-
cantly larger for others, we perceive the output as
less composed. Hence, we define the Composition
Score as:

Sl
comp =

min1≤i≤dm dist(pl
i,p

l)

max1≤j≤dm dist(pl
j ,p

l)

The score ranges from 0 to 1, with a high score
(close to 1) indicating that the largest distance is
roughly equivalent to the smallest one, and vice
versa. Conceptually, the Composition Score quan-
tifies the degree of memory or meaning composi-
tionality when predicting the next token, based on
the input prefix. Since there is one score from each
transformer layer, we incorporate the Composition
Scores from all layers for analysis.
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Figure 2: The average Composition Score of each layer of the LLaMA2 models and a randomly initialized model.

3.1.3 Activation-based approximation
Because computing the Composition Score is
highly resource-intensive, we employed an approx-
imation method to accelerate the computation: in-
stead of considering all dm neurons in layer l when
calculating Sl

comp, we only include a fixed num-
ber d′m of neurons. Specifically, we select neurons
whose sum of absolute activation values comprises
the majority of the total values. This approach is
supported by the sparse activation phenomenon ob-
served in the FFN neurons in LLMs (Voita et al.,
2023), where most FFN neurons are either not acti-
vated or weakly activated during forward compu-
tation, with only a small fraction being strongly
activated. It is primarily these latter neurons that
contribute significantly to the meaning composition
process in the FFN blocks.

To select an appropriate value for d′m, we run the
tested LLMs on the C4 validation corpus (Raffel
et al., 2019) and gather their numbers of neurons
(referred to as their majority k’s) with the highest
absolute activation values, which collectively con-
tribute to over half of the total absolute activation.
Subsequently, we set d′m to a value significantly
larger than the majority k’s of all models under con-
sideration. The approximated Composition Score
is then calculated as:

S′l
comp =

min1≤i≤d′m dist(pl
i,p

l)

max1≤j≤d′m dist(pl
j ,p

l)

We find the majority k is 1744.49 for LLaMA2-
base, and 1754.14 for LLaMA2-chat. Therefore,
we set d′m to 3000 to cover the majority k’s of both.

Figure 2 displays the averaged Composition
Score of each layer of the LLaMA2 models along-
side a randomly initialized LLaMA2-7B model.
It can be seen that both the LLaMA2-base and
LLaMA2-chat models exhibit a similar pattern,
with the mean Composition Score increasing in

the first 6 layers and plateauing thereafter. This
result indicates that, as the layer number goes up,
the degree of composition becomes higher. This
is predictable as the input vector x in the higher
layers is integrated with more contextual informa-
tion, which makes it harder to find close matches
in the neural memory. In contrast, the Composition
Score for the randomly initialized model remains
constant around 1.

As there is minimal difference between the re-
sults obtained from the two LLaMA2 models in
all subsequent experiments, we present outcomes
solely from the LLaMA2-chat model in the main
text. For results pertaining to the LLaMA2-base
model, please consult Appendix B.

3.2 Control variables

In addition to the Composition Score obtained from
the LLMs, we incorporated five other control vari-
ables: Word rate, word frequency, and syntactic
node counts derived from top-down, bottom-up,
and left-corner parsing strategies. These variables
have demonstrated correlations with notable brain
clusters within the language network and provide
a baseline for comparison with our Composition
Score metric. Figure 3 shows the density and cor-
relation matrix between word frequency and node
count based on three parsing strategies.

Word rate. Word rate is a binary regressor that
marks 1 at the offset of each word in the audio-
book. It signifies an individual’s overall responsive-
ness to words as opposed to other stimuli and has
been associated with a widespread left temporal-
frontal network within the language regions (Li
et al., 2022).

Word frequency. We also included the log-
transformed unigram frequency of each word,
estimated using the Google ngrams Version
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Figure 3: (a) Density plot of word frequency, node counts
based on the top-down, bottom-up and left-corner node counts.
Note that density plot is different from a histogram such that
values on the y-axis here represent probability density and the
total area under the curve integrates to one. (b) Correlation
matrix among the 4 control variables.

2012070129 2 and the SUBTLEX corpora for Chi-
nese (Cai and Brysbaert, 2010). Prior research on
frequency effects has identified activity in the mid-
dle temporal lobe (e.g., Embick et al., 2001; Simon
et al., 2012).

Node counts. Node count refers to the number of
parsing steps between consecutive words accord-
ing to a parsing strategy. This concept is associated
with certain aspects of Yngve’s (1960) Depth hy-
pothesis (see also Frazier, 1985). Different parsing
strategies yield varied predictions regarding the
processing effort required for a given word. A
top-down parser begins with a mother node and es-
tablishes phrase structures before validating them
against the input string. Conversely, a bottom-up
parser initiates with the first terminal word and
verifies all evidence before applying a phrase struc-
ture rule. A left-corner parser combines elements
of both top-down and bottom-up approaches, im-

2http://storage.googleapis.com/books/ngrams/
books/datasetsv2.html

plementing a grammatical rule upon encountering
the very first symbol on the right-hand side of the
rule (Hale, 2014). We computed CFG-based node
counts for the text stimuli using these three parsing
strategies.

Prior research has shown significant left tempo-
ral and frontal activity for the left-corner and the
bottom-up parsing strategies (Nelson et al., 2017),
supporting bottom-up and/or left-corner parsing as
tentative models of how human subjects process
sentence structures.

3.3 Aligning Composition Scores and control
variables with fMRI data

First-level regression. The Composition Score
for each word, derived from each of the 32 hidden
layers of the LLaMA2 models, was initially con-
volved with the canonical hemodynamic response
function (HRF). Subsequently, two ridge regres-
sions were conducted for each subject using the 32
Composition Scores from the two LLMs to predict
the fMRI timecourses from each vertex within a
left-lateralized language mask. The language mask
(see the pink region in Figure 7) covered regions
including the whole left temporal lobe, the left
inferior frontal gyrus (LIFG; defined as the com-
bination of BAs 44 and 45), the left ventromedial
prefrontal cortex (LvmPFC; defined as BA11), the
left angular gyrus (LAG; defined as BA39) and the
left supramarginal gyrus (LSMA; defined as BA
40). The left AG and vmPFC have also been im-
plicated in previous literature on conceptual com-
bination (Bemis and Pylkkänen, 2011; Price et al.,
2015) and the LIFG and the LMTG have been sug-
gested to underlie syntactic combination (Flick and
Pylkkänen, 2020; Hagoort, 2005; Lyu et al., 2019;
Matchin et al., 2019; Matchin and Hickok, 2020).
The optimal penalty term α of the ridge regressions
was determined by automatic cross-validation.

Similarly, the five control variables, time-aligned
to the offset of each word, were first convolved with
the HRF and then regressed against each subject’s
fMRI timecourse of each vertex within the lan-
guage mask using ordinary linear regression (OLS).

The regression scores R2 for the Composition
Scores and the control variables, obtained for each
subject, were normalized by the noise ceiling, i.e.,
the Inter-Subject Correlation (ISC; Hasson et al.,
2004) of the regression scores R2

ISC . The R2
ISC

was computed as the mean regression score of all
subjects, where the regressor is the mean fMRI
signal of all subjects. The normalized regression
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Figure 4: Correlation matrix among the 32 layers of LLaMA2-
chat.

scores were calculated as R̄2 = R2/R2
ISC. Figure

1 illustrates our model-brain comparison methods
with an example sentence.

Statistical significance testing. At the group
level, the β values for the control variables and the
Composition Score at each layer of the two LLMs,
averaged over subjects, underwent a one-sample
one-tailed t-test with a cluster-based permutation
test (Maris and Oostenveld, 2007) involving 10,000
permutations. Clusters were formed from statistics
corresponding to a p-value less than 0.05, and only
clusters spanning a minimum of 20 vertices were
included in the analysis. These analyses were con-
ducted using the Python packages MNE (v1.0.3)
and Eelbrain (v0.39.8).

4 Experiment settings

4.1 Text stimuli

The text of the audiobook "The Little Prince" in
English comprises 15,376 words and 1,499 sen-
tences. The mean sentence length is 10.20, with a
standard deviation of 6.94. Since the text is derived
from an audiobook, the sentences lack punctuation.
Consequently, we input the text data sentence by
sentence into the LLMs to mitigate ambiguity.

4.2 fMRI data

We use the fMRI recordings of the English sub-
set of “The Little Prince” dataset (Li et al., 2022),
a publicly available dataset containing the fMRI
recordings of 49 English subjects (30 females,
mean age=21.3 years, SD=3.6) listening to the
audiobook "The Little Prince" in English for 94
minutes in total. The preprocessed volumetric data
were projected onto a "fsaverage5" template sur-
face (Fischl, 2012). The fMRI signals are z-scored

across the time dimension for each participant, sur-
face voxel and session independently.

4.3 Model

We use the widely-used open-source LLM,
LLaMA2 (Touvron et al., 2023) in all our ex-
periments. LLaMA2 comprises two versions:
LLaMA2-base (pretrained on about 2.0T tokens
in multiple languages) and LLaMA2-chat (the
LLaMA2-base model fine-tuned with instructions
in English), and we test both of the versions. To
manage computational resources (see Appendix A),
we employ the 7B-sized models.

4.4 Token-word alignment

To compare the LLM-based Composition Score of
each subword token with the word frequency and
syntactic node counts, we employ the following
procedure for token-word alignment: Given a sen-
tence with L words as w1, .., wL, when inputting
the prefix w1, ..., wk (up to the last subword token
of wk if it is split by the LLaMA2 tokenizer), the
model state is aligned with the control variables
of wk, as well as the human fMRI recording corre-
sponding to the offset of wk (taking into account
the delay and duration of BOLD signals). This
alignment ensures that we compare the model state
and the control variables given the same contextual
input.

5 Results

5.1 Patterns of Composition Scores

Layerwise correlation. Given that the Compo-
sition Scores across different model layers ex-
hibit different distributions, we hypothesize that
they contain unique information regarding meaning
composition. To validate this assumption, we com-
pute the Pearson’s r among the layerwise scores.
The results are depicted in Figure 4 and Figure 10
(in Appendix B). It can be seen that in both the base
and chat models, the layers form small correlated
clusters, but the overall correlation among all lay-
ers is not high, with the highest absolute correlation
coefficient reaching around 0.59.

Prefixes with high and low Composition Scores.
To gain deeper insights into how the model assigns
high and low Composition Scores under various
input prefixes, we analyze prefixes with the highest
and lowest Composition Scores in each layer. Table
1 presents examples of such prefixes with high and
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Figure 5: The regression scores R2 between the Composition Scores from LLaMA2-chat and the control variables.

low Composition Scores across lower, middle, and
higher layers.

The lower layers exhibit clearer patterns. For
example, in Layer 1, prefixes ending with common
function words such as prepositions and conjunc-
tions (e.g., "of", "by" etc.) tend to receive low
Composition Scores, while those ending with the
determiner "the" receive high Composition Scores.
However, in Layer 3, these patterns appear to re-
verse, with some less common words like "boa
constrictor" receiving high scores. In the higher
layers, the patterns become less clear. One poten-
tial trend is that prefixes ending with specific words
such as "able" tend to receive low scores.

We hypothesize that the varying patterns of Com-
position Scores across different layers may be at-
tributed to the residual connection structure and
the nature of model training. Due to the presence
of residual connections, neural memories across
different layers are somewhat parallel (Voita et al.,
2023). As a result, a prefix may match the key-
value memory in some layers but not in others,
leading to distinct scores across layers. Moreover,
in the language modeling task, the model must op-
timize its neural memory storage to better fit the
training corpus. Consequently, both frequent and
infrequent prefixes may be memorized, resulting in
intricate memory composition patterns.

Composition Score vs. control variables. To in-
vestigate whether the Composition Scores contain
information regarding word frequency or syntac-
tic structure, we conduct regressions of the Com-
position Score for each word against their word
frequency and the node counts based on the three
parsing strategies. Figure 5 illustrates the regres-
sion scores R2.

The R2 scores reveal that the bottom and top
layers exhibit higher R2 scores with the control
variables, particularly the log frequency and the
node count from top-down parsing. However, the

overall R2 scores across layers are not notably high,
suggesting the presence of additional information
in the Composition Scores beyond word frequency
and syntactic information.

5.2 fMRI results for the control variables

5.2.1 Regression scores

The normalized regression scores of the control
variables on the fMRI data are shown in Table
2. Among the control variables, wordrate shows
the highest maximum and mean R2 scores over
the significant brain clusters. Log-transformed
word frequency and the node count based on left-
corner parsing also show relatively higher regres-
sion scores.

5.2.2 Significant brain clusters

Word rate. Consistent with prior research (e.g.,
Li et al., 2022), we find a widespread left temporal-
frontal network in the LIFG, the left anterior supe-
rior temporal gyrus (LaSTG) and the left posterior
middle temporal gyrus (LpMTG) for wordrate (N
vertices=948, t=2.99, p<0.0001), indicating a gen-
eral sensitivity to words.

Word frequency. The log word frequency is as-
sociated with a cluster in the LSTG (N vertices=73,
t=-2.33, p=0.02), suggesting that lower word fre-
quency induces higher LSTG activity.

Node counts. We find a significant cluster in the
LaSTG (N vertices = 217, t = -2.54, p = 0.0001)
associated with the node counts based on the left-
corner parsing strategy. No significant clusters are
identified for the node counts based on top-down or
bottom-up parsing. These results further corrobo-
rate prior findings (Nelson et al., 2017) suggesting
that left-corner parsing may align more closely with
human processing of hierarchical sentence struc-
tures. See Figure 6 for the significant brain clusters
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Layer Prefixes with low Composition Scores Prefixes with high Composition Scores

1 I was discouraged by the failure of → my
the second time was eleven years ago by → an

thus I abandoned at the → age
after grooming oneself in the → morning

3 then he added so you also come from the → sky
little drinking water left that I had to fear the → worst

I then drew the inside of the boa → con(strictor)
I am beginning to → understand

16 it would suffice to be able → to
he should be able → for

I have seen them from close → up
who are you asked → the

32 it would suffice to be able → to
on what planet have I come down on asked → the

I would like to see → a
I was very worried because → my

Table 1: Example prefixes with low and high Composition Scores in different layers of the LLaMA2-base model. The token
after the right arrow (→) is the next token to predict in the text corpus.

for wordrate, log-transformed word frequency and
node counts based on left-corner parsing.

Figure 6: Significant brain clusters for the word rate, word
frequency, and left corner parsing steps.

Figure 7: Significant brain clusters for Composition Scores
and the significant layers from LLaMA2-chat. The light pink
regions in the brain indicate the language mask. The grey lines
depict the normalized β value for each layer of the random
models. The shaded region indicates the significant layers.
*** indicates p <0.001.

5.3 fMRI results for the Composition Scores
5.3.1 Regression scores
The normalized regression scores with the Compo-
sition Score exceed those with the control variables
in both maximum and mean values. This indicates

Regressor Max Mean
score-base .1774 .0603
score-chat .1361 .0462
word rate .0697 .0229
bottom-up .0005 .0002
top-down .0037 .0011
left-corner .0064 .0018

log freq .0067 .0020

Table 2: Normalized regression scores R2 on the fMRI data
by the Composition Score and the control variables.

that the Composition Score provides a better fit
to the human neural data compared to the control
variables (refer to Figure 2).

5.3.2 Significant brain clusters
The Composition Scores derived from LLaMA2-
chat exhibit a significant association with a cluster
in the LIFG and the LaSTG (N vertices = 517, t
= 3.52, p < 0.0001). These regions overlap with
significant clusters for word rate, word frequency,
and left-corner node count (refer to Figure 6), in-
dicating the multifaceted nature of meaning com-
position during human sentence comprehension.
Notably, the significant model layers include the
middle layers 8-13 and the higher layers 21-25,
suggesting that meaning composition in the human
brain cannot solely be attributed to word frequency
or memorization of specific words (for patterns of
Composition Scores across layers, see Section 5.1).

5.4 Comparison with fMRI results for hidden
layer activity

The results presented above identify significant
brain clusters associated with our proposed Com-
position Score. However, it remains to be deter-
mined whether this score provides additional infor-
mation beyond that obtained through typical encod-
ing models that utilize hidden layer activity (Huth
et al., 2016; Jain and Huth, 2018; Kay et al., 2008;
Naselaris et al., 2011). To explore this, we con-
duct further analyses using hidden layer activity
from LLaMA2-chat and base models as features in
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our encoding model. We first compress the high-
dimensional hidden states into 100-dimensional
vectors using PCA to save computational resources.
Subsequently, we perform ridge regression to pre-
dict the activity of each vertex within a language
mask for individual subjects. We then identify sig-
nificant brain clusters and layers for the normalized
regression scores (R2) at the group level using the
same spatiotemporal clustering analysis outlined in
Section 3.3.

The analysis reveals a significant cluster within
a broad left temporal-parietal network (N vertices
= 515, t = 1.68, p < 0.0001) for the chat model (see
Figure 8). Similar findings are observed for the
base model (detailed in Appendix C). The cluster-
ing patterns differ markedly from those associated
with the Composition Score, suggesting that the
model’s hidden states and our Composition Score
capture different aspects of meaning comprehen-
sion.

Figure 8: Significant brain clusters for hidden layer activity
and the significant layers from LLaMA2-chat. The light pink
regions in the brain indicate the language mask. The grey line
depicts the normalized R2 value for the random model.

6 Discussion

6.1 Composition Score vs. hidden states of
LLMs

The Composition Score proposed in this paper
adopts the quotient of the minimum and maxi-
mum distances between the vocabulary distribu-
tions between the individual neural memory and
the layer output. Our metric emphasizes the "de-
gree of compositionality," specifically assessing
whether the final model output is dependent on a

limited subset of neurons or a broader, distributed
network. This approach is distinct from previous
studies that compare the hidden layer activity of
language models with brain activity during natural-
istic comprehension (Huth et al., 2016; Goldstein
et al., 2022; Schrimpf et al., 2021; Caucheteux and
King, 2022). As shown in Figure 8, the hidden
states of LLaMA2-chat correspond to a large clus-
ter along the left temporal-parietal pathway, con-
trasting with the activities in the LIFG and LaSTG
observed for the Composition Score (see Figure 7).
This suggests that while the hidden layer activity
may represent the unfolding of meaning in general,
our Composition Score provides insights into the
process of meaning composition.

6.2 Composition Score in LLMs vs. meaning
composition in the brain

The term "memory composition," was used in Geva
et al. (2021) to explain the function of FFN blocks
in Transformers, and we consider it to potentially
mirror the operations for meaning composition in
the human brain. Previous neuroimaging studies
have identified the LATL and LPTL as crucial
for meaning composition (Bemis and Pylkkänen,
2011, 2013; Parrish and Pylkkänen, 2022; Zhang
and Pylkkänen, 2015; Flick and Pylkkänen, 2020;
Hagoort, 2005; Lyu et al., 2019; Matchin et al.,
2019; Matchin and Hickok, 2020; Li and Pylkkä-
nen, 2021), but a mechanistic understanding of how
complex meanings are assembled from individual
neurons remains elusive. Our Composition Score
quantifies the degree of composition in LLMs for
each word within a context, with a high score in-
dicating the involvement of more neurons in the
representation of a word. This concept also aligns
with literature on "sparse" or "distributed" coding
for object representation (Quiroga et al., 2008) such
as the "Jennifer Aniston neuron" study by Quiroga
et al. (2005), which showed that individual neurons
in the medial temporal lobe (MTL) can be selec-
tively activated by different images of the same
individual.

7 Conclusion

In this paper, we introduce a novel model-based
metric, the Composition Score to quantify mean-
ing composition. We examine its correlation with
human neural activity and identify several brain
clusters, offering insights into the process of mean-
ing composition in the brain.
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Limitations

One key limitation of this study is that we have yet
to fully comprehend the patterns of high and low
Composition Scores for different sentences across
different layers. We hypothesize that these patterns
are related to the optimized memory efficiency of
the LLMs, which may resemble memory mecha-
nisms in the human brain.

Moreover, The Composition Score proposed in
this paper adopts the quotient of the minimum and
maximum distances between the vocabulary distri-
butions between the individual neural memory and
the layer output, which tries to capture the popu-
lational variance of the memorized and predicted
vocabulary distributions. However, this metric may
over-simplify the true populational variance, espe-
cially when the distances are rather sharply than
evenly distributed. In such cases, the calculation of
the Composition Scores can be adapted to include
more detailed features of the distance distribution,
by using information theory-based metrics such as
entropy or the Gini Index.

Another limitation is that we solely employ the
LLaMA2-7B models for the analysis, which may
not guarantee the generalizability of our findings
to other LLMs. However, given that the architec-
ture of the FFN block remains largely consistent
across LLMs, our method can be adapted to other
models with minor modifications to the code. Ad-
ditionally, our study solely focuses on English text
stimuli, leaving the potential for further exploration
in multilingual experiments.
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A Computational Resource

All experiments are performed on platforms with
20 Intel Xeon Gold 6248 CPUs, 236 GB ROM,
and 4 Nvidia Tesla v100 32 GB GPUs. Calculating
the Computation Scores requires around 1 GPU
hour for each model, and each regression requires
around 2 hours on the platform for each human
subject.

B Results of LLaMA2-base for
Composition Score

Figure 10 in Appendix B displays Pearson’s r
among the layerwise Composition Score from
LLaMA2-base. Similar to LLaMA2-chat, the lay-
ers form small correlated clusters and do not ex-
hibit high overall correlation. Figure 9 illustrates
the regression scores between the layerwise Com-
position Score from LLaMA2-base and the control
variables. The results mirror those of LLaMA2-
chat. Figure 11 in Appendix B depicts the signif-
icant brain clusters correlated with Composition
Scores from LLaMA2-base. Similar to LLaMA2-
chat, there are two separated clusters in the first
and second half of the model layers respectively,
and the brain clusters closely resemble those of
LLaMA2-chat.
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Figure 9: The regression scores R2 between the Composition Score from LLaMA2-base and the control variables.

Figure 10: Correlation matrix among the 32 layers of
LLaMA2-base.

C Results of LLaMA2-base for hidden
layer activity

Figure 12 in Appendix C depicts the significant
brain clusters correlated with hidden layer activ-
ity from LLaMA2-base. Similar to LLaMA2-chat,
there is a wide left temporal-parietal network sig-
nificantly associated with the hidden states for all
layers (N vertices = 503, t = 1.69, p < 0.0001).

Figure 11: Significant brain clusters for Composition Scores
and the significant layers from LLaMA2-base. The orange and
red lines depict the normalized β value for each layer of the
two models. The grey lines depict the normalized β value for
each layer of the random models. The shaded region indicates
the significant layers. *** indicates p <0.001.

Figure 12: Significant brain clusters for hidden layer activity
and the significant layers from LLaMA2-base. The light pink
regions in the brain indicate the language mask. The grey line
depicts the normalized R2 value for the random model.
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