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Abstract
With the bloom of Large Language Models
(LLMs), Multimodal Large Language Mod-
els (MLLMs) that incorporate LLMs with pre-
trained vision models have recently demon-
strated impressive performance across diverse
vision-language tasks. However, they fall short
to comprehend context involving multiple im-
ages. A primary reason for this shortcoming
is that the visual features for each images are
encoded individually by frozen encoders be-
fore feeding into the LLM backbone, lacking
awareness of other images and the multimodal
instructions. We term this issue as prior-LLM
modality isolation and propose a two phase
paradigm, browse-and-concentrate1, to enable
in-depth multimodal context fusion prior to
feeding the features into LLMs. This paradigm
initially “browses” through the inputs for es-
sential insights, and then revisits the inputs to
“concentrate” on crucial details, guided by these
insights, to achieve a more comprehensive un-
derstanding of the multimodal inputs. Addition-
ally, we develop training strategies specifically
to enhance the understanding of multi-image
inputs. Our method markedly boosts the perfor-
mance on 7 multi-image scenarios, contributing
to increments on average accuracy by 2.13%
and 7.60% against strong MLLMs baselines
with 3B and 11B LLMs, respectively.

1 Introduction

Multimodal Large Language Models (MLLMs)
have recently garnered attention for their surging
popularity and impressive performance across di-
verse Vision-Language (VL) tasks (Team et al.,
2023; OpenAI, 2023; Qi et al., 2023). Among these
MLLMs, the paradigm that extending Large Lan-
guage Models (LLMs) with pre-trained vision en-
coders has shown remarkable abilities in visual rea-
soning and visual instruction-following (Wu et al.,

*These authors contribute equally.
BCorresponding authors: Peng Li and Fei Huang.
1Code is released at https://github.com/THUNLP-MT/
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Figure 1: Examples of the modality isolation issue.
(a) illustrates image-text isolation, where the child fig-
ure dominates the image while the “registration plate”,
which should have been focused on, is overshadowed.
(b) illustrates inter-image isolation, where the two im-
ages lack information regarding “directions” of each
other. Both situations undergo absence of awareness
regarding the global multimodal context.

2023; Yin et al., 2023). These models also draw
attention for their feasibility and flexibility in adapt-
ing to varied scenarios and demands (Liu et al.,
2023b; Zhu et al., 2023).

Despite its impressive abilities, this paradigm
faces challenges that obscure a deeper understand-
ing of multi-image and interleaved inputs (Dai
et al., 2023; Luo et al., 2023; Zhao et al., 2024;
Li et al., 2023d). The approach of simply glu-
ing up pre-trained vision and language models via
intermediate components (Li et al., 2023e; Liu
et al., 2023d) potentially neglects essential cross-
modality and inter-image interactions, leading to
the LLM being presented with isolate visual and
textual features without recognition of interleaved
multimodal inputs. We refer to this problem as
prior-LLM modality isolation, which further di-
vides two issues image-text isolation and inter-
image isolation. These challenges have received
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considerable attention but remain unresolved.

Firstly, image-text isolation happens when
frozen vision encoders produce generic visual fea-
tures, overlooking crucial target-specific informa-
tion. For instance, in Figure 1 (a), the emphasis
should be on the “registration plate”. This plate,
occupying only a minor area of the image, is prone
to being overshadowed by predominant elements
due to inadequate image-text interaction. To tackle
this problem, Dai et al. (2023) and Luo et al. (2023)
integrate textual instructions into visual feature ex-
traction to enhance the responsiveness of these fea-
tures to the given instructions. Moreover, some
researchers propose to alter the internal structure of
LLMs to bridge the gap between visual and linguis-
tic spaces (Wang et al., 2023). While these methods
are effective in single-image scenarios, they do not
address the concurrent fusion of multiple images.

Secondly, inter-image isolation arises from en-
coding images separately, disrupting semantic links
among images and conveying misinformation of
the multi-image context. This issue is particularly
prevalent in scenarios involving interleaved and
multiple images. As illustrated in Figure 1 (b), the
moving direction regarding the other image should
be considered. However, such relational informa-
tion remains isolated and fails to transmit across
images. Consequently, the lack of awareness re-
garding relevant content from other images can lead
to the exclusion of essential visual information. To
handle this issue, recent studies have developed
context schemes that aim to improve image-text
correlations and the connections between multi-
ple images (Zhao et al., 2024; Li et al., 2023b).
Nevertheless, the prior-LLM fusion of multimodal
context are overlooked.

To mitigate the two outlined issues, we utilize a
cognitive strategy that mirrors the process through
which humans typically understand new content:
by first grasping the main ideas during an ini-
tial browsing and then revisiting the material to
deepen their understanding with the browsing in-
sights (Garner, 1987). Inspired by this approach,
we propose a novel paradigm named Browse-and-
Concentrate (Brote). This paradigm begins with
a browsing phase to generate a condition context
vector, serving as a collection of browsing insights,
encapsulating the main intent and visual informa-
tion derived from images. Subsequently, a con-
centrating phase is employed to comprehend mul-
timodal inputs, guided by the condition context

vector. Furthermore, to enhance the effectiveness
of the browsing insights, we have developed train-
ing strategies that prompt the model to implicitly
leverage these insights for more precise extraction
of image features, allowing for the possibility of
bypassing explicit browsing in some scenarios. Our
contributions can be summarized as follows:

• We address the challenge of prior-LLM
modality isolation by proposing the browse-
and-concentrate paradigm, alongside training
strategies to encourage the model to leverage
and explore the browsing insights.

• We explore two method to implement our
paradigm, demonstrating that Brote not only
learns to concentrate on interleaved inputs via
explicit context vectors, but also integrates
this ability directly into the model implicitly.

• We conduct comprehensive evaluations on 7
multi-image scenarios and exhibits notable ad-
vancements, improving the average accuracy
by 2.13% and 7.60% against baselines with
3B and 11B LLMs, respectively.

2 Related Work

2.1 Empowering LLMs with Visual Abilities
via Pre-trained Vision Models

With the surging of LLMs, MLLMs that empower
LLMs with visual abilities have also witnessed a
rapid growth. Following the initial effort (Tsim-
poukelli et al., 2021) to convert visual features into
readable embeddings for LLMs, researchers have
proposed to bridge vision and language modalities
via diverse visual prompt generators (VPG), such
as Resampler (Alayrac et al., 2022), Q-Former (Li
et al., 2023e; Dai et al., 2023), and linear pro-
jections (Liu et al., 2023d; Huang et al., 2023).
They utilize image features from frozen vision mod-
els (Dosovitskiy et al., 2021; Radford et al., 2021),
and subsequently integrate these features into pre-
trained LLMs. These MLLMs inherit cognitive
and perceptual abilities from vision models and the
emergent ability from LLMs, exhibiting impressive
performance without intensive training. However,
they bear the modality isolation issue that obscures
a deeper understanding multimodal context.

2.2 Enhancing Visual Features with Textual
Instructions

Recent studies have concentrated on augmenting
the capability for MLLMs to follow visual instruc-
tions (Liu et al., 2023d; Dai et al., 2023; Luo et al.,
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Figure 2: The illustration of browse-and-concentrate paradigm (a), model architecture of the concentrating phase
(b), and our proposed training strategies (c). (a) shows the pipelines of Brote models, (a)-1 for Brote-EX and (a)-2
for Brote-IM. (c) depicts the strategies described in §3.3 and §3.4.

2023; Wang et al., 2023; Ye et al., 2023). Some
researchers have focused on the fine-tuning LLMs
to better response to visual instructions (Ye et al.,
2023; Liu et al., 2023c), employing techniques such
as LoRA (Hu et al., 2022a). While other studies tar-
get the issue of image-text isolation by manipulat-
ing with the visual features. For instance, Dai et al.
(2023) enhance Q-Former with textual instructions
to obtain instruction-aware visual features. Luo
et al. (2023) integrate learnable instruction features
directly into the vision encoders. Despite these in-
novations, they primarily incorporate instructions
into the vision modules pay less attention to the
complexity of multi-image senarios.

2.3 MLLMs Enhanced for Comprehending
Multiple Images

The ability to comprehend multiple images simul-
taneously draws considerable attention (Alayrac
et al., 2022; Zhao et al., 2024; Li et al., 2023b;
Shukor et al., 2023). Multi-image scenarios can be
categorized into interleaved image-text formats and
multimodal ICL settings. To improve ICL prefor-
mance, Shukor et al. (2023) analyse prompt-based
approaches, introducing three templates for mul-
timodal ICL. Meanwhile, some researchers work
on methods requiring model-tuning (Alayrac et al.,
2022; Shukor et al., 2023; Sun et al., 2023). Ad-

ditionally, some scholars broaden the exploration
of multi-image scenarios to include both ICL and
interleaved inputs. Li et al. (2023d) insert middle-
layer LLM outputs into the VPG as additional guid-
ance for spotting the differences between images.
Zhao et al. (2024) and Li et al. (2023b) construct
datasets targeting the multi-image issue, and pro-
pose context schemes to improve the understanding
of interleaved inputs. Despite these advancements,
the prior-LLM multimodal context fusion is not
sufficiently explored.

3 Method

3.1 Overview

To stimulate prior-LLM multimodal context fusion
and improve the awareness of multimodal context
of the LLM, we propose a paradigm, Browse-and-
concentrate (Brote). It progressively comprehends
images via two phases, browsing and concentrat-
ing. As illustrated in Figure 2 (a), in the browsing
phase, the MLLM browses the entire input and gen-
erates a condition context as the browsing result,
denoted as C in the rest of this paper. Then, in
the concentrating phase, the model comprehends
multimodal inputs under the guidance of C. We
refer to the model of browsing phase as MB and
the model of concentrating phase as MC .
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Our proposed Brote can be further divided into
two modes, explicit and implicit, regarding the dis-
tinct approaches of incorporating C. The explicit
browse-and-concentrate (Figure 2 (a)-1), denoted
as Brote-EX, operates with separated parameters
(MB ̸= MC). This explicit mode first gener-
ates C using MB , followed by MC to infer the
final outcomes. In contrast, for the implicit browse-
and-concentrate (Figure 2 (a)-2), denoted as Brote-
IM, employs shared parameters for both phases
(MB = MC), permitting MC to directly predict
the answer without the need to explicitly produce
intermediate vectors from the other model. Along
with the proposed paradigm, we devise training
strategies for the explicit browse-and-concentrate
mode. This strategies encourage the model to lever-
age and explore the generated condition context
vectors. The explicit mode serves as a precursor to
the implicit mode, preparing the model with funda-
mental and essential ability to understand C.

We will elaborately describe the workflow of
Brote in §3.2, followed by the proposed strategies
for pre-training (§3.3) and fine-tuning (§3.4).

3.2 Browse-and-Concentrate Paradigm

We represent the interleaved multimodal input as
x, defined as x = [xm0 , xm1 , . . . , xmn , . . . , xmN−1]
for N tokens, with n = 0, 1, . . . , N − 1. Each
token is associated with modality m, where m ∈
{image, text}. Images are individually encoded by
vision encoder gϕv(·) with parameters ϕv, which
provides image features v = gϕv(x

m
n ), for m =

image. Referring to Emb(·) as the embedding
mapping, v is subsequently integrated with tex-
tual instructions htext = Emb(xmn ), for m = text,
via a Q-Former fϕQ

(·, ·) parameterized by ϕQ,

h = [hm0 , hm1 , . . . , hmn , . . . , hmN−1] (1)

hm
n =

{
Emb(xmn ) if m = text

fϕQ
(v, [Q;htext]) if m = image

(2)

where h denotes the multimodal embeddings, and
Q is the learnable query tokens in Q-Former.

The LLM component of MB is denoted by
fϕL

(·) with parameters ϕL. The browsing phase
produces C by extracting the last hidden states of
the LLM fϕL

(·), denoting as follows:

C = f
(l)
ϕL

(h). (3)

where l represents the last layer of fϕL
(·).

...

Generate detailed descriptions for each images
involved in the following text. You can refer to the
general captions and additional information for
the targets ......

The general captions are as follows:

Additional information for the targets:
C1 C2 C3

QA1 QA2

C1 C2 C3

Question: What are the breeds of dog in the first two
images? Answer: They are corgis. 
Question: For the image #3,  how many cats are there
and what are they doing? Answer: 3 cats are sleeping.

Two corgis lying
on the grass in this
image, and a same
dog chasing in the
other image

D2

One corgis is run-
ning in this image,
while two dogs of the
same breed is lying
in the second image

D1

(a) Generation pipeline (b) An  example

Figure 3: A illustration of data construction process (a)
described in §3.3, with a detailed example (b). The gen-
erated descriptions should be aware of both the targets
(“breeds”, “how many”, “doing”) and another images.

In the concentrating phase, the images undergo
alterations conditioned on C. We add C to query
tokens Q, and obtain the altered visual token em-
beddings h̃image as,

h̃image = fϕQ
(v, [Q+ Linear(C);htext]), (4)

where Linear(·) denotes the linear projection, and
[·; ·] denotes concatenation. In this phase, Q-
Former accepts an extra input C compare to the
browsing phase. Finally, the prediction y with T
tokens is formulated as follows:

y = MC(x, C)
= argmax

y
p(y|x, C; fϕ′

L
, fϕ′

Q
, gϕ′

v
) (5)

= argmax
y

T∏

t=1

p(yt|y<t,x, C; fϕ′
L
, fϕ′

Q
, gϕ′

v
),

where yt is the t-th token of the prediction, y<t =
y1, · · · , yt−1, fϕ′

L
, fϕ′

Q
, gϕ′

v
are the LLM, Q-

Former, and vision encoder components of MC

parameterized by ϕ′
L, ϕ′

Q, and ϕ′
v, respectively.

3.3 Context-Enhanced Pre-Training
Condition context-enhanced pre-training. The
pre-training stage aims at adapting the model to uti-
lize C and enhancing visual feature extraction with
its conveyed multimodal context. To this end, we
propose a training task that challenges the model to
generate task-specific descriptions without direct
exposure to the question. Initially, we obtain C by
feeding the intact inputs into MB . Then, in the
concentrating phase, MC is required to generate
image descriptions specialised for the questions
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that are not explicitly presented but instead implic-
itly encoded within C. As depicted in Figure 2 (c)
“Pre-training”, the model is presented with only the
text “Please describe the image” alongside altered
visual tokens h̃image. This strategy urges the model
to explore C for target information. Additionally,
we combine the task-specific training targets to-
gether with the general ones, enabling the model
to discern between inputs with and without C. The
objective for pre-training is as follows:

LMC
=−

T∑

t=1

ŷt log p(yt|x, C; fϕ′
L
, fϕ′

Q
, gϕ′

v
), (6)

where ŷt is the t-th groundtruth token.
Data construction. In alignment with the task-
specific training strategy, we design a data gen-
eration method to secure task-specific supervi-
sions as mentioned above. Inspired by Prompt-
Cap (Hu et al., 2022b), we leverage LLMs to
craft target-aware image descriptions. Our ap-
proach is extended from the producing of individ-
ual image descriptions to addressing multiple in-
terleaved inputs, enabling a more profound under-
standing of multi-image and interleaved context.
We obtain the image-target related descriptions
as demonstrated in Figure 3. The LLM receives
a triplet (P, CK , QAJ), comprising task instruc-
tion prompt P , general image descriptions CK and
question-answer pairs QAJ , where K and J rep-
resent the counts of images and targeted question-
answer pairs respectively. Also noticing that K is
not necessarily equal to J . For each k-th image
(k = 1, 2, . . . ,K), the LLM is required to gener-
ate image description Dk that satisfies the target
clarified in P . Accordingly, Dk contains specific
messages for questions in QAJ and information
about the other related images o, k ̸= o.

We construct a total of 56k data for the pre-
training stage, and manually assess the quality of
the generated captions by randomly sampling 230
generated captions. We detect that 36 (out of 230)
captions contain hallucination or minor incorrect
information, while the rest 84% are of good qual-
ity, containing desired and correct question-aware
information. Please refer to Appendix A for details
of the generated data.

3.4 Condition-Aware Task Fine-Tuning

To encourage further exploration of information
from C for VL tasks, we propose a new training
strategy named context-dropping training. The

strategy intentionally omits particular inputs yet
requiring the model to infer for answers solely with
the assistant of C. It motivates the model to com-
pensate for the missing information from the pro-
vided condition context C. We propose different
dropping strategies as illustrated in Figure 2 (b):

• Drop images: This involves two approaches,
removing certain images (Figure 2 (b), “Con-
text Dropping (IMG-N)”), and replacing orig-
inal images by blank placeholders (Figure 2
(b), “Context Dropping (IMG-B)”).

• Drop text: We remove the text before the last
image as shown in Figure 2 (b), “Context
Dropping (TXT)”.

• Drop ALL: A combination of the above set-
tings denoted as “ALL”, applied with the same
probabilities.

To ensure integration with C, we preserve the last
image across all dropping strategies. Notice that
the “drop images” approaches are not applicable to
inputs with only one image. These strategies com-
pel the model to infer indispensable information
from C that should have been given in the input.

As mentioned in §3.1, we investigate two modes
for incorporating C, Brote-EX and Brote-IM. For
Brote-EX, we apply context-dropping strategies to
the concentrating phase with C provided by frozen
model MB . The training objective for explicit
mode is LMC

as described in Equation 6. While
for Brote-IM, parameters of MB are shared with
MC . When optimizing the shared parameters, we
also take into account the loss for MB as follows:

LMB
= −

T∑

t=1

ŷt log p(yt|x; fϕL
, fϕQ

, gϕv). (7)

For the training of Brote-IM, we sum up the two
losses, for MB and MC respectively, as LMB

+
LMC

, denoted by dual-loss. Details of the training
process are documented in Appendix C.

4 Experiments

4.1 Implementation
We implement our method upon InstructBLIP (Dai
et al., 2023) with FlanT5 (Chung et al., 2022) as
the language backbone. We pre-train our model
on the 56k generated data as described in §3.3,
and then extract about 490k data from the MIC
dataset (Zhao et al., 2024) for model fine-tuning.
The fine-tuning data is sampled according to the
data-balanced sampling algorithm suggested by
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Model #Param
LLM

In-context Learning Multi-image / Video Tasks
AVG

VQAv2 A-OKVQA NLVR2 DEMON SEED MSVD
QA

MSRVTT
QA

#L
L

M
≤

10
B

KOSMOS-1 1.3B 51.8 - - - - - - -
InstructBLIP-XL 3B 31.76∗ 39.13∗ 52.59∗ 32.59∗ 52.7 43.40∗ 12.12∗ 37.77
MMICL-XL♢ 3B 69.16 53.43∗ 71.48∗ 38.14∗ 54.69∗ 53.68 42.36∗ 54.71
Otter 7B 45.39∗ 38.42∗ 49.54∗ 24.51 39.7 25.87∗ 9.78∗ 33.32
VPG-C-LLaMA2 7B - 34.29∗ 53.82∗ 37.22 - 6.03∗ - -
Flamingo-9B 7B 56.3 - - - - 30.2 13.7 -
Brote-EX-XL (ours) 3B 69.97 56.00 71.41 37.33 57.51 53.02 43.14 55.48
Brote-IM-XL (ours) 3B 68.94 56.43 76.02 37.34 57.86 56.06 45.08 56.84

#L
L

M
>

10
B

InstructBLIP-XXL 11B 48.21∗ 45.92∗ 64.54∗ 33.00∗ 50.81∗ 44.30∗ 15.49∗ 43.18
MMICL-XXL♢ 11B 70.56 54.85∗ 56.16∗ 36.30∗ 56.66∗ 52.19 39.46∗ 52.18
EMU-2 33B 67.0 - - - 62.8 49.0 31.4 -
Flamingo-80B 70B 63.1 - - - - 35.6 17.4 -
Brote-EX-XXL (ours) 11B 70.86 59.94 70.42 38.70 59.31 54.52 45.24 57.00
Brote-IM-XXL (ours) 11B 71.71 60.31 80.71 38.94 61.64 57.29 45.94 59.78

Table 1: Results for multi-image settings. The best results for models larger/smaller than 10B are separately bolded
and the seconds are underlined. ♢: the InstructBLIP version. We evaluate results which are not officially announced
using public checkpoints and mark them by *. SEED refers to SEED-Bench that contains both images and videos.

Model #Param
LLM VQAv2 A-OKVQA ScienceQA

-IMG
MME

Perception
MME

Cognition MMBench AVG

#L
L

M
≤

10
B

InstructBLIP-XL 3B 36.77 54.57 70.40 1093.70∗ 281.43∗ 69.68∗ 68.52
MMICL-XL 3B 69.13 52.12∗ 72.58∗ 1184.54∗ 277.86∗ 73.11∗ 75.81
LLaVA† 7B - - - 457.82 214.64 36.2 -
Otter† 7B 57.89∗ 41.92∗ 63.10 1292.26 306.43 48.3 69.51
Brote-EX-XL (ours) 3B 69.90 52.93 71.15 1203.87 301.79 73.27 77.18
Brote-IM-XL (ours) 3B 70.24 53.40 72.58 1181.95 266.79 74.29 75.90

#L
L

M
>

10
B InstructBLIP-XXL 11B 63.69 57.10 70.60 1212.82∗ 291.79∗ 70.34∗ 75.99

MMICL-XXL 11B 70.30 51.35∗ 74.92∗ 1313.88∗ 311.79∗ 76.58∗ 80.41
MMICL-XXL (BLIP-2)† 11B 69.99 - - 1381.74 428.93 65.24 -
Brote-EX-XXL (ours) 11B 71.58 56.47 77.69 1279.73 310.01 76.67 81.31
Brote-IM-XXL (ours) 11B 73.02 57.83 78.38 1284.13 300.00 77.34 81.66

Table 2: Zero-shot results for single-image settings. The best results for models larger/smaller than 10B are
separately bolded and the seconds are underlined. †: results of these models are taken from Zhao et al. (2024). We
evaluate results which are not officially announced using public checkpoints and mark them by *. For “AVG”, we
first average the MME scores over its subtasks, then calculate the average scores of all benchmarks in this table. We
include closely related baselines in this table, and refer readers to Appendix F for detailed results of other models.

Dai et al. (2023). Please refer to Appendix B for de-
tails of the training data and Appendix C for more
information of the training process.

4.2 Evaluation Settings

Baselines. We primarily employ models de-
signed for accepting multiple images or inter-
leaved image-text inputs as baselines, such as
MMICL (Zhao et al., 2024), Otter (Li et al.,
2023b) and VPG-C (Li et al., 2023d). Additionally,
MLLMs that are used to develop these baselines are
also considered, such as BLIP-2 (Li et al., 2023e)
and InstructBLIP (Dai et al., 2023). Please refer
to Appendix D for detailed information of the em-
ployed baselines. For models whose results are not

officially reported, we utilize the publicly available
checkpoints for evaluation.2

Benchmarks and Metrics. We investi-
gate diverse VL benchmarks and focus on
multi-image tasks, including visual reasoning
(NLVR2 (Suhr et al., 2019)), few-shot ICL for
image QA (VQAv2 (Goyal et al., 2017) and
A-OKVQA (Schwenk et al., 2022)), video QA
(MSVD QA (Xu et al., 2017), MSRVTT QA (Xu
et al., 2017), SEED-Bench (Li et al., 2023c)), and

2We use the public checkpoints to obtain the missing re-
sults for MMICL (https://huggingface.co/BleachNick),
InstructBLIP (https://huggingface.co/Salesforce), and
Otter (https://huggingface.co/luodian), together with
official scripts and required environments.
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Dataset Settings MMICL Brote-EX Brote-IM
Ours Ours-None Ours Ours-None

X
L

A-
OKVQA

0-shot 52.12 52.93 49.40 -3.53 53.40 51.88 -1.52
4-shot 53.43 56.00 55.10 -0.90 56.53 56.28 -0.25

SEED Image 57.99 61.90 59.79 -2.11 61.82 61.48 -0.34
Video 41.94 40.50 39.06 -1.44 42.52 42.11 -0.41

NLVR2 0-shot 71.48 71.41 69.27 -2.14 76.02 75.59 -0.43

Average 55.39 56.55 54.52 -2.03 58.06 57.47 -0.59

X
X

L

A-
OKVQA

0-shot 51.35 56.47 55.32 -1.15 57.83 57.61 -0.22
4-shot 54.85 59.94 58.70 -1.24 60.65 60.25 -0.40

SEED Image 59.17 63.70 63.26 -0.44 65.58 64.65 -0.93
Video 46.90 42.27 41.88 -0.39 46.37 46.25 -0.12

NLVR2 0-shot 53.62 70.42 68.60 -1.82 80.71 79.69 -1.02

Average 53.18 58.56 57.55 -1.01 62.23 61.69 -0.54

Table 3: Ablation study of the condition context vectors.
“Ours-None” indicates the none condition setting (re-
placing the condition by all-zero vectors when testing).

multi-image instruction following (DEMON (Li
et al., 2023d)). Note that SEED-Bench comprises
of both images and videos. For video benchmarks,
following Zhao et al. (2024), we uniformly extract
eight frames from the given video clips for answer-
ing the questions. For few-shot ICL, we employ
the widely used four-shot setting. Additionally,
we conduct experiments on single-image tasks to
fairly compare with models that are not designed
for multi-image settings. These tasks include
zero-shot setting for VQAv2, A-OKVQA and
MME (Fu et al., 2023). ScienceQA (Saikh et al.,
2022) (SciQA) is designed for Chain-of-Thought
(CoT) (Wei et al., 2022) scenario with accompany
hints, and we adopt the zero-shot CoT (ZS-CoT)
setting for this dataset. Details of these evaluation
benchmarks, including data scale, the type of tasks
and evaluation metrics, are listed in Appendix E.

4.3 Results
We report results for multi-image settings in Table 1
and single-image settings in Table 2. Drawing con-
clusions from these tables, our method presents
significant improvement for multi-image settings,
while concurrently improves the performance of 3
single-image tasks.

Our models exhibit notable advancements over
models in Table 1, showing profound comprehend-
ing ability for multi-image and interleaved inputs.
We outperform strong baselines, such as Instruct-
BLIP, MMICL and VPG-C, which include shallow
prior-LLM instruction-image fusion. Our method
goes beyond merely cross-modality integration be-
tween image and text to also include intra-modality
fusion among images. Impressively, our models
show consistent advantage over benchmarks involv-
ing videos and multiple images, and for few-shot

Models PT FT Drop AVG-Multi AVG

InstructBLIP - - - 42.56 50.34

Ours-sampled ✘ ✓ ✘ 46.51 (+3.96) 51.85 (+1.51)
Ours-sampled ✓ ✓ ✘ 47.12 (+4.56) 50.94 (+0.50)

Ours-sampled ✓ ✓ IMG-N 48.06 52.09
Ours-sampled ✓ ✓ IMG-B 48.06 51.90
Ours-sampled ✓ ✓ TXT 48.08 52.08
Ours-sampled ✓ ✓ ALL 48.87 (+6.31) 52.39 (+2.05)

MMICL - - - 47.05 51.68

Table 4: Ablation study of different training strategies
on XL-sized (3B LLM) models. “PT” refers to pre-
training, and “FT” denotes fine-tuning. “Ours-sampled”
is described in §4.4. “AVG-Multi” is the average score
for multi-image settings, including A-OKVQA 4-shot,
NLVR2, SEED video split and MSVD QA. “AVG”
refers to the average score over 7 tasks, with detailed
results presented in Appendix G.

ICL of QA tasks as well. For the average scores of
models following InstructBLIP paradigm, our mod-
els achieve improvements of 2.13% and 7.60% for
XL and XXL models respectively, over MMICL.

For single-image tasks reported in Table 2, our
models continue to manifest progress, present-
ing higher average scores. We improve the per-
formance for two zero-shot VQA tasks and one
MLLM benchmark, MMBench. However, our
models only show modest performance on MME.

4.4 Ablation Study

Impact of condition context vectors. To deter-
mine whether condition context vectors C con-
tribute to the improvement, we conduct ablation
study by removing C and observe a decline in ac-
curacy across various tasks, evaluation settings,
and model scales. In detail, we replace these vec-
tors by zero vectors to simulate the absence of C.
Experiments are conducted on zero-shot and few-
shot VQA, and multi-image visual reasoning tasks.
As shown in Table 3, the models augmented by C
(“Ours”) consistently outperform those with zero
vectors (“Ours-None”). The most substantial aver-
age discrepancy is observed in Brote-EX at the XL
scale (2.03%), while the smallest gap is presented
by Brote-IM at the XXL scale (0.54%). We notice
that Brote-EX tends to gain more directly from C
compared to Brote-IM, and conclude that Brote-IM
directly integrates additional benefits provided by
C into the model through dual-loss training. More
sophisticated analysis are documented in §5.1.

Impact of different training strategies. For effi-
cient iteration and validation, we create a subset by
sampling one-third of the training data for ablation
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Model A-OK NLVR2 MSVD SEED AVG Gain

Brote-EX 56.00 71.41 53.02 57.51 59.49 -
Brote-EX

(+2epoch) 55.83 75.07 55.60 57.60 61.03 1.54

Brote-IM 56.53 76.02 56.06 57.86 61.62 2.13

Table 5: Results of continue training with XL models.
“Brote-EX (+2epoch)” is training Brote-EX for 2 extra
epochs using dual-loss without providing C for MC .
“A-OK” is A-OKVQA for short. “Gain” implies the
increment from extra epochs over original Brote-EX.

studies on different training strategies, denoting the
resulting models as Ours-sampled. For fair compar-
ison, we also reproduce MMICL-XL (with Instruct-
BLIP backbone) using this subset3. We evaluate
the average scores of training strategies described
in §3.4 and §3.3, with a special focus on prior-
LLM multimodal context fusion for multi-image
scenarios. The averaged scores for multi-image
tasks and the overall tasks are reported in Table 4,
with detailed results provided in Appendix G. The
performance of InstructBLIP serves as the base-
line and is used to indicate the contribution of each
of the designed strategies. Summarised from Ta-
ble 4, the models equipped with context-dropping
strategies yield higher average scores. Notably, the
dropping-ALL strategy presents the highest aver-
age scores of both multi-image and overall tasks,
showing profound multimodal context handling
ability. We consequently adopt this strategy for
training our Brote models.

5 Discussions and Analysis

5.1 Explicit Versus Implicit
As discussed in §4.4, Brote-EX exhibits a more sig-
nificant benefit from C compared to Brote-IM. We
propose two potential reasons for this observation:

• Brote-IM gains advantages from extra training
steps rather than insights provided by C;

• Brote-IM effectively incorporates the capabili-
ties afforded by C into the parameters of LLM
and Q-former during the training process.

For further investigation, we extend the training of
Brote-EX with the same configurations and objec-
tives as applied to Brote-IM, except that we zero
out C for the concentrating phase. Specifically, we
replace C in Equation 5 by zero vectors. Brote-IM
is trained for two epochs based on Brote-EX as

3We use the published code from https://github.com/
HaozheZhao/MIC

A cat sitting in an
indoor envrionment 

A dog sitting on a
wooden floor 

a 
capybara

Brote-XXL(Ours):

a capybara
sitting on a stone

floor

MMICL-XXL:

Response

Figure 4: A case showing that our method is more
coherent to the given multimodal context.

detailed in Appendix C. Hence, we train Brote-EX
for additional two epochs, denoting this model as
Brote-EX (+2epoch). We report the results in Ta-
ble 5. The results reveal that the observed improve-
ments of Brote-IM over Brote-EX are not solely
attributable to increased training steps. Rather, the
improvements stem from the integration with C
during training. Although Brote-EX (+2epoch)
presents an average increase of 1.54% over Brote-
EX, Brote-IM exhibits an additional 0.59% average
improvement over Brote-EX (+2epoch) with the
participant of C during training, culminating in a
total increment of 2.13% over Brote-EX.

Furthermore, as detailed in Table 3, the absence
of C does not prevent Brote-IM models from out-
performing Brote-EX. This finding supports the
conclusion that Brote-IM integrates the function of
C into the model parameters themselves without
explicitly generate C from the other model, facilitat-
ing a more profound comprehension of multimodal
inputs. In contrast, Brote-EX relies on an extra ex-
plicit representation, condition context C, to obtain
multimodal comprehension and achieve good per-
formances. The superior performance of Brote-IM
affirms the efficacy of the dual-loss training strat-
egy. Brote-IM markedly benefits from C, thereby
enabling the development of a more apt parameter
set for multimodal context.

5.2 Case Study

In Figure 4, we illustrate a case study on multi-
modal ICL, highlighting the coherent performance
of our model in response to the input. Specifi-
cally, our model demonstrates an acute awareness
of the target information conveyed through the mul-
timodal inputs, capturing an intra-image connec-
tion characterized by “an animal sitting on/in a
certain place”. Compared to MMICL, our model
produces a response that precisely aligns with the
input, showcasing its profound ability to compre-
hend multimodal contexts.
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5.3 Efficiency of Inference
We investigate the efficiency of inference with our
models in terms of both time and GPU memory, as
our methods involve two forward iterations and an
additional C compared to other InstructBLIP-based
models. We conduct experiments with XL mod-
els using single NVIDIA A100 GPU, with batch
size 10 and data type float32. Results indicate
that Brote-EX requires almost equal GPU memory
(18G) and inference time (around 2.3 second per
batch) compared to MMICL. However, Brote-IM
exhibits an increase of GPU memory from 18G
to 24G for an additional “browsing” iteration, and
doubles the time cost to 5 second per batch.

6 Conclusion

In this paper, we address the prior-LLM modality
isolation issue for both image-text and inter-image
context, which lacks sufficient investigation in pre-
vious works. To mitigate this issue, we propose
browse-and-concentrate paradigm that leverages
the initial browsing insights for the prior-LLM mul-
timodal context fusion to stimulate more profound
comprehending of multi-image and interleaved in-
puts. We present in-depth analysis on our proposed
training strategies and the two approaches for im-
plementing our proposed paradigm. The two ap-
proaches, explicitly or implicitly browse through
and then concentrate on the context, exhibits com-
prehensive multimodal context understanding. Our
method demonstrates remarkable improvements on
7 multi-image tasks against strong baselines that
enable prior-LLM image-text fusion.

Limitations

We conlude the limitations of our method as fol-
lows: First, although presenting improved results
for multi-image scenarios, our method does not
achieve equally impressive performances across
all single-image tasks evaluated. This discrepancy
can be attributed to the employed backbone mod-
els (InstructBLIP), which already incorporate the
textual instructions into the visual feature extrac-
tion process, partially addressing the challenge of
prior-LLM modality isolation we aim to overcome.
Our future work includes validating the proposed
paradigm on broader backbone models. Second,
we do not specifically incorporate datasets designed
for visual instruction tuning, such as LLaVA (Liu
et al., 2023d), which could be a reason for the
modest performance on MME benchmark. In this

paper, we primarily focuse on multi-image scenar-
ios, such as question-answering and visual reason-
ing, without a particular emphasis on following
visual instruction. Third, as we introduce a two-
phase paradigm, the time cost and the required
GPU memory for inference with Brote-IM are also
increased.
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A Details of Our Constructed Data for
Pre-training

In this section, we provide details of the data gen-
eration process mentioned in §3.3. Inspired by
PromptCap (Hu et al., 2022b), we employ LLM
APIs to generate target-aware image descriptions,
but explore broader types of tasks. Extending from
single-image descriptions, we require the LLM4

to generate descriptions regarding other images as
well, enabling a more profound understanding of
multi-image and interleaved content. We utilize

4We use the GPT-4 API with version “gpt-4-1106-
preview”
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datasets targeting difference aspects of visual rea-
soning, including the maintenance of general world
knowledge, the spatial and temporal information,
the OCR ability, and the ability to distinguish dif-
ferences of images. These datasets are as follows:

• VQAv2 (Goyal et al., 2017) is a single-image
visual captioning dataset. It is utilized to con-
solidate the general ability of our model.

• ST-VQA (Biten et al., 2019) and IconQA (Lu
et al., 2021) are two single-image VQA
datasets. They primarily conrtibute the tasks
of OCR, object identification and counting.

• VSR (Liu et al., 2023a) is a VQA dataset ad-
dressing the spatial relation between two ob-
jects. It is employed to enhance the spatial
reasoning ability.

• VCR (Zellers et al., 2019) is a visual reason-
ing dataset with images extracted from video
scenes, focusing on the relations between pre-
senting figures and objects.

• NLVR2 (Suhr et al., 2019) and MIMIC-
IT(CGD) (Li et al., 2023b) both contain two
interleaved images with text. They help with
the ability to distinguish the differences be-
tween two images.

• iVQA (Yang et al., 2021) is a video question
answering dataset. We utilize this dataset to
promote the ability to deal with the sequential
information.

For datasets with naturally interleaved formats,
VCR, NLVR2, and MIMIC-IT, we directly employ
them to prompt LLMs, aiming to generate task-
specific and multi-image aware descriptions. For
other datasets, VQAv2, ST-VQA, IconQA, VSR,
and iVQA, we adopt their few-shot versions from
the MIC dataset (Zhao et al., 2024). In these ver-
sions, single-image instances are reconfigured into
a few-shot format, featuring one or multiple images
for zero to eight shots. These adapted instances
serve as QAJ , as detailed in §3.3, with the corre-
sponding questions designed as targeted tasks for
LLM responses. The statistics of our generated
data are listed in Table 6. We split instances con-
taining multiple images into single image paired
with the corresponding descriptions, and use them
for pre-training as described in §3.3.

Original
Dataset Task Type Format #Generated

Data
#Training

Pairs
♢IconQA VQA S + M 1.8k 5.4k
♡VSR VQA S + M 3.0k 14.4k
♢VQAv2 VQA S + M 6.5k 19.3k
△STVQA VQA S + M 10.0k 27.2k
□NLVR2 Reasoning I 10.0k 20.0k
♠CGD* Reasoning I 10.2k 20.5k
♣VCR Reasoning I 10.0k 62.0k
△iVQA Video-QA I 5.2k 22.4k

Total 56.7k 191.2k

Table 6: The statistics of our pre-training data. “S”:
single-image input; “M”: multi-image input, wherein
this case, the multiple images come from the few-shot
examples of sinlge-image QA pairs; “I”: naturally in-
terleaved data, such as VCR and videos. “CGD*”:
MIMIC-IT CGD task (Li et al., 2023a). ♢: datasets
licensed under CC-BY 4.0. ♡: datasets licensed under
Apache License, Version 2.0. ♠: datasets licensed un-
der MIT License. ♣: datasets licensed under Custom
License. △: datasets with unknown license. □: datasets
with CC-BY 4.0 License for annotations and unknown
license for images.

A.1 Prompt Templates for Pre-training Data
Generation

To be consistent with §3.3, we represent our em-
ployed prompt including task instruction P , the
general image descriptions CK , and the question-
answer pairs QAJ , where K and J are the number
of images and targeted question-answer pairs. We
provide prompt templates for the included datasets
as belows:

Prompt Template for Data Generation

General task instruction P
========
The general descriptions <caption> for each
image are as follows:
C1, C2, . . . , CK

========
Here are the additional information of
<Question>-<Answer> you should focus on!
QA1, QA2, . . . , QAJ

Detailed task instruction of P for different
datasets are as follows:

• Task Instruction for VQAv2 & VCR &
IconQA & ST-VQA & VSR:
Generate detailed captions of each image in-
volved in the following text according to the
original caption and the given <Question>-
<Answer> pairs. You should pay attention
to the information in the <Answer>. Your
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output should be in the json format, as {"im-
age0":"", "image1":"", "image2":""}. Your
output should also be natural as an original
caption and not include words like "answer"
or "caption"!

• Task Instruction for NLVR2:
Generate detailed captions of each image in-
volved in the following text according to the
original caption and the given <Question>-
<Answer> pairs. You should pay attention
to the information in the <Answer>. Your
output should be in the json format, as {"im-
age0":"", "image1":"", "image2":""}. Your
output should also be natural as an original
caption and not include words like "answer"
or "caption"! You should also notice that <im-
age0> is the left image and <image1> is the
right image.

• Task Instruction for iVQA:
Generate detailed captions of each image in-
volved in the following text according to the
original caption and the given <Question>-
<Answer> pairs. You should pay attention
to the information in the <Answer>. Your
output should be in the json format, as {"im-
age0":"", "image1":"", "image2":""}. Your
output should also be natural as an original
caption and not include words like "answer"
or "caption"! You should notice that there
exists sequential information between images!

• Task Instruction for Task Instruction for
MIMIC-IT(CGD):
Generate detailed captions of each image in-
volved in the following text according to the
original caption and the given <Option>-
<Answer> pairs. You should pay attention
to the information in the <Answer>. Your
output should be in the json format, as {"im-
age0":"", "image1":"", "image2":""}. Your
output should also be natural as an original
caption and not include words like "answer"
or "caption"! Your output should also not
clearly contain comparison while the informa-
tion in <Option>-<Answer> pair should be
presented!

Here is a detailed example from ST-VQA:

An Example for Data Generation

Generate detailed captions of each image
involved in the following text according
to the original caption and the given
<Question>-<Answer> pairs. You should
pay attention to the information in the
<Answer>. Your output should be in the
json format, as {"image0":"", "image1":"",
"image2":""}. Your output should also be
as natural as an original caption and not
include words like "answer" or "caption"!
========
The original caption for each image are as
follows.
<image0>: a sign with chinese characters
on it;
<image1>: a man is walking down a hallway
with a television above him.
========
Here are the additional information that
you should focus on!

The image 0: <image0> is the primary
source of information for answering the
questions. Please refer to it carefully
when answering question: What does the
street sign say? Answer: anping jie

Answer each question based on the
information presented in image 1: <image1>.
Given the picture <image1>, what is the
answer to the question: What does the
green sign say? Answer: exit

The corresponding outputs for the two images
are “The green street sign displays the words ‘an-
ping jie’ in Chinese characters.” and “A man is
strolling through a hallway while a television mon-
itor is mounted above him alongside an indication
of an ‘exit’ on a green sign.”

B Training data for Model Fine-tuning

The select 17 datasets targeting different tasks from
MIC dataset. Following Dai et al. (2023) and Zhao
et al. (2024), We sampled about 490k instances
from MIC according to this equation:

pd =

√
Nd∑i=1

D

√
Ni

, (8)

where pd refers to the probability to select N in-
stances of dataset d, from a total of D datasets. We
list the involved datasets in Table 7.

C Model Training

This section describes detailed pre-training and
fine-tune setting.
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Dataset Task Format
♠COCO Captioning paired & few-shot
△Flickr Captioning paired & few-shot
△MSRVTT Captioning interleaved
♡VSR Visual Reasoning paired & few-shot
□NLVR2 Visual Reasoning interleaved
♠VCR Visual Reasoning interleaved
△OKVQA VQA paired & few-shot
♢VQAv2 VQA paired & few-shot
△GQA VQA paired & few-shot
△STVQA VQA paired & few-shot
♢TextVQA VQA paired & few-shot
♡RefCOCO VQA paired & few-shot
♣WikiART VQA paired & few-shot
♢IconQA VQA paired & few-shot
△iVQA Video QA interleaved
△MSVD Video QA interleaved
△MiniImageNet Classification paired & few-shot

Table 7: An overview of our fine-tuning data. ♢:
datasets licensed under CC-BY 4.0. ♡: datasets licensed
under Apache License, Version 2.0. ♠: datasets licensed
under Custom License. ♣: datasets licensed under Non-
commercial. △: datasets with unknown license. □:
datasets with CC-BY 4.0 License for annotations and
unknown license for images.

C.1 Pre-training

We initially acquire all the condition context vec-
tors for the data outlined in Appendix A by MMICL
models, where MMICL-XL and MMICL-XXL
models are employed for Brote-XL and Brote-
XXL, respectively. Leveraging these vectors, we
bypass the forward iteration stage during pre-
training and directly proceed the concentrating
phase. We set the learning rate for the condition
projection at 1× 10−4 and for both the Q-Former
and the language projection at 1×10−5, applying a
cosine learning rate scheduler. These experiments
are conducted on the NVIDIA A100 GPU, with the
pre-training configurations detailed in Table 8. As
a complement to Figure 2, we provide a detailed
models structure in Figure 5.

C.2 Fine-tuning

In the pre-training stage, we adapt the parameters
of the Q-Former and the condition projection to ef-
fectively integrate C, enhancing the models’ ability
to interpret multimodal contexts. Based on this, the
subsequent fine-tuning encompasses both brows-
ing and concentrating phases. Following Dai et al.
(2023) and Zhao et al. (2024), we fine-tune our
model on multiple originated datasets to enable the
ability to accomplish practical and diverse tasks.
As described in §3.1, we develop two approached
for incorporating C, each predicated on differing

Model
Scale Epoch Batch

Size
Gradient

Accu. Steps
Warmup
Portion GPUs

XL 4 10 8 0.2 4
XXL 4 2 4 0.2 4

Table 8: The pre-training settings. “Gradient Accu.
Steps” refers to the gradient accumulation steps.

Model
Scale Epoch Batch

Size
Gradient

Accu. Steps
Warmup
Portion GPUs

Brote-EX-XL 4 10 8 0.2 4
Brote-IM-XL 2 10 8 0.2 4

Brote-EX-XXL 2 2 4 0.2 4
Brote-IM-XXL 1 1 4 0.2 4

Table 9: The fine-tuning settings. “Gradient Accu.
Steps” refers to the gradient accumulation steps.

objectives: For Brote-EX, condition context vec-
tors are derived from the frozen MMICL model,
whereas Brote-IM generates these vectors inter-
nally. Training specifics for Brote-EX-XL involve
four epochs focused on the objective LMC

, while
Brote-IM-XL extends this with two epochs under
a dual-loss objective, LMB

+ LMC
, starting from

the Brote-EX-XL foundation. For the XXL models,
the training duration for both explicit and implicit
training modes are adjusted to half that of their
XL counterparts. Detailed configurations are listed
in Table 9, not that the settings of learning rates
identical to that of pre-training stage.

D Baselines

We compare to MLLMs who also notice the multi-
image scenarios, including MMICL (Zhao et al.,
2024), Otter (Li et al., 2023b), VPG-C (Li et al.,
2023d), KOSMOS-1 (Huang et al., 2023) and
EMU (Sun et al., 2023). For models that are not
initially designed for accepting multiple images,
such as InstructBLIP, we concatenate the visual
embeddings for all the input image together to en-
able the multi-image processing ability. The details
of the baselines are listed together with the results
in Table 11 and Table 12.

E Benchmarks and Metrics for
Evaluation

The employed benchmarks and corresponding
metrics are listed in Table 10. We investi-
gate diverse conventional VL benchmarks and re-
cently proposed MLLM benchmarks, including
VQAv2 (Goyal et al., 2017), A-OKVQA (Schwenk
et al., 2022), ScienceQA (Saikh et al., 2022),
NLVR2 (Suhr et al., 2019), MSVD QA (Xu
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Figure 5: The detailed model structure for concentrating phase.

Benchmark Data Format Answer Type Setting Data Split Metrics

NLVR2 Multi-image True/False Zero-shot Test Accuracy

DEMON-Core Multi-image Multiple-choice
& Open-ended Zero-shot - I4-score

MSVD QA Video Open-ended Zero-shot Test Accuracy
MSRVTT QA Video Open-ended Zero-shot Test Accuracy

SEED Bench Video &
Single image Multiple-choice Zero-shot - Accuracy

VQAv2 Single-image Open-ended Zero- & few-shot Test Soft accuracy
A-OKVQA Single-image Open-ended Zero- & few-shot Val Soft accuracy
ScienceQA-IMG Single-image Multiple-choice Zero-shot CoT Test Accuracy
MMBench Single-image Multiple-choice Zero-shot Dev Accuracy+
MME Single-image Yes/No Zero-shot - Accuracy+

Table 10: An overview evaluation benchmarks and metrics.

et al., 2017), MSRVTT QA (Xu et al., 2017),
SEED-Bench (Li et al., 2023c)), DEMON (Li
et al., 2023d)), MME (Fu et al., 2023) and MM-
Bench (Liu et al., 2023e).

For VQAv2 and A-OKVQA, we test the zero-
shot question answering ability given a single im-
age, and also evaluate the ability to gain infor-
mation from other related images under few-shot
ICL setting. ScienceQA is proposed for Chain-
of-Thought (CoT) (Wei et al., 2022) scenario, and
we adopt the corresponding zero-shot CoT setting.
SEED-Bench (Li et al., 2023c) is a recently pro-
posed benchmark that also aims at question an-
swering, which comprises both images and videos.
We evaluate the zero-shot ability on it because no
training set is available for extracting few-shot ex-
amples. As NLVR2 contains naturally interleaved
image-text instances, we only conduct zero-shot
evaluation. With recently proposed benchmarks
for MLLMs, such as MME (Fu et al., 2023), MM-
Bench (Liu et al., 2023e), and DEMON (Li et al.,
2023d), we employ the zero-shot setting.

Following previous works (Antol et al., 2015;

Saikh et al., 2022; Suhr et al., 2019; Huang et al.,
2023), we report the soft-accuracy scores (Antol
et al., 2015) for A-OKVQA and VQAv2, and cal-
culate the accuracy scores on ScienceQA, NLVR2,
MSVD QA and MSRVTT QA. The accuracy+ is
employed as the metric for MME, and I4-score (Li
et al., 2023d) is used for DEMON-Core.

F Full results of other popular MLLMs

As we evalution the performance on a variaty of
task, where some results are missing for certain
closel related baselines. We use the public check-
points to obtain the missing results for MMICL,
InstructBLIP and Otter 5, together with official
scripts and required environments. Apart from the
MLLMs that focus on interleaved and instruction-

5The detailed model versions with links are as follows:
MMICL (https://huggingface.co/BleachNick/
MMICL-Instructblip-T5-xl and https://huggingface.
co/BleachNick/MMICL-Instructblip-T5-xxl);
InstructBLIP (https://huggingface.co/Salesforce/
instructblip-flan-t5-xl and https://huggingface.
co/Salesforce/instructblip-flan-t5-xxl);
Otter: (https://huggingface.co/luodian/
OTTER-Image-MPT7B).
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Model LLM
Backbone

#Param
LLM

In-context Learning Multi-image / Video Tasks

VQAv2 A-OKVQA NLVR2 DEMON SEED MSVD
QA

MSRVTT
QA

Models SMALLER than 10B

KOSMOS-1 MAGNETO 1.3B 51.80 - - - - - -
KOSMOS-2 MAGNETO 1.3B - - - - 50.00 - -
InstructBLIP-XL FlanT5 3B 31.76∗ 39.13∗ 52.59∗ 32.59∗ 52.70 43.40∗ 12.12∗

MMICL-XL♢ FlanT5 3B 69.16 53.43∗ 71.48∗ 38.14∗ 54.69∗ 53.68 42.36∗

Otter MPT 7B 45.39∗ 38.42∗ 49.54∗ 24.51 39.70 25.87∗ 9.78∗

VPG-C-LLaMA2 LLaMA 7B - 34.29∗ 53.82∗ 37.22 - 6.03∗ -
Flamingo-9B Chinchilla 7B 56.3 - - - - 30.2 13.7
Brote-EX-XL(ours) FlanT5 3B 69.97 56.00 71.41 37.33 57.51 53.02 43.14
Brote-IM-XL(ours) FlanT5 3B 68.94 56.43 76.02 37.34 57.86 56.06 45.08

Models LARGER than 10B

InstructBLIP-XXL FlanT5 11B 48.21∗ 45.92∗ 64.54∗ 33.00∗ 50.81∗ 44.30∗ 15.49∗

MMICL-XXL♢ FlanT5 11B 70.56 54.85∗ 56.16∗ 36.30∗ 56.66∗ 52.19 39.46∗

VPG-C-Vicuna Vicuna 13B - - - 36.37 - - -
BLIP-2-13B Vicuna 13B - - - - 46.4 20.3 10.3
InstructBLIP-13B Vicuna 13B - - - - - 41.2 24.8
EMU-I LLaMA 13B 58.4 - - - - 37.0 21.2
EMU-2 LLaMA 33B 67.0 - - - 62.8 49.0 31.4
Flamingo-80B Chinchilla 70B 63.1 - - - - 35.6 17.4
Brote-EX-XXL(ours) FlanT5 11B 70.86 59.94 70.42 38.70 59.31 54.52 45.24
Brote-IM-XXL(ours) FlanT5 11B 71.71 60.31 80.71 38.94 61.64 57.29 45.94

Table 11: Results for multi-image settings. The best results for models larger/smaller than 10B are separately
bolded and the seconds are underlined. ♢: the InstructBLIP version. We evaluate results which are not officially
announced using public checkpoints and mark them by *. SEED refers to SEED-Bench that contains both images
and videos.

following settings, we also provide a table of results
from other popular MLLMs. Table 11 and Table 12
record the results for multi-image and single-image
settings respectively. The detailed results of the
subtasks from DEMON-core are listed in Table 13.

In Table 11 and Table 13, our models demon-
strate better performance over the others of differ-
ent scales, including models of larger scales. We
outperform strong baselines, such as InstructBLIP,
MMICL and VPG-C, which include also consider
prior-LLM instruction-image fusion. This sup-
port our finding that our browse-and-concentrate
paradigm contributes to a more in-depth under-
standing of multimodal context with the assistant
of these intermediate browsing insights.

However, for single-image tasks reported in Ta-
ble 12, we notice a different trend on MME bench-
mark. For models with LLMs small than 10B,
VPG-C-Vicuna and Otter show impressive perfor-
mance on MME. For models with LLMs larger
than 10B, MMICL-XXL (BLIP2) presents the best
performance, followed by its variant MMICL-XXL
(InstructBLIP). Our models only outperform In-
structBLIP models. This is potentially caused
by the limitaion of training data, where we ex-
clude the visual instruction tuning dataset such as
LLaVA (Liu et al., 2023d) during pre-training and

fine-tuning, because the outputs can vary subjec-
tively. On the contrary, our models continue to
manifest progress for single-image QA tasks and
the other MLLM benchmark MMBench.

G Details for Ablation Study on the
Training Strategies

In this section, we provide the detailed results
for ablation study of our proposed strategies as
an accompany of Table 4. Table 14 lists the
results for each tasks, and averaged scores for
multi-image tasks (AVG-Multi), single-image tasks
(AVG-Single) and overall tasks (AVG). In the
settings without context-dropping strategies„ our
model with pre-training presents superior multi-
image comprehension, as evidenced by its per-
formance on the A-OKVQA 4-shot and SEED-
video settings, in comparison to its counterpart
without pre-training. Nonetheless, without context-
dropping strategies, both models exhibit a limita-
tion in achieving a balanced performance across
single-image and multi-image scenarios. To ad-
dress this, we incorporate context-dropping strate-
gies designed to encourage the models to effec-
tively utilize the given condition context vector, as
detailed in Section 3.4. We eventually adopt the
“Drop-ALL” setting for training our Brote models.
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Model LLM
Backbone

#Param
LLM

VQAv2
0-shot

A-OKVQA
0-shot

ScienceQA
-IMG

MME
Perception

MME
Cognition

MMBench

Models SMALLER than 10B

KOSMOS-1 MAGNETO 1.3B 51.80 - - - - -
InstructBLIP-XL FlanT5 3B 36.77 54.57 70.40 1093.70∗ 281.43∗ 69.68∗

MMICL-XL FlanT5 3B 69.13 52.12∗ 72.58∗ 1184.54∗ 277.86∗ 73.11∗

LLaVA† LLaMA 7B - - - 457.82 214.64 36.2
Otter† MPT 7B 57.89∗ 41.92∗ 63.10 1292.26 306.43 48.3
VPG-C-Vicuna Vicuna 7B - - - 1299.24 321.07 -
Brote-EX-XL(ours) FlanT5 3B 69.90 52.93 71.15 1203.87 301.79 73.27
Brote-IM-XL(ours) FlanT5 3B 70.24 53.40 72.58 1181.95 266.79 74.29

Models LARGER than 10B

InstructBLIP-XXL FlanT5 11B 63.69 57.10 70.60 1212.82∗ 291.79∗ 70.34∗

JiuTian† FlanT5 11B - - - - - 64.7
MMICL-XXL FlanT5 11B 70.30 51.35∗ 74.92∗ 1313.88∗ 311.79∗ 76.58∗

MMICL-XXL (BLIP2)† FlanT5 11B 69.99 - - 1381.74 428.93 65.24
Brote-EX-XXL(ours) FlanT5 11B 71.58 56.47 77.69 1279.73 310.01 76.67
Brote-IM-XXL(ours) FlanT5 11B 73.02 57.83 78.38 1284.13 300.00 77.34

Table 12: Zero-shot results for single-image settings. The best results for models larger/smaller than 10B are
separately bolded and the seconds are underlined. †: results of these models are taken from Zhao et al. (2024). We
evaluate results which are not officially announced using public checkpoints and mark them by *.

Model #Param
LLM

Multimodal
Dialogue

Visual
Storytelling

Visual Rel.
Inference

Multimodal
Cloze

Knowledge
QA

Text-rich
Images QA

Multi-image
Reasoning AVG

MiniGPT-4† 7B 13.69 17.07 7.95 16.60 30.27 26.40 43.50 22.21
Otter† 7B 15.37 15.57 11.39 16.00 41.67 27.73 43.85 24.51
BLIP-2-XXL† 11B 26.12 21.31 10.67 17.94 39.23 33.53 39.65 26.92
InstructBLIP-XL♢ 3B 19.42 25.09 15.21 32.35 48.13 38.89 49.04 32.59
InstructBLIP-XXL† 11B 33.58 24.41 11.49 21.20 47.40 44.40 48.55 33.00
MMICL-XXL♢ 11B 31.60 28.76 12.17 31.86 61.58 44.33 43.73 36.30
VPG-C-Vicuna† 13B 37.50 25.20 25.90 22.15 48.60 49.93 50.28 36.37
VPG-C-LLaMA2† 7B 42.70 24.76 25.50 22.95 51.00 44.93 48.68 37.22
MMICL-XL♢ 3B 33.32 27.14 13.58 34.17 58.45 47.19 53.10 38.14
Brote-XL 3B 32.46 27.38 10.51 32.41 59.45 48.07 51.08 37.34
Brote-XXL 11B 34.95 28.23 11.11 29.51 65.25 50.87 52.65 38.94

Table 13: Evaluation on DEMON-Core benchmark. Models marked by †: results taken from Li et al. (2023d).
Models marked by ♢: we evaluate the results with official checkpoints as stated in Appendix F.

Models Pre
-train

Fine
-tune Drop

A-OKVQA SEED
NLVR2 SciQA

-IMG MSVD AVG
-Multi

AVG
-Single AVG

0shot 4shot Image Video

InstructBLIP - - - 54.57 39.13 - - 52.59 70.40 43.40 47.05 57.85 51.68

MMICL - - - 51.53 53.32 58.81 35.40 62.40 63.21 37.07 47.05 57.85 51.68

Ours-sampled ✘ ✓ ✘ 53.15 54.76 60.38 33.76 63.35 63.36 35.87 46.51 58.96 51.85
Ours-sampled ✓ ✓ ✘ 49.94 56.16 57.57 36.85 60.58 60.58 34.17 47.12 56.03 50.94
Ours-sampled ✓ ✓ IMG-N 50.39 54.79 60.16 37.31 64.62 61.87 35.51 48.06 57.47 52.09
Ours-sampled ✓ ✓ IMG-B 48.53 55.22 59.21 37.57 65.00 63.31 34.36 48.06 57.02 51.90
Ours-sampled ✓ ✓ TXT 50.14 54.51 59.14 36.90 61.56 62.92 39.36 48.08 57.40 52.08
Ours-sampled ✓ ✓ All 48.22 55.35 59.86 37.64 65.15 63.16 37.35 48.87 57.08 52.39

Table 14: Ablation study of different training strategies on XL-sized (3B LLM) models trained with sampled subset,
where “Ours” refers to Our-sampled described in §4.4. “AVG-Multi” is the averaged over A-OKVQA 4-shot, SEED
image split, NLVR2 and MSVD, and “AVG-Single” is the averaged over the rest. “AVG” refers to the average
accuracy of all the tasks in this table.
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