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Abstract

Question answering over heterogeneous data
requires reasoning over diverse sources of data,
which is challenging due to the large scale of
information and organic coupling of hetero-
geneous data. Various approaches have been
proposed to address these challenges. One
approach involves training specialized retriev-
ers to select relevant information, thereby re-
ducing the input length. Another approach is
to transform diverse modalities of data into
a single modality, simplifying the task diffi-
culty and enabling more straightforward pro-
cessing. In this paper, we propose HPROPRO,
a novel program-based prompting framework
for the hybrid question answering task. HPRO-
PRro follows the code generation and execution
paradigm. In addition, HPROPRO integrates
various functions to tackle the hybrid reason-
ing scenario. Specifically, HPROPRO contains
function declaration and function implemen-
tation to perform hybrid information-seeking
over data from various sources and modali-
ties, which enables reasoning over such data
without training specialized retrievers or per-
forming modal transformations. Experimental
results on two typical hybrid question answer-
ing benchmarks HybridQA and MultiModalQA
demonstrate the effectiveness of HPROPRO: it
surpasses all baseline systems and achieves the
best performances in the few-shot settings on
both datasets'.

1 Introduction

Question answering systems (Pasupat and Liang,
2015; Rajpurkar et al., 2016; Goyal et al., 2017)
have attracted significant attention and made con-
siderable progress in recent years. However, real-
world data often exists in diverse formats and orig-
inates from multiple sources. Consequently, re-
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Table

Railroad Quantity
Atchison, Topeka and Santa Fe Railway 157
Louisville and Nashville Railroad 44
Seaboard Coast Line Railroad 51
Union Pacific Railroad 140

Passages

1. Atchison, Topeka and Santa Fe Railway reached

the Kansas—-Colorado border in 1873 and Pueblo,

Colorado, in 1876.

2. The two lines of Union Pacific Railroad were
joined together at Promontory Summit, Utah on May
10, 1869.

Reasoning with Program

while scan over column "Railroad":
if the railroad in hyperlink has a "shield-shaped
logo":
return information in hyperlink "where does the
railroad meet the Central Pacific Railroad?"

Figure 1: Example of hybrid question answering task
with the corresponding program.

searchers turn their focus to the hybrid question
answering (HQA) task (Chen et al., 2020b; Talmor
et al., 2020), which necessitates mixed reasoning
across various types of data. The HQA task is
challenging due to the vast amount of information
and the organic coupling of heterogeneous data
sources. Reasoning over such diverse data requires
the ability to understand multiple data types simul-
taneously. For instance, as depicted in Figure 1,
the model must engage in reasoning over both the
table and the extensive passages and images linked
in hyperlinks to make accurate predictions.

To tackle these challenges, recent approaches
focus on training domain-specific models to re-
trieve or rank elements such as table rows, pas-
sages, or images, selecting the most relevant ones to
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enhance the subsequent reasoning process (Eisen-
schlos et al., 2021; Kumar et al., 2021; Lei et al.,
2023). Since real-world heterogeneous data is vast
and constantly updated, even if these approaches
demonstrate promising performance on their fo-
cused datasets, their applicability to such intricate
data is still limited. Furthermore, some existing
approaches tend to transform diverse modalities
of data into a single modality, such as image cap-
tioning (Cheng et al., 2022; Liu et al., 2023), or
table-to-text generation (Li et al., 2021), to reduce
the task difficulty. However, such approaches are
constrained by the performance of modal transfor-
mation models, which often result in the loss of
information. In a word, these approaches highly
rely on data distribution, and the complexity of real-
world heterogeneous data makes them exorbitant.

In contrast to previous approaches, we argue that
the solution of solving the HQA task should be
agnostic to data distribution. Consequently, we
advocate for an optimal solution devising a proce-
dure for determining how to find an answer, rather
than merely generating the answer itself. Noticing
that the program could elucidate the reasoning pro-
cess employed to arrive at the answer (as depicted
in Figure 1), in the current era of large language
models (LLMs), leveraging a program can serve
as an advantageous solution since LLMs are an
excellent program generator. Moreover, the pro-
cess of program generation necessitates the incor-
poration of various functions into the program, en-
abling information-seeking across diverse sources
and modalities of data.

Based on the aforementioned considerations,
in this paper, we introduce a novel program-
based prompting framework HPROPRO (Hybrid
Program-Based Prompting) for HQA task. HPRO-
PRO considers the solution as a process of code
generation and execution, integrating external cus-
tomized functions under the few-shot setting?.
To facilitate the utilization of customized func-
tions, HPROPRO incorporates two key components:
Function Declaration during the code generation
phase and Function Implementation during the
execution phase, which is shown in Figure 2. Dur-
ing the function declaration stage, HPROPRO de-
fines the function name and formal parameters,
utilizing them as prompts to generate code. Sub-
sequently, in the function implementation stage,

’In this work, we use Python code as the carrier of the
program.

HPROPRO implements the declared functions, serv-
ing for the direct execution of the generated code.
By defining different functions, HPROPRO can sup-
port reasoning over data from various modalities,
making it a flexible and scalable framework. Im-
portantly, HPROPRO eliminates the need to convert
different modalities of data into a single modality
beforehand. Instead, it acquires information within
the origin modal by the functions themselves. To
the best of our knowledge, HPROPRO is the first
work to explore the power of LLMs in handling het-
erogeneous data without requiring domain-specific
retrieval or modal transformation. Experiments
demonstrate that HPROPRO significantly outper-
forms previous methods.
In summary, our contributions are as follows:

* We introduce HPROPRO, a program-based
prompting framework that enables reason-
ing over heterogeneous data without domain-
specific retrieval and modal transformation.

* We implement a few-shot code generation and
execution pipeline, calling various functions
by function declaration and implementation to
perform information-seeking across data from
different sources and modalities.

* Experiments show the effectiveness that
HPROPRO achieves state-of-the-art perfor-
mances under the few-shot settings on both
HybridQA (Chen et al., 2020b) and Multi-
ModalQA (Talmor et al., 2020).

2 Method

2.1 HPROPRO Framework

Task Formulation In this paper, our focus is
on the task of hybrid question answering, which
involves answering questions based on heteroge-
neous information sources such as tables, text, and
images. The objective is to provide accurate an-
swers to questions based on the given heteroge-
neous data. Figure 2 provides the comparison be-
tween retrieval-based methods and our proposed
approach HPROPRO. Similar to existing program-
based prompting approaches, HPROPRO follows
a paradigm that involves generating code and ex-
ecuting it to obtain the final answer. Unlike the
previous approaches with a separate retriever, we
deal with the input data with external functions
but not the retriever module. As a result, we in-
troduce two key components: function declaration
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Question: To whom was this inedit
song dedicated?

Retrieval-based

Baseline

T

T

Query and Information Source

song dedicated?

Year Winner Work
2000 0 aty g
2001

5 __ 5| Alejandro Snchez Pizarro, better known
as Alejandro Sanz(Spanish ...
Reading Model
. o . Retrieved Top-k Passages
Question: To whom was this inedit

N
Answer: Manuela |

2002

2003

sane
X
return result

( def check(obj1, obj2, op)
i # check if the two objs are the
|
\

def extract_info(cell, query):

# obtain the passages and get
the answer to the query

x;

return result

prompt = """Read the table and write python
code to answer the question. Sometimes
answering questions requires extracting
information in hyperlinks. We have defined

HProPro

7777777777777777 / e
l Result Return

following functions:
1) If you want to extract information from the
hyperlink passages, please use
extract_info(cell, target information).

2) If you want to compare two objects, please | !
use check(strl, str2, operation).
Table: {} if result:
question: {}

""" format (table, question)

def solve(table):
result = '

return result

for index, row in table.iterrows():
if GEEK(extract_info(row['Work'], 'Is this song inedit?'), 'Yes', '=='):
= extract_info(row["Work'], 'To whom was this song dedicated?’)

return result

result = solve(table)

Code Execution

result = query_API(prompt)

Function Declaration

Code Generation

Figure 2: Comparison of HPROPRO with previous retrieval-based methods.

and function implementation, which are required
during the code generation stage and code execu-
tion stage, respectively. In the following sections,
we will delve into both parts of the framework and
discuss their roles and functionalities.

Function Declaration The function declaration
process in HPROPRO serves the purpose of defin-
ing appropriate functions that can be utilized during
the code generation phase. During this stage, it is
necessary to specify the function name and formal
parameters. These declared functions are treated
as input prompts for LLMs and are expected to be
leveraged to generate code. In Figure 2, the func-
tions with different highlight backgrounds on the
left represent the declared functions. Each func-
tion has a specific role, which is described briefly
alongside the table and query as the input prompts.
These prompts are then fed into LLMs to generate
the corresponding code. The LLMs will attempt
to utilize the declared functions to generate the de-
sired code. By providing function declarations as
prompts, HPROPRO enables the LLMs to have a
better understanding of the expected structure and
behavior of the code to be generated. This allows
for more accurate and controllable code generation,
ultimately facilitating the HQA task.

Function Implementation The generated code
contains formally defined functions, rendering it
incapable of direct execution. Consequently, the
process of function implementation aims to im-

plement the declared functions to make the code
able to be executed by off-the-shelf interpreters.
As discussed in Section 1, functions are expected
to interact with data from various sources. How-
ever, conventional function structures cannot be
accommodated in some scenarios, such as extract-
ing information over unstructured texts or images.
Therefore, we proceed with the initial implemen-
tation of the declared functions integrated with the
ability of LLMs to ensure that each function encom-
passes comprehensive functionality. Specifically,
to achieve this process, we pre-design function-
related prompts, which are expected to be fed into
LLMs when executing the generated code.

2.2 Function Instantiation

In this section, we introduce several functions and
elaborate on the declaration and implementation of
each function to support HPROPRO.

Extract information from external source
To facilitate reasoning across heterogeneous
information sources, we introduce the func-
tion "extract_info". Since data from these
sources is often unstructured, the process of
extracting information can be likened to a
reading comprehension task. In the func-
tion declaration, "extract_info" is defined as
"extract_info(cell, target_information)".
Here, "cell" refers to a specific cell in a table,
and "target_information" represents the infor-
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Cell Linked \ |y ponsi abun: This albun contains an inedit song , Y S6lo Se
Information | He Ocurre Anarte dedicated to his daughter Hamuela. |}

Daughter

|7 The Capital of China

1t Prompt

return *NOT_AVAILABLE'

Traceback (ost recent call last): ~ L/2cebacknformation
File "o, line 60, in execute
convert_datetine’ is

NameError: name ‘convert_d not defined.

This passage is about
an album ..,

So my answer is Manuela.

LLM

CUPRRS——

Figure 3: Details of the process of the defined functions and the code refinement.

mation that is required to be extracted, as shown
in Figure 3. The function’s purpose is to extract
the relevant information from the paragraph or
image associated with the "cell" based on the
specified "target_information". It should return
the extracted information as a textual string. All
the necessary information, including the function
name and its parameters, will be part of the gen-
erated code and are expected to be generated by
LLMs. During the function implementation pro-
cess, we utilize an automatically constructed dic-
tionary to locate the corresponding paragraphs or
images based on the provided cell. Subsequently,
we construct prompts to invoke LLMs based on
the data types, which can be categorized into text-
based extraction and image-based extraction. The
detailed prompts are introduced in Appendix A.

Compare two pieces of information Code of-
ten includes rich comparisons between two objects
using operators like ">", "<", or "==". However,
when dealing with heterogeneous data, the infor-
mation extracted from various sources may not
adhere to a strict format. The form of informa-
tion obtained from functions like "extract_info"
cannot be predetermined. As a result, the tradi-
tional comparison operators cannot be directly ap-
plied to compare two objects, such as comparing
the values ”20,000” and "ten thousand", or com-
paring "Beijing" and "the capital of China". To
address this issue, we propose a more flexible func-
tion called "check". In the function declaration
process, "check" can be defined as "check(obj1,
obj2, op)". As shown in Figure 3, "obj1" and

"obj2" are two strings representing pieces of infor-
mation. These strings can be the contents of table
cells, information obtained from other functions,
or directly generated by LLMs based on natural
language questions. The "op" parameter represents
one of three operators: ">", "<", or "==". The pur-
pose of the "check" function is to compare whether
"obj1" and "obj2" are semantically consistent un-
der the specified "op" operator. In other words, it
evaluates if the semantic relationship between the
two objects aligns with the given operator. Similar
to the "extract_info" function, all the relevant
information, including the function name and its
actual parameters, will be part of the generated
code and are expected to be generated by LLMs.
During the function implementation process, we
provide some few-shot cases as prompts to guide
LLMs on how to compare the objects. The detailed
prompts are introduced in Appendix A.

2.3 Code Refinement

In HPROPRO, the final answer is obtained by exe-
cuting the generated code using a standard Python
interpreter. Any error in the code will terminate
the execution process. However, since the model
cannot predict the results returned by each function
during code generation, there is a possibility that
the model may generate code with mismatched pro-
cessing methods. This can lead to execution errors
or empty results when running the code. Since ini-
tial outputs from LLMs can be improved through
iterative feedback and refinement (Madaan et al.,
2023), we perform code refinement by re-calling
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the LLMs and incorporating error codes and trace-
back information into the prompts to generate new
code. Figure 3 illustrates the prompts used for code
refinement. By providing the above information to
LLMs, the models are expected to reconsider the
code generation process and generate new code that
can alleviate the issues encountered. The detailed
prompts are introduced in Appendix A.

2.4 Query Simplification

In the HQA task, code generation is often per-
formed based on the input of a table and a question
since including all relevant data as input would
result in an extensive input length. However, the
reasoning process often involves linked passages
or images, which are not directly visible during the
code generation phase. This increases the burden
of the code generation process. To address this is-
sue, we employ query simplification to simplify the
question and establish links between the question
and the table cells before conducting code genera-
tion. Figure 4 illustrates the schematic diagram of
the query simplification process. Taking "Among
animated TV shows, who was the original voice
actor on the show whose poster features a charac-
ter in yellow gloves" as an example, we utilize a
general retriever initially to retrieve relevant infor-
mation from passages or images in the hyperlinks.
Query simplification involves using LLMs that take
as input the retrieved passage or image, the origi-
nal question, and the table. The goal is to replace
the span in the question (such as "the show whose
poster features a character in yellow gloves") with
the corresponding content in the table cell (such
as "Kick Buttowski: Suburban Daredevil"). The
detailed prompts are introduced in Appendix A.

3 Experiments

3.1 Datasets

We conduct experiments on two typical HQA
datasets: HybridQA(Chen et al., 2020b) and Mul-
tiModalQA(Talmor et al., 2020). Both datasets
involve the task of mixed reasoning over diverse
sources of data. HybridQA necessitates reasoning
over hybrid contexts that consist of both tables and
texts. On the other hand, MultiModalQA requires
reasoning over tables, texts, and images. To eval-
uate HPROPRO, we follow the official evaluation

3The general retriever stands for either a naive retriever or
a neural retriever trained on a general corpus, rather than a
customized retriever trained on a specific task.

metrics provided by the datasets. We report the
exact match and F1 score on both HybridQA and
MultiModalQA. For more detailed statistics about
the datasets, please refer to Appendix B.

3.2 Experimental Settings

In all our experiments, we utilize different ver-
sions of the GPT language models for different
components. Specifically, we use gpt-4-0613
as the backbone model for code generation, code
refinement, and query simplification. For imple-
menting the function "extract_info", we employ
gpt-4-0613 and gpt-4-vision-preview to ex-
tract information in the passages and images respec-
tively. For implementing the function "check", we
employ gpt-3.5-turbo. In the process of query
simplification, for the HybridQA task, we employ a
hybrid retriever that combines TF-IDF and longest-
substring matching (Chen et al., 2020b) as the re-
triever. For the MultiModalQA task, we utilize sen-
tence transformers (Reimers and Gurevych, 2020)
as the retriever respectively. The temperature pa-
rameter for all models is set to 0. All few-shot ex-
periments for code generation are in the settings of
4 shots. Furthermore, in the oracle settings of Mul-
tiModalQA, where the golden passage and image
are provided, we remove the query simplification
module. This allows us to directly feed all relevant
data to the language models without encountering
issues related to excessive input length.

3.3 Baseline Systems

We compare HPROPRO to various methods on Hy-
bridQA and MultiModalQA, which can be mainly
divided into with(w.) and without(w.0.) fine-tuning
approaches. For HybridQA, approaches w. fine-
tuning stand for the method that trained on the
training set, including MAFiD (Lee et al., 2023),
S3HQA (Lei et al., 2023), etc, and approaches
w.o. fine-tuning include the Unsupervised-QG (Pan
et al., 2021) and End-to-End QA with retriever
on GPT-4. For MultiModalQA, baseline meth-
ods consist of approaches w. fine-tuning including
SKURG(Yang et al., 2023), PReasM-Large(Yoran
et al., 2022), etc, and approaches w.o. fine-tuning
including Binder(Cheng et al., 2022), MMHQA-
ICL (Liu et al., 2023), etc.

3.4 Main Results

Results on HybridQA According to the results
presented in Table 1, it is evident that HPRO-
PRO outperforms all baseline systems among ap-
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on Kick Buttowski: Suburban Daredevil?

Figure 4: Schematic diagram of query simplification process.

Table Passage Total

Models Dev Test Dev Test Dev Test

EM F1 EM F1 EM Fl1 EM Fl1 EM F1 EM F1

Approaches w. Fine-tuning
HYBRIDER (Chen et al., 2020b) 54.3 61.4 56.2  63.3 39.1 45.7 375 444 44.0 50.7 43.8  50.6
DocHopper (Sun et al., 2021) - - - - - - - - 47.7 55.0 46.3  53.3
MuGER? (Wang et al., 2022) 60.9 69.2 58.7 66.6 56.9 68.9 57.1  68.6 57.1 67.3 56.3  66.2
POINTR (Eisenschlos et al., 2021)  68.6 74.2 66.9 723 62.8 71.9 62.8 719 63.4 71.0 62.8 70.2
DEHG (Feng et al., 2022) - - - - - - - - 65.2 76.3 639 755
MITQA (Kumar et al., 2021) 68.1 73.3 68.5 744 66.7 75.6 64.3 73.3 65.5 72.7 64.3 719
MAFiD (Lee et al., 2023) 69.4 75.2 68.5 749 66.5 75.5 65.7 75.3 66.2 74.1 65.4  73.6
S3HQA (Lei et al., 2023) 70.3 753 706 76.3 699 782 687 778 684 75.3 679 755
Approaches w.o. Fine-tuning

Unsupervised-QG (Pan et al., 2021) - - - - - - - - 25.7 30.5 - -
GPT-4 End-to-End QA w. Retriever  50.01  61.87 - - 11.1F  13.3% - - 24.5%  30.0% - -
HPROPRO 51.41 55.9f 529 576 46.8f 54.4f 46.5 575 48.0f 54.6f 48.7 57.7

Table 1: Experimental results on HybridQA. § stands for running on 200 sampled cases from the validation set.

proaches w.o. fine-tuning. GPT-4 End-to-End QA
w. Retriever stands for leveraging GPT-4 to gen-
erate answers directly along with a retriever. To
conduct this experiment, we follow the retrieval
approach proposed by Chen et al. (2020b). In com-
parison to GPT-4 End-to-End QA w. Retriever,
HPROPRO achieves more than a 20% improvement
in both EM and F1 scores. This result demonstrates
the effectiveness of HPROPRO compared with the
approaches relied on retrievers. However, it is im-
portant to note that HPROPRO still exhibits a sig-
nificant performance gap when compared to the
state-of-the-art approaches w. fine-tuning. We ar-
gue that the main reason for this gap is that these
methods are fully trained on the HybridQA dataset.
These systems focus on domain-specific training,
which includes training a retriever (Wang et al.,
2022; Lei et al., 2023), ranker (Kumar et al., 2021),
or reasoner (Eisenschlos et al., 2021; Lee et al.,
2023). These domain-specific components may
lack flexibility and generalization in handling di-
verse scenarios.

Results on MultiModalQA Table 2 summarizes
the results obtained on the MultiModalQA dataset,
where HPROPRO achieves state-of-the-art perfor-
mances across all experimental settings. When
considering systems w.o. fine-tuning, HPROPRO
outperforms the previous system MMHQA-ICL by

4.2% and 0.9% in terms of EM and F1 scores, re-
spectively. In comparison to the baseline systems
Binder and MMHQA-ICL, which utilize modal
transformation modules to convert images into
texts, HPROPRO employs various functions to di-
rectly extract information from different modali-
ties. This approach avoids information loss and is
more suitable for real-world scenarios involving
heterogeneous data. It is important to note that
the improvements achieved by HPROPRO are non-
trivial, considering that MMHQA-ICL leverages
domain-specific fine-tuned classifiers and retriev-
ers to obtain the type and relevant passages of each
question respectively, which heavily relies on the
distribution of the targeted benchmark. In contrast,
HPROPRO is performed without any supervised
signals from the training set, resulting in a more
universal approach.

In the oracle setting which golden passages
and images are provided as the input, HPROPRO
achieves comparable results to the previous state-
of-the-art system MMHQA-ICL in terms of EM.
Demonstrating that regardless of the retriever (only
focus on the reasoning part), the results prove that
their work highly relies on the retrievers to gain
the performances. Besides, compared to their ap-
proach, HPROPRO follows a code generation and
execution paradigm, which provides enhanced in-
terpretability and generalizability.
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Models EM F1
Approaches w. Fine-tuning
Implicit-Decomp (Talmor et al., 2020) 48.8  55.5
AutoRouting (Talmor et al., 2020) 42.1 49.5
SKURG (Yang et al., 2023) 59.4  63.8
PReasM-Large (Yoran et al., 2022) 59.0 65.5
Approaches w.o. Fine-tuning
Binder (Cheng et al., 2022) 51.0 57.1
MMHQA-ICL (Liu et al., 2023) 54.8  65.8
HPROPRO 59.0 66.7
Approaches in Oracle Setting
Binder,rqcie (Cheng et al., 2022) 58.1 64.5
MMHQA-ICLorqcie (Liu et al., 2023)  65.0 75.9
HPROPRO 65.1 73.1

Table 2: Experimental results on MultiModalQA.

HybridQA MultiModalQA
Models EM F1 EM  Fl
HPROPRO 48.0 54.6 56.0 62.8
— "check" 44.5 52,5 355 38.0
— Question Simplification  43.0  50.0  37.0 39.4
— Code Reflection 43.5 509 54.0 60.5

Table 3: Ablation studies on HybridQA and Multi-
ModalQA. All ablation studies are performed on 200
randomly sampled subsets from validation sets.

3.5 Ablation Study

Effect of the function ''check'" The function
"check" is designed to compare the semantic rela-
tions between two objects, offering greater flexibil-
ity compared to arithmetic operators such as ">",
"<" and "==". To demonstrate the effectiveness
of the "check" function, we conduct ablation stud-
ies by removing its definition in both the function
declaration and function implementation processes.
Table 3 presents the results of these ablation stud-
ies, highlighting the impact of the "check" func-
tion. When the "check" function is removed, there
is a noticeable drop of 3.5% and 2.1% points in
terms of EM and F1 scores, respectively, in the
HybridQA dataset. Moreover, the removal of the
"check" function has an even more substantial im-
pact on the MultiModalQA dataset. Specifically,
the results drop by more than 20% for both EM and
F1 scores. This is because constraints from images
are weaker than those from passages since LLMs
can copy spans from the passages as the answer,
which improves the need for the "check" function
in this set of experiments.

Effect of query simplification The purpose of
query simplification is to alleviate the burden of the
code generation process by simplifying the ques-

HybridQA MultiModalQA

26.0% 25.0% 26.1%

38.7%

11.5% 5.7%

37.5% 29.5%

EM Not Match
Failed Information-Seeking

Execution Error
Wrong Predict Answer

Figure 5: Error percentage of HPROPRO on HybridQA
and MultiModalQA.

tion and establishing links between the question
and the table cells. In Table 3, we present the ef-
fectiveness of query simplification on both the Hy-
bridQA and MultiModalQA datasets. When query
simplification is removed, the results demonstrate
a decrease of approximately 2% on the HybridQA
dataset and a substantial drop of about 20% on
the MultiModalQA dataset. These findings high-
light the effectiveness of query simplification in
the HQA task. It is important to note that the re-
moval of the query simplification module leads to a
significant drop specifically in the MultiModalQA
dataset. We posit that this drop is due to the pres-
ence of passages and images that are necessary to
answer the question but are not linked in the table,
which couldn’t be accessed by the model from the
prompt. Therefore, performing query simplifica-
tion becomes crucial in handling such scenarios in
the MultiModalQA task.

Effect of code refinement The code refinement
module aims to enable LLMs to reconsider the code
generation process based on previous execution
traceback. In Table 3, we can observe the impact
of removing the code refinement module on both
the HybridQA and MultiModalQA datasets. When
the code refinement module is removed, there is
a noticeable decrease in performance. In the Hy-
bridQA dataset, the EM and F1 scores drop by
4.5% and 3.7% respectively. Similarly, in the Mul-
tiModalQA dataset, the EM and F1 scores drop
by 2.0% and 2.3% respectively. The drop in per-
formance demonstrates the effectiveness of the
code refinement module in HPROPRO. By en-
abling LLMs to refine their code generation pro-
cess based on previous execution errors, the code
refinement module plays a vital role in generating
accurate code, thereby enhancing the overall ability
of HPROPRO in the HQA task.
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3.6 Error Analysis

We analyze the errors that occurred within ran-
domly selected subsets of 200 cases from the vali-
dation sets of HybridQA and MultiModalQA. Our
examination reveals that the main errors can be
classified into four distinct types, with the corre-
sponding percentages depicted in Figure 5.

The first type of error involves predicted answers
that possess similar meanings to the golden an-
swers but differ in their expressions (25.0% for
HybridQA and 26.1% for MultiModalQA). For
instance, an instance may present the predicted
answer as "the Southeastern Conference (SEC)",
while the correct answer is simply "Southeastern
Conference". From a technological perspective, we
contend that such cases have already been resolved,
as the underlying code solution is entirely accurate.

The second type of error observed is related to
execution failure (11.5% for HybridQA and 5.7%
for MultiModalQA). This error arises due to the in-
herent complexity of the heterogeneous data, which
lacks a standardized format and therefore cannot
be effectively addressed using a uniform solution.

The third type of error pertains to failures in
the information-seeking from heterogeneous data
sources (37.5% for HybridQA and 29.5% for
MultiModalQA). These errors occur when the
"extract_info" function fails to produce a valid
result. This may be attributed to a mismatch be-
tween the generated code and the expected solution
for answering the given question, or it could be
indicative of instability in the implementation of
the "extract_info" function.

The last type of error involves wrong predicted
answers (26.0% for HybridQA and 38.7% for Mul-
tiModalQA). Due to the similarity between con-
tents in different columns, the model encounters
difficulty in discerning the appropriate location
to locate the answer when generating code solely
based on the provided table. Addressing this chal-
lenge remains a topic for future research.

For the detailed visualization results of this anal-
ysis, please refer to Appendix C.

4 Related Work
4.1 Hybrid Question Answering

The first line of our related work introduces the
HQA task, which focuses on answering questions
that require reasoning over diverse information
sources. Currently, HQA can be broadly catego-
rized into three subtasks based on the nature of the

information sources: table-text question answering
(Chen et al., 2020b,a; Zhu et al., 2021), image-text
question answering (Reddy et al., 2022; Singh et al.,
2021), and table-image-text question answering
(Hannan et al., 2020; Talmor et al., 2020). Numer-
ous approaches have been explored for reasoning
over heterogeneous data in the context of HQA.
Many of these methods primarily focus on super-
vised fine-tuning over specific benchmarks. This
includes training dedicated retrievers (Wang et al.,
2022; Kumar et al., 2021; Lei et al., 2023), rankers
(Kumar et al., 2021), reasoners (Wang et al., 2022;
Kumar et al., 2021; Eisenschlos et al., 2021; Lee
et al., 2023; Lei et al., 2023), or transforming dif-
ferent modalities of data into a unified modality
(Cheng et al., 2022; Liu et al., 2023; Li et al., 2021).
In contrast to existing works, HPROPRO performs
reasoning over heterogeneous data without rely-
ing on domain-specific retriever and modal trans-
formation modules. Instead, it integrates various
functions to facilitate information-seeking across
data from different sources and modalities. Parallel
to HPROPRO, Glenn et al. (2024) propose Blend-
SQL, which also focuses on HQA task and shares
the similar point with HPROPRO that encodes the
full decomposed reasoning roadmap into a single
interpretable program-based query.

4.2 Program-based Prompting

The second line of our related work focuses
on the program-based prompting strategy, with
two closely related works: Program-of-Thought-
Prompting (Chen et al., 2022; Gao et al., 2023) and
Binder (Cheng et al., 2022). Program-of-Thought-
Prompting (Chen et al., 2022; Gao et al., 2023)
generates code and executes it using an interpreter.
However, their approach is not designed to han-
dle heterogeneous data. In contrast, HPROPRO
integrates function declaration and implementa-
tion to specify different functions, enabling ef-
fective handling of heterogeneous data. On the
other hand, Binder (Cheng et al., 2022) converts
images into passages and pre-retrieves relevant pas-
sages. These passages, along with the table and
question, are then fed into LLMs to generate SQL
and Python code for solving the question. In com-
parison, HPROPRO does not rely on a modal trans-
formation module or a retriever. Instead, it utilizes
various functions to directly interact with data from
different sources and modalities.
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5 Conclusion

In this work, we propose HPROPRO, a novel
program-based prompting framework for HQA
tasks, which does not require domain-specific re-
triever and modal transformation, but integrates
various functions to interact with heterogeneous
data instead. Experimental results on two typical
HQA benchmarks HybridQA and MultiModalQA
show the effectiveness of HPROPRO that HPRO-
PRO achieves the best performances under the few-
shot settings. For future work, we hope to further
utilize the coding capabilities of the LLMs, allow-
ing the model to judge and self-create more cus-
tomized functions based on different scenarios.

Limitations

The main limitation of this paper is that the perfor-
mance of HPROPRO relies on the abilities of LLMs,
which vary according to the different choices of
LLMs. Model updates and server status may affect
our experimental results. In addition, the existing
benchmarks only focus on heterogeneous data con-
taining tables, passages, and images. More types
of data including knowledge graphs and charts are
expected to be explored in the future.

Ethics Statement

In this paper, we propose HPROPRO, a program-
based prompting framework for the HQA task. We
conduct experiments on two benchmarks, namely,
HybridQA and MultiModalQA. Both datasets are
free and open for research use, which means no
ethics issues.
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A Detail Prompts of of HPROPRO

The system prompt and detail prompts of the func-
tion "extract_info", function "check", code re-
finement, and query simplification are shown in
Figure 7, Figure 8, Figure 9 and Figure 10.

B Data Statistics for Each Dataset

The statistics of HybridQA and MultiModalQA are
presented in Table 4 and Table 5.

C Error Analysis

The error analysis results are presented in Figure 6.
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SYSTEM_PROMPT = """Read the table and write python
code to answer the question. Sometimes answering
questions requires extracting information in
hyperlinks. We have defined following functions:
1) If you want to extract information from the
hyperlink passages, please use extract_info(cell,
target information).

2) If you want to compare two objects, please use

Table: {}
question: {}

Figure 6: Details of the system prompt.

EXTRACT_INFQO_PROMPT = ""'"Read the following
passages and find the answer from the passage
according to the given query.

Passage: [CELL_CONTENT]

[PASSAGES]

Query: [QUERY]

Let's find the Answer. The answer should be as
short as possible, like a word, a number or a shot
span. If the answer is not available in the
passage, the information should be marked as
NOT_AVAILABLE.

Please return the information in this format
"So my answer is xxxx.”

Your answer:"""

Figure 7: Details of the prompt of "extract_info"
function.

CHECK_PROMPT = """Please verify whether the
semantics of the two strings meet the given
conditions.

For example:

Q: ten > 9

Check: True

Q: 21 Nov, 2030 < 09-31-2021

Check: False

Q: Beijing = The capital of China

Check: True

Q: 2022/10/01 == Oct 1st, 2022

Check: True

Q: [STRING1] [REL] [STRING2]
Check:"""

Figure 8: Details of the prompt of "check" function.

CODE_REFINEMENT_PROMPT = """There is something
wrong in your code, that I can't run it.
Orginal Prompt: [PROMPT]

Generated Code: [CODE]

Execution Error Information: [TRACEBACK]

Can you generate the code again and fix it?
Your answer:"""

Figure 9: Details of the prompt of the code refinement
process.

Split Train Dev Test Total
In-Passage 35,215 2,025 20,45 39,285 (56.4%)
In-Table 26,803 1,349 1,346 29,498 (42.3%)
Computed 664 92 72 828 (1.1%)
Total 62,682 3,466 3,463 69,611

Table 4: Data Statistics for HybridQA.

QUERY_SIMPLIFY_PROMPT = """I have a question:
[QUERY]

I want to solve it step by step. Now I get some
information:

[KNOWLEDGE]

If I substitute this information into my question
(only replace the corresponding entity in the
question), what will my question be ?

Attention: You must make sure that you replace the
completely same part, no more or less.

Only give me the question without any explanation
or description."""

Figure 10: Details of the prompt of the query simplifi-
cation process.

Measurement Value
# Distinct Questions 29,918
Train multimodal questions 34.6%
Dev.+test multimodal questions 40.1%
Train compositional questions 58.8%
Dev.+test compositional questions 62.3%
Average question length (words) 18.2
Average # of answers per question 1.16
List answers 7.4%
List answers per intermediate question  18.9%

Average answer length (words) 2.1

# of distinct words in questions 49,649
# of distinct words in answers 20,820
# of distinct context tables 11,022

Table 5: Data statistics for MultiModalQA.
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Type Question Generated Code Result Comparison
def solve(table) — str: The predicted answer is "the Southeastern Con-
What conference does for index, row in table.iterrows(): ference ( SEC )", while the golden answer is
EM Not Match the team won in 2016 if '2016' in rowl['Years won'l: "Southeastern Conference". The code has the

belong to?

return extract_info(row['Team'],
'What conference does this team belong to?’)

completely correct solution but has different
expressions with the golden answer.

Execution Error

Who was the older per-
son involved in writing
the book from 20007

def solve(table) —> str:
older_author, older_age = None, 0
for index, row in table.iterrows():
if check(row['Year'], '2000', '==‘):
for author in row['Author'l.split(',’):
age = int(extract_info(author, 'age’))
if check(older_age, age, '<'):
older_age,older_author=age,author
return older_author

The golden answer is "Sally Jenkins", while
the existence of function "split” and "int”
make the code fail to execute since the hetero-
geneous data is complex.

Failed Informa-
tion Seeking

What shipbuilder de-
signed the ship that the
delivery voyage was the
longest by a patrol boat?

def solve(table) —> str:
for index, row in table.iterrows():
if 'HMAS Fremantle' in row['Name']
and 'patrol boat' in row['Type'l:
return extract_info(row['Name'],
'Who is the shipbuilder?’)

The golden answer is "Brooke Marine", while
the code cannot locate the answer since the
"extract_info" returns "None".

Wrong Predicted
Answer

At which air force base
did the pilot who gradu-
ated in 1968 serve ?

def solve(table) —> str:
for index, row in table.iterrows():
if check(row['ClassYear'],'1968"','=="):
result = extract_info(row['Notability'],
'At which air force base did the pilot
serve?’)
return result

The prediction answer is "Hurlburt Field",
while the golden answer is "Hickam". The
model cannot distinguish where to find the an-
swer between the columns "ClassYear" and
"Notability" since the information in the two
columns is similar.

Table 6: Main error types of HPROPRO in HybridQA and MultiModalQA.
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