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Abstract

Incrementally expanding the capability of an
existing translation model to solve new domain
tasks over time is a fundamental and practi-
cal problem, which usually suffers from catas-
trophic forgetting. Generally, multi-domain
learning can be seen as a good solution. How-
ever, there are two drawbacks: 1) it requires
having the training data for all domains avail-
able at the same time, which may be unrealistic
due to storage or privacy concerns; 2) it re-
quires re-training the model on the data of all
domains from scratch when adding a new do-
main and this is time-consuming and computa-
tionally expensive. To address these issues, we
present a semi-supervised contrastive distilla-
tion framework for incremental neural machine
translation. Specifically, to avoid catastrophic
forgetting, we propose to exploit unlabeled data
from the same distributions of the older do-
mains through knowledge distillation. Further,
to ensure the distinct domain characteristics in
the model as the number of domains increases,
we devise a cross-domain contrastive objective
to enhance the distilled knowledge. Extensive
experiments on domain translation benchmarks
show that our approach, without accessing any
previous training data or re-training on all do-
mains from scratch, can significantly prevent
the model from forgetting previously learned
knowledge while obtaining good performance
on the incrementally added domains.

1 Introduction

In the real scenario, translating an out-of-domain
sentence is a common situation while it usually
cannot work well due to domain discrepancy. An
effective solution is to incrementally expand the ca-
pability of the existing translation model, i.e., con-
tinual learning (Silver et al., 2013). However, the
biggest challenge is catastrophic forgetting when
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the model learns new knowledge and it would for-
get the previously acquired knowledge (Goodfel-
low et al., 2013; Gu and Feng, 2020). A theo-
retically good technique is multi-domain learning,
which usually requires having all the training data
available at the same time and re-training the model
on all domains from scratch (Liang et al., 2023b).
Nevertheless, in practice, it may be unfeasible be-
cause we sometimes cannot access the previous
data due to storage or privacy concerns, and re-
training would bring more training and resource
consumption.

To overcome these drawbacks, many efforts have
been devoted that fall into three categories, i.e., con-
structing pseudo data of previous domains/tasks,
adding task-specific adapters, and regularization-
based learning. (i) The first category aims to create
pseudo data of the previous task and mix them with
the new task data for joint training (Kim and Rush,
2016; Liu et al., 2021; Ko et al., 2021). Although
intuitive and effective, they generally require ob-
taining a large training data of previous tasks and
are not flexible in practice. (ii) The second cat-
egory is to add additional task-specific layers for
new tasks and only optimizes these parameters with
the new task data, having achieved impressive per-
formance (Bapna and Firat, 2019a; Aharoni and
Goldberg, 2020; Escolano et al., 2021; Liang et al.,
2021a; Cao et al., 2021; Gu et al., 2019, 2021).
However, the task-specific adapters may increase
the difficulty of the model to be aware of which
tasks the input belongs to and thus neglect the dis-
tinct task characteristics, which limits its applica-
tion in practice. (iii) The third category essentially
searches a trade-off between the new task and the
previous ones through multi-objective training with
an extra penalty item (e.g., L2 or EWC regulariza-
tion) on the parameters (Khayrallah et al., 2018;
Thompson et al., 2019). Therefore, previous meth-
ods usually lead to under- or over-constraint prob-
lems and achieve a suboptimal performance. Be-
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sides, they typically require the parallel data of the
previous tasks/domains (Gu et al., 2022) and the
time and space cost for computing the penalty item
is expansive, especially with new tasks/domains
appearing (Cao et al., 2021).

In this paper, to address the above issues, we
present a Semi-supervised Contrastive Distillation
(named SCD) framework for incremental neural
machine translation. Specifically, to memorize
the learned knowledge from previous domains, we
propose to exploit unlabeled data from the same
distributions of the older domains through knowl-
edge distillation. To this end, we utilize the source-
side data related to the previous domains, e.g., the
source-side data of validation set1, which is small-
scale and easy to obtain compared to requiring
parallel data. Furthermore, to guarantee distinct do-
main characteristics in the model as new domains
appear, we devise a cross-domain contrastive ob-
jective to enhance the distilled knowledge, which
encourages the model to learn to keep different do-
main characteristics and thus benefits translation
for various domains.

We validate our proposed SCD framework on
the commonly-used machine translation bench-
mark (Aharoni and Goldberg, 2020), which con-
tains five domains. We incrementally add a single
domain at each time to simulate the real-world situ-
ation. Extensive experiments show that our model
effectively addresses the catastrophic forgetting is-
sue and significantly outperforms related strong
methods in terms of BLEU (Papineni et al., 2002)
scores, demonstrating its effectiveness.

In summary, our main contributions are2:

• We propose a novel continual learning frame-
work for incremental neural machine translation
without accessing any previous training data or
re-training on all domains from scratch. We also
propose a cross-domain contrastive objective to
enhance the distilled knowledge to guarantee dis-
tinct domain characteristics in the model.

• We conduct extensive experiments and systemic
analysis on a more general scenario where m
streams of data from different domains are fed
to the model sequentially, and our approach can
significantly prevent the model from forgetting
previously acquired knowledge while obtaining
good performance on the newly added domains.

• We show that our method can also achieve better
1Note that the target-side data is not used.
2https://github.com/XL2248/SCD
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Figure 1: An illustration of incrementally learning three
domains. Stage 1: A model ΘA is trained on a domain
A using labeled data with the cross-entropy loss LA.
Here Ya indicates the reference and Ŷ A

a indicates the
translation in domain A by ΘA. Stage 2: The trained
model from Stage 1 is treated as a frozen teacher model.
A trainable student ΘAB is a copy from ΘA and then
trained with a loss LB for domain B and distillation
loss LKDA

for domain A. To compute LKDA
, a set of

unlabeled data is used: teacher model’s predictions on
such dataset for domain A are treated as soft labels and
are used against the student model’s predictions. In this
way, the ΘAB learns to perform domain B and mean-
while tries to keep domain A’s knowledge by distillation
from the ΘA. Stage 3: The student ΘAB from Stage
2 acts as the frozen teacher, and a student copy ΘABC

is created to add domain C. The rest of the training
process is similar to Stage 2.

performance only with a handful of unlabeled
data than that using a large of parallel data.

2 Methods

In this section, we first describe the problem defi-
nition § 2.1. Secondly, we introduce the proposed
semi-supervised distillation method in § 2.2, which
prevents the model from forgetting the previously
learned knowledge. Then, to further ensure the
domain characteristics, we present a cross-domain
contrastive objective to enhance the distilled knowl-
edge § 2.3. Finally, we elaborate on the training
and inference in § 2.4.

2.1 Problem Statement
Domain-incremental training (Cao et al., 2021)
aims to simulate training of the NMT model on
real-world time streaming data, where the train-
ing domain data come from different times and
is fed to the model in chronological order. And
we indicate (Xa, Ya) and (Xb, Yb) as the training
translation pairs for domain A and B, respectively.
For example, as shown in Fig. 1, the model ΘA is
firstly trained on a domain A. After a period of
time, a new domain data B comes. Then, a model
ΘAB , which needs to deal with both domains, is
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trained incrementally based on Model ΘA without
accessing the previous domain data A. The rest of
the training process is similar to adding domain B.

2.2 Semi-supervised Distillation

Motivation. To continually learn new domains
for translation, we exploit the knowledge distilla-
tion (KD) (Hinton et al., 2015) framework. Without
loss of generality, we assume that we have already
trained a model ΘA to solve domain A in stage 1
and we want to update it to learn how to also solve
a new domain B. As illustrated in Fig. 1, we start
by creating a copy of ΘA for domains A and B,
i.e., ΘAB . The original ΘA and ΘAB models act as
the teacher and the student in the KD framework,
respectively. During training, we fix the model
ΘA and only update ΘAB with the objective of (1)
learning the new domain from the training data of
domain B and (2) preserving the older domain’s
knowledge by minimizing the loss function:

LKD
AB = LB + αLKDA ,

LB = CE(Yb,ΘAB(Xb)),

LKDA = CE(ΘA(Xa),ΘAB(Xa)),

(1)

where CE denotes the cross-entropy loss and LKDA

denotes the CE loss between the token probability
distribution of the student on domain A and the
soft targets of the teacher ΘA, and α is the balanc-
ing coefficient. Here LB serves to let the student
learn how to solve a new domain and LKDA helps
it in preventing catastrophic forgetting of the old
one. In the standard application of KD to continual
learning, LKDA is computed on the new domain
data (Shmelkov et al., 2017; Cao et al., 2021): this
assumes that the old and new domains have the
same data distribution (Dakwale and Monz, 2017).

However, the assumption does not satisfy the
real-world machine translation where different do-
mains are typically defined on extremely different
data distributions. If we use the new domain data
to compute the distillation loss, the model will bias
the translation toward the new domain style when
translating the sentence of the old domain. There-
fore, preventing catastrophic forgetting when using
only the new domain data can be challenging.

Dealing with Different Domain Distributions.
To address this issue, we propose to augment the
KD learning process with a data distribution re-
sembling the one used to train the teacher model
to solve domain A. Our assumption is that while
the original training material for domain A may no
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Figure 2: When incrementally learning a new domain,
we propose cross-domain contrastive learning objectives
to enhance the distilled knowledge to keep distinct do-
main characteristics.

longer be available, we can still observe a stream
of unlabeled data (Xa) from the same distribution,
which is easy to obtain, e.g., the validation set of
domain A.

By this way, the loss function LKDA represents
the discrepancy between the teacher and student
predictions for the old domains on a set of unla-
beled data. In practice, the unlabeled data Xa are
automatically labeled by the teacher model ΘA to
produce the soft targets dataset of domain A. This
data will be used to compute the loss LKDA . Mean-
while, a new labeled dataset for domain B is used
to compute LB. By doing so, the student model
should be able to minimize the discrepancy with
the teacher on the old domains (i.e., minimizing
the catastrophic forgetting) while learning the new
domains.

This methodology can be trivially extended to
the general case where the teacher is already trained
on n domains and the student needs to solve a new
domain. In this setting, we need to prevent the
catastrophic forgetting of n different domains. We
assume the availability of an unlabeled stream of
data for each of the old domains to compute the
individual distillation losses. For example, for three
domains as the stage 3 shown in Fig. 1, the total
loss is written as:

LKD
ABC = LC + α(LKDA + LKDB ),

LC = CE(Yc,ΘABC(Xc)),

LKDA = CE(ΘAB(Xa),ΘABC(Xa)),

LKDB = CE(ΘAB(Xb),ΘABC(Xb)).

(2)

In this way, the student model will maintain the
relevant knowledge to solve the n domains by dis-
tilling it from the teacher on the unlabeled data
stream, while also learning how to solve the new
domain on the labeled data.
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2.3 Cross-domain Contrastive Objective

In domain-incremental NMT, we require the model
to simultaneously handle multiple domains and
generate domain-aware translations. To guarantee
the domain characteristics, we further propose a
cross-domain contrastive objective to enhance the
distilled knowledge. Particularly, as the stage 2
shown in Fig. 2, we use the output feature of the
student model as an anchor feature HAB

a,i , and push
it close to its original domain representation HA

a,i

provided by the teacher model. In contrast, we
push apart the irrelevant pairs, e.g., the random
one in the mini-batch HAB

a,j , j ̸= i. However, the
simple negative sample cannot work well in distin-
guishing domain characteristics because they are
different instances but come from the same domain.
Therefore, we design a hard negative that is the
same instance but encoded with another model for
domain B. In this way, the only difference is that
they are encoded by different domain models and
thus we can distinguish the domain characteristics
between domain A and B. That is, our negative
samples include two parts: 1) Easy Negatives Xj

a

(j ̸= i) randomly sampled and encoded by domain
model ΘB; 2) Hard Negative Xi

a encoded with do-
main model ΘB . This forces the model ΘAB to
capture and distinguish well domain A and domain
B. Formally, the cross-domain contrastive training
objective is defined by (N is the batch size):

LCCO
AB = − log

esim(HAB
a,i ,HA

a,i)/τ

esim(HAB
a,i ,HA

a,i)/τ +
N∑

j=1

esim(HAB
a,i ,HB

a,j)/τ

,

(3)

where sim(·, ·) is the cosine similarity and τ de-
notes a temperature hyperparameter.

Similarly, as the number of domains increases,
we can easily extend Eq. 3 to a general setting. For
example, for three domains as the stage 3 shown
in Fig. 2, we require two cross-domain contrastive
objectives LCCO

AC and LCCO
BC for domains A&C and

B&C, respectively.

2.4 Training and Inference

At training, we train our model with the following
objective at stage 2:

J = LKD
AB + βLCCO

AB , (4)

where β is the balancing hyper-parameter.
Note that when training model ΘAB , the model

ΘA and ΘB are frozen. During inference, only

the model ΘAB is used to generate translations for
domains A and B. The rest of the training process
is similar to the stage 2.

3 Experiments

3.1 Datasets
We use the domain translation dataset proposed
by Koehn and Knowles (2017) to simulate the
incremental multi-domain setting. The dataset
mainly covers five diverse domains: IT, Koran,
Law, Medical, and Subtitles, which are available in
OPUS (Aulamo and Tiedemann, 2019). Following
previous work (Gu and Feng, 2020; Gu et al., 2022),
we use the new data splitting released by Aharoni
and Goldberg (2020), and perform German to En-
glish translation (De→En). Please refer to Tab. 7
of Appendix C for detailed data statistics.

3.2 Metric
For a fair comparison, we follow previous
work (Gu et al., 2022) and adopt the 4-gram case-
sensitive BLEU with the SacreBLEU tool3 (Post,
2018) and report the statistical significance
test (Koehn, 2004).

3.3 Implementation Details
Following Gu et al. (2022), we use the mBART50-
nn (Tang et al., 2020) as our baseline model. Please
refer to Appnedix A for detailed settings.

3.4 Comparison Models
Our comparison models consist of two parts: non-
continual learning methods and continual learning
methods. Please refer to Appendix B for details.

3.5 Main Results
3.5.1 Adding a Second Domain
We investigate different methods for adding a new
domain to a model already trained on one domain.
In detail, we first fine-tune the mBART50-nn model
on one domain. Then, we add another domain to
the model through the proposed approach without
accessing any training labels for the first domain.
The results of all models are shown in Tab. 1.

As hypothesized, when adding the Koran domain
to a model fine-tuned on the IT domain, in the
regularization-based setting (mBART50-nn (L2-
Reg or EWC)) the models are not able to learn the
IT domain by only adjusting the model weights

3BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+
version.1.4.13
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Setting IT Koran Law Medical Subtitles Avg.

Scratch 39.87 18.80 53.96 53.88 27.71 38.84
mBART50-nn 35.65 16.41 41.81 37.21 27.14 31.64
mBART50-nn (Adapter) 37.15 19.38 55.01 56.13 30.89 39.71
mBART50-nn (FT) 39.48 24.04 59.49 58.95 30.78 42.54
mBART50-nn (MDL) [Five Domains] 39.01 23.37 59.37 59.18 30.18 42.22

mBART50-nn (MDL) [IT + Koran] 38.77 23.53 - - - 31.15
mBART50-nn (L2-Reg) [IT→Koran] 35.67 23.52 - - - 29.60
mBART50-nn (EWC) [IT→Koran] 35.55 23.54 - - - 29.55
mBART50-nn (TKD) [IT→Koran] 36.69 23.57 - - - 30.13
mBART50-nn (LFR-OM) [IT→Koran] 37.47 23.55 - - - 30.51
SCD [IT→Koran] 39.87† 22.03 - - - 30.95
mBART50-nn (L2-Reg) [Koran→IT] 38.78 16.57 - - - 27.88
mBART50-nn (EWC) [Koran→IT] 38.71 17.04 - - - 27.88
mBART50-nn (TKD) [Koran→IT] 39.40 19.40 - - - 29.40
mBART50-nn (LFR-OM) [Koran→IT] 39.21 20.13 - - - 29.67
SCD [Koran→IT] 39.28 23.15† - - - 31.22†

mBART50-nn (MDL) [IT + Law] 39.45 - 59.92 - - 49.68
mBART50-nn (L2-Reg) [IT→Law] 29.47 - 59.12 - - 44.30
mBART50-nn (EWC) [IT→Law] 29.35 - 59.05 - - 44.20
mBART50-nn (TKD) [IT→Law] 30.70 - 59.26 - - 44.98
mBART50-nn (LFR-OM) [IT→Law] 31.74 - 59.07 - - 45.41
SCD [IT→Law] 37.70† - 57.33 - - 47.52†

mBART50-nn (L2-Reg) [Law→IT] 38.61 - 50.71 - - 45.16
mBART50-nn (EWC) [Law→IT] 38.67 - 50.15 - - 44.41
mBART50-nn (TKD) [Law→IT] 38.69 - 51.55 - - 45.12
mBART50-nn (LFR-OM) [Law→IT] 38.42 - 53.02 - - 45.72
SCD [Law→IT] 37.89 - 56.90† - - 47.40†

mBART50-nn (MDL) [IT + Medical] 38.91 - - 59.63 - 49.27
mBART50-nn (L2-Reg) [IT→Medical] 30.87 - - 58.87 - 44.87
mBART50-nn (EWC) [IT→Medical] 30.13 - - 59.01 - 45.57
mBART50-nn (TKD) [IT→Medical] 31.35 - - 59.07 - 45.21
mBART50-nn (LFR-OM) [IT→Medical] 32.59 - - 58.91 - 45.75
SCD [IT→Medical] 37.70† - - 57.14 - 47.42†

mBART50-nn (L2-Reg) [Medical→IT] 38.95 - - 49.23 - 44.09
mBART50-nn (EWC) [Medical→IT] 38.83 - - 49.01 - 43.92
mBART50-nn (TKD) [Medical→IT] 39.72 - - 50.24 - 44.98
mBART50-nn (LFR-OM) [Medical→IT] 39.08 - - 51.04 - 45.06
SCD [Medical→IT] 38.05 - - 56.96† - 47.51†

mBART50-nn (MDL) [IT + Subtitles] 39.66 - - - 30.48 35.07
mBART50-nn (L2-Reg) [IT→Subtitles] 29.97 - - - 30.33 30.15
mBART50-nn (EWC) [IT→Subtitles] 30.25 - - - 30.28 30.27
mBART50-nn (TKD) [IT→Subtitles] 31.54 - - - 30.41 30.94
mBART50-nn (LFR-OM) [IT→Subtitles] 32.18 - - - 30.71 31.45
SCD [IT→Subtitles] 38.52† - - - 31.00 34.76†

mBART50-nn (L2-Reg) [Subtitles→IT] 38.38 - - - 24.77 31.58
mBART50-nn (EWC) [Subtitles→IT] 38.75 - - - 24.71 31.73
mBART50-nn (TKD) [Subtitles→IT] 38.89 - - - 25.19 32.04
mBART50-nn (LFR-OM) [Subtitles→IT] 38.91 - - - 25.48 32.19
SCD [Subtitles→IT] 39.04 - - - 30.01† 34.52†

Table 1: Comparison of different continual learning
strategies to learn two domains in different orders. “[IT
+ Koran]” means we mixed both training data to jointly
train the model. “[IT→Law]” means Law is added
to an IT model. The “SCD” indicates the proposed
semi-supervised contrastive distillation method. The
best results are in bold. “†” indicates that statistically
significant better than “mBART50-nn (LFR-OM)” with
t-test p < 0.01. The results of the other orders (e.g.,
[Law→Medical]) are shown in Tab. 8 of Appendix.

with constraint (the BLEU of old domain is about
4 points below the single-domain fine-tuning). Al-
ternatively, the mBART50-nn (TKD) method also
cannot prevent the catastrophic forgetting of the
previous domain, as demonstrated by the drop of
about 2.5 points in terms of the BLEU score. This
is happening to various degrees to all the old do-
mains in all the pairs. We note that the same pattern
can also be found for the other domain pairs (e.g.,
[IT→Law]). Compared with them, the mBART50-
nn (LFR-OM) method, to some extent, can keep the
performance of the previous domain because they
only update these parameters which does not harm
the performance of the previous domain. How-
ever, this method first needs some parallel data to
search such parameters. Given that the drop we ob-

Setting IT Koran Law Medical Avg.

Scratch 39.87 18.80 53.96 53.88 41.63
mBART50-nn 35.65 16.41 41.81 37.21 32.77
mBART50-nn (Adapter) 37.15 19.38 55.01 56.13 41.92
mBART50-nn (FT) 39.48 24.04 59.49 58.95 45.49
mBART50-nn (MDL) IT + Koran + Law 38.85 23.63 59.19 - 40.55

+ Medical 38.75 23.83 59.49 58.75 45.21

mBART50-nn (LFR-OM) IT→Koran→Law 33.78 19.12 54.25 - 35.71
→Medical 31.50 18.52 41.55 53.37 36.24

SCD IT→Koran→Law 37.88 21.06 56.89 - 38.61†
→Medical 34.01 22.93 45.53 55.56 39.51†

mBART50-nn (LFR-OM) IT→Law→Koran 31.72 21.27 56.91 - 36.63
→Medical 32.85 15.90 42.56 53.56 36.22

SCD IT→Law→Koran 39.35 21.33 52.31 - 37.66†
→Medical 37.91 21.19 46.48 56.30 40.47†

mBART50-nn (LFR-OM) Koran→IT→Law 32.56 18.43 54.66 - 35.21
→Medical 31.37 18.05 41.67 53.56 36.16

SCD Koran→IT→Law 37.97 21.58 57.32 - 38.96†
→Medical 34.46 23.10 45.58 56.01 39.79†

mBART50-nn (LFR-OM) Koran→Law→IT 38.19 17.74 51.74 - 35.89
→Medical 35.46 16.67 44.23 54.45 37.70

SCD Koran→Law→IT 38.47 21.10 56.42 - 38.66†
→Medical 36.67 22.31 46.71 56.88 40.64†

mBART50-nn (LFR-OM) Law→IT→Koran 31.72 21.27 51.91 - 34.97
→Medical 31.24 20.78 45.78 54.78 38.14

SCD Law→IT→Koran 38.35 21.33 52.31 - 37.33†
→Medical 37.22 20.83 47.90 56.92 40.72†

mBART50-nn (LFR-OM) Law→Koran→IT 38.19 17.74 51.74 - 35.89
→Medical 35.52 16.56 50.15 54.69 39.23

SCD Law→Koran→IT 38.47 23.10 56.42 - 39.33†
→Medical 38.69 21.16 53.49 56.88 42.56†

Table 2: mBART50-nn (LFR-OM) and SCD perfor-
mances when incrementally learning three and four do-
mains. “D1→D2→D3” means the mBART50-nn model
was fine-tuned for D1 first. Then D2 and D3 were added
incrementally. “→Subtitles” rows show the result after
further adding the Subtitles domain.

serve for mBART50-nn (L2-Reg)&mBART50-nn
(EWC)&mBART50-nn (TKD) is generally higher
than mBART50-nn (LRF-OM), we will not report
their results in the following sections.

In sum, computing the distillation loss with our
proposed semi-supervised distillation and cross-
domain contrastive objective largely mitigates the
catastrophic forgetting issue and keeps the capabil-
ity of the model to learn the new domain. When
adding Koran to an IT-trained model, our model
even surpasses the MDL or single-domain fine-
tuning methods after the second stage when we
use the unlabeled development set (we only use
source-side data) of IT domain for distillation (the
drop of mBART50-nn (LFR-OM) is about 1.3%).
Additionally, the BLEU scores of all models on the
Koran when added as a new domain are compara-
ble with each other. 1) This means that the model
is able to retain the general linguistic knowledge
required to learn the new domain, while also pre-
serving its knowledge of the older domain. Mean-
while, we observe a similar trend in the reverse
setting, where we add IT to a model fine-tuned on
the Koran. Finally, this pattern is consistent in other
domain pairs as well (e.g., adding IT to Medical or
Subtitles).
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IT Koran Law Medical Subtitles Avg.

Scratch 39.87 18.80 53.96 53.88 27.71 38.84
mBART50-nn 35.65 16.41 41.81 37.21 27.14 31.64
mBART50-nn (Adapter) 37.15 19.38 55.01 56.13 30.89 39.71
mBART50-nn (FT) 39.48 24.04 59.49 58.95 30.78 42.54

Stage 2: Koran added to IT
mBART50-nn (MDL) 38.77 23.53 31.15
mBART50-nn (LFR-OM) 37.47 23.55 30.51
SCD 39.87 22.03 30.95

Stage 3: Law added to [IT→Koran]
mBART50-nn (MDL) 38.85 23.63 59.19 40.56
mBART50-nn (LFR-OM) 33.78 19.12 54.25 35.75
SCD 37.88 21.06 56.89 38.61†

Stage 4: Medical added to [IT→Koran→Law]
mBART50-nn (MDL) 38.75 23.83 59.49 58.75 45.21
mBART50-nn (LFR-OM) 31.50 18.52 41.55 53.37 36.24
SCD 34.01 22.93 45.53 55.56 39.51†

Stage 5: Subtitles added to [IT→Koran→Law→Medical]
mBART50-nn (MDL) 39.01 23.37 59.37 59.18 30.18 42.22
mBART50-nn (LFR-OM) 30.33 16.98 40.41 50.44 28.72 33.38
SCD 33.15 22.60 44.68 53.21 28.78 36.48†

Other orders: Stage 5: IT added to [Koran→Law→Medical→Subtitles]
mBART50-nn (MDL) 39.01 23.37 59.37 59.18 30.18 42.22
mBART50-nn (LFR-OM) 38.03 16.17 39.12 50.19 23.88 33.48
SCD 38.21 20.10 42.39 52.94 26.41 36.01†

Other orders: Stage 5: Koran added to [Law→Medical→Subtitles→IT]
mBART50-nn (MDL) 39.01 23.37 59.37 59.18 30.18 42.22
mBART50-nn (LFR-OM) 30.33 22.82 38.54 49.87 25.66 33.44
SCD 33.15 22.96 42.19 51.93 27.93 35.63†

Table 3: Results of incrementally learning five domains.
We first fine-tune a mBART50-nn model on IT. Then we
incrementally add Koran, Law, Medical, and Subtitles
to that model. The last two groups are the results of
other orders.

3.5.2 Adding Third and Fourth Domains

We further investigate the effectiveness of SCD by
incrementally learning three and four domains, and
we report the results with different domain orders
in Tab. 2. Results show that our SCD is able to
provide useful information to retain the knowledge
in the model. For instance, when adding Law to
IT and Koran (i.e., It→Koran→Law setting), the
BLEU score of IT drops about 5.70% with the
mBART50-nn (LFR-OM), while using SCD the
drop is only about 1.60% compared to the single-
domain fine-tuning model. Notice that this pattern
is consistent in almost every domain combination
we experimented with.

When adding the fourth domain, we also observe
a similar trend to adding the third domain. Besides,
we find that 2) the performance of the first domain
gets lower with the domain increases, including all
methods. This shows that there is much room for
further improvement using other more advanced
continuing learning methods.

3.5.3 Incremental Addition of Five Domains

In this section, we explore the effectiveness of SCD
by incrementally adding five domains. We also list
the results of adding the second, third, and fourth

Setting: Stage 2 IT Koran

mBART50-nn (MDL) [IT + Koran] 38.77 23.53
SCD [IT→Koran] 39.87 22.03
w/o semi-supervised distillation 36.69 23.57
w/o LCCO

AB 37.94 21.82
SCD [Koran→IT] 39.28 23.15
w/o semi-supervised distillation 39.40 19.40
w/o LCCO

AB 38.93 22.12

Table 4: Ablation Study. “w/o semi-supervised distil-
lation” denotes that we do not use unlabeled data of
the same distribution of previous domains, i.e., vanilla
knowledge distillation.

domains for comparison in Tab. 3.
The results show a similar pattern that we ob-

served in Tab. 1 and Tab. 2. That is, our SCD still
outperforms mBART50-nn (LFR-OM) in this set-
ting. Incrementally adding a new domain gradually
contributes to the forgetting of older domains for
both mBART50-nn (LFR-OM) and SCD methods,
especially for mBART50-nn (LFR-OM). For exam-
ple, IT performance drops at each stage, resulting,
at the last stage, in a total drop of about 9% drop in
BLEU. The reason may be that 3) it is difficult for
the mBART50-nn (LFR-OM) method to search such
regions that can be freely updated for the previous
four domains. That is the updatable parameters
for several domains may be conflicting or none.
Even for our proposed SCD, the drop still is 6%
BLEU scores, showing that incrementally learn-
ing many domains still remains a challenge and is
worth studying in the future.

Besides, we report the results of two additional
task ordering in the last two blocks of Tab. 3,
i.e., [Koran→Law→Medical→Subtitles→IT] and
[Law→Medical→Subtitles→IT→Koran]. We ob-
serve that despite changing the order of the domain,
the outcome is the same. We also find a similar pat-
tern when we experimented with another domain
order different from the mentioned ones. Our pro-
posed model has the ability to limit catastrophic
forgetting happening to some extent in the contin-
ual learning setting.

4 Analysis

4.1 Ablation Study

We conduct ablation studies to investigate how well
semi-supervised distillation and cross-domain con-
trastive objective of SCD works. We conclude two
findings from the results in Tab. 4.

10919



Models xx→En En→xx El→En En→El Sk→En En→Sk

mBART50-nn (MDL) 18.96 5.88 30.56 26.42 33.21 33.75
mBART50-nn (LFR-OM) 26.94 19.16 28.41 19.98 35.88 30.37
SCD (Ours) 27.33 19.82 29.15 20.87 36.81 31.96

Table 5: Results of Language Adaption. xx→En denotes other languages (i.e., 49 languages supported by mBART50-
nn) to English translation.

Figure 3: Effect of using different scales of unlabeled
data with the same distribution of the previous domain.

Setting: Stage 2 IT Koran

mBART50-nn (MDL) [IT + Koran] 38.77 23.53
FT [IT → Koran] 30.26 23.49
VKD [IT→Koran] 35.68 23.45
VCL [IT→Koran] 36.72 23.08
SCD [IT→Koran] (Ours) 39.87 22.03

FT [Koran→IT] 39.76 19.15
VKD[Koran→IT] 39.55 21.23
VCL[Koran→IT] 39.79 21.46
SCD [Koran→IT] (Ours) 39.28 23.15

Table 6: Effect of different model variants.

(1) “w/o semi-supervised distillation”: i.e., with-
out using the unlabeled data of the same distribu-
tion of the previous domain and using the data of
the current domain, the model performance greatly
degrades on the older domain and slightly improves
the result of the current domain. It shows the neces-
sity of using the data of the same distribution of the
previous domain to prevent catastrophic forgetting.
Besides, we also find that there is a performance
trade-off between older domains and new domains,
where the phenomenon is introduced by the hyper-
parameter α in Eq. 1. We investigated it in Tab. 9
of the Appendix and actually different hyperparam-
eters have different impacts, which mainly affect
the trade-off between older and new domains.

(2) “w/o LCCO
AB ”: the model performance be-

comes worse on both domains. This shows that
our cross-domain contrastive learning indeed can
enhance the distilled knowledge and guarantee the
distinct domain characteristics, which thus benefits
the model performance on both domains.

4.2 Analysis of Adaptation to New Languages

To investigate whether our approach can apply to
new language pairs, we follow Gu et al. (2022) and
conducted such experiments on introducing new
language pairs, i.e., Greek (El)↔English (En) and
Slovak (sk)↔English (En). The results are shown
in Tab. 5.

The results show that our approach can signifi-
cantly surpass the continual learning method, i.e.,
mBART50-nn (LFR-OM), demonstrating the effec-
tiveness and generality of our method.

4.3 Analysis of Model Variants

In our work, the additional domain model on Nk+1

is used to provide a hard sample representation
for cross-domain contrastive learning. In this set-
ting, we have tried additional three settings: 1) fine-
tuning on the Nk+1 domain with the previously
learned domain model (denoted as FT); 2) utilizing
vanilla knowledge distillation (VKD), i.e., using
the arbitrary unlabeled data; 3) using vanilla con-
trastive learning (VCL; i.e., only using the sample
in the batch as the negative).

The results in 6 show that directly fine-tuning
on the target domain without considering previous
domains (FT), using vanilla knowledge distillation
(VKD) or vanilla contrastive learning (VCL) can-
not fully exert their advantage for domain trans-
lation. In comparison, cross-domain contrastive
distillation has a positive impact on the model per-
formance.

4.4 Effect of Using a Little Unlabeled Data

To further find out how much unlabeled data can
achieve a good performance, we randomly sample
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10, 50, 100, 500, 1000, and 2000 unlabeled exam-
ples from the validation set and use the remaining
validation data to choose model checkpoints for
evaluating on the test set. In Fig. 3, we observe
that the model performance gradually improves
and reaches stability as the used unlabeled data
increases. Interestingly, we find that the model
rapidly achieves a higher result only with a hand-
ful of unlabeled data, i.e., 50 and 100 instances
for Koran and IT, respectively. It even surpasses
the mBART50-nn (LFR-OM) which uses all la-
beled data in the Koran→IT setting. This shows
the superiority of using unlabeled data of the same
distribution of the older domain, which can largely
help the model retain the learned knowledge of the
older domain and prevent catastrophic forgetting.
It again indicates the effectiveness of our approach.
We also provide a case study to intuitively show
how it works in Appendix F.

5 Related Work

Continual Learning of Translation. Recent stud-
ies on continual learning of machine translation
mainly includes data memory-based method, task-
specific adapters, and regularization-based method.
Specifically, (1) the data memory-based meth-
ods (Chu et al., 2017; Bapna and Firat, 2019a; Xu
et al., 2020; Liu et al., 2021) usually require main-
taining part or all of the training data of the previ-
ous domains/task, which is not flexible in practice
and maybe not realistic in the real world due to
data privacy. For example, Liu et al. (2021) pro-
duce many mixed-language sentences via a bilin-
gual dictionary. (2) The task-specific adapter meth-
ods (Bapna and Firat, 2019a; Zeng et al., 2018,
2019; Gu et al., 2019; Cao et al., 2021; Wang et al.,
2024; Gu et al., 2021; Liang et al., 2021a) typi-
cally require assigning additional model parame-
ters to different domains/tasks, which requires the
model to know which task the input comes from.
(3) The regularization-based methods (Khayrallah
et al., 2018; Thompson et al., 2019; Dakwale and
Monz, 2017) reduce forgetting by introducing an
additional penalty term in the learning objective,
which may suffer from under- or over-constraint
issues. For example, Gu et al. (2022) firstly uti-
lize the previous parallel data to search the low
forgetting risk regions and then only update these
parameters within the region to largely maintain
the performance of the previous domain. Unlike
the above work, our method is flexible and free

to the requirement of parallel data of the previous
domains compared with (1) and (3). Besides, our
model does not explicitly lead to model separation
against (2).
Knowledge Distillation. KD (Hinton et al., 2015)
is to transfer the knowledge (e.g., soft targets out-
puts) of the stronger model (aka. the teacher
model) to the small model (aka. the student model),
which has achieved impressive results in the litera-
ture (Kim and Rush, 2016; Wu et al., 2020; Wang
et al., 2021; Lee et al., 2019). In neural machine
translation, the KD-related work mainly focuses
on how to effectively distill the knowledge of the
teacher to the student. For example, Zhang et al.
(2023) investigate where the knowledge comes
from and then carefully design a method to contra-
puntally distill the target knowledge. In this work,
we aim to utilize the unlabeled development data
of the previous domain to prevent catastrophic for-
getting of the previous tasks via KD.
Contrastive Learning. The idea of contrastive
learning aims to learn effective representation by
pulling semantically close neighbors together and
pushing apart non-neighbors (Hadsell et al., 2006),
which has verified its superiority in many fields,
such as model compression (Sun et al., 2020), sen-
tence embedding (Gao et al., 2021), summary (Liu
and Liu, 2021; Wang et al., 2023; Liang et al.,
2023a), pre-training (Zhou et al., 2023), and trans-
lation (Pan et al., 2021; Liang et al., 2021b; Lee
et al.; Liang et al., 2022; Cheng et al., 2022). For
example, in neural machine translation, Cheng et al.
(2022) propose a contrastive translation memory
to enhance the model performance and Pan et al.
(2021) utilize the contrastive learning to improve
the multilingual neural machine translation. Dif-
ferently, we introduce a cross-domain contrastive
objective to enhance the distilled knowledge, which
further guarantees the distinct domain characteris-
tics and thus improves the model performance for
several domains. To our knowledge, we are the first
that introduce it to prevent catastrophic forgetting.

6 Conclusion

In this paper, we propose a new continual learning
framework for incremental neural machine transla-
tion without accessing any previous training data or
re-training on all domains from scratch. To main-
tain the performance of the previous domain, we
propose to utilize small-scale source-side develop-
ment data of the previous domain via knowledge
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distillation. To further ensure distinct domain char-
acteristics in a model, we devise a cross-domain
contrastive objective to enhance the distilled knowl-
edge. Extensive experiments on a more general
scenario show that our method can achieve sig-
nificant improvements over several strong base-
lines. In the future, we would like to investigate
our method for other tasks, e.g., cross-lingual sum-
marization (Wang et al., 2022).

Limitations

While we show that the SCD achieves significant
performance in continual learning of domain adap-
tion translation, there are some limitations worth
considering to study in future work: (1) In this
study, we only conduct experiments on sequen-
tially five domains, and future work could extend
our method to more domains, languages and modal-
ities; (2) This work does not conduct experiments
on more real-world applications, e.g., sequentially
adding different translation tasks (first sentence-
level machine translation and then document-level
machine translation and more) or multilingual
translation task.
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A Implementation Details

Following Gu et al. (2022), we use the mBART50-
nn (Tang et al., 2020) as our baseline model.
The mBART50-nn is a many-to-many multilingual
NMT model that can support the translation among
50 different languages. The layer number of its
encoder and decoder are both 12, whose attention
heads are set as 16. The size of the embedding layer
and hidden states is set as 1024, while the layer size
of the feed-forward network is 4096. Please refer
to Tang et al. (2020) for more details.

At training, we employ the Adam optimizer
with β1 = 0.9 and β2 = 0.98. We use the in-
verse square root learning scheduler and set the
warmup_steps = 4000. We set lr = 5e − 5
and train the model 10k steps. All the systems are
trained on 8 V100 GPUs with the update frequency
2. The max token is 1024 for each GPU. Besides,
we use beam search with the size of 4 and length
penalty as 0.6 during decoding. We investigate the
factor α and β in Appendix D, which are both set
to 0.5.

B Comparison Models

Our comparison models consist of two parts: non-
continual learning methods and continual learning
methods.

1) non-continual learning methods :
• Scratch: We train a vanilla transformer (Vaswani
et al., 2017) from scratch only with the training
data from the new domain task.
• mBART50-nn (Tang et al., 2020) is a large scale
pre-trained NMT model. All the following systems
are implemented based on this model.
• mBART50-nn (FT) (Luong and Manning, 2015):
We fine-tune the mBART50-nn model only on in-
dividual domain training data.
• mBART50-nn (MDL) fine-tune the mBART50-
nn model with all domain training data, which is
considered the upper bound in the field of con-
tinual learning. We use the temperature-based
sampling function to oversample the validation
datasets (Arivazhagan et al., 2019).

2) Continual learning methods , which aim to
get a good balance between previous and new do-
mains.
• mBART50-nn (TKD) (Dakwale and Monz,
2017): Besides minimizing the training loss of
the new domain, this method also minimizes the
distillation loss for the previous domain, which is

10925



computed on the new domain’s training data, i.e.,
without using any previous data. The training ob-
jective based on the mBART50-nn model is:

LTKD
AB = LB + αCE(ΘA(Xb),ΘAB(Xb)). (5)

• mBART50-nn (L2-Reg) (Barone et al., 2017)
adds an L2-norm regularization on the mBART50-
nn model to alleviate the catastrophic forgetting
when adding a new domain.
• mBART50-nn (EWC) (Thompson et al., 2019)
first models the importance of the parameters of the
mBART50-nn model with Fisher information ma-
trix (Ly et al., 2017) and then puts more constraints
on the important parameters to let them stay close
to the original values.
• mBART50-nn (Adapter) (Bapna and Firat,
2019b) inject the domain-specific adapter layers
into the mBART50-nn model and only update the
adapters for different domains.
• mBART50-nn (LFR-OM) (Gu et al., 2022) aims
to update the parameters within the low forgetting
risk regions with the output-based method, which
requires the parallel data of the previous domain to
search the low forgetting risk regions first.

C Additional Results of Adding a Second
Domain

In Tab. 8, we find the same trend as observed
in Tab. 1. Besides, we also find that our model
always achieves the best results on the older do-
mains while sometimes performing slightly worse
on the newly added domain compared with some
baselines, e.g., mBART50-nn (TKD). The reason
may be that our proposed method (knowledge distil-
lation on the unlabeled data with the same distribu-
tion as previous domains and contrastive learning)
aims to prevent catastrophic forgetting and does
not obtain a better trade-off between previous and
new tasks to some extent. Through tuning differ-
ent hyper-parameters, α and β in the training loss,
we observe a further improvement on previous do-
mains without sacrificing the performance on new
domains (see Tab. 9). Actually, with more domains
added, the advantages of our approach are more ev-
ident (Tab. 2 and Tab. 3). Anyway, our method can
always achieve the best average results, showing
its effectiveness.

D Effect of Hyperparameters α and β

We have investigated the impact of hyperparame-
ters, i.e., α and β. Indeed, different hyperparam-

Train Valid Test

Domain
Translation
Dataset
(De→En)

IT 0.22M

2000 2000
Koran 18K
Law 0.47M

Medical 0.25M
Subtitles 0.5M

Language
Adaptation
Dataset

xx↔En /
997 1012El↔En 1M

Sk↔En 1M

Table 7: The data statistic of the domain translation
dataset and language adaptation dataset. The number
in Train/Valid/Test columns denotes the number of sen-
tence pairs in each domain/language pair.

eters have different impacts, which mainly affect
the trade-off between older and new domains. For
example, in IT→Koran direction, the results are
shown in Tab. 9. In our experiments, we choose
α = 0.5 and β = 0.5 to achieve a better trade-off
performance between older and new domains.

E Training Efficiency

All our experiments are conducted on 8 V100
GPUs. The average running time is listed as fol-
lows (corresponding to different models in the
Koran→IT setting of Table 1 with 10 epochs).

The results show that our method consumes
slightly more time to train our model while achiev-
ing a significantly better performance. The infer-
ence time of all models costs the nearly same time
due to the same model architecture.

F Case Study

We listed an example here and will add more case
studies in the new version. In the IT→Koran set-
ting, we first trained a model on the IT domain
denoted as model-1. Then, we fine-tune model-1
on the Koran domain denoted as Model-2. Model-
3 and Model-4 indicate mBART50-nn (LFR-OM)
and our proposed method, respectively. The in-
stance below is from the test set of the IT domain.

We can observe that model-1 can translate the
domain word “Speicher” well after training on
the IT domain. Unfortunately, after further fine-
tuning on the Koran domain, the model forgets
the previously learned domain knowledge and in-
correctly translates “Speicher” to “storage”. Be-
sides, Model-3, which aims to update the param-
eters within the low forgetting risk regions with
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Setting IT Koran Law Medical Subtitles Avg.

Scratch 39.87 53.96 53.88 27.71 18.80 38.84
mBART50-nn 35.65 41.81 37.21 27.14 16.41 31.64
mBART50-nn (Adapter) 37.15 19.38 55.01 56.13 30.89 39.71
mBART50-nn (FT) 39.48 59.49 58.95 30.78 24.04 42.54
mBART50-nn (MDL) [Five Domains] 39.01 59.37 59.18 30.18 23.37 42.22

mBART50-nn (MDL) [Koran + Law] - 23.92 59.97 - - 41.94
mBART50-nn (L2-Reg) [Koran→Law] - 16.51 59.21 - - 37.86
mBART50-nn (EWC) [Koran→Law] - 17.41 59.33 - - 38.37
mBART50-nn (TKD) [Koran→Law] - 17.90 59.39 - - 38.64
mBART50-nn (LFR-OM) [Koran→Law] - 18.55 59.41 - - 38.98
SCD [Koran→Law] - 22.71† 58.63 - - 40.67†

mBART50-nn (L2-Reg) [Law→Koran] - 22.95 54.74 - - 38.85
mBART50-nn (EWC) [Law→Koran] - 23.12 55.39 - - 39.25
mBART50-nn (TKD) [Law→Koran] - 23.28 55.88 - - 39.58
mBART50-nn (LFR-OM) [Law→Koran] - 23.09 56.11 - - 39.60
SCD [Law→Koran] - 22.07 58.87† - - 40.47†

mBART50-nn (MDL) [Koran + Medical] - 23.96 - 58.94 - 41.45
mBART50-nn (L2-Reg) [Koran→Medical] - 15.44 - 58.93 - 37.19
mBART50-nn (EWC) [Koran→Medical] - 16.05 - 58.99 - 37.52
mBART50-nn (TKD) [Koran→Medical] - 16.60 - 59.13 - 37.87
mBART50-nn (LFR-OM) [Koran→Medical] - 17.38 - 59.01 - 38.20
SCD [Koran→Medical] - 22.97† - 58.04 - 40.51†

mBART50-nn (L2-Reg) [Medical→Koran] - 23.11 - 54.96 - 39.04
mBART50-nn (EWC) [Medical→Koran] - 23.24 - 55.05 - 39.15
mBART50-nn (TKD) [Medical→Koran] - 23.65 - 55.59 - 39.62
mBART50-nn (LFR-OM) [Medical→Koran] - 23.50 - 55.91 - 39.70
SCD [Medical→Koran] - 21.57 - 58.17† - 39.87

mBART50-nn (MDL) [Koran + Subtitles] - 23.84 - - 30.61 27.23
mBART50-nn (L2-Reg) [Koran→Subtitles] - 16.71 - - 30.18 23.45
mBART50-nn (EWC) [Koran→Subtitles] - 16.26 - - 30.21 23.24
mBART50-nn (TKD) [Koran→Subtitles] - 15.14 - - 30.68 22.91
mBART50-nn (LFR-OM) [Koran→Subtitles] - 18.11 - - 30.54 24.33
SCD [Koran→Subtitles] - 21.85† - - 30.91 26.38†

mBART50-nn (L2-Reg) [Subtitles→Koran] - 22.75 - - 21.19 21.97
mBART50-nn (EWC) [Subtitles→Koran] - 22.87 - - 21.47 22.12
mBART50-nn (TKD) [Subtitles→Koran] - 23.78 - - 19.23 21.51
mBART50-nn (LFR-OM) [Subtitles→Koran] - 23.45 - - 24.58 24.02
SCD [Subtitles→Koran] - 22.44 - - 30.09† 26.27†

mBART50-nn (MDL) [Law + Medical] - - 59.21 58.50 - 58.85
mBART50-nn (L2-Reg) [Law→Medical] - - 46.87 58.67 - 52.77
mBART50-nn (EWC) [Law→Medical] - - 47.92 58.79 - 53.34
mBART50-nn (TKD) [Law→Medical] - - 45.71 59.09 - 52.40
mBART50-nn (LFR-OM) [Law→Medical] - - 49.88 59.03 - 54.46
SCD [Law→Medical] - - 55.02† 56.90 - 55.96†

mBART50-nn (L2-Reg) [Medical→Law] - - 59.45 47.94 - 53.70
mBART50-nn (EWC) [Medical→Law] - - 59.39 49.23 - 54.31
mBART50-nn (TKD) [Medical→Law] - - 59.58 46.42 - 53.05
mBART50-nn (LFR-OM) [Medical→Law] - - 59.31 49.19 - 54.25
SCD [Medical→Law] - - 57.37 54.05† - 55.71†

mBART50-nn (MDL) [Law + Subtitles] - - 59.49 - 30.70 45.09
mBART50-nn (L2-Reg) [Law→Subtitles] - - 49.48 - 30.37 39.92
mBART50-nn (EWC) [Law→Subtitles] - - 49.87 - 30.39 40.13
mBART50-nn (TKD) [Law→Subtitles] - - 47.90 - 30.65 39.28
mBART50-nn (LFR-OM) [Law→Subtitles] - - 51.06 - 30.41 40.74
SCD [Law→Subtitles] - - 56.33† - 30.65 43.49†

mBART50-nn (L2-Reg) [Subtitles→Law] - - 58.83 - 24.38 41.61
mBART50-nn (EWC) [Subtitles→Law] - - 59.01 - 24.84 41.92
mBART50-nn (TKD) [Subtitles→Law] - - 59.34 - 22.18 40.76
mBART50-nn (LFR-OM) [Subtitles→Law] - - 59.11 - 25.02 42.06
SCD [Subtitles→Law] - - 57.80 - 29.59† 43.70†

mBART50-nn (MDL) [Medical + Subtitles] - - - 58.67 30.51 44.59
mBART50-nn (L2-Reg) [Medical→Subtitles] - - - 48.03 30.46 39.25
mBART50-nn (EWC) [Medical→Subtitles] - - - 47.92 30.62 39.27
mBART50-nn (TKD) [Medical→Subtitles] - - - 46.18 30.67 38.42
mBART50-nn (LFR-OM) [Medical→Subtitles] - - - 51.23 30.51 40.87
SCD [Medical→Subtitles] - - - 56.04† 30.60 43.32†

mBART50-nn (L2-Reg) [Subtitles→Medical] - - - 58.14 23.15 40.65
mBART50-nn (EWC) [Subtitles→Medical] - - - 58.16 23.61 40.88
mBART50-nn (TKD) [Subtitles→Medical] - - - 58.48 21.69 40.08
mBART50-nn (LFR-OM) [Subtitles→Medical] - - - 58.31 25.12 41.72
SCD [Subtitles→Medical] - - - 57.17 29.24† 43.21†

Table 8: Comparison of different continual learn-
ing strategies to learn two domains in different or-
ders. “[Law + Medical]” means we mixed law
and medical training data to jointly train the model.
“[Law→Medical]” means Medical is added to a Law
model. The best results are in bold. “†” indicates that
statistically significant better than “mBART50-nn (LFR-
OM)” with t-test p < 0.01.

α β IT Koran

0.1 0.1 38.98 23.31
0.3 0.3 39.21 22.96
0.5 0.5 39.87 22.03
0.7 0.7 39.91 21.88
0.9 0.9 39.97 21.65
1.0 1.0 39.94 21.72

Table 9: Effect of Hyperparameters.

Models Training Time (h: hour; m: minute)

mBART50-nn (MDL) 8h36m
mBART50-nn (L2-reg) 9h6m
mBART50-nn (EWC) 9h31m
mBART50-nn (TKD) 9h10m
mBART50-nn (LFR-OM) 8h55m + 20m preprocessed search time.
SCD (Ours) 9h22m

Table 10: Training time of different models.

Setting: Stage 2 IT Koran

mBART50-nn (MDL) [IT + Koran] 38.77 23.53
baseline [IT→Koran] 33.45 23.33
w/ semi-supervised distillation 37.94 21.82
w/ LCCO

AB 36.69 23.57
w/ both 39.87 22.03
baseline [Koran→IT] 38.82 17.23
w/ semi-supervised distillation 38.93 22.12
w/ LCCO

AB 39.40 19.40
w/ both 39.28 23.15

Table 11: Ablation Study. We add our approach one by
one to show their performance.
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Source (German) Wenn der optionale Parameter small TRUE ist, wird ein alternative Dekomprimierungsalgorithmus verwendet,
der weniger Speicher benötigt, jedoch nur halb so schnell läuft.

Reference (English) If the optional parameter small is TRUE, an alternative decompression algorithm will be used which uses less
memory (the maximum memory requirement drops to around 2300K) but works at roughly half the speed.

Model-1 If the optional parameter is small TRUE, an alternative decompression algorithm is used, which uses less
memory but is only half as fast.

Model-2 If the optional parameter is small TRUE, an alternative decompression algorithm is used, which requires less
storage, but runs half as fast.

Model-3 If the optional parameter is small, then an alternative decompression algorithm is used, which takes less storage
but is half as fast.

Model-4 (Ours) If the optional parameter is small TRUE, an alternative decompression algorithm is used, which consumes less
memory but is only half as fast.

Table 12: Case Study.

the output-based method to prevent forgetting, still
cannot address this case. However, our model can
accurately translate it, which demonstrates that our
model indeed can prevent from forgetting of previ-
ously learned domain knowledge and alleviate the
forgetting problem compared to other methods.
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