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Abstract

Numerical reasoning is an essential ability for
NLP systems to handle numeric information.
Recent research indicates that fine-tuning a
small-scale model to learn generating reason-
ing processes alongside answers can signifi-
cantly enhance performance. However, current
methods have the limitation that most methods
generate reasoning processes with large lan-
guage models (LLMs), which are “unreliable”
since such processes could contain information
unrelated to the answer. To address this lim-
itation, we introduce Enhancing NumeriCal
reasOning with Reliable procEsses (ENCORE),
which derives the reliable reasoning process
by decomposing the answer formula, ensuring
which fully supports the answer. Nevertheless,
models could lack enough data to learn the rea-
soning process generation adequately, since our
method generates only one single reasoning
process for one formula. To overcome this dif-
ficulty, we present a series of pre-training tasks
to help models learn the reasoning process gen-
eration with synthesized data. The experiments
show that ENCORE yields improvement on all
five experimental datasets with an average of
1.8%, proving the effectiveness of our method'.

1 Introduction

Numerical reasoning is an essential ability for NLP
systems to handle arithmetic questions in real sce-
narios, which refers to generating answers to nu-
merical questions with given evidence (Geva et al.,
2020). The evidence is to support reasoning since
the question could not furnish all necessary infor-
mation, as seen in passages and tables in numerical
data (Zhu et al., 2021b,a; Chen et al., 2021). The an-
swer generated encompasses various elements, in-
cluding values (Dua et al., 2019), programs (Chen
etal., 2021), and formulas (Zhu et al., 2021a)?.

*Corresponding author.
'Our code is released in link.
ZFor the sake of conciseness in this paper, we collectively
refer to these elements as formulas.

Table

Year Data Group (Col1) Mobileye (Col2) Total (Col8)
2018 (Row1) $5,421 $10,278 $24,389
2019 (Row2) $5,424 $10,290 $24,513

Text
During the third quarter of 2018, we made an organizational change to
combine ... approximately $480 million of goodwill was reallocated.

Question
What is the percentage change of total goodwill from 2018 to 2019?

Answer
(24,513 - 24,389) / 24,389

LLM Generation Formula Decomposition

Rationale x Operand V

Find the difference between the {Col8, Row2}, {Col8, Row1},

total amount in 2018 and 2017, {Col8, Row1}
which is divided by 2017. Operator
Additionally, the text mentions (x1-x2)/x3

Located Formula
({Col8, Row2} - {Col8, Row1}) /
{ColI8, Row1}

a change in goodwill allocation
in the third quarter of 2018,
which should be considered.

Figure 1: The reasoning processes generated by
gpt-3.5-turbo and ENCORE. The left process is de-
scribed with natural language, where bold words are
unrelated to the answer. The right process contains three
parts designed in ENCORE that fully support the answer.

Currently, although LLMs have demonstrated
great performance on the numerical reasoning
(Chen et al., 2022a; Gao et al., 2022), we ar-
gue that it is still valuable to study and employ
the small-scale model (e.g., BART1 ArgE (Lewis
et al., 2020)) since their low computational effi-
ciency and decent performance, which still have ap-
plication value in real scenarios. Previous research
has demonstrated that teaching small-scale models
to generate reasoning processes during fine-tuning
can make the prediction more accurate and explain-
able (Cobbe et al., 2021; Ho et al., 2023; Magister
et al., 2023). For example, SCOTT (Wang et al.,
2023) employs LLMs to generate reasoning pro-
cesses based on questions and answers, which are
used to fine-tune small-scale models. However, the
reasoning processes of the current methods could
be unreliable since most methods employ LLMs to
generate the processes, where such processes could
contain information that does not support the an-
swer (e.g., bold words in the left part of Figure 1).
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To address this issue, we present a novel numeri-
cal reasoning method called Enhancing NumeriCal
reasOning with Reliable procEsses (ENCORE).
Our method decomposes the operands and oper-
ators from the answers as the reasoning process,
which we concatenate with the answer as the output
of the model. The generated reasoning process of
ENCORE is reliable since the process entirely de-
rives from decomposing the answer, ensuring that
the process does not contain answer-unrelated in-
formation and fully supports the answer, as shown
in the right part of Figure 1. However, our method
could lack enough data to enable the model to learn
the reasoning process generation adequately, as for
one answer, our method generates only one rea-
soning process, while methods based on LLMs
can generate multiple processes (Ho et al., 2023).
To overcome this difficulty, we present a series of
pre-training tasks to help models learn the process
generation with synthesized data.

To evaluate the effectiveness of ENCORE, we
adopt it on five mainstream numerical reasoning
datasets with various settings. Compared with base-
line models, ENCORE brings performance improve-
ment on all datasets and leads an average boost
of 1.8%, showing the effectiveness and general-
ization of ENCORE. Moreover, in comparison to
fine-tuning with the reasoning process generated by
gpt-3.5-turbo, our method is superior by about
10%, which proves that the reasoning process gen-
erated by ENCORE has higher quality.

Our contributions can be summarized as follows:
* To ensure that generated reasoning processes

fully support answers, we propose ENCORE,

which generates reliable reasoning processes by
decomposing answer formulas.

* To alleviate the difficulty of the insufficient data
scale of ENCORE, we introduce a series of pre-
training tasks, which enhance the generation of
the reasoning process with synthesized data.

* To prove the effectiveness of ENCORE, we eval-
uate it with five mainstream numerical reason-
ing datasets, which yield performance improve-
ment on all experimental datasets with an average
boost of 1.8% compared with baselines.

2 Background

The numerical reasoning task is to generate single
or multiple formulas as answers based on the given
question as well as the textual and tabular evidence.
About the input, textual evidence contains several

paragraphs, and tabular evidence consists of one
or more tables, where the first row and column
are called table headers, which describe informa-
tion about the cells of the corresponding rows or
columns. About the output, one formula consists
of operators and operands (e.g., 2 + 1 x 3). The
operands refer to the values manipulated or pro-
cessed in the formula (e.g., 2, 1, 3). The operators
are arithmetic symbols or functions that are to be
performed on the operands (e.g., +, X).

However, in practical applications, answers
could not be annotated with formulas. We also
try to apply our method to such data without formu-
las. For the questions with simple calculations (e.g.,
DROP (Dua et al., 2019)), we can directly generate
the formulas following the previous work?. For the
more complex calculations (e.g., GSM8K (Cobbe
et al., 2021)), we employ LLMs with in-context
learning, which can generate answers with a few
samples without fine-tuning, to prove the effective-
ness of the reasoning process we designed.

3 Methodology

In this section, we present our numerical reason-
ing method called ENCORE. First, we introduce
the pipeline of ENCORE, which generates reliable
reasoning processes fully supporting the answers
(§ 3.1). Then, we propose three pre-training tasks
based on ENCORE to enhance the generation per-
formance of the reasoning process (§ 3.2).

3.1 ENCORE

In this section, we introduce ENCORE, which en-
hances numerical reasoning by generating reliable
reasoning processes decomposed from answers.
The illustration of ENCORE is shown in Figure 2.

3.1.1 Retrieve

Because evidence irrelevant to the question could
mislead the model, causing performance degrada-
tion, we employ a retriever to retrieve the question-
relevant evidence. We concatenate each text para-
graph and table column with questions, then feed
it into a binary classification model to generate cor-
relation confidence. The classification model is
trained with the ground evidence annotated by the
dataset or the headers in the located formulas ob-
tained in § 3.1.2. Then, we sort each text paragraph
and table column with the correlation confidence

3https://github.com/allenai/
allennlp-reading-comprehension
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Candidate Evidence

Our contract assets consist of capitalized...

Retrieved Evidence

<None Used>

Year Current: Federal State Deferred: Federal State -_Q » Year Current: Federal
(Col1) (Col2) (Col3) (Cold) - ea (Col1)
1. Retrieve
2018 (Row1) 11 0.43 0.034 0.016 2018 (Row1) 11
2019 (Row2) 13 0.42 047 0.033 2019 (Row2) 13

Fine-Tuning Input
<Q> What is the average... |
<T> ... | Federal [NR 2018 | ... |

<P> ...
4. Fine-Tune

Fine-Tuning Output

<V> {Col1, Row1} | {Col1, Row2} |
<D>(x1+x2)/2]|

<A> ({Col1,Row1}+{Col1,Row2})/2

Operators
Answer = Q Located Formula N (x1+x2)/2
(1.1+1.3)/2 ({Col1, Row1} + {Col1, Row2}) / 2 <
2. Locate Operands

3.D
SCOMPOSE 1o, Row1}, {Col1, Row2}

Figure 2: The illustration of ENCORE, which takes the question “What is the average current federal of 2018-2019?”
as the example. ENCORE consists of four steps: 1.Retrieve question-related evidence. 2.Locate the table heads of
each value in the formula. 3.Decompose the located formula into operators and operands. 4.Fine-tune the model

with the input and the generated output.

of the model output. We select the top-k evidence
as the retrieval result, where k is determined by the
input length limit, and then we concatenate such
evidence with the question as the model input.

3.1.2 Locate

This step is designed to reduce the difficulty of
value memory and table understanding by changing
the value format in answers. In prior work, it has
been observed that current models struggle to accu-
rately retain complex floating-point values present
in the evidence (Thawani et al., 2021). Besides,
the table understanding ability of most models is
limited, as linearized input disrupts the structural in-
formation of the table (Jin et al., 2022). To alleviate
the challenge of extracting numerical values from
tables, we propose substituting values in the answer
by locating their respective headers in the table,
which we call the located formula. For instance, as
illustrated in Figure 2, instead of directly using the
value “1.17, we use “{Coll, Rowl}” correspond-
ing to its cell headers in the table. Consequently,
the model only needs to recall the headers asso-
ciated with relevant cells, lowering the difficulty
of specific value memory and table understanding,
thereby enhancing the reasoning performance.

We use string matching to locate the cell corre-
sponding to each value in the formula, which could
not handle the cells with the same value. An exam-
ple of our labeling method is shown in Appendix B
However, how to detect the question-related en-
tities in the evidence is a long-studied problem,

which has been discussed in detail by the previous
works (Liu et al., 2021; Kumar et al., 2023; Wu
et al., 2023). Therefore, to focus on the main topic
of this paper, we will discuss how to merge the
detecting methods with ENCORE in the future.

3.1.3 Decompose

The designed motivation for this step is to reduce
the complexity of reasoning through multi-step gen-
eration. Current methods, which ask models to gen-
erate formulas in one step, often lead to challenges
in establishing a clear correspondence between the
answer and the input information. For example,
most operands in the formula of the answer are typ-
ically extracted from evidence, while the majority
of operators are determined by the semantics of the
question (e.g., “ratio” in the question leads to the
division operator). Moreover, some formulas are
too complex to generate correctly in one step. To
address these issues, we design a multi-step genera-
tion process for the model to achieve the numerical
reasoning results. We decompose the formula into
operators and operands, which are used to ask the
model to generate before located formulas. By first
generating the more straightforward operators and
operands and then generating the complete formula,
we can reduce the difficulty in generating formulas,
thereby enhancing accuracy.

3.1.4 Fine-tune

After constructing the located formulas and cor-
responding operators and operands, we take them
with answers as output and use the question and
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the retrieved evidence as input to fine-tune the
seq2seq model. During the construction of inputs
and outputs, we use tags like the form “<A>" to
distinguish different parts. We also add other infor-
mation in the output sequence to meet the require-
ments of different datasets, such as value scales
(e.g., “billion” and “percentage” in TAT-QA) and
spans (e.g., span-type answers in DROP).

3.2 Pre-Training

With the reasoning process generated by ENCORE,
the model could still struggle to learn how to pro-
duce such processes because of the limit of the
training data scale. To aid the model in learning to
generate the reasoning process, in this section, we
introduce three pre-training tasks. We synthesize
questions, answers, and reasoning processes based
on different templates, then pre-train the model
with all these data as the multi-task training. The
template and example of each pre-training task are
shown in Appendix A.

We primarily design pre-training tasks for tabu-
lar evidence rather than textual evidence, for two
reasons: (/) Most current pre-trained language
models are trained on textual data, ensuring their
proficiency in generating text-related reasoning pro-
cesses. (2) Direct linearization of the tabular ev-
idence during input disrupts the structural infor-
mation, making it challenging for the model to
generate table-related reasoning processes.

Table Location Prediction is designed to help
the model better locate operands in the formula by
learning the correspondence between the cell and
the corresponding table headers. Given the row
and column headers of one cell, the model should
predict the value of this cell.

Table Calculation Prediction is designed to en-
hance operator generation. About the tabular evi-
dence, many calculation formulas involve all values
in one column as the operands, such as the average
or total value of a column. We help models learn
the generation of these formulas with the given
column and the calculation type.

Hierarchical Table Prediction is designed for
models to perform better operand extraction by
comprehending the hierarchical table structure with
multi-level headers (Zhao et al., 2022), where the
whole table can be seen as several sub-tables. For
this task, models should predict the name of the
first level of each given table header.

4 Experiments

4.1 Experiment Setup

Datasets We apply ENCORE on five datasets
with various settings: FinQA (Chen et al., 2021),
ConvFinQA (Chen et al., 2022b), TAT-QA (Zhu
et al., 2021a), MathQA (Amini et al., 2019) and
DROP (Dua et al., 2019), which cover different
types of evidence and answers. More detailed in-
formation can be found in Appendix C.

Metrics For MathQA, FinQA, and ConvFinQA,
we employ execution accuracy as our evaluation
metrics (Chen et al., 2021). About DROP and TAT-
QA, we evaluate methods with the exact match
(EM) (Zhu et al., 2021a). For TAT-QA, we addi-
tionally use Arithmetic EM to represent the EM on
numerical reasoning questions. The definition of
these metrics can be found in Appendix D.

Baselines We adopt BERTpasE (Devlin et al.,
2019) as our baseline retrieval model. We use
BART ArcE (Lewis et al., 2020) and T53p (Raf-
fel et al., 2020) as our baseline seq2seq models.

Settings All experimental models are imple-
mented with Huggingface transformers (Wolf et al.,
2020) and Fairseq (Ott et al., 2019). We adopt the
pre-training tasks to TAT-QA, FinQA, and Con-
vFinQA with 121, 732 synthesized examples since
they contain tabular evidence. More detailed set-
tings are shown in Appendix E.

4.2 Main Results

The main experiment results are summarized in
Table 1, where the detailed results on each dataset
are shown in Appendix F. ENCORE brings per-
formance improvement on all experiment datasets
with all used baseline models and achieves SOTA
or near-SOTA results on most datasets, which
proves the efficiency and generalizability of our
method. Compared to BART, Argr, our method
exhibits more obvious improvements on TH3p, sug-
gesting that larger-scale models can more effec-
tively learn the generation of reasoning processes
and apply the associated capabilities to answer gen-
eration. However, our method exhibits an obvious
discrepancy with the current SOTA on DROP. This
is attributed to the low quality of the synthesized
formulas, where the synthesized results could be
incorrect, which subsequently misleads the model
into erroneous reasoning processes, resulting in
poor generation performance.
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Method FinQA ConvFinQA TAT-QA MathQA DROP
Dev Test Dev Test Dev Test Dev Test Dev Test
Published SOTA  69.7 68.0 76.5 76.0 N/AT 76.8 NA"T 83.0 NA" 90.0
BARTLARGE 62.5 58.8 67.4 71.5 68.5 — 77.4 78.0 68.6 67.4
+ ENCORE 64.0 62.3 68.9 74.4 71.0 — T 78.8 69.2 68.4
A +1.5 +3.5 +1.5 +2.9 +2.5 — +0.3 +0.8 +0.6 +1.0
T53 66.9 65.0 73.3 79.6 73.8 — 78.1 78.6 77.3 77.1
+ ENCORE 71.6 69.4 76.0 79.8 75.6 71.5 80.0 80.6 77.6 77.1
A +4.7 +44 +2.7 +40.2 +1.8 — +1.9 +2.0 +0.3 +0.0

Table 1: The main experiment results of ENCORE. T denotes the model does not report the corresponding metric
result. The experiments on TAT-QA lack results on the test set due to it is not public, where only periodic submissions
are allowed for evaluation, so we only evaluate the model that performs best on the dev set. On FinQA, ConvFinQA,
and MathQA, the previous SOTA results are achieved by APOLLO (Sun et al., 2022). The best results on TAT-QA
and DROP are Code and MindOpt Copilot respectively, which papers have not been published. The best results of
our methods are marked in bold. The best results of all methods are marked in underline.

Setting EM Arithmetic EM Setting EM Arithmetic EM

ENCORE 74.1 78.6 ENCORE 75.7 81.2

w/o. Operand 72.7(—1.4) 75.5 (—3.1) w/o. Table Location 75.2 (—0.5) 79.8 (—1.4)

w/o. Located Formula  73.9 (—0.2) 77.3 (—1.6) w/o. Table Calculation 74.6 (—1.1) 79.4 (—1.8)

w/o. Operator 73.1 (—1.0) 78.3 (—0.3) w/o. Hierarchical Table 75.3 (—0.4) 80.5 (—0.7)
w/o. All 74.1 (—1.6) 78.6 (—2.6)

Table 2: The performance of BART [, s grqg under differ-
ent settings on TAT-QA using golden evidence without
pre-training. The Arithmetic EM denotes the EM of the
arithmetic questions.

It is noteworthy that, in comparison to datasets
that solely utilize textual evidence (e.g., MathQA,
DROP), our method exhibits a more significant im-
provement on datasets with both textual and tabular
evidence (e.g., TAT-QA, FinQA). This is because
our designed located formula addresses the chal-
lenge of cell location, where textual evidence does
not involve this challenge. Besides, our designed
pre-training tasks mainly focus on tabular evidence,
so the improvement of textual evidence is less ob-
vious when compared to tabular evidence.

4.3 Ablation Studies

In this section, we perform ablation studies to fur-
ther evaluate the performance of ENCORE. We use
TAT-QA as our study dataset since it covers various
types of evidence and answers, which can compre-
hensively reflect the performance of the model.

4.3.1 Reasoning Process Studies

To verify that each designed part of the reasoning
process in ENCORE is effective, we perform ab-
lation experiments on each part separately, which
is shown in Table 2. We can see that each part of
the reasoning process contributes the performance
improvement, which proves the effectiveness of the

Table 3: The performance of ENCORE after removing
different pre-training tasks of BARTpaArgr on TAT-
QA with golden evidence.

reasoning process designed by our method. Accord-
ing to the arithmetic EM, we can see that extracting
operands has the most apparent impact on model
performance. This is because the model regards the
values in the answer as part of the formula structure,
lacking the awareness of extracting values from ev-
idence. The effect of the located formula is also
apparent, which proves that it is hard for models
to map the table headers to the corresponding cell
value. The improvement of introducing operators is
not significant since the formula operator is similar
to that in the answer.

To verify the impact of generation orders of dif-
ferent parts of the reasoning process, we also adopt
the ablations of the reasoning process format under
two settings: generate operands first and operators
first. Generating operands first leads to 74.1% on
EM, and generating operators first is 73.6% in our
experiment, showing that generating operands first
is better, which is the order we used in ENCORE.

4.3.2 Pre-Training Studies

To prove that all designed pre-training tasks are
effective, we conduct ablation experiments on them.
Table 3 shows the experiment results of ENCORE
with different pre-training settings.
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From Table 3, we can observe that: (/) the abla-
tion of each pre-training task leads to a drop in
performance, which proves the effectiveness of
all pre-training tasks; (2) the performance incre-
ment of Arithmetic EM is much higher than EM
of all types of questions, which proves that the pre-
training does improve model performance by im-
proving numerical reasoning capabilities; (3) Table
Calculation Prediction task leads to the most signif-
icant improvement for the model, proving that the
ability to handle operator generation of the baseline
is weak, while our method effectively improves the
ability to handle such a reasoning process.

4.4 Analysis

Does ENCORE generate better reasoning pro-
cesses than using LLMs? To compare the qual-
ity of the reasoning processes generated by EN-
CORE and by LLMs, we fine-tune models us-
ing reasoning processes produced by both meth-
ods. We employ gpt-3.5-turbo to generate
reasoning processes given the question and the
answer with zero-shot inference. The perfor-
mance of different process sources is shown in
Table 5. From the table, we can see that the model
fine-tuned with the reasoning process generated
by using ENCORE markedly outperforms using
gpt-3.5-turbo. Therefore, the reasoning process
synthesized by our method can better help small
models generate correct results.

Does ENCORE work well on various answer
formats? To prove our method can handle data
from multiple scenes at the same time, we adapt
ENCORE to the unified setting by merging multi-
ple datasets. We transfer the answer formats of
MathQA, FinQA, and numerical reasoning ques-
tions of TAT-QA into the domain-specific language
format (Amini et al., 2019) to unify the answer
format (e.g., 2+ 1 x 3 — add(2, multiple(1, 3))).
Then, we train the models in this unified setting and
evaluate them on the unified and divided datasets
respectively to evaluate the performance.

The experimental results are shown in Table 6,
from which we can observe that: (/) compared with
single training, the unified setting achieves much
better performance since more training examples
make the model learn more numerical reasoning
knowledge; (2) ENCORE can further improve the
performance under the unified setting by 1.5% com-
pared with the baselines, demonstrating the gener-
alizability under different answer types.

Is the reasoning process format of ENCORE still
effective for in-context learning? Although EN-
CORE brings great performance improvement, it
cannot handle the questions annotating answers
without formulas (e.g., GSM8K). Considering the
brilliant in-context learning ability of the current
LLMs, we conduct experiments to verify whether
the reasoning process format of ENCORE can still
improve the performance without fine-tuning.

We compare our method with two prompt meth-
ods: generate directly and with Chain-of-Thought
(CoT) (Wei et al., 2022), where CoT asks LLMs
to generate answers with the prompt “think it step
by step” using 8-shot prompt following Fu et al.
(2023). The detailed prompts we used are shown
in Appendix G. We evaluate ENCORE on the arith-
metic subset of TAT-QA, FinQA under the 3-shot
setting and GSMS8K with 8-shot since the ques-
tions of GSMS8K are harder than the above two
datasets. As shown in Table 7, compared with CoT,
ENCORE brings an average performance improve-
ment of 8.9% on all datasets and LLMs, which
shows that our method is still effective under the
in-context learning setting.

What is the performance of ENCORE on dif-
ferent answer types? We categorize the predic-
tions based on answer types and sources, which
are shown in Table 4. About the performance of
different question types, compared with the base-
line model, ENCORE improves the performance of
arithmetic questions with 4.9%, showing that our
method does improve the numerical reasoning abil-
ity. Furthermore, our method also shows enhance-
ments for other types of answers, indicating that
the reasoning process generation can elevate the
reasoning for various answer types to some extent.
About the results of different evidence sources, EN-
CORE increases the performance of table-source
and hybrid-source questions, showing that generat-
ing located formulas indeed lowers the difficulty of
the table understanding.

However, ENCORE suffers from performance
degradation on the text-source and span-type,
which are mainly span extraction questions. There
are two reasons for this result. Firstly, there are
no fixed rules for annotating span-type answers,
which leads to performance fluctuations during the
prediction. Besides, our method focuses on im-
proving the numerical reasoning ability, and the
additionally generated information (e.g., operands,
operators) could reduce the span extraction ability.
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Type

Source

Method Total
Span Spans Arithmetic Count Text Table Hybrid
BARTLArRGe 73.0 77.0 73.7 37.5 58.9 73.1 82.4 72.6
+ ENCORE 71.6 77.9 78.6 46.9 56.3 76.2 84.6 74.1
A -14 409 +4.9 +94 —-26 +3.1 +1.8 +1.5

Table 4: The exact match of BART Arge with and without ENCORE on TAT-QA, which uses the golden evidence
and is without pre-training. Type denotes the types of dataset questions. Source denotes the evidence type that
contains the answer-related information, whereas hybrid includes both text and table.

Method Arithmetic EM
BARTLARGE 73.7
+gpt-3. 5-turbo’ 74.7
+ ENCORE 78.6

Table 5: The performance on TAT-QA with different
reasoning process sources. { denotes fine-tuning with
the rationale generated by gpt-3.5-turbo. The best
performance is marked in bold.

Dataset BARTLARGE + ENCORE
Single Unified Single Unified
MathQA 79.3 82.7 79.5 84.4
TAT-QA* 73.7 79.5 78.6 79.8
FinQA 63.1 66.1 65.0 68.0
Mixture! - 79.5 - 81.0

Table 6: The execution accuracy on the single and the
unified dataset with golden evidence. * denotes the nu-
merical reasoning questions. The best of each method
is highlighted in bold. The best of each dataset is high-
lighted in underline. T denotes the result on the dev set
mixture of all three datasets.

What are the main error types of ENCORE? To
better understand how our method improves the nu-
merical reasoning performance of models and to
better observe the direction of future improvement,
we study the current error distribution on numerical
reasoning questions. We categorize the error cases
into three types: (1) operand denotes that the ex-
tracted operators is incorrect; (2) operator means
that the model makes mistakes in the operator gen-
eration; (3) other is the error other than the above
two categories. We randomly select 256 numerical
questions and then analyze them manually, which
is shown in Figure 3.

From Figure 3, we can observe that: (/) with
ENCORE, the model makes fewer mistakes on all
error types, showing that our method can signif-
icantly improve the model performance on both
operator generation and operand extraction; (2) the
most significant error drop is in the operand error

Method TAT-QA* FinQA GSMSK
code-davinci-002 36.2 12.8 19.3
+ CoT 45.4 19.8 60.3
+ ENCORE 46.0 35.1 66.3
gpt-3.5-turbo 25.2 9.9 7.9
+ CoT 38.2 28.2 63.1
+ ENCORE 55.2 39.8 71.3
Llama2-70b 18.5 13.7 16.0
+ CoT 41.9 21.6 54.4
+ ENCORE 49.2 35.1 55.3

Table 7: The execution accuracy of in-context learning
with different prompt methods and LLMs. * denotes the
numerical reasoning questions. The best performances
of different datasets and LLMs are marked in bold.

type since the operand extraction and the located
formula make the model not need to memorize spe-
cific values, lowering the difficulty of reasoning;
(3) the operand error types still account for the
main part of the bad cases with ENCORE, which
requires follow-up work to continue to improve the
operand extraction ability of models.

4.5 Case Study

To better understand how ENCORE improves the
numerical reasoning ability, we show an example
case of TAT-QA in Figure 4, which requires lo-
cating the cell value based on the column name
and the row name. The baseline model generates a
wrong number 754, which does not exist in the ta-
ble, showing that the baseline method makes it hard
to detect the question-related value in the table.

With ENCORE, the model correctly corresponds
the header names in the question to {col10, row2},
and then extracts the corresponding value 774 by
locating the header without model reasoning. That
is because our method obviates the need for the
model to memorize specific values and reduces the
complexity of table understanding, thereby decreas-
ing the difficulty of the operand extraction.
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Figure 3: The number of bad cases of numerical reason-
ing questions on TAT-QA using BART Argr with and
without ENCORE under different error types. #Cases

denotes the number under different error types.

Question
What was the percentage change in the amount for Appliances in 2019
from 20187

Output
Baseline: ... | <D> | <V> | <A> (680 -754)/754

Encore: ... | <D> (x1-x2)/x3 | <V>{Col10, Row1} | {Col10, Row2} |
{Col10, Row2}{~<A>({Col10, Row1} - {Col10, Row2} ) / {Col10, Row2}

! Evidence ~ oy
Yea/r Data and devices Appliances Total
; (Col9) (Col10) (Col11)
2019
1 13,44
(Row1) 993 6§0 3,448
2018 -
(Row2) 1,068 > 774 13,988
Figure 4: An example of TAT-QA dev set of

BART ArcE With and without ENCORE. The correct
entities are highlighted in green. The incorrect entities
are highlighted in red.

5 Related Work

Numerical Reasoning Numerical reasoning is a
widely researched topic to handle questions about
documents with rich numerical information. Previ-
ous works have found that it is hard for the model
to generate the numerical answers directly and ex-
plore generating reasoning processes for enhancing
interpretability and extra supervision for answer
generation (Ling et al., 2017). Based on this find-
ing, many researchers have designed model struc-
tures to generate reasoning processes implicitly
(Ling et al., 2017; Zhu et al., 2021a; Lei et al.,
2022; Shao et al., 2022; Zhang and Moshfeghi,
2022). Considering the powerful few-shot infer-
ence ability of LLMs without fine-tuning, Wei et al.
(2022) presents the chain-of-thought to generate the
reasoning process by LLMs themselves, attracting
much attention (Wang et al., 2022; Ye and Durrett,
2022; Kojima et al., 2022; Chen et al., 2022a).

Although LLMs have demonstrated impressive
performance in the numerical reasoning task, their
substantial computational overhead hinders their
deployment in practical applications. To address
this issue, we explore the use of small-scale mod-
els with low computation for numerical reasoning,
enhancing their reasoning capabilities by training
them to generate reasoning processes.

Answering with Reasoning Processes Previous
research has indicated that concurrently generating
reasoning processes while producing answers can
significantly enhance the accuracy of the responses
(Wei et al., 2022; Chu et al., 2023). Subsequent
studies have revealed that LLMs exhibit varying
performance when generating different types of
reasoning processes (Chen et al., 2022a; Gao et al.,
2022; Ziqi and Lu, 2023). Apart from LLMs, re-
searchers also find that fine-tuning small-scale mod-
els using reasoning processes generated by LLMs
can also improve performance (Cobbe et al., 2021;
Ho et al., 2023; Wang et al., 2023; Magister et al.,
2023). Considering the lower computational over-
head and acceptable performance of small-scale
models, such works remain worthy of research.

However, the aforementioned methods confront
the challenge wherein the reasoning process gener-
ated by LLMs could not fully support the answers.
To address this limitation, our method directly ob-
tains the reliable reasoning process by decompos-
ing operators and operands from the answers. Our
method enhances the quality of the generated rea-
soning process, thereby improving the accuracy of
the generated answers.

6 Conclusion

We propose a novel numerical reasoning method
called ENCORE to address the limitations of the
reasoning process generation. Compared with pre-
vious methods, ENCORE can guarantee to generate
reliable reasoning processes that fully support the
answer and aim models to learn to generate the pro-
cess with pre-training. According to experiments,
ENCORE brings significant performance improve-
ment over all five experimental datasets, leading to
an average improvement of 1.8% compared with
baselines, which shows the effectiveness and gener-
alization of our method. Meanwhile, our method is
superior by about 10% in comparison to the reason-
ing process generated by gpt-3.5-turbo, which
proves the higher quality of the reasoning processes
generated by ENCORE.
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Limitations

ENCORE has two limitations, including: /. About
the operand extraction, we directly check whether
each operand appears in the evidence, which could
lead mistake. For future work, we will adapt bet-
ter grounding methods, enhancing the extraction
accuracy. 2. It is required that the training data
be labeled with formulas, demanding high label
overhead. In future work, we will employ LLMs to
synthesize formulas, thereby reducing label cost.
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A Template and Example of Pre-Training

The templates and examples of our pre-training
method are shown in Table 8.

B Example of Automatically Labeling

Take Table 9, the question “I want to know the
balance sum from 2018 to 2020” and the label-
ing answer “(113,246 — 18,967) + (120, 523 —
19,786) + (125,843 — 21, 355)” as an example.

The grammar of the answer formula format is
shown in Table 10, where we omit the specific de-
scriptions of Operator and Operand. Following
this grammar, the given answer can be parsed as ““(
Operand Operator Operand ) Operator ( Operand
Operator Operand ) Operator ( Operand Oper-
ator Operand )”. We replace all Operand with
x1, T2, ..., and keep all Operator as the original
symbols. Then, we can get the formula structure
“(1 — @) + (23 — 24) + (25 — 26)”.

About the operands, we can directly extract the
values corresponding to the operands. In this exam-
ple, they are “113, 246, 18,967, 120, 523, 19, 786,
125,843, and 21, 355, which are also the extracted
values. After that, we employ the string match
method and locate their positions in the table and
get {Cola, Row; }, {Coly, Row; }, {Cols, Rows},
{Coly1, Rows}, {Coly, Rows}, {Coly, Rows},
which are the extracted entities. Although the
method above is sample yet effective, how to detect
the question-related entities in the evidence com-
pletely correct should be carefully studied (e.g.,
MITQA (Kumar et al., 2023), TACR (Wu et al.,
2023)). Considering the complexity of this issue,
we leave how to solve it as future work.

Correspondingly, the ENCORE output
of this example is “<V> {Cols, Row;} |
{Coly, Rowr } | {Cola, Rows} | {Coli, Rows}
| {Cols, Rows} | {Coly, Rows} | <D>
(1 — x2) + (w3 — m4) + (v5 — wg) |
<A> ({Colz, Row} — {Coly,Rowi}) +
({Cols, Rows} — {Coly, Rows}) +
({Coly, Rows} — {Coli, Rows}) .

C Experiment Datasets

In this section, we discuss the detailed information
on the datasets of the experiments. The settings of
these datasets are shown in Table 11

FinQA A financial HybridQA dataset while it
only contains numerical reasoning questions, just
like MathQA. The operations of FinQA are fewer
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Pre-Training Task Question

Answer

Table Location Prediction

What is { Col_i, Row_j } ?
What is { Col3, Row2 } ?

The cell value of the headers.
0.47

Table Calculation Prediction

What is the max/min/sum/average of Col_i ?
What is the sum of Current : Federal ?

The formula of the column.
{ Coll , Rowl } + { Coll, Row2 }

Hierarchical Table Prediction

What is the { Col_i, Row_j } belong to ?
What is the { Col2 , Row2 } belong to ?

The first-level header of the cell.
Current

Table 8: Templates and examples of pre-training data. In each block, the first line is the template, and the second line
is the example marked with the ifalics. All answers to the examples are extracted from Figure 2. The replaceable

parts are highlighted in bold.

Year Outcome (Coly) Income (Cols)
2018 (Row1) 18,967 113,246
2019 (Rows) 19,766 120.523
2020 (Rows) 21,355 125,843
2021 (Rowy) 22,312 130,725

Table 9: An example of tabular evidence.

Rules

Formula — Formula Operator Formula
Formula — ( Formula )
Formula — Operand

Table 10: An example of answer formula grammar.

and more straightforward than MathQA, which
only includes less than ten elementary operations.
Following the settings of TAT-QA, we also locate
the program values’ positions as extracted entities.
FinQA contains 8,281 examples and is released as
training (6,251), validation (883), and test (1,147)
following a 75%/10%/15% split.

ConvFinQA A context-dependent version of
FinQA, which decomposes the complex numeri-
cal reasoning questions into multiple steps. During
the validation, it evaluates the model predictions of
all steps.

TAT-QA A financial HybridQA dataset contain-
ing textual as well as tabular evidence and four
types of answers including span, multi-span, count,
and arithmetic. We follow the origin derivation
format of the dataset and extract all values in the
derivation, then locate the positions of the values
in the table as extracted entities. TAT-QA consists
of 16,552 question-answer pairs and is split into
the training set (80%), development set (10%), and
test set (10%).

Dataset Domain  Evidence Answer
FinQA Finance Hybrid Formula
ConvFinQA Finance Hybrid Formula
TAT-QA Finance Hybrid Span

MathQA MWP Text Choice
DROP Wikipedia Text Span

GSMSK MWP Text Formula

Table 11: The settings of the experimental datasets.
ConvFinQA is the only context-dependent dataset.

MathQA A numerical reasoning dataset contain-
ing DSL-format questions involves more than one
hundred scientific operations. Because the maxi-
mum step number of one answer is 66, which is too
long for the model to generate, we only train the
model on the example with the number of answer
program steps less than ten that have covered the
93% dataset questions. MathQA consists of 37k
problems, split into (80/12/8)% training/dev/test
sets. We do not add the values to the inputs of
MathQA since we do not design the alias for the
text.

DROP A reading comprehension dataset con-
tains three types of answers, including spans, date
and number, where number questions only require
+ and - operations. Considering that it does not
annotate the calculation process, we first extract all
numbers in the evidence, calculate the similarity
between the question and the words around every
number, then select the legal calculation formula
with maximum similarity. DROP includes a total
of 96,567 question-answer pairs and is partitioned
into training (80%), development (10%), and test
(10%) sets.

GSMS8K The GSMSK is a collection of 8,500
meticulously created and linguistically varied math
word problems suitable for grade school levels,
crafted by professional problem writers. This
dataset is divided into two sections: 7,500 problems
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Dev Test
EM Fq EM F

Method

Discriminative Methods

NumNet+ (Ranetal., 2019) 81.1 844 81.5 84.8

QDGAT (Chen et al., 2020) 84.1 87.1 84.5 87.6
Generative Methods
GPT-3.5" (OpenAl, 2023) - - - 64.1
GPT-4" (OpenAl, 2023) - - - 80.9
" BART (Lewis et al., 2020)  ~ 68.6 ~ 71.7 674 70.7
BART w. ENCORE 69.2 722 684 714

Table 12: The performance of different methods of
DROP. * denotes the few-shot setting. The best results
are marked in bold.

for training and 1,000 for testing. Each problem is
designed to be solved in 2 to 8§ steps, predominantly
involving a series of basic arithmetic operations
(addition, subtraction, multiplication, division) to
attain the ultimate solution. These problems are
intended to be solvable by middle school students
and are ideal for enhancing multi-step mathemati-
cal reasoning skills.

D Evaluation Metrics

Exact Match measures the percentage of predic-
tions that match the ground truth answers. Usually,
two arithmetic answers are considered equal if their
four decimal places are equal, following the rule of
rounding function.

Numeracy-Focused F; Score measures the av-
erage token-level overlap between the predictions
and the ground truth answers, which can reduce
false negative labeling. When an answer has mul-
tiple spans, the numeracy-focused F; performs a
one-to-one alignment greedily based on the bag-
of-word overlap on the set spans to ensure every
current span can get the highest F; value, then com-
pute micro-average F; over each span.

Program Accuracy measures the accuracy of
operands and operators between the predicted pro-
grams and the golden programs.

Execution Accuracy measures the accuracy of
the execution result of the predicted programs.

E Hyper-Parameter Settings

Our model is implemented with PyTorch (Paszke
et al., 2019), transformers (Wolf et al., 2020) and
Fairseq (Ott et al., 2019). About the retrieval model,
we set the learning rate as 2e-5 and the dropout as

Method Exe Prog
FinQANet (Chen et al., 2021) - 79.2
ELASTIC (Zhang and Moshfeghi, 2022) - 83.0
BART (Lewis et al., 2020) 79.6 78.0
BART w. ENCORE 80.5 78.8
TS5 (Raffel et al., 2020) 81.8 78.6
T5 w. ENCORE 82.9 80.6

Table 13: The performance of different methods of
MathQA test set. Exe denotes the execute accuracy, and
Prog denotes the program accuracy. The best results are
marked in bold.

Method Dev Test
EM Fi EM F1

TagOp (Zhu et al., 2021a) 55.2  62.7 50.1 58.0
TaCube (Zhou et al., 2022a) 57.1 65.6 - -
KIQA (Nararatwong et al., 2022) - - 58.2 674
UniRPG (Zhou et al., 2022b) 702 779 674 755
RegHNT (Lei et al., 2022) 73.6 813 70.3 78.0
AeNER (Yarullin and Isaev, 2023) 78.5 86.0 75.0 83.2
BART (Lewis et al., 2020) 65.7 73.0 - -
BART w. ENCORE 71.0 789 - -
T5 (Raffel et al., 2020) 73.8  80.9 - -
T5 w. ENCORE 75.8 828 715 795

Table 14: The performance of different publicly avail-
able methods of TAT-QA. The best results are marked
in bold.

0.1. We select three negative examples for every
positive instance, set batch size as 16, and max
epoch as 20, which takes 10 hours for training. For
every question, we retrieve the top 5 as candidate
evidence. About the generation models of PLMs,
we consider it a Seq2Seq task with label-smoothed
cross-entropy loss. We set the learning rate as le-
5, dropout as 0.1, and weight decay as 0.05. We
use max tokens as 8192 during every step, update
the model parameter every four updates, and warm
up with 5000 updates. We set the max epoch as 1
for pre-training, 100 for BART [ ArqE, and 20 for
Tb53p, save the model every ten epochs during fine-
tuning and use early-stop checkpoints. Any other
hyper-parameters following the default settings of
the package. To lower the difficulty of table un-
derstanding, we mark the numerical order of each
column in the table. About the LLMs generation
models, we set top_p as 0.95 and temperature as 0.

We employ one NVIDIA A100 40G GPU as
our experiment device. The retrieval model takes
around 6 hours for training. The PLMs genera-
tion model takes around 1 hour for pre-training, 12
hours for BART, ArgE fine-tuning, and 48 hours
for T'h3p fine-tuning. The LLMs generation model
takes about 1.5 hours to infer for 1k examples.

10824



FinQA ConvFinQA

Model Exe Prog | Exe Prog
FinQANet (Chen et al., 2021) 61.2 589 | 68.9 682
DyRRen (Li et al., 2022) 63.3 61.3 - -

APOLLO (Sun et al., 2022) 68.0 65.6 | 76.0 746
TabT5" (Andrejczuk et al., 2022) | 70.8 68.0 - -

BART (Lewis et al., 2020) 58.8 54.4 71.5 69.5
BART w. ENCORE 62.3 57.2 744 722
T5 (Raffel et al., 2020) 65.0 583 | 79.6 77.3
T5 w. ENCORE 69.4 63.7 | 79.8 779

Table 15: The performance of different methods of
FinQA and ConvFinQA private test sets. Exe denotes
the execute accuracy, and Prog denotes the program
accuracy. | denotes results with ensemble. The best
results are marked in bold. The best results of methods
without ensemble are marked in underline.

F Detailed Experiment Results

In this section, we show the detailed results of each
experiment dataset in Table 12, Table 13, Table 14
and Table 15.

G Prompts of ENCORE with LLLMs

In this section, we present the prompts we used
with LLMs in § 4.4 in Table 16, Table 17 and Ta-
ble 18.
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Answer the given question based on the given evidence.

You should generate an formula to answer the arithmetic question.

When answering the question, you should firstly generate the used entities.

Then you generate the formula structure.

Finally you generate the answer formula based on the entities and the formula structure.

Read the following text and table, and then answer a question:
17. Income Taxes

Income before income taxes for the Company’s domestic and foreign operations was as follows:
— | — | Years Ended June 30, | —

($ in millions) 1 2019 12018 1 2017

Domestic | $204.2 1 $140.3 | $56.0

Foreign 1 11.8119.9114.2

Income before income taxes | $216.0 | $160.2 | $70.2

Quesetion: What was the change in Foreign in 2019 from 2018?
Entities: 11.8119.9

Formula: x0 - x1

Answer: 11.8-19.9

Read the following text and table, and then answer a question:

Effective Income Tax Rate

A reconciliation of the United States federal statutory income tax rate to our effective income tax rate is as follows:
In 2019 and 2018 we had pre-tax losses of $19,573 and $25,403, respectively, which are available for carry forward
to offset future taxable income. We made determinations to provide full valuation allowances for our net deferred tax
assets at the end of 2019 and 2018, including NOL carryforwards generated during the years, based on our evaluation
of positive and negative evidence, including our history of operating losses and the uncertainty of generating future
taxable income that would enable us to realize our deferred tax.

— | Year Ended | Year Ended

— | December 31, 2018 | December 31, 2019

United States federal statutory rate | 21.00% | 21.00%

State taxes, net of federal benefit | 1.99% | -0.01%

Valuation allowance | -21.96% | -24.33%

Cumulative effect of accounting change | —12.07%

R&D Credit | 1.34% 1 1.53%

Other | -0.38% | -0.27%

Effective income tax rate | 1.99% [ -0.01%

Question: What was the 2019 percentage change in pre-tax losses?

Entities: 19,573 125,403 125,403

Formula: (x0 + x1) / x2

Answer: (19573 + 25403) / 25403

Read the following text and table, and then answer a question:

Year Ended May 31 | Expected life (in years) | risk-free interest rate | Volatility | Dividend yield | Weighted-average
fair value per share

201914.612.7% 124% 1 1.7% | $10.77

201814.712.0%122% 11.5% | $9.34

2017 14.811.0%123% 11.5% 1 $8.18

Question: What was the average dividend yield for the 3 years from 2017 to 2019?

Entities: 1.7% |1 1.5% | 1.5%

Formula: (xO + x1 +x2)/3

Answer: (1.7+1.5+1.5)/3

Table 16: The prompt of TAT-QA.
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Solve the following questions with the programs.

The program consists of a sequence of operations.

Each operation takes a list of arguments.

There are 6 mathematical operations: $add$, $subtract$, $multiply$, $divide$, $greater$, $exp$.

And 4 table aggregation operations: $table-max$, $table-min$, $table-sum$, $table-average$.

The mathematical operations take arguments of either numbers from the given text and table, or a numerical result
from a previous step.

The table operations take arguments of table row names.

We use the special token #n to denote the result from the nth step.

The given information is enough to solve the question.

Read the following text and table, and then answer a question:

$ in millions | year ended december 2014 | year ended december 2013 | year ended december 2012
fixed income currency and commodities client execution | $ 8461 1$ 8651 1$ 9914

equities client executionl | 2079 1259413171

commissions and fees | 3153 1 3103 | 3053

securities services | 1504 11373 | 1986

total equities | 6736 1 7070 | 8210

total net revenues | 15197 1 15721 1 18124

operating expenses | 10880 1 11792 | 12490

pre-tax earnings | $ 4317 1 $ 3929 1 $ 5634

Question: what was the percentage change in pre-tax earnings for the institutional client services segment between
2012 and 2013?

Entities: 3929, 5634, 5634

Formula: divide(subtract(x0, x1), x2)

Answer: divide(subtract(3929, 5634), 5634)

Read the following text and table, and then answer a question:

during the year ended march 31 , 2012, the company has recorded $ 3.3 million in stock-based compensation
expense for equity awards in which the prescribed performance milestones have been achieved or are probable of
being achieved .

- | number of shares ( in thousands ) | weighted average grant date fair value ( per share )

restricted stock and restricted stock units at beginning of year 1407 1 $ 9.84

granted | 607 | 18.13

vested | -134 (134 )110.88

forfeited -9 (9)113.72

restricted stock and restricted stock units at end of year | 8711 $ 15.76

Question: during the 2012 year , did the equity awards in which the prescribed performance milestones were
achieved exceed the equity award compensation expense for equity granted during the year?

Entities: 607, 18.13, 1000, 3.3, 1000000

Formula: greater(multiply(multiply(x0, x1), x2), multiply(x3, x4))

Answer: greater(multiply(multiply(607, 18.13), const_1000), multiply(3.3, const_1000000))

Read the following text and table, and then answer a question:

- | september 24 2005 | september 25 2004 | september 27 2003
beginning allowance balance | $471$4918$ 51

charged to costs and expenses | 813 14

deductions (a)1-9(9)1-5(5)1-6(6)

ending allowance balance | $ 461 $ 471 $ 49

Question: what was the highest ending allowance balance, in millions?
Entities: ending allowance balance

Formula: table_max(x0, none)

Answer: table_max(ending allowance balance, none)

Table 17: The prompt of FinQA.
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Answer the given question.

You firstly generate the used values, which must be mentioned in the question.

Then you generate the formula structure.

Finally you generate the answer formula based on the values and the formula structure.
You only need to generate the formula without any other words, not to calculate the answer.

Question: An aquarium holds an equal number of clownfish and blowfish. 26 of the blowfish stay in their own tank,
and the remaining blowfish swim into a display tank. An equal number of clownfish join the blowfish in the display
tank, but then a third of these clownfish swim back into their own tank. If the aquarium holds a combined total of
100 fish, how many clownfish are now in the display tank?

Entities: total_fish = 100 | blowfish_in_own_tank = 26

Formula: total_blowfish_fish = total_fish / 2 | blowfish_in_display_tank = total_blowfish_fish - blow-
fish_in_own_tank | clownfish_in_display_tank = blowfish_in_display_tank | ans = clownfish_in_display_tank
*21/3

Answer: (100/2-26)*2/3

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her
friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the farmers’ market?

Entities: total_eggs = 16 | eaten_eggs = 3 | baked_eggs = 4 | dollars_per_egg =2

Formula: sold_eggs = total_eggs - eaten_eggs - baked_eggs | ans = sold_eggs * dollars_per_egg

Answer: (16-3-4)*2

Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?
Entities: bolts_of_blue_fiber =2

Formula: bolts_of white_fiber = num_of_blue_fiber / 2 | ans = bolts_of_blue_fiber + bolts_of_white_fiber
Answer: 2+ (2/2)

Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs.
This increased the value of the house by 150%. How much profit did he make?

Entities: cost_of_original_house = 80000 | cost_of_repair = 50000 | increase_rate = 1.5

Formula: value_of_house = (1 + increase_rate) * cost_of_original_house | ans = value_of_house - cost_of_repair -
cost_of_original_house

Answer: ((1 + 1.5) * 80000) - 50000 - 80000

Question: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds,
mealworms and vegetables to help keep them healthy. She gives the chickens their feed in three separate meals. In
the morning, she gives her flock of chickens 15 cups of feed. In the afternoon, she gives her chickens another 25
cups of feed. How many cups of feed does she need to give her chickens in the final meal of the day if the size of
Wendi’s flock is 20 chickens?

Entities: numb_of_chickens = 20 | cups_for_each_chicken = 3 | cups_in_the_morning = 15 | cups_in_the_afternoon
=25

Formula: cups_for_all_chicken = num_of_chickens * cups_for_each_chicken | ans = cups_for_all_chicken -
cups_in_the_morning - cups_in_the_afternoon

Answer: (20 * 3) - 15-25

Question: Marissa is hiking a 12-mile trail. She took 1 hour to walk the first 4 miles, then another hour to walk the
next two miles. If she wants her average speed to be 4 miles per hour, what speed (in miles per hour) does she need
to walk the remaining distance?

Entities: average_mile_per_hour = 4 | total_trail_miles = 12

Formula: remaining_miles = total_trail_miles - 4 - 2 | total_hours = total_trail_miles / average_mile_per_hour |
remaining_hours = total_hours - 2 | ans = remaining_miles / remaining_hours

Answer: (12-4-2)/((12/4)-2)

(Ignore two examples because the whole prompt exceeds the length of one single page.)

Table 18: The prompt of GSM8K.
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