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Abstract

Recently, Temporal Knowledge Graph Fore-
casting (TKGF) has emerged as a pivotal do-
main for forecasting future events. Unlike
black-box neural network methods, rule-based
approaches are lauded for their efficiency and
interpretability. For this line of work, it is cru-
cial to correctly estimate the predictive effec-
tiveness of the rules, i.e., the confidence. How-
ever, the existing literature lacks in-depth in-
vestigation into how confidence evolves with
time. Moreover, inaccurate and heuristic con-
fidence estimation limits the performance of
rule-based methods. To alleviate such issues,
we propose a framework named Temp Valid to
explicitly model the temporal validity of rules
for TKGF. Specifically, we design a time func-
tion to model the interaction between temporal
information with confidence. TempValid con-
ceptualizes confidence and other coefficients as
learnable parameters to avoid inaccurate esti-
mation and combinatorial explosion. Further-
more, we introduce a rule-adversarial nega-
tive sampling and a time-aware negative sam-
pling strategies to facilitate TempValid learning.
Extensive experiments show that TempValid
significantly outperforms previous state-of-the-
art (SOTA) rule-based methods on six TKGF
datasets. Moreover, it exhibits substantial
advancements in cross-domain and resource-
constrained rule learning scenarios.

1 Introduction

Representing, acquiring, and applying knowledge
have always been hot topics in the field of artifi-
cial intelligence research (Cai et al., 2020; Ji et al.,
2021; Mialon et al., 2023). Knowledge reasoning
(Huang et al., 2023, 2024) is an invaluable path-
way for humanity to understand and acquire new
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(a) An example of rule-based TKGF.
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(b) Uniform temporal pattern. (c) Rule-independent pattern.

Figure 1: An example of rule-based TKGF with dif-
ferent temporal patterns. Employing uniform temporal
patterns will yield a temporally insensitive outcome.

knowledge. Previous knowledge reasoning focused
on static reasoning, however, temporal reasoning
holds more profound implications for daily life. For
example, if dark clouds are observed, one could
take an umbrella to avoid catching a cold caused
by the probable heavy rain. Temporal Knowledge
Graph Forecasting (TKGF) is a natural scenario for
predicting future events based on historical data,
thus drawing substantial interest from researchers
in recent years (Trivedi et al., 2017; Jin et al., 2020;
Wang et al., 2023).

Compared to the neural methods obsessed with
non-transparent latent vector representations, rule-
based approaches are capable of discerning and
implementing subtle rules for efficient and inter-
pretable reasoning (Galarraga et al., 2013; Meil-
icke et al., 2019; Liu et al., 2022). However, pre-
vious efforts focused on estimating the static pre-
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dictive capability of rules (Galdrraga et al., 2015;
Pellissier Tanon et al., 2017; Ortona et al., 2018),
i.e., confidence, overlooking their interaction with
temporal information, which may result in tempo-
rally insensitive outcomes. As shown in Figure
1a, there are two temporal rules with different con-
fidence, if we employ static or uniform temporal
patterns in Figure 1b, then it will yield the outcome
Macron at all future points in time. To predict
the example in Figure 1a, it is necessary to model
rule-independent temporal characteristics shown in
Figure 1c to get richer temporal patterns.

In addition to the interaction of temporal infor-
mation with rules, the interaction between rules
is also important for reasoning. Existing methods
perform confidence estimation and aggregating rea-
soning based on rule-independence assumptions
(Meilicke et al., 2019; Liu et al., 2022; Li et al.,
2023), which may lead to an overestimation of
incorrect outcomes (Ott et al., 2021). However,
delving into the interactions between rules may en-
counter potential combinatorial explosion of con-
fidence (Betz et al., 2023). While parameterized
confidence may alleviate this challenge (Ott et al.,
2023), it remains an unsolved problem to model
both the interaction of temporal information with
rules and the interaction between temporal rules.

To address the aforementioned challenges, we
propose a framework, named TempValid, which
models the temporal validity of rules for TKGF.
Specifically, TempValid assumes that confidence
decays over time rather than being timeless. We
design a time function with a learnable decay co-
efficient to regulate the decay rate impacting rule
confidence. The confidence and decay coefficients
are conceptualized as learnable parameters to avoid
inaccurate heuristic estimation and potential com-
binatorial explosion. To effectively optimizing
TempValid, we design a rule-adversarial nega-
tive sampling and a time-aware negative sampling
strategies. Extensive experiments show that Temp-
Valid significantly outperforms existing rule-based
TKGF methods and achieves competitive perfor-
mance with the state-of-the-art baselines on six
TKGEF datasets. Moreover, TempValid significantly
outperforms existing approaches in cross-dataset
and low-resource scenarios.

In summary, our contributions are as follows:
(1) We propose a framework named TempValid
for modeling the temporal validity of temporal
rules. To our best knowledge, this is the first
study of investigating the temporal validity of tem-

poral rules in the context of temporal knowledge
graphs. (2) We design a time function with con-
trolled decay rate, conceptualize confidence and
decay coefficients as learnable parameters, and
propose two elaborate negative sampling strate-
gies to facilitate TempValid training. (3) Our pro-
posed TempValid significantly surpasses the exist-
ing rule-based TKGF methods and achieves com-
petitive performance with the state-of-the-art base-
lines on six representative TKGF datasets, includ-
ing ICEWS14, ICEWS18, ICEWS05-15, YAGO,
WIKI and GDELT.

2 Related Work

2.1 Temporal Knowledge Graph Forecasting

Temporal knowledge graph reasoning can be clas-
sified into two settings: interpolation and extrap-
olation settings. Interpolation setting aims to pre-
dict missing historical facts within a known time
frame (Leblay and Chekol, 2018; Garcia-Duran
et al., 2018; Goel et al., 2020). However, these
methods cannot predict future facts effectively.

To solve the deficiency of interpolation setting,
extrapolation setting is proposed, i.e, TKGF. RE-
NET (Jin et al., 2020) and REGCN (Li et al.,
2021b) treat TKGs as sequences of subgraphs, em-
ploying GNNs to model graph structures and RNNs
to capture sequential patterns, respectively. In-
spired by the repetition of historical events (Trompf,
1979; Schlesinger, 1999), CyGNet (Zhu et al.,
2021) and CENET (Xu et al., 2023) utilize copy
mechanism to predict future facts. TiRGN (Li
et al., 2022) considers the sequential, repetitive and
cyclical patterns of historical facts simultaneously,
achieving a remarkable performance.

However, due to the nature of black-box mod-
els, the above methods lack transparency and in-
terpretability. To address this issue, XERTE (Han
et al., 2020) generates interpretable reasoning paths
through subgraph expansion and pruning. CluS-
TeR (Li et al., 2021a) and TITer (Sun et al., 2021)
use reinforcement learning strategies to travel re-
lational paths for reasoning. TECHS (Lin et al.,
2023) attempt to encode the rules mined by TLogic
and perform predictions using GNNs. The most
relevant to our work is TLogic (Liu et al., 2022),
which is a extension of AnyBURL (Meilicke et al.,
2019), a rule-based reasoning method for static
knowledge graphs. It designs the temporal random
walk to mine temporal rules and aggregates tem-
poral rules for reasoning. Compared to TLogic,
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our proposed TempValid focuses on modeling the
temporal validity of rules.

2.2 Estimation of Confidence

Although various metrics (Galdrraga et al., 2013;
Zhang et al., 2021) and assumptions (Galarraga
et al., 2015; Pellissier Tanon et al., 2017; Ortona
et al., 2018) have been proposed to model the qual-
ity of rules, confidence is considered the appro-
priate for knowledge graph reasoning. However,
the above methods assume rule independence both
in confidence estimation and rule aggregation rea-
soning. Such the strong assumption may lead to
redundant reasoning, further overestimating incor-
rect answers (Ott et al., 2021; Betz et al., 2023).

Parameterizing confidence bridges the gap be-
tween confidence estimation and aggregated rea-
soning (Ott et al., 2023), avoiding the risks asso-
ciated with strong assumptions and the potential
explosion of parameter combinations. Nonethe-
less, these approaches ignore the specificity and
complexity of confidence estimation in temporal
scenarios. Currently, TR-Rules (Li et al., 2023)
investigated the misestimation of the confidence
due to temporal redundancy. Some works of dif-
ferentiable rule learning also set confidence as a
learnable parameter, however, they mostly focus on
interpolation reasoning or interval reasoning and
(Xiong et al., 2022; Singh et al., 2023).

3 PROBLEM STATEMENT

3.1 Temporal Rules

A TKG can be denoted as G = {(es,r, eo,t)},
where ez, e, € & are subject and object entity
(Gu et al., 2022; Qu et al., 2023), r € R repre-
sents the semantic relations and ¢ € 7 is times-
tamp. Based on timestamps, a TKG can be divided
into sequential subgraphs {G1, Ga, ..., G }. Given a
query (eq,7q,7,%,), the objective of the temporal
knowledge graph forecasting task is to predict the
missing entity based history fact {G;|t < t,}.
Rule-based TKGF aims to predict future events
by learning and applying temporal rules. In this
paper, we focus on modeling the confidence and
temporal validity of rules rather than the method-
ology for mining them, so we use TLogic’s rule
learning approach to mine cyclic temporal logical
rules (Liu et al., 2022), which is defined as follows:

(Ev,rn,Er1, Tiv1) < Ny (Biyriy By, Th),
with T <Thy <..<Ti < Tl+1 (D)

where the left of the arrow is termed the rule head
H, while the right is the rule body B. E; and T;
are replaceable variables that represent entities and
timestamps, respectively. 7}, is the head relation
and 7; is a body relation. ¢,(tr) = T} denotes the
earliest time of the grounded rule instance.

3.2 Rule-Based TKGF

Let’s index quadruples and use y; € {0, 1} denotes
the truth value of quadruple ¢; = (es, 7, €,,t). For
a target relation 7, given the learned temporal rule
set T'R, where the size of the rule setis K = |T'R)|,
c(tr;) is the confidence of the jy, temporal rule
tr; € TR. A feature vector At; € Nf for every
example At;; = t — ¢,(tr;) denotes the time in-
terval between the rule body and fact. Specially,
At;; = +oo0 if none of the relational path instance
could be grounded by tr;.

Usually, a heuristic confidence denotes the likeli-
hood that the temporal rule ¢r; predicted quadruple
g, i.e. p(yi|c(trj)). We are motivated by the belief
that this predictive effectiveness should be subject
to time rather than timelessness. Therefore, we
need to design a time function tv(At) interacting
with the confidence, i.e. the likelihood should be
the form of p(y;|®(c(tr;), tv(At;;))), abbreviated
as ®(trj, At), where ®(-) is a function that couples
the confidence with time function.

For prediction, a typical approach is aggregating
rules with Noisy-OR (Meilicke et al., 2019; Liu
et al., 2022) to score ¢;:

K

s(q) =1 [ = ®(tr;, Aty;)) (@)

j=1
4 METHODOLOGY
4.1 Temporal Validity of Temporal Rules

Our core motivation is to model the temporal va-
lidity of temporal rules. Our approach is under-
pinned by two key intuitions: 1) The confidence of
a temporal rule would diminish as the time interval
increases; 2) The temporal sensitivity of the rules is
different. Some rules experience an abrupt decline
in predictive power, while others maintain efficacy
over extended timeframes.

To model our intuition, there are two key points
that must be satisfied: 1) A monotonically non-
increasing time function tv(At) € [0, 1] needs to
be designed for temporal decay on confidence. 2)
The time function should contain a parameter in-
dicating the decay rate of the temporal rule. To
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satisfy the above two requirements, we design an
exponential form of time decay function:

t’U(Atij) = 6_5'7Atij (3)

where f3; is the decay coefficient of ¢r; that con-
trols the decay rate of confidence c(tr;). A large 3
indicates that the confidence is decaying fast, i.e.,
the temporal rule is sensitive to temporal informa-
tion and vice versa. While 8 = 0, the confidence
of the rule is considered efficient forever.

Subsequently, we applied the time function to
the confidence so that it could decay over time. The
coupling function that integrates confidence with
time function is formulated as follows:

‘b(t?"j, At) = C(t?"j) * t’U(Atij) 4)

In this paper, we only discuss the effect of tempo-
ral decay of confidence on the TKGF. More power-
ful temporal functions and coupling methods may
be potential research interests in the future.

4.2 Learning Decay Coefficients and
Confidence of Rules for TKGF

To accurately estimate the confidence and tempo-
ral validity of temporal rules, we use a machine
learning model to learn the confidence and decay
coefficients. Straightforwardly, we can compute
the scores of the quadruples using the Noisy-OR
function in Equation 2:

K
s(ai) = 1= [[(1 = eltry) xeP84) (5)
j=1

Noisy-OR is an aggregation function based on
the assumption that the effectiveness of rules is
independent, which implies the probability that at
least one rule works. The cumulative product form
of the score function may be difficult to be opti-
mised due to potential gradient vanishing. There-
fore, inspired by Relational Logistic Regression
(Kazemi et al., 2014; Ott et al., 2023), we trans-
form the Noisy-OR into a linear model through the
g(z) = log(1— z), the two ends of the equation are
positively correlated while z € [0,1). Rewriting
é(trj, Atij) = log(l - q)(tTj, Atij)) and we will
obtain a new scoring function:

s(qi) = Z c(tr;) x e~ Pitti (6)

Jj=1

From a feature engineering perspective, for a
query (eq,7q,€q,tq), TempValid generates a K-
dimensional feature vector, X denotes mined tem-
poral rules for r,. The feature value is the time
interval between the ¢, and the earliest timestamp
of the grounded instance of the rule. In Eq. 6, if
we regard the confidence and decay coefficients as
feature weights for training, then essentially we are
performing an exponential decay transformation on
the temporal information of all the rules and then
linearly aggregating them.

4.3 Negative Sampling and Optimization

Whichever score function is adopted, we need
to make the score for the positive sample higher
than the score for the negative sample. Con-
ventionally, for a quadruple ¢; = (eq,7q; €q,tq),
negative samples can be generated by simply re-
placing entity ¢, = (eq,7q, €., tq) or timestamps
¢, = (eq,7q, €q,t") (Sun et al., 2018; Leblay and
Chekol, 2018). This approach, however, is not
applicable to rule-based methods, as numerous en-
tities simply have no rules to ground, leading to the
generation of nonsense negative samples. There-
fore, we propose two adapted negative sampling
strategies based on the idea of replacing entities
and replacing timestamps, respectively.
Rule-Adversarial Negative Sampling. For a
query (eq, 74, ?,t4) and a set of temporal rules for
rq, when rules are applied to a query, it is possi-
ble to reach other incorrect candidate entities be-
sides the correct one. A high-quality rule that not
only provides accurate predictions but also avoids
incorrect predictions will be assigned a greater
weight. As a result, we select negative samples
from quadruples that can be covered by the pre-
mined rules for training purposes. In pursuit of
high-quality negative samples, we give precedence
to those instances with high scores through TLogic
(Liu et al., 2022). Nonetheless, there are still a
great number of queries that are only able to gen-
erate a few negative samples. To alleviate this
problem, negative samples generated by replacing
timestamps are used as a supplement.
Time-Aware Negative Sampling. For TKGF, a
positive sample requires not only the correct enti-
ties and relation, but also the correct timestamp.
Guided by this intuition, we derive time-aware
negative samples by replacing the timestamp of
a positive sample. Employing a sliding window
mechanism, we can readily generate a substantial
amount of time-aware negative samples. For ex-
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#Nodes #Rels #Rules #Train #Used #Valid #Test Interval
ICEWS14 6,869 230 23,814 74,845 61,670 8,514 7,371 24 hours
ICEWS18 23,033 256 32,394 373,018 172,923 45,995 49,995 24 hours
ICEWSO0515 10,094 251 50,921 368,868 198,138 46,302 46,159 24 hours
YAGO 10,623 10 74 161,540 1,110 19,523 20,026 1 year
WIKI 12,554 24 83 539,286 1,245 67,538 63,110 1 year
GDELT 7,691 240 49,614 1,734,399 405,273 238,765 305,241 15 minutes

Table 1: Dataset statistics. #Rules denotes the number of pre-learned rules, and #Used denotes the number of

quadruples used to generate the feature vectors.

ample, for a positive sample (eq, 7q, €4, t4) and its
feature vector At introduced in Section 3.2, if we
set a sliding window of 200 with an offset time ¢,,
then we can get 200 negative samples with feature
vector At — t,. We set all non-positive elements
in the generated feature vector to 400 to indicate
the disabling of the corresponding temporal rule.

Ultimately, in this paper, we adopt a loss func-
tion similar to the negative sampling loss (Mikolov
et al., 2013; Sun et al., 2018):

N
L= —log(s(@)) + - D los(s()) (D
n=1

where ¢;' denotes ny, negative sample generated
based on ¢;, N is the number of negative samples.

S EXPERIMENTS

5.1 Experiment Setup

Datasets. We evaluate TempValid on the entity
prediction task of TKGF using six TKG datasets:
ICEWS14, ICEWS05-15 (Garcia-Duran et al.,
2018), ICEWS18, GDELT (Jin et al., 2020), WIKI
(Leblay and Chekol, 2018), and YAGO (Mahdis-
oltani et al., 2013). We follow the previous works
(Li et al., 2021b; Gastinger et al., 2023) to divide
the dataset into training set and testing set, as well
as validation set, with 8:1:1 according to the order
of timestamps. The statistics are shown in Table 1.
Evaluation Metrics. We report two extensively
adopted metrics for evaluating the performance of
our model in temporal knowledge graph reason-
ing: Mean Reciprocal Rank (MRR) and Hits@k
(H@k) in percentage (%). For each query, there
is a rank for the true entity among all candidates.
MRR is the average reciprocal values of the ranks,
and Hits @k denotes the proportion where the ranks
fall within the top k. A query may exist several cor-
rect answers, filtering out additional correct entities
provides a more robust assessment of model per-
formance. We adopt the widely-used time-aware

filtered setting in TKGF to report the results (Han
et al., 2020; Gastinger et al., 2023).
Baseline. We compare several renowned TKGF
baselines: RE-NET (Jin et al., 2020), REGCN (Li
etal., 2021b) and TiRGN (Li et al., 2022) which are
evolutionary representation learning based meth-
ods; TANGO (Han et al., 2021), which uses neural
ODEs; CyGNet (Zhu et al., 2021) featuring copy
mechanisms; TITer (Sun et al., 2021) based on re-
inforce learning; XERTE (Han et al., 2020), known
for its interpretability; the purely rule-based reason-
ing approach, TLogic (Liu et al., 2022) and TECHS
(Lin et al., 2023) which performs reasoning with
encoding temporal rules.
Hyperparameter Setting. Learning rate [r, batch
size b and number of negative samples /N are ob-
tained by grid search based on the MRR of the
validation set. Ultimately, 0.01 [ and 128 b are
applied to all datasets, except [ICEWS05-15 which
uses 1024 batch size. For NV, 50, 50, 50, 90, 70, and
60 are set for YAGO, WIKI, GDELT ICEWS14,
ICEWS18 and ICEWS05-15, separately.

More details of the dataset and implementation
are in the Appendix A and B.

5.2 Main Results

The results of the TKGF task are shown in Table 2
and 3. Notably, our approach outperforms TLogic,
the method most closely related to ours, across all
datasets. This suggests that the confidence and tem-
poral validity modeled by our method surpass those
derived from statistical or manually designed meth-
ods, as they can better capture complex semantic
and temporal patterns in the data. Constrained by
the size of the rule set and computational costs,
both TLogic and TempValid focus exclusively on
cyclic temporal rules which limits their ability to
predict relations that require acyclic temporal rules
for description. This is why TempValid and TLogic
are worse than the representation-based models on
YAGO, with some relations not being able to be
modeled using only cyclic rules (the relevant data
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Model ICEWS14 ICEWS18 ICEWSO0515

MRR H@l H@3 H@l0 MRR He@l He@3 HE@l0 MRR He@l H@3 H@10
RE-NET 3848 2852 4285 58.10 28.02 18.62 3159 4644 4456 34.16 50.06 64.51
CyGNet 39.86 30.11 44.02 5821 29.78 19.73 3255 4846 4042 2944 46.06 61.60
TANGO 3648 2690 41.03 5482 2897 1951 32.61 4751 42.86 3272 48.14 62.34
xERTE 40.79 32770 45.67 5730 2931 21.03 3351 4648 46.62 37.84 5231 6392
REGCN 4248 3190 4773 6285 3284 22.65 37.02 5287 4810 3748 5392 68.56
TITer 41.54 32.61 46.15 58.00 29.61 2139 3326 4498 4785 3835 53.05 6542
TiRGN 44.04 3383 4895 63.84 33.66 23.19 3799 5422 50.04 3925 56.13 70.71
TLogic 4253 3320 4761 60.29 2959 2042 33.60 48.05 4694 36.16 5324 67.21
TECHS 43.88 3459 4936 6195 30.85 21.81 3539 49.82 4838 3834 54.69 6892
TempValid 45.78 35.50 51.34 65.06 33.50 2391 37.80 5233 5031 3946 56.71 70.55

Table 2: Performance for entity prediction task on ICEWS18, ICEWS14 and ICEWS0515.

Model YAGO WIKI GDELT

MRR H@l H@3 H@l0 MRR H@l H@3 He@l0 MRR H@l HE@3 H@I10
RE-NET 6693 5859 7148 86.84 5832 5001 61.23 7357 19.55 1238 20.80 34.00
CyGNet 68.98 5897 7680 8698 5878 47.89 6644 7870 19.55 1238 20.80 34.00
TANGO 63.34 60.04 6519 68.79 53.04 5152 53.84 5546 19.66 12.50 2093  33.55
xERTE 84.19 80.09 88.02 89.78 73.60 69.05 78.03 79.73 1945 1192 20.84 34.18
REGCN 8230 78.83 8427 88.58 7853 7450 81.59 8470 19.69 1246 2093  33.81
TITer 8747 80.09 89.96 9027 7391 7170 7541 7696 18.19 11.52 1920 31.00
TiRGN 8795 8434 9137 9292 81.65 77.77 85.12 87.08 21.67 13.63 2327 37.60
TLogic 7876 7431 8338 83.72 7893 73.05 8497 8691 1983 1227 21.74 35.72
TECHS 89.24 - - 92.39 7598 - - 82.39 - - - -
TempValid 79.72 74.64 8478 8573 8319 74.67 90.12 97.54 21.88 1437 2440 37.00

Table 3: Performance for entity prediction task on YAGO, WIKI and GDELT.

makes up more than 10% of the test set).

For non-rule-based methods, despite not model-
ing entity representations, Temp Valid demonstrates
superiority over methods, such as RE-NET and
REGCN, which are centered around entity evolv-
ing representations. Even though TiRGN draws on
various strengths from different approaches, Tem-
pValid still achieves competitive results against it,
which suggests that rule-based methods still hold
promising competitive prospects.

5.3 Heuristic vs. Learned Confidence and
Decay Coefficients

Previous efforts (Ott et al., 2023) have shown
that confidence learned by a canonical model out-
performs statistically derived confidence in static
knowledge graph reasoning tasks. A question to
be explored is whether TempValid’s efficacy is pri-
marily due to its learned confidence, temporal va-
lidity, or a synergy of both aspects. To answer the
question, we design three variant models of Temp-
Valid on ICEWS14, ICEWS18 and ICEWS05-15:
(1) learning confidence without temporal informa-
tion (LCWT) which makes At € {0,1}* which

denotes whether the corresponding rule is applica-
ble, (2) learning confidence with a uniform, fixed
temporal validity (LCFT), and (3) employing the
statistically derived confidence from TLogic while
only learning temporal validity (LTV). We include
TLogic which using heuristic confidence and uni-
form decay coefficients joins as well.

Model ICEWS14 ICEWS18 ICEWSO05-15
TLogic 42.53 29.59 46.94
LCWT 37.45 26.01 42.18
LCFT 44.72 32.60 48.61
LTV 44.93 32.38 48.86
TempValid 45.78 33.50 50.31

Table 4: Analysis of variant models of TempValid.

In Table 4, it can be observed that LCWT per-
forms worse than TLogic, indicating the signif-
icance of temporal information in TKGF tasks.
While learning confidence or temporal validity in-
dividually leads to performance surpassing that of
TLogic, TempValid achieves a superior outcome by
jointly optimizing both aspects. This suggests that
our proposed TempValid find an effective way to
couple the semantic confidence and temporal valid-
ity of temporal rules. While there may be room for
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more sophisticated temporal validity modeling and
coupling with confidence scores, we leave these
explorations to future work.

In Figure 2, we further investigate the relative
performance of LCFT against TempValid across
different time decay coefficient 3. It is evident that
the model exhibits sensitivity to the S parameter.
The intricate process of hyperparameter searching
accentuates the necessity to learn rule-independent
time decay coefficients.

o
S

o«
=3
2

=
=
®

ICEWS14
ICEWS18
ICEWS0515

=)
=

Relative Performance (%)

wn
=

3 2 -1 0 1
log10(B)

Figure 2: Sensitivity analysis of S on learning confi-
dence with fixed temporal decay rate (LCFT).

5.4 TImpact of Score Function and Negative
Sampling Strategies

In this section, we discuss the contributions of opti-
mization objectives and negative sampling strate-
gies to the performance of Temp Valid.

Firstly, we experiment with replacing the scor-
ing function with the Noisy-OR, which has been
commonly used in previous works. Subsequently,
we delve into the extent to which different negative
sampling strategies contribute to the performance
of TempValid. The strategy that optimizes only
using positive samples in Equation 7 is abbreviated
as OP. Removing the Rule-Adversarial Negative
Sampling or Time-Aware Negative Sampling is ab-
breviated as w/o. TANS or w/o. RANS. The results
are shown in Table 5.

Model ICEWS14 ICEWSI18 ICEWSO05-15
Noisy-OR 28.28 23.32 38.29
Only Positive 15.29 23.78 40.50
w/o. RANS 39.17 28.62 44.73
w/o. TANS 45.41 33.29 49.69
TempValid 45.78 33.50 50.31

Table 5: Performance of different score functions and
negative sampling strategies.

It can be observed that the performance using
the Noisy-OR model significantly lags behind that
of the canonical model. There are two potential

reasons: 1) The Noisy-OR scoring function is com-
puted under an assumption of rule independence,
which may not be suitable when considering inter-
actions among rules. 2) Under the assumption of
rule independence and the Noisy-OR computation,
even poor-quality rules can make a non-negligible
positive contribution. Moreover, as we did not em-
ploy sophisticated techniques to filter rules such as
clustering (Ott et al., 2021) or top-k rule selection
(Betz et al., 2023; Liu et al., 2022), this might have
allowed some detrimental rules to interfere with
the prediction process (Ortona et al., 2018).

100 s :
N $ /
< 101 -~
D
<
5 80 100 y & )
: —
e 99 @
5
A& 60 98
g 50 60 70 80 90 100
b ®— ICEWSI4
& 40 ICEWS18
ICEWS0515
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Figure 3: Relative performance with different number
of negative samples /N on Temp Valid.

We observed that both negative sampling strate-
gies can bring some gains, but the performance
drops significantly after removing RANS. The rea-
son is that the TANS essentially generates negative
samples through a simple linear transformation of
the feature vectors, which limits its performance
gain. Nevertheless, due to its simple and cost-
effective, it still serves as a valuable alternative
negative sampling approach.

In Figure 3, we illustrate the performance of
TempValid under varying numbers of negative sam-
ples N. When N is zero, the model degenerates to
the Only Positive variant as seen in Table 5. While
N < 50, the model’s performance improves as the
number of negative samples increases apparently.
It suggests that an appropriate amount of negative
samples is beneficial in enabling the model to learn
confidences and temporal decay coefficients effec-
tively. As N > 50, the model’s performance fluctu-
ates slightly within a range that is close to the best
performance which indicates that TempValid is not
burdened by the overhead typically associated with
extensive negative sampling and is not sensitive to
the choice of the number of negative samples.
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5.5 Cross-dataset Generalization

Generally, representation learning-based methods
struggle with cross-dataset generalization, training
a model on a dataset and performing well on an-
other dataset, due to many entities are not shared
across different datasets. Rule-based methods, by
contrast, inherently possess an advantage in this
regard as they model relations rather than specific
entities. In this paper, we follow the settings of
(Liu et al., 2022) for conducting cross-dataset gen-
eralization experiments.

thm gtest Model MRR H@10
AnyBURL 26.64 44.77
ICEWS0515 ICEWSI14 TLogic 4253 61.22
TempValid 45.72  65.08
AnyBURL 1546  29.58
ICEWS14 ICEWS18 TLogic 29.15  47.95
TempValid 32.53 51.94

Table 6: Reasoning across different datasets.

Specifically, we mine rules and train our model
on ICEWSO05-15, then perform predictions on
ICEWS14. Similarly, we apply this procedure for
training on ICEWS14 and predicting on ICEWS18.
In Table 6, it can be seen that Temp Valid not only
inherits TLogic’s ability to reason across datasets,
but it also improves upon it. It shows that Temp-
Valid’s estimation of the confidence and decay rate
of the rules is consistent across datasets.

5.6 Complexity Analysis

The time complexities of rule mining and fea-
ture vector generation in the TempValid frame-
work, respectively, correspond to the training and
inference time complexities within TLogic. For
rule mining, the worst-case time complexity is
O(|R|nlDb), where [ is the length of the rule, n
is the number of walk, D is the maximum node
degree, and b is the number of body samples for
pre-estimating the confidence. For feature vec-
tor generation, the worst-case time complexity is
O(|G| + |TR|D¥|&log(k)), where L is the max-
imum rule length in temporal rule set |T'R| and
k is the minimum number of candidates. Regard-
ing model parameters, TempValid is a lightweight
model that requires learning only two parameters
per rule: the confidence and the decay coefficient.
The proposed TempValid model trains with fewer
than 50,000 parameters for all datasets.
Generating feature vectors from the training set
can often result in a significant overhead, especially

considering that the training set is typically larger
than the test set. Fortunately, the number of pa-
rameters that TempValid needs to learn is relatively
modest, making it possible to obtain near-optimal
parameters even without extensive training data.
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Figure 4: Performance with different size of train data
|T'rain| on Temp Valid.

N 6
4 510020

Figure 5: MRR with different size of train data |T'rain|
and number of negative samples N on ICEWS14.

In Figure 4, we show the relationship between
model performance and the size of training data on
ICEWS14, ICEWS18 and ICEWS05-15, where
|Train| denotes the maximum number of train
data for a target relation. Evidently, TempValid
can achieve baseline performance with as few as
16 data instances to learn the semantic confidences
and decay coefficients. With just 32 data, Temp-
Valid attains results comparable to TLogic, which
utilizes 500 samples for the estimation of confi-
dence under standard settings. With just 32 data
instances, TempValid attains results comparable to
TLogic, which utilizes 500 samples for confidence
estimation under standard settings.

The number of negative samples should also be
considered as part of the training data. To this end,
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id Rules CTL CTV DC
1 (X, Engage in negotiations,Y,T1) < (X, Express intent to ease sanction,Y,Ty) 096 1 0.001
2 (X,Makeawvisit,Y,T1) < (X, Express intent to meet, Y, To) 032 076 1413
3 (X, Engage in negotiations,Y,T1) + (X, Engage in cooperation,Y,Ty) 026 0.17 0.121

Table 7: Case study. C7; means confidence learned by TLogic, C'7y and DC' denote confidence and decay

coefficient learned by TempValid.

we show TempValid’s performance on ICEWS14
as a function of training data size and number
of negative samples in Figure 5. With the same
amount of data, increasing the number of negative
samples strengthen TempValid’s capacity to learn
semantic confidences and decay coefficients effec-
tively. Referring to Figure 3, when the N > 50,
the model can achieve near-optimal results. It im-
plies that for training TempValid, we only need
to generate feature vectors from a small subset of
historical quadruples rather than generating them
for the entire vast collection of training quadruples.

5.7 Case Study

To facilitate the understanding of TempValid’s mod-
eling mechanism, we provide a case study with
three example rules in Table 7. It is observed that
both TLogic and TempValid assigns a high confi-
dence to the Rule 1, and TempValid learns a small
decay coefficient. It indicates that Rule 1 is not
sensitive to temporal information but are more fo-
cused on the semantic information. These rules
are mainly composed of 3 step length rules. These
types of rules typically have high confidence but
low exposure (i.e., support (Galadrraga et al., 2013))
and are usually composed of three-step length rules.
For example, although Rule 1 showed high confi-
dence, it only occurred 23 times in 500 samples.
Upon further observation of Rule 2 and Rule 3,
Temp Valid assigned confidences that diverged from
those generated by TLogic. For Rule 2, TempValid
allocated a higher confidence and a decay coeffi-
cient, whereas for Rule 3, TempValid assigned a
lower confidence and decay coefficient. This aligns
with human cognition: If a person expresses an
intention to visit someone, they are likely to meet
within a short period. However, this probability de-
cays very quickly because if they do not meet for a
long time, the plan might be forgotten or canceled.
As a comparison, cooperation is a long-term inten-
tion. Although the probability of it happening at
any given moment is smaller than that of a meeting,
in the long run, once this intention is formed, it will
consistently drive the visit over a period of time.

6 Conclusion

In this paper, we propose the TempValid to model
the temporal validity of temporal rules for TKGFE.
We believe that the predictive effectiveness (confi-
dence) of the rules would decay over time. Temp-
Valid use a machine learning model to learn confi-
dence and decay coefficients for TKGF. In addition,
we design a rule-adversarial and a time-aware neg-
ative sampling strategies to train TempValid more
efficiently, and obtain competitive results with the
baselines on six classical benchmarks. We con-
clude that learning confidence and decay coeffi-
cients as well as bridging the gap between rule qual-
ity estimation and aggregate reasoning are neces-
sary for rule-based TKGF. In addition, Temp Valid
significantly outperforms existing TKGF method
in the across datasets and low-resource scenarios.

7 Limitations

Our proposed has the following limitations: First,
there are many patterns of rules in the time dimen-
sion, e.g., periodicity, randomness, etc., and our
proposed TempValid models only temporal valid-
ity, i.e., the decay of the predictive effectiveness
of rules. Second, more expressive time functions
may exist. Without loss of generality, Temp Valid
uses the common exponential form of the decay
function inspired by (Yeche et al., 2023). Last but
not least, the generation of feature vectors, i.e., rule
grounding, is still time-consuming although it is a
one-time process.
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A Details of the dataset

For datasets, on the one hand, Considering the
existence of multiple variant datasets with iden-
tical names, we adhere to the dataset selection
and processing strategies outlined by (Gastinger
et al., 2023). On the other hand, TempValid needs
to ground the rules from the raw training data to
generate feature vectors. Subject to the temporal
constraints of the temporal rules, the earlier the
timestamp, the fewer rules the quadruple can be
grounded, the sparser the generated feature vectors
will be.

B Implementation Details

B.1 Hyperparameters search

The search range for hyperparameters is as follows:
learning rate Ir € {0.1,0.01,0.001,0.0001},
batch size b €  {64,128,256,512,1024}
and number of negative samples N €
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The
maximum epochs for training is set as 3000. The
optimal model parameters are selected based on
the MRR of validation set and implement early
stopping to prevent overfitting.

B.2 Feature vectors generation

For a query (e, r, 7, t), we endeavor to ground the
learned temporal rules T'R. If there is a candidate
could be connected by temporal rule ¢, then At;
will be assigned as the time interval between the
rule and ¢, otherwise At; = +o0.

For rule-adversarial negative samples, we gener-
ate feature vectors for the candidate entities reach-
able by TLogic for training. For ICEWS14, YAGO
and WIKI, we generate the feature vectors of top
100 candidate entities. For ICEWS18, ICEWS05-
15 and GDELT, we generate the feature vectors of
top 50 candidate entities. If the number of negative
samples is still insufficient, we supplement it with
the time-aware negative sampling strategy.
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