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Abstract

Conversational tones — the manners and atti-
tudes in which speakers communicate — are
essential to effective communication. Amidst
the increasing popularization of Large Lan-
guage Models (LLMs) over recent years, it
becomes necessary to characterize the diver-
gences in their conversational tones relative to
humans. However, existing investigations of
conversational modalities rely on pre-existing
taxonomies or text corpora, which suffer from
experimenter bias and may not be representa-
tive of real-world distributions for the studies’
psycholinguistic domains. Inspired by methods
from cognitive science, we propose an iterative
method for simultaneously eliciting conversa-
tional tones and sentences, where participants
alternate between two tasks: (1) one participant
identifies the tone of a given sentence and (2) a
different participant generates a sentence based
on that tone. We run 100 iterations of this pro-
cess with human participants and GPT-4, then
obtain a dataset of sentences and frequent con-
versational tones. In an additional experiment,
humans and GPT-4 annotated all sentences with
all tones. With data from 1,339 human partic-
ipants, 33,370 human judgments, and 29,900
GPT-4 queries, we show how our approach can
be used to create an interpretable geometric
representation of relations between conversa-
tional tones in humans and GPT-4. This work
demonstrates how combining ideas from ma-
chine learning and cognitive science can ad-
dress challenges in human-computer interac-
tions.

1 Introduction

Conversational tones, the manner and attitude
in which a speaker communicates, is essential
to human communication (Yeomans et al., 2022;
Saiewitz and Kida, 2018). Effective communica-
tion relies on people’s understanding of conver-
sational patterns and tones, and their ability to
promptly react to them (Kreuz and Roberts, 1993;

van Schendel and Cuijpers, 2015). Inability to
do so results in the content of conversation being
“lost-in-translation” between speakers of different
languages and cultures (Yusifova, 2018). Notably,
while traditionally the study of conversational tones
involved only humans, the increasing prevalence
of Large Language Models (LLMs) in everyday
decision-making, especially their conversational
(“Chat”) variants, renders the study of conversa-
tional tones in LLMs necessary for human align-
ment (Ouyang et al., 2022; Rudolph et al., 2023;
Sucholutsky et al., 2023b; Marjieh et al., 2023a).
Developing tools for effectively characterizing con-
versational tones in humans and LLMs is hence
essential for the development of human-centered
Al, human-computer interaction research, and cog-
nitive sciences (Figure 1A).

Background: Conversation Research. In con-
versation research, some literature engages explic-
itly with the composition and usage of conversa-
tional attitudes and linguistic markers (Fintel, 2006;
Yeomans et al., 2022; Jakobson, 1960). A wider
array of literature uses conversational analysis to in-
vestigate other dynamics that can affect the content
of conversation, such as turn-taking (van Schendel
and Cuijpers, 2015) and face-saving (Ting-Toomey
et al., 1991; Oetzel et al., 2001), as well as other
cross-cultural semantic differences that can lead to
different behavior within the same conversational
tone, such as refusal (Chang, 2009), shame (Kol-
lareth et al., 2018), and politeness (Alemdn Carren
et al., 2021; Ogiermann, 2009). On the other hand,
the introduction of Large Language Models, espe-
cially its chatbot applications, brings attention to
the alignment of conversational behavior in LLMs
with that of human ideals (Ouyang et al., 2022;
Rafailov et al., 2023), which can potentially con-
tribute to the alignment of LLMs’ perception and
production of conversational tones with those of
humans. Being able to effectively fine-tune LLMs
also creates new opportunities to generate text style-
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A Problem statement

What are similarities and
divergences in conversational
tones in humans and LLMs?

B Sampling paradigm
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Figure 1: Summary of our approach. A: Problem statement. B: The Sampling with People paradigm that aims
to collect a representative sample of conversational tones and sentences. C: A quality-of-fit rating procedure that
allows us to obtain vector representations of conversational tones with respect to their usage context. D: A geometric
representation of the shared embedding space across elicited domains (human, GPT). E: As an application of our
obtained data, we benchmark a selection of popular unsupervised cross-domain alignment methods.

transfer corpora that specify sentences with spe-
cific conversational tones, such as politeness (Wang
et al., 2022) and formality (de Rivero et al., 2023;
Wang et al., 2019).

Challenge: biased apriori taxonomy. However,
the domain of conversational tones is, like emo-
tion (Schiller et al., 2023; Lindquist et al., 2022;
Athanasiadou and Tabakowska, 1998) and color
(Berlin and Kay, 1969), an instance of grounded se-
mantics (Tannen, 1984; Semnani-Azad and Adair,
2013). While all participants observe the same stim-
ulus (e.g., an emotional recording, a solid color,
or in our case a sentence), people may use dif-
ferent words or labels to describe it (in our case
conversational tones such as “polite”, “excited”,
and “grateful”) which makes it difficult to study
grounded semantics at scale and especially across
multiple languages or cultures. One challenge is
that studying grounded semantics often involves
adopting a predefined taxonomy, typically sourced
from previous studies and curated by investiga-
tors (e.g.; colors (Adams and Osgood, 1973; Wang
and Wang, 2016); facial emotion (Ekman, 1992);
musical emotion perception (Juslin and Vistfjall,
2008; Palmer et al., 2013), concepts such as ani-
mal terms (Marti et al., 2023); sentiment of news
items (Rozado et al., 2022) prosody (Sauter et al.,
2010; Busso et al., 2008). Notably, many machine
learning datasets also suffer from the same limita-
tion of using a predefined list of using a predefined
list of stimuli that can be outdated or unrepresen-
tative of the correspond modality. Examples of
such datasets span through realms of: object im-
ages (Deng et al., 2009; Krizhevsky, 2009), visual
scenes (Zhou et al., 2017), sounds (Gemmeke et al.,
2017), video and its categorizations (Kay et al.,

2017), facial expressions (Goodfellow et al., 2013).
This strategy is prone to researcher bias, potentially
skewing the findings away from an accurate repre-
sentation of labels as they occur in the real world
and within a given culture (Kollareth et al., 2018;
Henrich et al., 2010).

Challenge: biased stimulus set. Another chal-
lenge that almost all studies faced when study-
ing grounded semantics is that they may use a
constrained set of stimuli to be annotated (e.g.
emotion (Cowen and Keltner, 2017; Cowen et al.,
2019, 2020; Cowen and Keltner, 2020; Cowen
et al., 2018); object recognition and similari-
ties (Gifford et al., 2022; Hebart et al., 2019);
word-associations (De Deyne et al., under review;
De Deyne et al., 2019); musical perception (Juslin
and Sloboda, 2013); facial expression (Khaired-
din and Chen, 2021; Lin et al., 2021); prosody (El
Ayadi et al., 2011; Batliner et al., 2008)). This intro-
duces researcher bias, as curating the stimuli may
influence the elicited labels, which we outline us-
ing the following example. Imagine an experiment
where a particular semantic term can be associated
with some class of objects (e.g., the term “red” can
be used to describe red fruits). If the object class
is not included in the predetermined list of objects
(e.g., red fruits are not included in the list of ob-
jects), then the elicited terms will not include this
association (we will conclude that “red” does not
describe fruits), and it will be missing from the re-
sulting semantic network. Bias in object selection
can also occur in more subtle ways where a skew in
the distribution of selected objects also skews the
distribution of elicited terms, potentially even am-
plifying the initial bias. Furthermore, a large body
of cross-cultural researchers suggests that studies
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should not impose a terminology inherited from
the experimenter or even from one group of studied
agents (e.g., English speakers) on another agent or
group of agents (e.g., Speakers of another language
or demographics; Blasi et al., 2022; Barrett, 2020;
Henrich et al., 2010).

Additional challenges. Finally, while some stud-
ies advocate for the exclusive use of large textual
corpora and the extraction of semantic descriptors
via data mining (Thompson et al., 2020), this in-
direct approach raises concerns about its ability to
accurately represent the nuances of conversational
tones as experienced in everyday human interac-
tions. It is also difficult to rigorously compare hu-
mans and LL.Ms using such corpora because these
same textual corpora are also the basis for LLM
training. Notably, (Thompson et al., 2020) also
studies the problem of aligning semantic networks
of different individuals or groups in the context of
cross-linguistic and cross-cultural comparisons. It
turns out that this is a key part of the machine learn-
ing problem of automatic translation (Zinszer et al.,
2016; Liu et al., 2021). Recent research has fo-
cused on aligning semantics in humans with Large
Language Models (Sucholutsky et al., 2023b; Atari
et al., 2023), with significant applications to design-
ing human-computer interfaces (Hou et al., 2024)
and Al safety.

Our approach. In light of these challenges, we
propose a method that enables the characteriza-
tion of conversational tones and their taxonomies
in any target human population as well as LLMs,
based on a human-in-the-loop Sampling with Peo-
ple (SP) technique (Sanborn et al., 2010; Griffiths
and Kalish, 2005; Harrison et al., 2020) (Figure 1).
Specifically, we propose an iterative procedure in
which humans and LLMs are presented with sen-
tences and are asked to label their conversational
tones in an open-ended fashion (Figure 1B). The
resulting conversational-tone terms are then pre-
sented to a new group of agents who are asked to
produce sentences reflecting those conversational
tones. This process is then repeated multiple times.
With mathematical formalism, this process instanti-
ates a Gibbs Sampler from the joint distribution of
sentences and conversational tones in humans and
LLMs (Harrison et al., 2020; Griffiths et al., 2024).
Given the resulting sample, we derive representa-
tive sentences and tone taxonomies of our target
population, then have an independent group of hu-
man evaluators and LLMs rate the extent to which
each tone matched each sentence (Quality-of-fit

Rating; Figure 1C). We use these to construct a ge-
ometric embedding that can be used to evaluate the
alignment between human and LLM conversational
tones (Figure 1D).

We show how our approach can be effectively
used to reveal divergences in the representation of
conversational tones between humans and LLMs.
Moreover, we demonstrate how our new dataset
and cross-evaluations can be used to benchmark un-
supervised cross-domain semantic alignment meth-
ods used in existing work, and identify which of
these work well for cases in which cross-evaluation
is not possible (e.g., in multilingual scenarios; Fig-
ure 1E). Our method can be generalized to many
more psycholinguistic modalities (e.g., sentiment,
color), languages, and cultures beyond those in-
volved in this paper. We believe it will help ad-
vance both human-machine alignment research as
well as cross-cultural research.

2 Detailed Approach

2.1 Elicitation via Sampling with People

The core of our approach is the joint elicitation of a
representative sample of conversational tones and
sentences from both humans and LLMs. Specif-
ically, we propose an iterative procedure that is
composed of two steps per iteration. Step one,
in which humans and LLMs are presented with
sentences and are asked to classify their conver-
sational tones in an open-ended fashion (Figure
1B). Step two, the resulting conversational tone de-
scriptors (adjectives) are then presented to a new
group of agents, from whom we ask to produce
sentences that reflect those conversational tones.
This process is then iterated multiple times. For-
mally, this process instantiates a Gibbs Sampler
from the joint distribution of sentences and conver-
sational tones, for any target population we choose
to sample from, be it humans and LLMs (Griffiths
et al., 2024). Therefore, by constraining the set of
human participants to those from a specific cultural
group, we expect to obtain a representative sample
of psycholinguistic contents from the group of our
participant population.

Here we draw inspiration from human-in-the-
loop elicitation procedures (Griffiths et al., 2024).
In these methods such as serial reproduction (Xu
and Griffiths, 2010; Anglada-Tort et al., 2023; Ja-
coby and McDermott, 2017; Jacoby et al., 2024;
Langlois et al., 2017, 2021), iterated learning
(Xu et al., 2010; Griffiths and Kalish, 2005),
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MCMCP (Sanborn et al., 2010) and GSP (Harri-
son et al., 2020; van Rijn et al., 2022b; Van Rijn
et al., 2021; Van Geert and Jacoby, 2024; Marjich
et al., 2024; van Rijn et al., 2024), a Markov Chain
is constructed by interspersing human decisions
within a sampling chain to characterize latent rep-
resentations in the human mind (e.g., perceptual
prior, or subjective utility). In our novel approach,
Sampling with People (SP), humans are recruited
to perform two tasks (Figure 1B): (1) elicit a sen-
tence based on a conversational tone (“S” task),
and (2) annotate a conversational tone of a given
sentence (“T” task). Under a probability theory
framework, “S” and “T” tasks are essentially sam-
pling operations, respectively from the conditional
distribution of a sentence given a conversational
tone p(S|T), and the conditional distribution of a
tone given a sentence p(7'|S). In practice, we run
several parallel sampling chains, and in each trial,
a participant is assigned to one chain and performs
an “S” or “T” task as needed. This means that
each sampling chain alternates between “S” and
“T” tasks. Importantly, to satisfy the formulation of
a Gibbs’ Sampler, we design our paradigm to sat-
isfy the Markovian property by constraining each
participant to see only the output of the previous
iteration (Harrison et al., 2020; Griffiths and Kalish,
2005).

Using SP, we elicited a large database of tones
and sentences from humans and LLMs (separately
for each). We elicited 40 tones and 80 sentences
with 955 participants, 90 chains, and 100 iterations
each. The list of 40 conversational tones we investi-
gate is the union of the top 24 conversational tones
from each instance of SP experiments. We then
took 40 random sentences from each of the humans
and GPT, forming a balanced corpus of humans
and GPT in terms of sentence sources. We preserve
the representativeness of our sample from the inter-
nal distribution of sentences P(S) by choosing the
random sentences in a uniform sampling fashion.
In the design of this study, we use a shared array
of conversational tones to work with a consensus
taxonomy, enabling direct comparability between
the conversational behavior of humans and GPT-4
when prompted under the same language!.

2.2 Annotation via Quality-of-fit Rating

Given the distributions from prior subsection, we
have derived representative sentences and tone tax-

'From here on, all references to GPT-4 will be abbreviated
as GPT.

onomies. Then, we have an group of human evalu-
ators independent from prior participants, as well
as GPT rate the extent to which each tone matched
each sentence (Quality-of-fit Rating; Figure 1B).
We show how our approach can be effectively
used to reveal divergences in the representation of
conversational tones between humans and LLMs.
Specifically, after SP sampling, we collect quality-
of-fit ratings of all sentences with all tones (Figure
1C), and compute semantic similarity matrices of
different tones. Then, for two tones t;,t;, let R; ;
denote the correlation of the two tones across the
vector of average ratings of all sentences, such that
t; and t; are similar if they have similar ratings
across all sentences. We can compute such matrix
‘R in either an intra-domain manner (only using em-
beddings from either humans or GPT but not both),
or a cross-domain manner (where we exploit the
shared list of sentences to compute the correlation
between all conversational tone embeddings).

2.3 Geometric Representation of
Conversational Tones

We use the resulting cross-domain similarity ma-
trices to obtain a geometric representation of both
human and GPT data within the same space (Fig-
ure 1D). We compute the full correlation of all 80
tone embeddings (40 conversational tones, each
one with an embedding from human data and an-
other from GPT data), and use Multidimensional
Scaling (MDS; Carroll and Arabie, 1998; Anowar
et al., 2021) to project them into a shared low-
dimensional embedding space. The space thus rep-
resents not only the relation between tones within
humans but also the way they relate to GPT, es-
pecially as the proximity of tones in the MDS
Euclidean space corresponds to the proximity of
tones in terms of their semantic similarity (Shepard,
1980). Therefore, tones that appear closer in the
shared space are located nearer in Euclidean space.

2.4 Application: Benchmarking Semantic
Alignment Methods

To demonstrate the usability of our alignment data,
we show how it can be used to benchmark se-
mantic alignment methods as ground truth when
cross-annotation is unavailable (Figure 1E) and
only intra-domain correlation matrices are used.
Specifically, we benchmark the performances of
(1) Gromov-Wasserstein Optimal Transport (Grave
et al., 2018; Conneau et al., 2017; Kawakita et al.,
2023), (2) Bilingual Lexicon Induction (Ruder
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et al., 2018; Artetxe et al., 2016, 2017, 2018a,b),
and (3) Orthogonal Procrustes (Schénemann, 1966;
Beauducel, 2018).

3 Method

3.1 Participants

Human Participants. We recruited N=1,339 partic-
ipants for the four human experiments in this study
(Appendix Table 1 provides the number of partici-
pants and responses for each experiment). Partici-
pants were recruited from the recruiting platform
Prolific and provided informed consent under an
approved protocol (see Ethics section for further in-
formation). Human experiments are implemented
using Psynet (Harrison et al., 2020), a Python pack-
age for implementing complex online psychology
experiments.

GPT experiments We used the June 13th, 2023
release of GPT-4. Overall, we ran 29,900 GPT
queries across all experiments.

3.2 General Procedure

Each human experiment began with detailed in-
structions and practice trials. We emulated each
of the human experiments with GPT-4 agents that
used the very same procedure, using the experiment
interface instructions as LLM prompts. The human
and GPT-4 experiments were otherwise identical
in their design. Appendix A contains the full in-
structions/prompts used in our experiments. All the
data of the experiments, code for reproducible hu-
man and GPT experiments, and analysis script can
be found here: https://github.com/jacobyn/
SamplingTonesACL.

4 Results

4.1 Elicitation (Sampling with People)

Figure 2A shows the histogram of the 24 most
popular conversational tones from 4,500 human
and 4,500 GPT annotated sentences. We recruited
955 human participants for SP experiments. The
collected histograms were reliable: the split-half
reliability computed via bootstrapping® was high
for both humans and GPT conversational tones
(humans: r = 091, CI = [0.87, 0.93]; GPT: r
= 0.87 CI = [0.73, 0.94]%). The GPT histogram

>Throughout the paper, bootstrapping occurs with 5000
repetitions, unless specified otherwise.
3Throughout the paper all CI are reported as 95%.

(Figure 2A) was much more concentrated (en-
tropy of 3.10 bits CI = [3.06, 3.15] via bootstrap-
ping) compared to that of humans (entropy of 5.48
bits CI = [5.43, 5.52]). Overall, there was some
similarity between the histograms (r = 0.39 p =
0.006 CI =10.3,0.454]), but also significant differ-
ences. Specifically, the prominent conversational
tones had different weights: in humans the three
most prominent conversational tones were “grate-
ful” (mean 4.03% CI = [3.45%, 4.62%]), “excited”
(2.79% C1=[2.35%, 3.28%]), then “happy” (2.64%
CI = [2.18%, 3.1%]) whereas in GPT they were
“excited” (mean 24.66% CI = [23.41%, 25.91%]),
“grateful” (10.79% CI = [9.89%, 11.68%]), then
“concerned” (6.79% CI = [6.05%, 7.52%]). The
results highlight that the elicitation process results
in a different distribution of terms used to describe
conversational tones.

4.2 Annotation via Quality-of-fit Rating

To create a detailed semantic embedding based
on the given sentences and tones, we conducted
a further experiment involving both humans and
GPT. In this study, participants evaluated all target
sentences using a predefined list of 40 prominent
conversational tones that were extracted from the
terms elicited using the SP procedure above, en-
suring a direct comparison by employing the same
tones for both human and GPT assessments. As
a result, every sentence is relabelled with all 40
tones regardless of the original tone it was assigned
in the SRE step. The sentence set was evenly di-
vided, with one half originating from humans and
the other half generated by GPT.

We recruited an additional 275 human partici-
pants for these annotations. Participants rate the
strength of conversational tones in a sentence using
a Likert scale, resulting in 16,000 rating judgments.
Likert scales were used because the degree to which
a sentence represents a tone may vary and cannot be
captured by categorical labels (Sucholutsky et al.,
2023a). GPT data underwent the same rating pro-
cess with GPT agents as raters. We then analyzed
the correlation between tones by examining the rat-
ing vectors across the 80 sentences elicited from
Section 4.1. Additionally, we find that the major-
ity of sentences are labeled to possess at least one
specific conversational tone: all human-originated
sentences had at least one conversational tone with
an average rating exceeding 2.89, and exceeding a
rating of 2 for 95% of GPT-originated sentences.
This would suggest that very few sentences were
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A Selected terms in humans and GPT B Correlation matrix on quality-of-fit ratings in humans and GPT
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Figure 2: Results of Sampling with People and Quality-of-fit Rating paradigms and comparison to similarity
judgments paradigm. A: Selection of most popular conversational tones from each of human and GPT instances,
and their frequencies in respective samples (red for humans, blue for GPT). Error bars represent one standard
deviation via bootstrapping. B: Correlation matrices of conversational tone quality-of-fit rating embeddings within
humans (on the left) and within GPT (on the right). C: Cross-domain (Cross-correlation) matrix of human rating
embeddings and GPT rating embeddings for conversational tones, and a bar plot showing the correlation between
human ratings and GPT rating embeddings for each conversational tone word. Error bars represent one standard
deviation via bootstrapping. D: Similarity judgment-derived similarity matrices of conversational tone from humans

(on the left) and GPT (on the right). See enlarged version of this figure in the Appendix (Figure 17).

perceived as completely neutral with respect to all ~ are similar and different in the structure of tone-
40 tones. similarity we now compute the cross-domain ma-

Figure 2B presents the tone-correlation matrices
for humans (left) and GPT (right). The matrices
show reliable tone-similarity for both humans and

trix, namely for each tone we correlated the vector
of sentence ratings in humans and in GPT (Figure
2C). As expected, given that both humans and GPT

GPT (humans: r = 0.94 CI [0.91, 0.96]; GPT rat- show separately the pattern of valance clusters, the
ings, r = 0.86 CI [0.78, 0.91]) ’It is vi,sually ap- cross-domain matrix also showed this pattern. In-

parent that there are two clusters of tones which
roughly related to the valence of tones and that this
structure is preserved in humans and GPT as we
found a high correlation between the upper triangle
of the two matrices (r = 0.81 CI [0.76, 0.85]).

terestingly, the main diagonal of this matrix shows
that the alignment between tone ratings in humans
and GPT varies significantly. Some tones such as
“joyful”, “pleased”, and “happy” were highly corre-
lated (r = 0.89, 0.89, 0.87 CI =[0.88, 0.91], [0.88,

0.91], [0.86, 0.90], respectively) suggesting that

To better understand how humans and GPT
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these tones have a similar relation to other tones
in both humans and GPT. However, other tones
such as “proud”, “apologetic”, and “reflective” had
relatively low alignment (» = 0.30, 0.46, 0.49 CI =
[0.20, 0.39], [0.34, 0.52], [0.41, 0.54]).

Finally, our tone similarity calculations were
somewhat indirect since we did not compare tone
similarity directly but computed it based on the
similarities of sentence ratings. To address this, we
recruited a separate group of 71 participants. Each
participant performed 50-60 trials and was asked
to provide similarity ratings between two tones on
a Likert scale. A similar procedure was applied for
GPT. The resulting matrices (2D) indicate that di-
rect similarity judgments also showed the valence
block structure, but the similarity matrix appears to
be noisier. Nevertheless, the data was still reliable:
split-half correlations for the upper diagonal or the
matrices were humans: » = 0.65 CI [0.63, 0.68],
and that for GPT’s similarity matrix to be mean
0.981 with CI [0.978, 0.987]. The high reliability
of GPT partially originates from the monotone re-
sponse that GPT provides in similarity judgments
(unlike humans GPT agents provides the same re-
sponse again and again for the same input). Impor-
tantly, the direct similarity matrices were aligned
with the quality-of-fit rating approach (humans: r
=0.76 CI =10.73, 0.78], GPT: r = 0.83 CI = [0.81,
0.84]). This is an independent validation that our
approach does capture tone similarity structure. It
also highlights the difficulty of working with direct
similarity (Marjieh et al., 2023b).

4.3 Conversational Tone Representation
(Multidimensional scaling)

In order to understand the organization of tone rep-
resentations, we applied Multidimensional Scal-
ing (MDS) to the combined within/across corre-
lation matrix, such that each conversational tone
possesses a 2-dimensional embedding in the result-
ing shared MDS space (Figure 3A).

We connected identical tones in GPT and hu-
mans with gray lines. Overall, it is visually ap-
parent from Figure 3A that the structure of tones
in humans and GPT is similar, which is consis-
tent with the analysis of Figure 2. However, we
also found differences in the proximity of tones in
the shared space. The furthest tones away were
“proud”, “sad”, and “thankful”, while the closest
were “uncertain”, “desperate”, and “conncerned”
(Figure 3B).

To better interpret what the dimensions of differ-

ence are between humans and GPT and compare
our results with respect to previous literature (Yeo-
mans et al., 2022; Russell, 1980), we performed an
additional experiment. 38 participants rated each
tone from 1 to 5 on a Likert scale based on four
theoretical dimensions: valence, emotional arousal,
informational, and relational (overall 800 ratings).
We also conducted a similar experiment with GPT
(800 ratings). These features are defined in Ap-
pendix A.7. To observe how these ratings relate
to the conversational tone embedding” MDS solu-
tions, we projected the average rating over tones to
the MDS (see Appendix B.3 for projection method
using linear regression). Each theoretical dimen-
sion is represented by an arrow (direction) in MDS
space, with the length of the arrow representing
its relevance (measured by how much the dimen-
sion explained the variance among the points in the
MDS).

The theoretical component of conversational
tone that seems to explain most of the variance
in their MDS solutions is “positive in valence” (hu-
mans: mean » = 0.71 CI =[0.69, 0.87]; GPT: mean
r = 0.873 CI = [0.872, 0.878]), where the other
terms explained significantly less variance (GPT:
r=0.45,0.17, 0.13; humans: r = 0.37, 0.54, 0.3
for “relational”, “aroused”, “informational” respec-
tively). This is consistent with the idea that the
main axis of the quadratic shown by MDS solutions
corresponds roughly to the positive/negative va-
lence (“joyful”, “happy”, “excited”, and “pleased”
are in the bottom left, whereas “concerned”, “wor-
ried”, and “anxious” are in the top right).

From Figure 3A, however, we see that the human
and GPT arrowmarks for the same conversational
tone may have minor to medium directional dif-
ferences, such as that for the feature “positive in
valence” and “aroused” (indicated by a large cosine
similarity; mean = 0.88 CI = [0.86, 0.94] and mean
=0.46 CI = [0.04, 0.53], respectively). Meanwhile,
“relational” is consistently aligned (mean = 0.99
CI = [0.86, 0.99]), while “informational” is also
strongly aligned (mean = 0.83 CI = [-0.26, 0.89];
see Appendix A.7). This suggests a deviation be-
tween the human and GPT understanding of these
features. Furthermore, it validates Yeomans et al.’s
chosen features for conversational tone composi-
tion, “informational” and “relational”, as an aspect
of well-aligned conversational understanding be-
tween humans and GPT (Yeomans et al., 2022).
These results also allow us to further interpret the
MBDS of Figure 3A, for example, “proud” is located
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Figure 3: Cross-correlation alignment information. Blue points/arrowmarks in A and C represent GPT-originated
data, while red represents human-originated instead. A: The MDS solution of applied to the combined within/across
cross-domain (cross-correlation) matrix as a set of high-dimensional embedding to represent shared space of
conversational tones embeddings across humans and GPT. Grey edges connect points representing the same
conversational tone word. Arrow marks represent rating-derived dimensions of conversational tones. B: A barplot
exhibiting the Euclidean distance between pairs of the same conversational tone embeddings in MDS space. Error
bars represent one standard deviation via bootstrapping. C: A graph showing the nearest neighbor matches of
conversational tone embeddings across humans and GPT. To measure robustness in matching, we bootstrapped

the process 5000 times. Dark edges represent the frequency of its matching throughout bootstrap processes. See
enlarged version of this figure in the Appendix (Figure 18).

farther away from neutral in the MDS space and
stronger in the positive valence direction for hu-
mans. Thus, “proud” has a more neutral meaning
for GPT. This shows how we can use Figure 3A

to characterize how tones are conveyed in humans
and GPT.

Finally, Figure 3C provides a mapping of simi-
lar tones across humans and LLMs. For each tone
in one domain (humans or GPT), we present its
nearest neighbor in another domain. This map is
important because it allows us to "translate" conver-
sational toes from humans to GPT and vice versa.
As a result, Figure 3C can also help summarize
distances in Figure 3A: the lines in Figure 3C rep-
resent concepts that are near one another in Figure
3A. Interestingly, we found cases where multiple
human tones (e.g., “grateful”, “joyful”, “happy”)
were collapsed to a single LLLM tone (“pleased”),
suggesting that these terms were conveyed in a
more limited way by GPT. We also found the re-
verse phenomenon that the GPT tones: “irritated”,
“annoyed”, and “disappointed” collapsed to “an-
gry” on the human side. This suggests that both

humans and GPT have terms that are represented
more broadly in the other group.

4.4 Application: Ground Truth for
Benchmarking Semantic Alignment
Methods

To demonstrate the utility of our data, we demon-
strate how it can be used to benchmark semantic
alignment methods. Note that in our approach we
leverage the fact that we had the same taxonomy
of tones for both humans and GPT. In many other
use cases, this is not possible. For example, when
translating words from one language to another it
is impossible to ask speakers of one language to
annotate words in a different language. Since our
method has this kind of cross-linguistic informa-
tion available, we use it as a source of ground truth

to test methods that do not have access to this kind

of information. Specifically, we survey the capabil-
ity of frequently used unsupervised cross-domain

alignment paradigms: Gromov-Wasserstein Op-
timal Transport (Grave et al., 2018), Orthogonal
Procrustes Transformation (Schénemann, 1966),
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and Bilingual Lexicon Induction (Ruder et al.,
2018). We found that Bilingual Lexicon Induc-
tion via latent variable model (abbreviated hereon
as BLI) is the best-performing approach. It recov-
ers well the quality-of-fit rating similarity matrix
entries (r = 0.81, CI = [0.81, 0.81]), followed by
Orthogonal Procrustes Transformation (r = 0.56
CI = [0.54,0.58]) and Gromov-Wasserstein Opti-
mal Transport (r = 0.54 CI = [0.53,0.58]). We
found similar results for the recovery of k-Nearest-
Neighbor structures (see Appendix Table 3). This
indicates that not only is Bilingual Lexicon In-
duction superior at recovering the cross-domain
proximity structure presented in our cross-domain
ground truth, but also that it can preserve the intra-
domain proximity structure of our embeddings af-
ter the alignment procedure. Then, in turn, this
performance turns to show the superiority of our
method in constructing a dataset that allows for
almost-perfect reconstruction of similarity metrics
for elements of the psycholinguistic modality.

5 Discussion

Using a cognitive science-inspired Sampling with
People paradigm, we elicited tones and sentences
for both humans and GPT creating a shared dataset
of sentences and tones. Then, via quality-of-fit
ratings, we further showed that the degree of align-
ment for different tones in humans and GPT varies.
Tone alignment was high for tones such as “joy-
ful” and “pleased” while it was significantly lower
for tones such as “proud” and “apologetic”. In a
separate experiment, we found that similarity judg-
ments were consistent with the resulting relation-
ship between tones. Next, by projecting the rating
vectors to a joint semantic space, we found vari-
ability in tone proximity, which is explained most
by the well-known theoretical dimension of va-
lence (Russell, 1980). Additionally, we provided a
mapping of similar tones across humans and LLMs.
We found cases where multiple human tones (e.g.,
“grateful”, “joyful”, “happy’’) were collapsed to a
single LLM-proposed tone (“pleased”), as well as
in the opposite direction (e.g., GPT’s “irritated”,
“annoyed”, and “disappointed” collapsed onto hu-
mans’ “angry”’), suggesting that both distributions
ended up involving a hypernym for conversational
tone categories. Finally, we demonstrate how our
data can be used to benchmark methods for se-
mantic alignment. We found that Bilingual Lexi-
cal Induction surpasses other (geometric) methods,

suggesting that it would be appropriate for applica-
tions such as machine translation.

Our work opens up multiple avenues for future
research. First, the same approach can be easily
extended to other domains. For example, speakers
of different languages and different cultures, as
well as different language models. Second, our
dataset can be used as a training signal for better
aligning human and LLM conversational tones; for
example, via an iterative process of refinements
like reinforcement learning (Ji et al., 2024). Third,
future work could look into whether we can use our
alignment maps to predict performance in human-
Al communication. More broadly, this work shows
how combining approaches from machine learning
and cognitive science provides routes for better
understanding and resolving challenges in human-
computer interactions.

Limitations

There are several technical limitations of our study
that are important to highlight. First, we did not
test a wide variety of LLMs and LLLM parameters,
including varying the prompt and temperature of
the models. This limits the generalizability of our
results, as the robustness of some of our findings
may depend on these parameters. Second, we used
a finite number of sampling chains with only 100
generations. Future work can explore what would
be the effect of changing these hyperparameters.
Finally, we only tested participants in the UK. It
would be informative to test US participants as well
as a wider range of speakers of other languages
(Blasi et al., 2022).

More importantly, it is crucial to acknowledge
that employing free elicitation methods could in-
advertently generate sentences that reinforce so-
cietal biases, including racial and gender stereo-
types. However, future research could investigate
alternative filtering approaches, possibly involv-
ing human moderation, to actively reduce biases
within the Sampling with People iterations (van
Rijn et al., 2022a). Nonetheless, our approach can
be used with participants in any language, which
can help with creating Al systems for low-resource
languages (Atari et al., 2023; Rathje et al., 2023).
In particular, we are excited about the potential ap-
plication of our approach to studying cross-cultural
differences in tone of voice. We also believe that
our research holds the potential to facilitate nu-
anced cross-cultural communication and support
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the development of Al systems that communicate
effectively with users from diverse backgrounds.

Ethics

We run our human experiment applying best prac-
tices in the responsible and ethical treatment of
human subjects. We have deliberately reviewed
the ACL Code of Ethics and confirm that our work
conforms to all principles addressed in this code.
All human experiment participants are paid $9 per
hour and join the experiment after signing an in-
formed consent of an approved protocol. Specifi-
cally, participants were recruited online via Prolific
and provided consent in accordance with an ap-
proved protocol (MaxPlanck Ethics Council #2021
42).

In our Sampling with People human experiments,
to avoid the appearance of profane words or trigger-
ing topics, we have added a profanity filter to our
experiment such that responses containing profan-
ity or vulgar words cannot be propagated along our
sampling chains. Data was collected anonymously
(beyond participants’ Prolific IDs that were used
for compensation). The published data was fully
anonymized.
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A Appendix: Additional Methods

A.1 TImplementation of the Experiments

Human Experiments. Human experiments are im-
plemented using Psynet (Harrison et al., 2020), a
Python package for implementing complex online
psychology experiments. PsyNet automates the
online hosting of experiments and automatically
pays participants through a variety of recruitment
platforms, such as Prolific.

GPT Experiments. GPT experiments are im-
plemented in Python and GPT responses are all
elicited using its chat completion mode. We always
used a temperature of 0.8 to elicit responses with
higher variance. In all experiments, we used GPT-4
(the June 13th, 2023 release).

Licensed Code The implementations of unsu-
pervised alignment methods that we reference for
GWOT and latent variable model-based Bilingual
Lexicon Induction follow respectively a CC BY-
NC 4.0 license and a GPL-3.0 license.

Data Anonymity We confirm that all human-
originated data provided with our submission are
anonymized.

Computational Budget We used an AWS server
to host our online human experiments. We used
an AWS EC2 m5.2xlarge container for 90 hours
for completing all necessary experiments once, and
1 AMD Ryzen 7 5800 CPU for 45 hours for all
analyses and GPT requests once. No GPUs were
used in the progress of this work.

A.2 Participants and Procedure

We recruited participants from the crowd-sourcing
recruiting service Prolific (https://prolific.
com/). Participants were compensated approxi-
mately 9 GBP per hour for their time. To reduce
cultural differences between English-speaking par-
ticipants, we target specifically English-speaking
participants in one country. All participants sat-
isfied the following three criteria: (1) Were over
18 years of age, (2) Lived in the United Kingdom,
(3) Native English speakers. Participants were re-
cruited online via Prolific and provided consent in
accordance with an approved protocol (MaxPlanck
Ethics Council #2021 42).

Sampling with People Experiment. We re-
cruited 955 human participants for Sampling with
People (SP) experiments. These experiments had
the following procedure. Each participant com-
pleted 10 to 12 trials. For each trial, participants
were randomly assigned to either annotate a sen-

tence with a conversational tone (T trials; Figure
1A, 6b) or create a response sentence matching a
displayed conversational tone (S trials; Figure 1A,
6a). There were 90 SP sampling chains, each with
100 iterations per chain (50 S and T trials). This
results in exactly 4,500 generated sentences and
4,500 tone annotations.

Quality-of-fit Rating Experiment. We recruited
275 human participants for the Quality-of-fit Rat-
ing experiments. Participants performed 12 rat-
ing trials, where they rated each pair of sentence-
tones on five Likert scales (1 being the weakest, 5
being the strongest) based on the strength of the
conversational tone. For each sentence-tone pair,
we collected approximately five ratings. Overall
we collected 5 responses for all participants and
sentence-tone pairs.

Similarity Judgement Experiment. We re-
cruited 71 human participants for the experiment.
Participants performed 50 to 60 trials where they
were asked to provide five similarity judgments
per pair of (not necessarily distinct) conversational
tones, on a scale from 1 to 5, with 1 being the
most dissimilar and 5 being the most similar. We
then computed the resulting similarity for each
conversation-tone pair (¢, t2), normalized to the
scale of [0, 1].

Tone Feature Rating Experiment. We recruited
38 human participants for the experiment. In this
experiment, participants performed 30 to 40 trials
where they were asked to rate tone-feature pairs on
a 1-to-5 Likert scale. We tested four tone features
(positiveness in valence, emotional arousal, infor-
mational, relational; see below for definition). The
definitions of these features which were provided to
participants and GPT agents are listed in Appendix
A.7. The resulting rating for each sentence-tone
pair was the average of the obtained five ratings.

A.3 Explaining the Concept of Conversational
Tone

In all human experiments, participants first receive
instructions explaining what a conversational tone
is and example sentences clarifying the concepts.
Upon entering the experiments, all participants
are presented with this definition of conversational
tone. After being presented with an operationalized
definition of conversational tone, participants are
provided examples that show usages of different
conversational tones. Participants will be shown
an example regarding detecting a conversational
tone from a sentence, and an example of creating
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Experiment || # Human Participants | # Human Responses | # GPT Responses

SP Sampling 955 9000 9000
Quality-of-fit Rating 275 19470 16000
Similarity Judgment 71 4100 4100
Tone Feature Rating 38 800 800

Overall 1339 33370 29900

Table 1: Summary Table. Number of human participants, human judgments, and GPT judgments involved in our
paper.

What is a conversation tone?

A conversation tone is the style and manner in which somecne speaks. Sometimes, it is also referred to as the tone of a sentence.
A few examples will be shown in the following page.

Please read them carefully to avoid confusion.

Next

(a) Definition of conversational tones shown to participants.

For the first example, let's ook at the following sentence:

This sentence can have the following conversation tone:
« frustrated: The use of 'completely fed up' indicates frustration with the person 's behavior.
« disappointed: The mention of 'laziness' and 'lack of effort' shows disappointment with their attitude.

as you can see, each sentence can have a lot of conversation tones.
In this experiment, we only want you to choose the conversation tone you resonate the most with, using an adjective.

Next

For a second example, let's look at the following conversation tone:

Here are some example sentences:
* Sentence: "You look stunning in that outfit! It suits you perfectly
Explanation: The complimentary tone is evident in offering praise and admiration for the person's appearance.
= Sentence: "Your presentation was excellent. You're a fantastic speaker!”
Explanation: The speaker praises the person's presentation skills, commending them for being a great speaker.

as you can see, each conversation tone can have a lot of sentences.

(b) Example scenarios and appropriate example answers.

We also make a clarification on how a sentence has a certain conversation tone.
Let us consider the sentences:

Sentence 1 does contain the word "sorry", but the speaker does not sound apologetic. Therefore, the conversation tone of Sentence 1is not sorry; rather, the tone is
more descriptive.
Sentence 2, on the other hand, has a speaker with an apologetic attitude, so the sentence sounds sorry. Therefore, Sentence 2 has an apologetic conversation tone.

Next

(c) Two examples explaining the concept of conversational tones.

Figure 4: Instructions shown to participants.
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Create 50 data according to the following format:
{
''example_tone'":
''example_sentence_1"'":
of example_tone,
' 'example_sentence_1_explanation'':
example sentence 1,
''example_sentence_2'":
tone of example_tone,
' 'example_sentence_2_explanation'':
example sentence 1

An adjective that describes a conversational tone,
A sentence with at least 7 words that has the a conversational tone

A 20~30 word explanation on 2~3 conversational tones of
A different sentence with at least 7 words that has the a conversation

A 20~30 word explanation on 2~3 conversational tones of

(a) ChatGPT prompt for creating seeds of instructional examples on how to create sentences from conversational tones.

Create 50 data according to the following format:

{
''example_sentence'':
''example_tone_1"":
from ''example_sentence'',
''example_tone_2'":
from ''example_sentence'',
''example_tone_1_explanation'':
with 20 to 30 words,
''example_tone_2_explanation'':
with 20 to 30 words

Explain how you observed tone 1 from

Explain how you observed tone 2 from

A sentence with at least 7 words,
An adjective representing a different conversational tone you observe

An adjective representing a different conversational tone you observe

'example_sentence'’

'example_sentence'’

(b) ChatGPT prompt for creating seeds of instructional examples on how to detect conversational tones from sentences.

Figure 5: ChatGPT prompts for creating seeds that generate the text seen in interface detailed at Figure 4b

a sentence that has a provided conversational tone.
These interfaces are exemplified in Figure 4.

There is a pool of 50 items for each type of
example, all created via ChatGPT. To mitigate bias
resulting from examples, participants are shown
a random item from each pool of examples. The
prompt of creating such examples is exhibited as
shown in Figure 5.

A.3.1 Consideration for human instructions
and GPT prompts

In pilot experiments, several participants create
sentences of a provided conversational tone 7" in
the form of “<Subject> felt <T>". However, such
a sentence may not necessarily convey conversa-
tional tone 7. For example, for the conversational
tone “apologetic”, the sentence ‘“He felt apologetic”
communicates that a “He” is apologetic, but not
that the speaker is apologetic, which contradicts the
definition of conversational tone as “the speaker’s
attitude in a conversation”. So, as an effort to pre-
vent participants from providing such responses, an
instruction as listed below is presented as in Figure
4c.

A.3.2 Slider Instruction

In some experiments, participants will need to rate
some properties of conversational tones on a Likert
scale of 1 to 5. For those experiments, after explain-
ing the concept of conversational tones, they are
presented with the following introduction to learn
how to use the slider used for rating as depicted in
Figure 7.

A4 Experiment 1: SP Sampling
A.4.1 Human Experiment

This section describes the implementational details
of SP Sampling (see Section 3) human and GPT
experiments.

The participants first go through the general in-
structions (see Figure 4) and do two practice trials
to familiarize themselves with the tasks they will
be performing: (1) detecting a conversational tone
from a sentence and (2) creating a sentence that
conveys some provided conversational tone.

In the main experiment, each participant does
ten trials. The human interface is shown in Figure
6

To avoid low-quality sentences, we automati-
cally check the submitted sentence for the follow-
ing criteria: (1) The sentence has to have more
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A conversation tone is the style and manner in which someone speaks. Sometimes, it is also referred to as the tone of a sentence.
When a sentence has a conversation tone, the speaker of a sentence has a similar attitude.

Provide a sentence with at least 5 words in your language that has the conversation tone:

Do not include any variation of the associated conversation tone in a shown sentence.

Rise up, people, for no one among us would ever give up and let them down!

(a) The interface of a S trial.

A conversation tone is the style and manner in which someone speaks. Sometimes, it is also referred to as the tone of a sentence.
When a sentence has a conversation tone, the speaker of a sentence has a similar attitude.

Provide an adjective for conversation tone in your language that you sense in the sentence:

Do not include any variation of the associated conversation tone in a shown sentence.

curious

(b) The interface of a T trial.

Figure 6: The interfaces of a S trial and a T trial in our Sampling with People human experiment.

Scale Bar Instructions
In this experiment, scientists will learn about your language by acquiring strength of conversation tones on each of the provided sentences.

F)n the right side of the screen, you can see a picture representing the scalebar Preface
|nterfa.ce. ) . . » B A conversation tone is the style and manner in which someone speaks. Sometimes, it is
‘You will be rating the strength of a conversation tone on a scale of 110 5, with 1 whe% also referred to as the tone of a sentence,
being the weakest, 5 being the strongest. text to make your dedisions and rubric. When a sentence has a conversation tone, the speaker of a sentence has a similar
For each page, you rate the conversation tone of only the provided sentence on attitude.
the screen.
‘You may click at the position of the number on the scaling bar to rate points
accordingly.
The definition of conversation tones will appear at top of the page everytime for
reference. Rate Conversation Tones!
Scale Bars By clicking on the respective scalebars, with 1 being weakest and §
Prompt and sentence for you to rate. being strongest, rate the strength of conversation tones on this
sentence: Why did you lie to me?
Rate the tone Irritated in the above sentence. h
o
r
1 2 3 4 5
Rate the tone Calm in the above sentence.
~
O
1 2 3 4 5
Rate the tone Playful in the above sentence.
~
Scale Bars Ay
Rate your sentences by clicking on the 1 2 3 4 5
scale bar. Rate the tone Hostile in the above sentence.
O
4 5

1 2 3
Rate the tone Enthusiastic in the above sentence.

~

] 2 3 4 5)

Figure 7: This page of the experiment details the instructions for using our designed scale interface for rating.

10503




Response Type Validation Criterion Implementation
Sentence Must have more than 5 words RegEx
Sentence Must be a grammatically correct sentence GingerIt

Tone The response can only contain alphabets and hyphens RegEx

Tone The response must be an adjective PyDictionary
Tone The response must be correctly spelled PyDictionary
Both Cannot contain any stemmed variation of prompt nltk

Both Cannot contain profanity profanity-check

Table 2: Summary of Sampling with People response filters

than five words; (2) The sentence is grammatically
correct (checked using gingerit 4) (3) The sen-
tence does not contain any stemmed variation of
some word that is already in the provided conversa-
tional tone (for example “politely” for “polite”)
using nltk’; (4) Does not contain offensive or
vulgar words checked with the Python package
profanity-check ©.

The conversational tones were verified in a sim-
ilar fashion: (1) The tone response did not con-
tain any stemmed variation of some word that is
already in the provided conversational tone or sen-
tence, (2) The response must be an adjective using
PyDictionary’, and (3) It must not contain pro-
fanity. See Table 2 for a summary.

In the human experiment, we elicited 90 sam-
pling chains, each with 100 iterations. Participants
cannot revisit the same chain.

A.4.2 GPT-4 Experiments

The GPT prompts (see Figure 8) were nearly identi-
cal to the human experiments. In the GPT instance,
we similarly elicited 90 sampling chains, each with
100 iterations.

A.5 Experiment 2: SP Quality-of-fit Rating

A.5.1 Human Experiment

After reading the general instruction (see Figure 4),
participants first do two practice trials to familiarize
themselves with the task they will be performing:
rating the strength of a conversational tone when
given a sentence. Then, participants proceed to
the main experiment. Participants can only rate a
conversational tone-sentence once, and each tone-
sentence pair is rated by approximately 5 distinct

‘gingerit: https://github.com/Azd325/gingerit/
blob/main/gingerit/gingerit.py

Shttps://www.nltk.org/

6profanity-check:
profanity-check/

"https://pypi.org/project/PyDictionary/

https://pypi.org/project/

participants. The strength of conversational tones
in a sentence is rated on a Likert scale from 1 to 5,
with 1 being the weakest and 5 being the strongest.
The final rating of such a tone-sentence pair would
be the average of all 5 ratings. An example of the
rating interface is provided in Figure 9.

A.5.2 GPT-4 Experiments.

GPT receives the prompt for quality-of-fit rating as
outlined in Figure 10.

A.6 Experiment 3: conversational tone
Similarity Judgment

A.6.1 Human Experiment

After reading the general (see Figure 4) and
experiment-specific instructions (see Figure 11a),
participants proceed to the main experiment in
which they judge the similarity of a pair of two
conversational tones.

Each participant would rate the similarity of sev-
eral distinct pairs of conversational tones on a Lik-
ert scale of 1 to 5, where 1 represents “Semantically
dissimilar conversational tones” and 5 represents
“Semantically similar conversational tones”. Each
pair of conversational tones would be rated five
times, with the average score of those 5 ratings as
the final similarity score for such pair. Only distinct
pairs are rated. That means the similarity judgment
of 40 conversational tones concerns only the 820
distinct pairs among all possible tuples of tones.
And, similar to previous experiments, participants
cannot rate any conversational tone pair more than
once. An example of the rating interface follows in
Figure 11b.

A.6.2 GPT Experiment

The prompt for similarity judgment that GPT re-
ceives is as outlined in 12.
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A conversational tone is the style and manner in which someone speaks.
Provide an adjective for conversational tone in English that you sense in the following sentence:
<sentence of previous response>. Respond using only an adjective.

(a) GPT Prompt for sampling a conversational tone given a sentence.

A conversational tone is is the style and manner in which someone speaks.
Provide one sentence with at least five words in English that has the conversational tone:
<conversational tone of previous response>.

(b) GPT Prompt for sampling a sentence given a conversational tone.

Figure 8: Collection of GPT Prompts for GPT participant in sampling and rating aspects of SP paradigm.

A conversation tone is the style and manner in which someone speaks. Sometimes, it is also referred to as the tone of a sentence
When a sentence has a conversation tone, the speaker of a sentence has a similar attitude

Rate Conversation Tones Here!

By clicking on the respective scalebars, with 1 being weakest and 5 being strongest,rate the strength of conversation tones on this sentence

Oh sweetie, | suppose it's quite an accomplishment for someone like you.

Rate the tone sarcastic in the above sentence.

——

1 2 3

IS
o

Next Page

Figure 9: Example interface for quality-of-fit rating human experiment interface.

A conversational tone is the style and manner in which someone speaks.

On a scale of 1 to 5, with 5 being strongest, how strong is the provided conversational tone in
the following English sentence?

Tone: <conversational tone to rate>

Sentence: <sentence to rate>

Respond with only a number.

(a) GPT Prompt for rating the strength of a conversational tone on a sentence.

Figure 10: GPT Prompts used for quality-of-fit rating experiment.
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Thank you for participating in our study!
In this study, we are studying how people perceive relations between conversation tones.

Your task is to rate the relatedness of different pairs of conversation tones.
You will have five response options, ranging from 1('Very Unrelated') to 5 (‘Very Related'). Choose the one you think is most appropriate.

Note: no prior expertise is required to complete this task, just choose what you intuitively think is the right answer.

Reminder: A conversation tone is the style and manner in which someone speaks. Sometimes, it is also referred to as the tone of a sentence.
When a sentence has a conversation tone, the speaker of a sentence has a similar attitude.

(a) Interface that introduces human participants to similarity judgment experiment.

How related are the following two conversation tones: curious, sympathetic?

If it is difficult to choose between the options, don't worry, and just give what you intuitively think is the right answer. You only need to perform 60 comparisons, we will
help you automatically end the experiment once 60 comparisons are completed!

(1) Very (2) Somewhat (3) Neither Similar (4) Somewnhat (5) Very
Different Different nor Different Similar Similar
(b) Interface that represents the main body of similarity judgment human experiment.

People described conversational tones using words.
A conversational tone is the style and manner in which someone speaks,
and sometimes, it is also referred to as the tone of a sentence.
How similar are the conversational tones in each pair on a scale of 0-1
where @ is completely dissimilar and 1 is completely similar?
conversational tone 1: {tone_a}
conversational tone 2: {tone_b}
Respond only with the numerical similarity rating.

Figure 12: GPT Prompt for rating the similarity of conversational tones.

A conversational tone is the style and manner in which someone speaks.

{explanation of rated tone feature using its definition in Table}

On a scale of 1 to 5, where 5 means strongest and 1 means weakest, how {feature} is the conversational tone
'"{tone}'"'?

Respond with only a number.

Figure 13: GPT Prompt for rating the strength of features in conversational tones.

Rate Conversation Tones Here!

By clicking on the respective scalebars, with 1being weakest and 5 being strongest,rate the strength of conversation tones on how aroused it is.
Here is an explanation of this feature:

The property aroused means: the strength of emotional activation and energy observed.

You only need to perform 30 comparisons, we will help you automatically end the experiment once 30 comparisons are completed!

Rate the tone sarcastic in the above feature.

Next Page

Figure 14: Interface for the main body of tone feature rating human experiment.
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A.7 [Experiment 4: conversational tone
Feature Rating

A.7.1 Human Experiment

After reading the general instructions (see Figure
4), human participants proceed to the main experi-
ment in which they rate a feature of conversational
tones. Based on psycholinguistic literature (Yeo-
mans et al., 2022; Fintel, 2006; Jin et al., 2022;
Oetzel et al., 2001; Portner, 2009) we selected the
following features along with their definitions:

* positive in valence: Positiveness in valence
means the positiveness of emotional valence.

e aroused: Aroused means the amount of emo-
tional arousal observed.

 Informational: Informational means the ex-
tent to which a speaker’s motive focuses on
giving and/or receiving accurate information.

* Relational: Relational means the extent to
which a speaker’s motive focuses on building
the relationship.

The strength of features in a conversational tone is
rated on a Likert scale from 1 to 5, with 1 being the
weakest and 5 being the strongest. Participants are
provided an interface for rating the features in con-
versational tones. See Figure 14 for a screenshot
of the task.

A.7.2 GPT Experiment

The prompt for tone feature rating that GPT re-
ceives is as outlined in 13.

B Supplementary Statistical Analyses

B.1 SP Sampling

Sample Reliability. For testing the reliability of
our elicited conversational tone distribution, for
both human and GPT instances, we measure the
split-half correlation of their conversational tone
distributions from the acquired dataset of their SP
instances. This split-half correlation is computed
along the following procedure. First, we randomly
partition a set of SP-gathered data into two halves.
Then, we find the frequency of each conversational
tone within the dataset’s halves. At last, we com-
pute the correlation between the frequency of con-
versational tones to be the split-half correlation of
conversational tone distribution within an SP in-
stance.

Over N = 5000 bootstrap processes for both the
human and GPT instances, we measure the human
conversational tone distribution split-half correla-
tions to be r = 0.91 [0.87, 0.93], and the GPT con-
versational tone distribution split-half correlations
to be r =0.87 [0.73, 0.94].

Semantic Interpretation of Sentence Space
Figure 16 shows the joint-embedding space via
UMAP (Mclnnes et al., 2020) for sentences en-
coded using distilbert-base-uncased embed-
dings (Sanh et al., 2019) from both humans and
GPT. Consistent with our findings regarding tones
in the Result section, the distribution was much
more concentrated (entropy of 5.05 bits [5.03, 5.07]
via bootstrapping) compared with humans (entropy
of 4.12 bits [4.10,4.15]). Figure 16 also shows dif-
ferent topics in different parts of the space, which
also shows differences in the produced sentences
for humans and GPT. From this figure, we observe
high repetition of sentence literal content across
many GPT-occupied locations of the shared sen-
tence embedding space (e.g., excited to go to Dis-
neyland), while in regions dominated by humans,
we usually observe a higher variance of words used.
The highlighted regions in Figure 16 show the sen-
tence space shows dense semantic topics, (e.g.,
“gratefulness” in circle (ii)).

B.2 Quality-of-fit Rating Experiment

Sample Reliability of Correlation Matrices. We
measure the sample reliability of human percep-
tion’s and GPT perception’s correlation matrix us-
ing the following procedure. First, for a set of gath-
ered quality-of-fit ratings, we randomly partition
such dataset by sentences. Then, within each parti-
tion, we produce a correlation matrix. Finally, we
compute the correlation of these matrices (treated
as vectors). We used 5000 bootstrapped dataset.
For humans ratings, we find this correlation to be r
=0.95 [0.92, 0.96]; for GPT ratings, we find this
correlation to be r = 0.90 [0.84, 0.93]. The cross-
domain matrix itself has a halfsplit correlation of r
=0.95[0.92, 0.96].

Sample Reliability of Similarity Judgment Ex-
periment. First, for a set of gathered quality-of-fit
ratings, we partitioned the ratings of each conver-
sational tone into two halves and computed the
quality-of-fit rating correlation matrix from each
half of the quality-of-fit rating data. We then com-
pute the correlation between these similarity matri-
ces. We used 5000 bootstraps samples and found
the split-half correlation of human’s similarity ma-

10507



Distibution at keration 50 Distibution at Keration 60

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Figure 15: The dynamics of joint-embedding space for sentences and conversational tones throughout a selection
of iterations. Embeddings are produced via first obtaining sentence-embeddings or tone word-embeddings using
distilbert-base-uncased (Sanh et al., 2019) pretrained weights, and then projected onto a 2-dimensional space
using UMAP manifold embedding (Mclnnes et al., 2020). A: The time evolution of joint-embedding sentence space.

B: The time evolution of joint-embedding tone space.

trix to be » = 0.72 CI = [0.81, 0.84], and that for
GPT’s similarity matrix to be r = 0.987 CI = [0.978,
0.983].

B.3 Cross-Domain (Cross-Correlation)
Analysis

Computation of Feature Arrowmarks. We used
linear regression to regress the tone rating for each
of the four theoretic dimensions using a projec-
tion technique and the responses of this experiment
(MDS biplot (Greenacre, 2010) treating the tone
feature ratings as biplot arrows as shown in Fig-
ure 3A. The concrete computation process is as
follows. First, we construct a feature rating vec-
tor ﬁ for each vector. Then, we fit these features
and the MDS embedding x coordinates (Z) using
linear regression, arriving at some regression line:
7= ZZ oy ﬁ The coefficient «; is then taken to
be the x-axis direction of feature ’s arrowmark.
The same procedure was performed to compute the
arrowmarks’ y-axis direction. Note that when com-

puting the arrowmark for humans’ feature rating,
we only fit the feature ratings to the humans’ con-
versational tone MDS solution. GPT’s arrowmark
dimensions was only fitted to GPT’s feature ratings
too.

Cosine Similarity of Features. As performed in
Section 4.3, we bootstrap over the cosine similarity
of these feature vectors over different MDS solu-
tions, and find that while the feature “informational”
is consistently aligned with high cosine similarity
in arrowmark direction across both groups (mean
0.98 CI =10.97, 0.99]), the feature “relational” is
not so strongly aligned (mean 0.6 CI =[0.57, 0.87]).
Furthermore, the features “positive in valence” and
“aroused” both observe negative cosine similarity in
directions (respectively, mean -0.69 CI =[-0.71, -
0.64]; mean -0.65 CI = [-0.69, -0.4]). This suggests
a deviation between the human and GPT under-
standing of these features.

Explained Variance of Features. Additionally,
we investigate the significance of each feature vec-
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Figure 16: Sentence embedding. Word clouds show the frequency of words (right and left insets) in corresponding
circles on the sentence UMAP embedding space (center). Red points resemble each sentence sampled from human
instances, and blue points resemble GPT instance sentences. Brighter red and blue hues indicate respectively high
TF-IDF (Luhn, 1958) scores in human, GPT sentences in each word cloud (i.e., bright purple words are highly

frequent across humans and GPT).

tor by computing its “explained variance” within
the shared embedding space. We compute the ex-
plained variance of a feature vector is computed
as the variance of scalar projections of all MDS
tone embeddings onto that feature vector. For GPT
tone embeddings, the order of conversational tone
features from highest to lowest explained variance
is “positive in valence” (mean 0.873 CI = [0.872,
0.878]), “relational” (mean 0.45 CI = [0.42, 0.76]),
“aroused” (mean 0.17 CI =[0.16, 0.24]), then “in-
formational” (mean 0.126 CI =[0.12, 0.127]). For
human tone embeddings, the order of features from
highest to lowest explained variance is instead “pos-
itive in valence” (mean 0.71 CI = [0.69, 0.87]),
“aroused” (mean 0.54 CI =[0.5, 0.79]), “relational”
(mean 0.37 CI = [0.34, 0.76]), followed by “infor-
mational” (mean 0.3 CI = [0.27, 0.79]). In both
spaces, we find “positive in valence” to be a domi-
nant dimension of conversational tone embeddings,
while humans and GPT do not fully agree upon the
dominance of other directions.

C Hyperparameters in Alignment
Paradigms

Gromov-Wasserstein Optimal Transport (GWOT).
For GWOT, we adopted Grave et al.’s implemen-

tation (Grave et al., 2018; Conneau et al., 2017,
Lample et al., 2017) using 500 iterations for its
convex initiation, and a learning rate of 10, batch
size of 10, regularization coefficient of 0.5, with 15
epochs for its stochastic iteration in GWOT proce-
dure.

Bilingual Lexicon Induction via Latent Vari-
able Model. For this method, we adopted Ruder
et al.’s implementation (Ruder et al., 2018; Artetxe
et al., 2016, 2017, 2018a,b). During lexicon induc-
tion, we used a backward direction, considering 5
nearest neighbors in translation retrieval. We did
not use a seed dictionary. We also made small mod-
ifications to Ruder et al.’s implementation (model
training batch size from 1000 to 5) to adapt the
paradigm towards our smaller set of embeddings.

D Declaration of Generative AI and
Al-Assisted Technologies in the
Writing Process

During the preparation of this work, we sometimes
used GPT for edits. After using this tool, the au-
thors reviewed and significantly edited the content
as needed and took full responsibility for the con-
tent of the publication. Additionally, we used word-
tune https://www.wordtune.com/ and Gram-
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Performance Category ‘ k H Procrustes ‘ GWOT ‘ BLI
Domain Similarity N/A || 0.625[0.607, 0.642] | 0.625 [0.607, 0.642] 0.8 [0.8, 0.8]
Preservation (Human)
Domain Similarity N/A || 0.499 [0.473, 0.513] | 0.454 [0.405, 0.519] 0.82 [0.82, 0.82]
Preservation (GPT)
kNN Matching Rate 1 0.392 [0.325, 0.463] | 0.339 [0.293, 0.388] | 0.657 [0.638, 0.675]
w.r.t. CC Alignment 2 0.41[0.363, 0.460] | 0.354[0.288,0.397] | 0.635 [0.606, 0.65]
3 0.456 [0.408, 0.496] | 0.403 [0.350, 0.461] | 0.653 [0.635, 0.667]
4 0.499 [0.451, 0.541] | 0.461 [0.397, 0.520] | 0.705 [0.686, 0.719]
5 0.531 [0.476, 0.568] | 0.503 [0.422, 0.563] | 0.730 [0.709, 0.745]

Table 3: Table of benchmarking results on proposed metrics for unsupervised cross-domain alignment methods.
Procrustes: Orthogonal Procrustes Transformation. GWOT: Gromov-Wasserstein Optimal Transport (Grave et al.,
2018). BLI: Bilingual Lexicon Induction via Latent Variable Model (Ruder et al., 2018). Results are aggregated

across 100 seeds for stochastic methods.

marly (https://www.grammarly.com/) to check
syntax and proofread the document. Writing the ex-
perimental code we used code-suggestions by Mi-
crosoft Copilot ((https://copilot.microsoft.
com/). We reviewed all suggestions to make sure
they reflected our intentions.

E Enlarged Figures from Main Paper

In this section, we attach enlarged Figures 2, 3 as
Figure 17, 18 from the main paper for readability.
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Figure 17: Enlarged version of Figure 2
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Figure 18: Enlarged version of Figure 3
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