
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 10422–10437
August 11-16, 2024 ©2024 Association for Computational Linguistics

Re-Tuning: Overcoming the Compositionality Limits of Large Language
Models with Recursive Tuning

Eric Pasewark1*, Kyle Montgomery1*, Kefei Duan1, Dawn Song2, Chenguang Wang1†
1Washington University in St. Louis, 2UC Berkeley

{eric.pasewark, kylemontgomery, d.kefei, chenguangwang}@wustl.edu
dawnsong@berkeley.edu

Abstract

We present a new method for large language
models to solve compositional tasks. Although
they have shown strong performance on tra-
ditional language understanding tasks, large
language models struggle to solve composi-
tional tasks, where the solution depends on
solving smaller instances of the same prob-
lem. We propose a natural approach to solve
compositional tasks recursively. Our method,
Re-Tuning, tunes models to break down a prob-
lem into subproblems, solve those subproblems,
and combine the results. We show that our
method significantly improves model perfor-
mance on three representative compositional
tasks: integer addition, dynamic programming,
and parity. Compared to state-of-the-art meth-
ods that keep intermediate steps towards solv-
ing the problems, Re-Tuning achieves signifi-
cantly higher accuracy and is more GPU mem-
ory efficient.

1 Introduction

Large language models (LLM) have obtained
the state-of-the-art performance on a wide set of
tasks (Brown et al., 2020; Taylor et al., 2022;
Chowdhery et al., 2022; Anil et al., 2023; Ope-
nAI, 2023; Touvron et al., 2023a,b). However, re-
cent studies (Anil et al., 2022; Dziri et al., 2023;
Zhou et al., 2023b) show these models struggle to
generalize to compositional tasks, where the so-
lution depends on solutions to smaller instances
of the same problem. An example task, integer
addition, is shown in Figure 1a. When calculat-
ing ‘1234 + 4567’, we first break the problem
into a smaller subproblem ‘234 + 567’. After
obtaining the solution to this subproblem, the origi-
nal problem is partially solved. Similarly, to solve

∗
Equal contribution.

†
Corresponding author.

∗
The code is available at https://github.com/

Pasewark/ReTuning.

‘234 + 567’, we first sum ‘34 + 67’. This recursion
is the fundamental operation to solve compositional
tasks. However, no existing approach has explic-
itly captured the recursive nature of compositional
tasks.

In this paper, we propose a recursion-based
method for LLMs to better solve compositional
tasks. More specifically, we adopt a top-down ap-
proach to solve problems recursively. We train
LLMs to recursively call themselves on subprob-
lems of reduced size, recognize and solve the base
case directly, and combine the solutions up the
associated call stack to obtain the solution to the
original problem (Figure 1a). The above procedure
is referred to as recursive tuning (or Re-Tuning in
short).

The basic idea behind Re-Tuning is motivated
by two lines of work. First, recent work (Nye et al.,
2021; Anil et al., 2022; Dziri et al., 2023) show
that training LLMs on high-quality scratchpad data,
which includes intermediate steps towards solving
a problem, can improve performance on certain
compositional tasks such as integer addition and
parity. Instead of using the intermediate steps to
train models, which is computationally costly, Re-
Tuning breaks down the problems into smaller and
smaller subproblems. Each subproblem runs inde-
pendently within its own context in the associated
call stack. The solution to each subproblem is then
propagated up the call stack to produce the final
solution. Since each level of the call stack only
includes the information necessary to solve the cur-
rent subproblem, models can more easily attend
to the relevant context, improving the accuracy of
solving each subproblem. Second, our tuning pro-
cess is reminiscent of recent works that incorporate
tool use in LLMs (Schick et al., 2023; Paranjape
et al., 2023). Similar to how these models call a
tool and resume generating output based on the
output of the tool, with Re-Tuning, the models call
themselves on a subproblem and resume generating

10422

https://github.com/Pasewark/ReTuning
https://github.com/Pasewark/ReTuning


(a) Re-Tuning pipeline.

(b) Average tokens per context. (c) Average performance vs. problem length.

Figure 1: Summary of our approach and results. Top: Our Re-Tuning pipeline generates and processes all the
recursive subproblems for each randomly generated problem instance in order to train the base LLM. For a new
question, our Re-Tuning pipeline allows the model to call itself on a subproblem of reduced size, which enables
the subproblem to be solved in a new context and return the answer to the initial context. The top right shows the
generation procedure to solve 1234+5678. Each separate context is indicated by a blue bubble. The arrows indicate
copying of generated prompts or solutions. Bottom Left: On most problems, Re-Tuning trains on significantly
fewer tokens than the scratchpad method, saving considerable GPU memory. Bottom Right: On average, Re-Tuning
outperforms the baseline and scratchpad methods across all tasks, especially as the problems grow in size and
complexity.

after receiving the subproblem’s solution.
We empirically evaluate the performance of Re-

Tuning on three representative compositional tasks:
integer addition (Zhou et al., 2023b), a dynamic
programming problem (Dziri et al., 2023), and
the parity problem (Anil et al., 2022; Zhou et al.,
2023b). Our results show Re-Tuning improves the
average performance of LLaMA 7B and LLaMA
13B on all tasks by 37.4% and 31.9% over baseline
training. Compared to scratchpad training, our im-
provement is striking, with average improvements
of 34.5% and 36.7% on LLaMA 7B and LLaMA
13B respectively. Importantly, we show Re-Tuning
saves significant GPU memory compared to the
scratchpad method when training. We hope our
results foster future research on recursive learning
of large foundation models.

2 Approach

We present Re-Tuning in this section. Re-Tuning
recursively tunes LLMs to solve compositional

tasks. Specifically, the method involves (1) recur-
sively decreasing the size of the problem, (2) solv-
ing the base case, and (3) passing the solutions up
the recursion stack, solving subproblems of increas-
ing complexity along the way.

First, with Re-Tuning, an LLM recursively calls
itself on subproblems of decreasing length or com-
plexity. For example, when adding 1234 + 5678,
the LLM calls itself to add 234 + 678. This call is
then sent to a new context in which the LLM calls
itself to add 34 + 78, which is again sent to a new
context where the LLM calls itself to add 4 + 8.

Next, the base case is solved. The base cases are
easy enough to be solved directly in the same con-
text. For the integer addition problem, the base case
is to add the two least-significant digits together
(e.g., adding 4 + 8).

Finally, the subproblem solutions are passed up
the recursive call stack. Specifically, subproblem
solutions are appended directly after the associ-
ated call in the context one level up the call stack.

10423



function RECURSIVEGENERATE(model, tokenizer, prompt)
context← GENERATE(model, tokenizer, prompt)
while CONTAINSUNEXECUTEDCALL(context) do

call← EXTRACTCALL(context)
result← RECURSIVEGENERATE(model, tokenizer, call)
context← context + result
context← GENERATE(model, tokenizer, context)

end while
return context

end function

Algorithm 1: Psuedocode for the RecursiveGenerate
method, a lightweight recursive wrapper around the
standard generation function used with the baseline and
scratchpad methods.

Again, sticking with integer addition, it helps to
know the sum of 4 + 8 when tasked with adding
34 + 78. As such, the LLM-generated solution
to 4 + 8 is appended to the context tasked with
solving 34 + 78. This process of propagating sub-
problem solutions continues up the recursive call
stack until the solution to the first recursive call is
passed to the initial context, which helps to solve
the initial problem.

To accomplish this, we train LLMs to (1) gen-
erate recursive subproblems, (2) solve base cases,
and (3) use the answers propagated up from these
recursive calls in their computation for the prob-
lem in the current context. We do so by randomly
generating a set of seed data from which we pro-
grammatically construct training instances for all
three types (see Figure 1a).

During generation, the model can designate
some of its generated text to be a recursive call
by enclosing the text between ‘Call: ’ and ‘\n’.
Once a recursive call is made, we stop generating
in the current context and prompt the model with
the call in a new context. In each new context, we
follow the exact same generation procedure, except
for the base case where the model learns to directly
output the answer rather than making another re-
cursive call. When generation in the new context is
complete, we take the subproblem solution, which
is separated by the text ‘\nAnswer: ’, and append
that to the context one level higher in the associ-
ated call stack. Then we continue generation in the
initial context. The pseudo-code for the recursive
generation procedure is in Figure 1.

In the integer addition example, the model only
needs to generate one recursive call in each context.
However, our method works more generally than
this. Many recursive calls may be generated in a
single context. For example, the dynamic program-
ming problem we describe below requires multiple

recursive calls in the initial context to solve the
problem.

3 Experiments

We consider three tasks: integer addition, a dy-
namic programming problem, and the parity prob-
lem. For each task, we train 3 types of models:
baseline, scratchpad, and Re-Tuning. The base-
line models were trained to simply output the solu-
tion to the problem. The scratchpad models were
trained to generate a scratchpad (Nye et al., 2021)
containing intermediate reasoning steps before gen-
erating the final solution to the problem. The Re-
Tuning models are as described above.

During evaluation, we consider both in-
distribution and out-of-distribution (OOD) data.
The in-distribution data are those with problem
lengths that were seen in training and the OOD
data are those with problem lengths longer than
seen in training. For example, on the integer ad-
dition task, the training data consists of numbers
with lengths up to 15 digits. Evaluation examples
with 1-15 digits are considered in-distribution and
examples with 16 or more digits are considered
OOD.

We train LLaMA 7B and 13B (Touvron et al.,
2023a) using Low-Rank Adapters (Hu et al., 2022).
See Appendix A.2 for additional details on the train-
ing setup. Additionally, we provide results on the
smaller Galactica (Taylor et al., 2022) 125m and
1.3B parameter models, in Appendix B.

3.1 Experimental Setup

We consider 3 representative compositional prob-
lems: integer addition, a dynamic programming
problem, and the parity problem. Here, we de-
scribe each problem in detail, as well as how the
data was constructed. Additional details are pro-
vided in Appendix A.1 and examples are provided
in Appendix C.

Integer addition This problem challenges LLMs
to add two integers. The input to the model is
simply a prompt to add 2 numbers. For example,
‘45 + 97’. Pretrained language models have some
capability to perform addition without any training,
but it seemingly disappears as the numbers grow in
size. Nye et al. (2021) used a scratchpad to teach
language models addition, and more recently Liu
and Low (2023) taught LLaMA 7B to add numbers
up to 15 digits. In both cases, there is remark-
able performance degradation when adding inte-

10424



gers larger than those seen during training. Zhou
et al. (2023b) suggests that addition is particularly
hard for LLMs since it requires precise indexing
operations and non-causal propagation of the carry
term. Following Liu and Low (2023), we generate
training data summing randomly generated integers
up to 15 digits long. During evaluation, we focus
on adding two numbers with the same number of
digits and sample 100 problems per length up to 60
digits.

Dynamic programming We borrow the dynamic
programming problem recently studied by Dziri
et al. (2023):

"Given a sequence of integers, find a sub-
sequence with the highest sum, such that
no two numbers in the subsequence are
adjacent in the original sequence."

This problem can be broken down into two steps:
(1) recursively generate an array of sub-array sums
and (2) recursively identify which indices corre-
spond to the highest sum. With Re-Tuning LLMs
generate recursive calls for each of these steps,
which are then solved in separate contexts. For ex-
ample, consider the sequence [3, 2, -2, 5, 3].
The subsequence with the highest sum with no ad-
jacent numbers would contain 3 (element 0) and
5 (element 3). Internally, the LLM represents the
selected subsequence as a list of 1’s and 2’s, with
1’s corresponding to numbers chosen and 2’s corre-
sponding to numbers not chosen. For the sequence
[3, 2, -2, 5, 3], the expected output would be
[1, 2, 2, 1, 2]. Following Dziri et al. (2023),
we exhaustively generate all permutations of arrays
up to length 5 for training, where each element is
restricted to [−5, 5]. Evaluation is done on arrays
up to length 30, again with each integer element
restricted to [−5, 5].

Parity The parity problem is to determine if there
is an even or odd number of 1’s in a binary input
array. An example input is [0, 1, 0, 0], for
which the output should be 1 since the array con-
tains an odd number of 1’s. For an array with an
even number of 1’s, the output should be 0. This
problem has been previously studied by Anil et al.
(2022) and Zhou et al. (2023b). Traditionally, this
problem is solved by traversing the input array to
compute the sum modulo 2, which is the method
we train our models to use. We generate binary
arrays up to length 21 for training. For evaluation,

we sample 100 binary arrays per length up to length
60.

3.2 Main Results

Here we share our main results on LLaMA 7B
and LLaMA 13B, across all three tasks. Results
are shown in Figure 2, and discussed in detail in
the proceeding paragraphs. Across all problems
and model sizes, the Re-Tuning method outper-
forms the baseline and scratchpad methods, with
the clearest difference being on integer addition. In
particular, Re-Tuning exhibits significantly better
OOD generalization compared to the baseline or
scratchpad methods. We find this to be true even
on language models with very few parameters, in-
cluding Galactica 125M and Galactica 1.3B (see
Appendix B).

Integer addition The Re-Tuning method con-
siderably outperforms the baseline and scratch-
pad methods. The scratchpad method performs
the worst, achieving 0% accuracy on every prob-
lem longer than those seen during training on both
LLaMA 7B and LLaMA 13B. The baseline method
has non-zero OOD accuracy for problems up to
length 20, but accuracy falls to 0% on longer prob-
lems with both models. In contrast, the Re-Tuning
method maintains near-perfect accuracy in regimes
where the baseline and scratchpad models have
0% accuracy, only falling below 90% accuracy
on problems of length 40 and 45 for LLaMA 7B
and LLaMA 13B respectively. Astonishingly, with
Re-Tuning, both models maintain near 50% accu-
racy on adding up to 60 digit numbers. The model
by Liu and Low (2023), which is also trained on
addition up to 15 digits, has similar OOD perfor-
mance to our baseline models, and falls to 0% ac-
curacy when adding 21-digit numbers.

Dynamic programming Again, Re-Tuning out-
performs both the baseline and scratchpad ap-
proaches, though the gap between Re-Tuning and
baseline is narrower for LLaMA 13B than it is for
LLaMA 7B. Still, with Re-Tuning, both models
achieve near 90% accuracy on problems of length
10, twice as long as the longest examples in the
training data. Moreover, on problems of length
15, LLaMA 7B achieves 40% accuracy with Re-
Tuning and 0% accuracy with the baseline and
scratchpad methods. Dziri et al. (2023) trains and
evaluates GPT3 models with and without scratch-
pad. Both reach 0% accuracy on problems of length

10425



(a) LLaMA 7B integer addition. (b) LLaMA 7B dynamic programming. (c) LLaMA 7B parity.

(d) LLaMA 13B integer addition. (e) LLaMA 13B dynamic programming. (f) LLaMA 13B parity.

Figure 2: Performance of LLaMA 7B (top) and LLaMA 13B (bottom) on Addition (left), Dynamic Programming
(middle), and Parity (right). The in-distribution range is shaded in gray.

10, which is similar to our scratchpad results but
slightly worse than our baseline results.

Parity Re-Tuning performs as well or better on
inputs smaller than size 60. Specifically, the accu-
racy of the baseline and scratchpad methods falls
to that of random chance (50%) on problems with
lengths greater than 40 on both models. Mean-
while, with Re-Tuning, LLaMA 7B and LLaMA
13B maintain an accuracy over 90% on problems
with the length 40.

4 Analysis and Further Discussion

In this section, we conduct additional experiments
in order to better understand the effects of various
mechanisms behind Re-Tuning.

4.1 Ablation Study

For all tasks, as the problem size grows, so does the
number of unique possible problems. For example,
there are more combinations of 10-digit addition
problems than there are 2-digit addition problems.
If we randomly sample problems from the space
of all possible problems up to some length, then
the distribution of problems will be skewed toward
longer problem instances. Due to Re-Tuning’s re-
cursive design, it’s important that an appropriate

5 20 35 50

w/ Resampling 1.0 0.98 0.96 0.69
w/o Resampling 1.0 0.97 0.73 0.0

Table 1: Ablation over resampling approach during Re-
Tuning training.

number of small problems are included in the train-
ing data. As such, we upsample examples with
shorter lengths and downsample examples with
longer lengths. Our resampling methodology is
described in Appendix A.1

To better understand the impact of resampling,
we train LLaMA 7B using integer addition data
with and without resampling. Both models saw
the same number of training examples. We collect
results on 100 problems of length 5, 20, 35, and 50.
Results are shown in Table 1.

While both trained models perform well on prob-
lems up to length 20, the superiority of the resam-
pling approach becomes clear on longer problems.
At a problem length of 35, the resampling model
achieves 96% accuracy, while the accuracy of the
model trained without resampling is only 73%. At
a problem length of 50, the model trained without
resampling fails to correctly solve a single prob-
lem instance. However, the model trained with

10426



Figure 3: Case study on dynamic programming problem. With scratchpad, the model makes an indexing error,
while with Re-Tuning, the model correctly generates the recursive call.

resampling maintains an accuracy of 69%, which
suggests that resampling is an important contribu-
tor towards the success of Re-Tuning.

4.2 Case Study

The scratchpad models often make errors with in-
dexing operations. For example, on the dynamic
programming problem, the training data includes
arrays up to size 5. In Figure 3 we see that the
model-generated scratchpad indexes element 5 in-
stead of element 6 of the array of sub-array sums
(dp array), which is incorrect on an input array of
length 7. Once the model makes this indexing error
on the scratchpad it is unable to recover. In other
cases, the scratchpad method correctly generates
the text for "dp[6]" but fails to populate the sub-
sequent expressions with the correct values from
the input array. In contrast, the Re-Tuning method
is shown in Figure 3. Only the initial context is
shown to save space. With Re-Tuning, the model
is able to generate recursive calls correctly with no
difficulty indexing, enabling it to correctly solve
the problem.

4.3 Error Analysis

In order to better understand the types of errors
made by Re-Tuning models, we perform extensive
error analysis on each task. For each task, we
randomly sample 20 problems per problem length
and use LLaMA 7B with Re-Tuning to generate
the outputs. We categorize these samples into the
following error types:

• Call error: At some point in the call stack,
an incorrect recursive call is made. As a re-
sult, the input prompt to the new context is
incorrect.

• Compute error: This error can manifest
either because the base case is incorrectly
solved, or at some point in the call stack the

model returns the wrong solution to a sub-
problem even though the correct answer to its
recursive call was received. As a result, the
answer returned by the current context to the
earlier context will be incorrect.

• Restoration error: A restoration error oc-
curs if, at some point in the call stack, a call
error or compute error is made, yet later recov-
ered such that the final answer to the prompt
in the initial context is correct. Importantly,
since the model is able to recover, instances
of restoration errors are classified as correct.

• No error: In order for a problem instance to
be free of errors, each recursive call must be
correct, the base case must be solved correctly,
and the correct answers are propagated up the
call stack, leading to the correct final answer.

Figure 4 displays the error classifications for
each problem on LLaMA 7B. Importantly, across
all problems, the prevalence of errors increases
with the size of the problem.

Integer addition On the integer addition task,
very few call errors and compute errors occur be-
fore a problem size of 30. On more complex in-
stances call errors frequently occur, suggesting that
the model has a difficult time constructing the sub-
problem. Importantly, this aligns with Zhou et al.
(2023b), which suggests that simply copying long
strings of text with repeating characters is a diffi-
cult task for transformer-based models to perform.
Furthermore, the lack of restoration errors suggests
that once a call error is made, the model has a very
hard time recovering.

Dynamic programming For the dynamic pro-
gramming problem, we perform error analysis on
each subproblem separately. The first subproblem
deals with constructing the array of sub-array sums,

10427



(a) Errors on integer addition.

(b) Errors on dynamic programming (subproblem 1). (c) Errors on dynamic programming (subproblem 2).

(d) Errors on parity.

Figure 4: Error classifications for each problem across samples of 20 instances per problem lengths.

while the second subproblem identifies which in-
dices correspond to the maximum sum. While
compute errors occur most frequently on the first
subproblem, call and restoration errors occur more
frequently on the second subproblem. This checks
out, as the first subproblem requires a rather simple
call, but involves a more complex step to compute
the answer, whereas the second subproblem con-
tains a more involved recursive call, but an easier
computation to produce the index array. Further-
more, the prevalence of restoration errors on sub-
problem 2 suggests that these call errors are easier
to recover from than the computer errors made in
subproblem 1.

Parity For the parity problem, we again see very
few errors of any type before a problem size of 40.
In contrast with the addition problem, the majority
of errors made on the parity problem are compute
errors, not call errors. This is rather unintuitive, as
the addition operation is seemingly much harder
than the possible parity flip in the parity problem.

4.4 Improved Sample Efficiency

We also run experiments to see the performance
of Re-Tuning in the low-data regime on integer
addition. The results are in Figure 5. For each

experiment, we construct training data consisting
of n examples for each problem length, where n is
10, 25, and 50 and the numbers contain between 1
and 15 digits. For example, when n is 10, the model
will see 10 examples of adding two 1-digit numbers,
10 examples of adding two 2-digit numbers, etc.
So, it sees 150 examples in total when n is 10. We
train baseline, scratchpad, and Re-Tuning variants
of LLaMA 7B on these examples for 5 epochs each.
Unlike the other experiments, we do not use any
resampling here.

After seeing only 50 examples per problem
length, the Re-Tuning model achieves performance
close to the Re-Tuning model in the full-data
regime above. In contrast, the baseline model has
much worse performance than the baseline model
in the full-data regime. With only seeing 10 exam-
ples per problem length in training, the Re-Tuning
model is comparable to the baseline model that
sees 50 examples per problem length in training, a
5x efficiency increase.

4.5 Prompt Sensitivity
Here, we explore the sensitivity of Re-Tuning
models to various prompts during infer-
ence. Specifically, we take our best LLaMA
7B checkpoint trained on the integer addi-

10428



(a) 10 examples per length. (b) 25 examples per length. (c) 50 examples per length.

Figure 5: Results on integer addition with limited training data of 10 examples per length (left), 25 examples per
length (middle), and 50 examples per length (right) on LLaMA 7B. Note that the scratchpad model does not get any
problems correct.

5 20 35 50

“{num_1} + {num_2}\nSolution: ” 1.0 0.98 0.96 0.69
“{num_1} + {num_2}\nAnswer: ” 1.0 1.0 0.86 0.65
“{num_1} + {num_2}\n ” 1.0 0.98 0.88 0.67
“{num_1} - {num_2}\nSolution: ” 0.28 0.26 0.18 0.07

Table 2: Prompt sensitivity analysis on LLaMA 7B with
Re-Tuning on the integer addition problem.

tion task with Re-Tuning using the prompt
‘{num_1} + {num_2}\nSolution: ’, and we
evaluate the model using several alternative prompt
formats for inference. Results are shown in Table 2
on 100 problems of length 5, 20, 35, and 50.

The results suggest that during inference, Re-
Tuning is not very sensitive to minor deviations
in the prompt. The first prompt in Table 2 is the
prompt used during training. The second and third
prompts include small prompt deviations and result
in slightly worse performance on longer problems.
Specifically, the 2nd prompt uses ‘Answer: ’ in an
attempt to have the model skip the recursive call,
but it appears that Re-Tuning is robust against such
attacks. Re-Tuning however, is not robust against
the fourth prompt, which adversarially prompts
for subtraction rather than addition, resulting in
significantly worse performance.

4.6 Why is Re-Tuning so Effective?
As discussed in Section 4.4, Re-Tuning exhibits sig-
nificantly higher sample efficiency than the scratch-
pad or baseline methods. However, there are other
factors at play that also contribute to the success of
Re-Tuning.

With Re-Tuning, an LLM generates a recursive
call with a subproblem to be solved in a separate
recursive context. Once the subproblem is solved,
the solution is returned to the original context. This

approach has two advantages. First, the compu-
tation required in each context is limited. In con-
trast, the scratchpad approach requires a long chain
of computations must be performed in the same
context. Second, each context includes only the
necessary information to solve the current subprob-
lem, as information that is irrelevant to solving the
subproblem is filtered out. For example, to add 2
10-digit numbers, one of the prompts generated by
Re-Tuning will be to add 2 3-digit numbers. This
prompt has filtered out 7 digits from each number
that would be irrelevant when adding these 3-digit
numbers. This is in contrast to scratchpad prompt-
ing, where the model would also add these 3-digit
numbers, but would have the full 10-digit numbers
in context.

Furthermore, an important contributor to the suc-
cess of LLMs on arithmetic tasks is the consistent
tokenization of numbers (Nogueira et al., 2021;
Kim et al., 2021). Fortunately, the LLaMA family
of models (as well as the Galactica models pre-
sented in Appendix B) performs digit-level tok-
enization, where long numbers are split into in-
dividual digits for tokenization. Since all of our
tasks are arithmetic in nature, it’s likely that some
of the success of Re-Tuning can be attributed to
digit-level tokenization.

4.7 Efficiency Comparison

Due to Re-Tuning’s high degree of sample-
efficiency (see Figure 5) and shorted training se-
quences relative to the scratchpad method (see Fig-
ure 1b), Re-Tuning is an efficient and effective
training paradigm to improve the performance of
LLMs on compositional tasks. Still, generation
takes longer with Re-Tuning than with baseline or

10429



Length Re-Tuning Scratchpad Baseline

5 4.462 2.492 0.346
30 76.494 32.509 1.496
60 265.002 80.699 2.030

Table 3: Generation times (in seconds) on the integer
addition task with LLaMA 13B for a selection of prob-
lem lengths.

scratchpad methods. This is because Re-Tuning
generates additional tokens related to calling the
subproblem(s) within each context. To better un-
derstand this, we track the average generation time
(in seconds) on the integer addition task across a
selection of problem lengths. Specifically, we use
LLaMA 13B at half-precision running on a single
NVIDIA A100 GPU. Table 3 displays the results.

Though this would appear to be a limitation with
Re-Tuning, there are two additional factors to con-
sider. First, Re-Tuning prioritizes effectiveness
over efficiency. Though all three methods see near-
perfect accuracy on problems of length 5, the base-
line and scratchpad approach fail to solve a single
problem of length 30 or 60 correctly, while Re-
Tuning maintains near-perfect accuracy on prob-
lems of length 30, and near 50% accuracy on prob-
lems of length 60. Second, unlike the baseline
and scratchpad methods, Re-Tuning can leverage
cache-based optimizations to retrieve solutions to
subproblems without the need to generate using the
model, saving time and compute resources.

5 Related Work

Several works have explored the length general-
ization ability of LLMs on compositional prob-
lems. Dziri et al. (2023) suggests that LLMs
solve compositional tasks via “linearized subgraph
matching” and thus fail to learn the underlying al-
gorithm necessary to solve more complex problem
instances. Anil et al. (2022) showed that train-
ing on a combination of in-context learning and
scratchpad prompting could enable better perfor-
mance. Similarly, Re-Tuning involves training
pretrained LLMs to make recursive calls in order
to improve performance on compositional tasks.
Other works have studied length generalization on
small, purpose-built transformer models. Lee et al.
(2023) and Zhou et al. (2023b) showed that training
small transformer models from scratch on scratch-
pad data could enable better length generalization.
Recently, McLeish et al. (2024) showed that trans-
formers can achieve strong OOD performance on

addition by using special positional embeddings.
Various papers have explored the idea of LLMs

prompting themselves or other LLMs, although,
to our knowledge, no papers explicitly train a lan-
guage model to do so. Zhou et al. (2023a) prompts
a language model to break a problem down into
simpler steps and then prompts itself to solve each
step individually in a sequential, non-recursive
manner. Similar methods have been proposed as
a way to improve the logical consistency of the
generated responses (Crispino et al., 2024; Imani
et al., 2023; Madaan et al., 2023). Weston and
Sukhbaatar (2023) use a language model to gen-
erate prompts by extracting relevant information
from the context. Similarly, Re-Tuning generates a
recursive call that includes the relevant information
for solving a simpler subproblem.

A recent topic of interest has been teaching lan-
guage models to use tools (Hsieh et al., 2023; Parisi
et al., 2022; Schick et al., 2023; Qin et al., 2023;
Paranjape et al., 2023; Mialon et al., 2023), which
often involve stopping the generation and waiting
for the tool output before continuing with gener-
ation. Re-Tuning can be interpreted as teaching
LLMs to use themselves as a tool.

Several papers have investigated the ability of
language models on arithmetic tasks (Shen et al.,
2024; Lee et al., 2023; Liu and Low, 2023; Nye
et al., 2021; Nogueira et al., 2021; Kim et al., 2021;
Duan and Shi, 2023). In many cases, it was no-
ticed that performance was significantly worse on
problems longer than those seen during training.

6 Conclusion

We study the problem of solving compositional
tasks with large language models. We propose a
new tuning paradigm that decomposes the original
compositional problem into smaller and smaller
instances of the same type, solves each, and com-
bines the results to produce the final answer. To
the best of our knowledge, our method is the first
to utilize the recursive property of compositional
tasks. Experimental results on three representative
compositional tasks demonstrate the effectiveness
of our method. Our method not only significantly
outperforms standard training and state-of-the-art
methods, especially on out-of-distribution problem
instances, but is also more memory efficient during
training. We hope our method can be applied to
more tasks where recursive computation is inherent
and computational resources are limited.

10430



Limitations

Re-Tuning has shown better accuracy and better
sample efficiency than standard methods. However,
it does have some disadvantages. Re-Tuning takes
longer to generate responses than standard prompt-
ing because it generates recursive calls in addition
to generating the final answer. The inference pro-
cedure for Re-Tuning is also more complex than
standard inference since we need to extract text
from contexts, check if there is a generated prompt
in the text, and recursively generate using the gen-
erated prompts.

References
Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor

Lewkowycz, Vedant Misra, Vinay Venkatesh Ra-
masesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer,
and Behnam Neyshabur. 2022. Exploring length gen-
eralization in large language models. In Advances in
Neural Information Processing Systems.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez
Abrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu
Feng, Vlad Fienber, Markus Freitag, Xavier Gar-
cia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-
Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua
Howland, Andrea Hu, Jeffrey Hui, Jeremy Hur-
witz, Michael Isard, Abe Ittycheriah, Matthew Jagiel-
ski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,
Sneha Kudugunta, Chang Lan, Katherine Lee, Ben-
jamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li,
Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu,
Frederick Liu, Marcello Maggioni, Aroma Mahendru,
Joshua Maynez, Vedant Misra, Maysam Moussalem,
Zachary Nado, John Nham, Eric Ni, Andrew Nys-
trom, Alicia Parrish, Marie Pellat, Martin Polacek,
Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif,
Bryan Richter, Parker Riley, Alex Castro Ros, Au-
rko Roy, Brennan Saeta, Rajkumar Samuel, Renee
Shelby, Ambrose Slone, Daniel Smilkov, David R.
So, Daniel Sohn, Simon Tokumine, Dasha Valter,
Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang,
Pidong Wang, Zirui Wang, Tao Wang, John Wiet-
ing, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav

Petrov, and Yonghui Wu. 2023. PaLM 2 Technical
Report. arXiv.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners. In
NeurIPS.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. PaLM: Scaling Language
Modeling with Pathways. arXiv.

Nicholas Crispino, Kyle Montgomery, Fankun Zeng,
Dawn Song, and Chenguang Wang. 2024. Agent in-
structs large language models to be general zero-shot
reasoners. In International Conference on Machine
Learning.

Shaoxiong Duan and Yining Shi. 2023. From interpola-
tion to extrapolation: Complete length generalization
for arithmetic transformers.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chan-
dra Bhagavatula, Ronan Le Bras, Jena D. Hwang,
Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson
Ettinger, Zaid Harchaoui, and Yejin Choi. 2023.
Faith and fate: Limits of transformers on compo-
sitionality.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu

10431

https://openreview.net/forum?id=zSkYVeX7bC4
https://openreview.net/forum?id=zSkYVeX7bC4
http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2310.11984
http://arxiv.org/abs/2310.11984
http://arxiv.org/abs/2310.11984
http://arxiv.org/abs/2305.18654
http://arxiv.org/abs/2305.18654
http://arxiv.org/abs/2308.00675
http://arxiv.org/abs/2308.00675
http://arxiv.org/abs/2308.00675


Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models.

Jeonghwan Kim, Giwon Hong, Kyung-min Kim, Junmo
Kang, and Sung-Hyon Myaeng. 2021. Have you
seen that number? investigating extrapolation in
question answering models. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7031–7037, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kang-
wook Lee, and Dimitris Papailiopoulos. 2023. Teach-
ing arithmetic to small transformers.

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat:
Fine-tuned llama outperforms gpt-4 on arithmetic
tasks.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Iterative
refinement with self-feedback.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain,
John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi
Schwarzschild, and Tom Goldstein. 2024. Trans-
formers can do arithmetic with the right embeddings.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ramakanth Pasunuru, Roberta
Raileanu, Baptiste Roziere, Timo Schick, Jane
Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann
LeCun, and Thomas Scialom. 2023. Augmented lan-
guage models: a survey. Transactions on Machine
Learning Research. Survey Certification.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. 2021.
Investigating the limitations of transformers with sim-
ple arithmetic tasks.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for intermediate
computation with language models.

OpenAI. 2023. GPT-4 Technical Report. arXiv.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language mod-
els.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.

Jianhao Shen, Ye Yuan, Srbuhi Mirzoyan, Ming Zhang,
and Chenguang Wang. 2024. Measuring vision-
language stem skills of neural models. In The Twelfth
International Conference on Learning Representa-
tions.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open Foundation and
Fine-Tuned Chat Models. arXiv.

Jason Weston and Sainbayar Sukhbaatar. 2023. System
2 attention (is something you might need too).

10432

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2303.05398
http://arxiv.org/abs/2303.05398
https://doi.org/10.18653/v1/2021.emnlp-main.563
https://doi.org/10.18653/v1/2021.emnlp-main.563
https://doi.org/10.18653/v1/2021.emnlp-main.563
http://arxiv.org/abs/2307.03381
http://arxiv.org/abs/2307.03381
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2405.17399
http://arxiv.org/abs/2405.17399
https://openreview.net/forum?id=jh7wH2AzKK
https://openreview.net/forum?id=jh7wH2AzKK
http://arxiv.org/abs/2102.13019
http://arxiv.org/abs/2102.13019
http://arxiv.org/abs/2112.00114
http://arxiv.org/abs/2112.00114
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.09014
http://arxiv.org/abs/2303.09014
http://arxiv.org/abs/2303.09014
http://arxiv.org/abs/2205.12255
http://arxiv.org/abs/2205.12255
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2211.09085
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2311.11829
http://arxiv.org/abs/2311.11829


Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023a. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin,
Omid Saremi, Josh Susskind, Samy Bengio, and Pree-
tum Nakkiran. 2023b. What algorithms can trans-
formers learn? a study in length generalization.

A Experimental Details

In this section, we provide additional experimental
details, including details related to the synthetic
construction of the data, training process, and in-
ference pipeline.

A.1 Data Construction
We highlight our pipeline for synthetic data con-
struction in this section.

Seed data To construct the training data, we start
by randomly generating a collection of seed data.
On the dynamic programming and parity problems,
this seed data is exhaustive (e.g., all possible binary
arrays up to length 20). On the integer addition
task, we randomly generate 304,000 pairs of num-
bers up to 15 digits long. Next, we generate the
recursive solution, including the solutions to the
recursive sub-problems, for each instance of the
seed data. The union of the seed data and recursive
sub-problems from the training data, which we for-
mat according to the method (baseline, scratchpad,
and Re-Tuning).

Resampling In general, we upsample examples
with smaller lengths and downsample those with
larger lengths in our training data. There are 2 rea-
sons for this. First, examples with larger lengths
are more numerous than examples with smaller
lengths (there are many more examples of adding
2 15-digit numbers than there are adding 2 1-digit
numbers). Second, since Re-Tuning generates calls
to all examples except the base case, it has trouble
learning what to do in the base case if there are not
enough examples. Without resampling, the base
cases for each problem would be far less than 1%
of the training data. We do not follow any spe-
cific methodology for resampling. We simply try
to bring the training data distribution closer to uni-
form than it would be without resampling. Figure 6
displays the distributions of the training data before
and after resampling with respect to length for the

integer addition, dynamic programming, and parity
tasks.

Training dataset sizes After resampling, the fi-
nal training datasets contain the following num-
ber of instances: 3,676,055 for integer addition,
342,187 for dynamic programming, and 124,780
for parity.

Validation and testing datasets For each prob-
lem, we generate 5 and 100 instances of seed
data for a variety of problem lengths (both in-
distribution and out-of-distribution) for the vali-
dation and testing splits respectively.

A.2 Training Details
Training and evaluation were done on NVIDIA
H100, A100, and RTX A6000 GPUs, depending
on the compute requirements of the job. Rather
than train the full model, we train using low-rank
adapters (Hu et al., 2022). Hyperparameters for
training jobs are in Table 4. These hyperparameters
apply to training all models across all tasks, with
two notable exceptions: (1) when training parity
baselines, we used a slightly higher learning rate
of 5e-4 for better stability, and (2) the scratchpad
training job for the dynamic programming problem
on LLaMA 13B used a batch size of 64, along
with 64 gradient accumulation steps, so that the
training job could be done on a single A100 GPU.
Our training code is a heavily modified version of
the code from Rafailov et al. (2023).

Parameter Value

Learning Rate 2× 10−4

LR Schedule Constant
Optimizer AdamW
Batch Size 128
Gradient accumulation steps 32
Lora_r 64
Lora_alpha 64
Lora_dropout 0.05

Table 4: Hyperparameters used for finetuning.

During training, cross-entropy loss is computed
only on the parts of the sequence that the model
will generate at inference time (c.f. grey vs. green
highlighted text in the upper right of Figure 1a).

We train on 500,000 samples, performing mul-
tiple epochs if necessary, and checkpoint the state
model at fixed intervals. We evaluate a handful of
these checkpoints on a small validation set contain-
ing 5 examples from a handful of problem lengths
(both in-distribution and out-of-distribution). We

10433

https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
http://arxiv.org/abs/2310.16028
http://arxiv.org/abs/2310.16028


(a) Integer addition (before resampling). (b) Dynamic programming (before resam-
pling).

(c) Parity (before resampling).

(d) Integer addition (after resampling). (e) Dynamic programming (after resam-
pling).

(f) Parity (after resampling).

Figure 6: Comparison of the training dataset distributions before (top) and after (bottom) resampling on integer
addition (left), dynamic programming (middle), and parity (right).

Algorithm Re-Tuning Scratchpad Baseline

Addition 71424 79360 349184
Parity 63488 71424 206336
DP 79360 71424 23808

(a) LLaMA 7B.

Algorithm Re-Tuning Scratchpad Baseline

Addition 79360 103168 349184
Parity 404736 79360 206336
DP 404736 104000 23808

(b) LLaMA 13B.

Table 5: Number of samples the selected checkpoints
were trained on for LLaMA 7B (top) and LLaMA 13B
(bottom).

report full results on the checkpoint that achieves
the highest accuracy on the validation set, selecting
the earlier checkpoint in the event of a tie. Table 5
and provide the number of examples trained on
for each task (integer addition, dynamic program-
ming, and parity) and method (baseline, scratchpad,
and Re-Tuning) for the selected LLaMA 7B and
LLaMA 13B models.

A.3 Inference Pipeline
For baseline and scratchpad methods, our evalua-
tion procedure is rather standard: we sample at a
low temperature (0.01) and impose no additional

context limitations beyond those of the models
themselves, in which case the input is truncated
from the left. With Re-Tuning, we use a recursive
wrapper around the same generation procedure, the
pseudocode for which is shown in Algorithm 1.

To better understand the recursive generation
procedure of Re-Tuning, let’s consider the follow-
ing integer addition example: “687 + 891\nSolu-
tion: ”. With Re-Tuning, the model is trained to
return the following subproblem call “Call: 87 +
91\n”. In this case, we would extract the text “87 +
91” and prompt for the solution to this subproblem
in a new context. Once we have the solution to this
subproblem, it’s returned to the main context "687
+ 891\nSolution: Call: 87 + 91\nReturn: 178\nAn-
swer: ", and we again call the model to generate
the final answer.

B Additional Results

In this section, we share results on two additional
models: Galactica 125M and Galactica 1.3B (Tay-
lor et al., 2022). Results across our 3 tasks are
shown in Figure 7. In general, we observe that Re-
Tuning enables Galactica 1.3B to maintain higher
accuracy on more complex problem instances and
Galactica 125M to perform as good, if not better,
than either the baseline or scratchpad methods.

10434



(a) Galactica 125M integer addition. (b) Galactica 125M dynamic program-
ming.

(c) Galactica 125M parity.

(d) Galactica 1.3B integer addition. (e) Galactica 1.3B dynamic program-
ming.

(f) Galactica 1.3B parity.

Figure 7: Performance of Galactica 125M (top) and Galactica 1.3B (bottom) on Addition (left), Dynamic Program-
ming (middle), and Parity (right). The in-distribution range is shaded in gray.

Integer addition On the addition task on Galac-
tica 125M, all three methods fail to achieve per-
fect in-distribution performance. With scratchpad,
accuracy never tops 40%, even for lengths seen
during training, and quickly falls to 0% at length
15. Though both baseline and Re-Tuning meth-
ods perform similarly on in-distribution problems,
Re-Tuning generalizes better to more complex in-
stances. With Re-Tuning, Galactica 125M is able
to achieve greater than 50% accuracy at length 20,
while the baseline accuracy at length 20 is 0%.
With Galactica 1.3B, again all 3 methods display
similar in-distribution accuracy above 80%. How-
ever, while the baseline and scratchpad methods are
unable to solve any problems of length 20 or more
correctly, Galactica 1.3B with Re-Tuning maintains
near 80% accuracy on problems up to length 40.

Dynamic Programming On the dynamic pro-
gramming task, Galactica 125M performs simi-
larly with baseline and Re-Tuning methods, reach-
ing 0% accuracy on problems of length 10 and
11 respectively. Galactica 125M with scratch-
pad is unable to solve any instances with out-of-
distribution lengths correctly. On Galactica 1.3B,
all three methods achieve perfect in-distribution

performance. Still, Re-Tuning displays better out-
of-distribution performance, maintaining an accu-
racy near 60% on problems of length 15, while the
baseline and scratchpad methods achieve 0% accu-
racy on lengths 10 and 7 respectively. Interestingly,
while Galactica 1.3B with scratchpad fails to solve
a single problem of length 7 correctly, Galactica
125M with Re-Tuning can still solve above 30%
correctly, with just 1/10th of the parameters.

Parity Galactica 125M performs poorly on in-
stances of the parity task with out-of-distribution
lengths. All three methods perform similarly, and
accuracy falls to that of random chance or worse on
problems of length 30 or more. On Galactica 1.3B,
the baseline method performs the worst, perform-
ing at the level of random chance on problems of
length 15 or more. The scratchpad and Re-Tuning
maintain near-perfect performance on problems up
to lengths 30 and 45 respectively.

C Example Problems

In this section, we provide additional details and
examples of the training data for all three tasks (in-
teger addition, dynamic programming, and parity)
with all three methods (baseline, scratchpad, and

10435



Re-Tuning).

Integer addition Following Liu and Low (2023),
we generate pairs of numbers up to 15 digits in
length. With the baseline method, we train the
model to output the answer directly. With scratch-
pad and Re-Tuning, we train the model to add digits
starting from the right. With these methods, the
models learn to propagate the higher-order carry
term separately from the rest of the output, which
we found improved the accuracy of both methods.
Evaluation is done on adding numbers up to 60
digits in length. To compute accuracy on testing ex-
amples, we extract the last number from the output
and check for equivalence with the target solution.
For the scratchpad and Re-Tuning methods, we
first prepend the carry term to the output prior to
computing accuracy. Figure 8 displays example
training instances for the baseline, scratchpad, and
Re-Tuning methods.

Dynamic programming Following Dziri et al.
(2023), the training data for this task consists of
arrays up to 5 elements long, with each element
restricted to [−5, 5]. With the baseline method,
we train the model to directly output an indices
array indicating which elements should be selected
to maximize the sum given the constraints. The
scratchpad design is copied form Dziri et al. (2023).
Re-Tuning requires two recursive calls in each con-
text: the first to create an array with sub-array
sums and the second to construct the indices ar-
ray. Evaluation is done on arrays up to length 30,
with each element still restricted to [−5, 5]. For
all three methods, we extract the last array from
the generated text and check for equivalence to
the target indices array. Figure 9 displays example
training instances for the baseline, scratchpad, and
Re-Tuning methods.

Parity This problem was inspired by Anil et al.
(2022), and requires the model to compute the par-
ity of a binary array. Specifically, the training data
includes binary arrays up to length 21, while the
evaluation data includes arrays up to length 60.
With the baseline method, the models learn to out-
put the parity directly, which can be computed as
the sum of the input array modulo 2. Our scratch-
pad design is similar to that of Anil et al. (2022),
and involves keeping track of the parity sequen-
tially as the array is traversed from left to right.
With Re-Tuning, the parity is computed from right
to left by recursive calls made to compute the par-

ity of the last n − 1 elements of the array. With
all three methods, we extract the last digit from
the generated sequence and check for equivalence
with the target parity. Figure 10 displays example
training instances for the baseline, scratchpad, and
Re-Tuning methods.

10436



Baseline:
637 + 123\nAnswer: 760

Scratchpad:
637 + 123\nSolution: Carry 1, Output 0 \nCarry 0, Output 60 \nCarry 0, Output 760

Re-Tuning:
637 + 123\nSolution: Call: 37 + 23\n Return: Carry 0, Output 60\n Answer: Carry 0, Output 760

Figure 8: Example training instances for addition. The models learn to generate the text in bold.

Baseline:
637 + 123\nAnswer: 760
Given a sequence of integers, find a subsequence with the highest sum, such that no two numbers
in the subsequence are adjacent in the original sequence.\n\nOutput a list with "1" for chosen
numbers and "2" for unchosen ones. If multiple solutions exist, select the lexicographically
smallest. Input = [1, -3, 2].\n Answer: [1, 2, 1]

Scratchpad:
Question: Let’s solve input = [1, -3, 2]. Scratchpad: dp[2] = max(input[2], 0) = max(2, 0) =
2\ndp[1] = max(input[1], input[2], 0) = max(-3, 2, 0) = 2\ndp[0] = max(dp[1], input[0] + dp[2],
0) = max(2, 1 + 2, 0) = 3\n\nFinally, we reconstruct the lexicographically smallest subsequence
that fulfills the task objective by selecting numbers as follows. We store the result on a list
named "output".\n\nLet can_use_next_item = True.\nSince dp[0] == input[0] + dp[2] (3 == 1 + 2)
and can_use_next_item == True, we store output[0] = 1. We update can_use_next_item = False.\nSince
dp[1] != input[1] (2 != -3) or can_use_next_item == False, we store output[1] = 2. We update
can_use_next_item = True.\nSince dp[2] == input[2] (2 == 2) and can_use_next_item == True, we
store output[2] = 1.\n\nReconstructing all together, output=[1, 2, 1].

Re-Tuning:
Compute the maximum sum of nonadjacent subsequences of [1, -3, 2]\nSolution: Call: Create dp array
[1, -3, 2]\n Return: [3, 2, 2]\nAnswer: Create chosen indices array: sum array [3, 2, 2], item
array [1, -3, 2], can use item True\nSolution: If there is only 1 item, return 1 if we should use
it else 2. If we should use the first item to get the sum, call False else True. Call: Create chosen
indices array: sum array [2, 2], item array [-3, 2], can use item False\nReturn [2, 1]\nAnswer:
Append 1 if False else 2.\nAnswer: [1, 2, 1]

Figure 9: Example training instances for dynamic programming. The models learns to generate the text in bold.

Baseline:
What is the parity of [1, 0, 1]?\nAnswer: 0

Scratchpad
What is the parity of [1, 0, 1]? \nSolution: Compute one element at a time 1 1 0

Re-Tuning:
What is the parity of [1, 0, 1]?\nSolution: Call: What is the parity of [0, 1]?\n\nReturn: 1\nAnswer:
0

Figure 10: Example training instances for parity. The models learns to generate the text in bold.

10437


