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Abstract

Large Language Models (LLMs) exhibit sub-
stantial capabilities yet encounter challenges,
including hallucination, outdated knowledge,
and untraceable reasoning processes. Retrieval-
augmented generation (RAG) has emerged as
a promising solution, integrating knowledge
from external databases to mitigate these chal-
lenges. However, inappropriate retrieved pas-
sages can potentially hinder the LLMs’ capac-
ity to generate comprehensive and high-quality
responses. Prior RAG studies on the robustness
of retrieval noises often confine themselves to
a limited set of noise types, deviating from real-
world retrieval environments and limiting prac-
tical applicability. In this study, we initially
investigate retrieval noises and categorize them
into three distinct types, reflecting real-world
environments. We analyze the impact of these
various retrieval noises on the robustness of
LLMs. Subsequently, we propose a novel RAG
approach known as Retrieval-augmented Adap-
tive Adversarial Training (RAAT). RAAT lever-
ages adaptive adversarial training to dynami-
cally adjust the model’s training process in re-
sponse to retrieval noises. Concurrently, it em-
ploys multi-task learning to ensure the model’s
capacity to internally recognize noisy contexts.
Extensive experiments demonstrate that the
LLaMA-2 7B model trained using RAAT ex-
hibits significant improvements in F1 and EM
scores under diverse noise conditions. For re-
producibility, we release our code and data at:
https://github.com/calubkk/RAAT.

1 Introduction

Large language models (LLMs) have garnered sub-
stantial attention in both academic and industrial
research within the domain of artificial intelligence
due to their remarkable capabilities (Brown et al.,
2020; Bubeck et al., 2023). Despite their immense
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Query : How much money did the film“Titanic” make?

Retrieved text A :  Including revenue from the 2012 and 
2017 reissues, "Titanic" earned $659.4 million in North 
America and $1.528 billion in other countries, for a 
worldwide total of $2.187 billion. 

                
            

Query : How much money did the film“Titanic” make?

Retrieved text A :  Including revenue from the 2012 and 
2017 reissues, "Titanic" earned $659.4 million in North 
America and $1.528 billion in other countries, for a 
worldwide total of $2.187 billion. 

                
            Retrieved text B : "The Interstellar" soared to global box 
office success in 2014, raking in a whopping $675 
million worldwide. 

                
            

 

Figure 1: An illustrative example of the RAG process
applied to question answering. The model predicts the
correct answer with accurate retrieved text. However, it
fails to produce the right answer when the retrieved text
contains misleading or inaccurate information.

power, LLMs face challenges such as hallucina-
tions and outdated knowledge (Gao et al., 2023).
Moreover, a lack of domain knowledge may hin-
der their performance on domain-specific tasks
(Kandpal et al., 2023). To mitigate these chal-
lenges, recent studies improve LLMs by retrieving
passages from external databases and pretending
them in context, constituting a framework known
as retrieval-augmented language models (RALMs)
(Mao et al., 2020; Lewis et al., 2020).

However, RALMs also present significant limita-
tions. Previous studies (Yoran et al., 2023; Yu et al.,
2023; Shi et al., 2023) have empirically demon-
strated that retrieved noisy passages are problem-
atic for LLMs, resulting in performance degrada-
tion. We term this issue as the noise robustness
problem of RALMs. As illustrated in Figure 1, the
model can provide correct answers when the re-
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trieving context is accurate and related to the query.
However, when the retrieved context contains mis-
leading or inaccurate information, the model may
yield incorrect answers. As the retriever inherently
cannot achieve complete accuracy, the presence of
noise in the retrieved context is inevitable. There-
fore, designing robust algorithms against retrieved
noises is of great practical importance.

Recently, several studies (Yoran et al., 2023;
Li et al., 2022) have attempted to enhance the
noise robustness of RALMs through noisy train-
ing, which involves incorporating retrieved noisy
contexts into fine-tuning data. While noisy training
exhibits promise, its effectiveness heavily relies
on the composition of the training dataset. Incor-
rectly introducing noises to the training data can
lead to model overfitting, adversely affecting gener-
alization. In practice, meticulous adjustment of the
type and intensity of noises is essential to ensure
the model’s proficiency across various tasks and
datasets. This demands significant experimentation
and tuning, adding complexity to the development
process. Moreover, the lack of clear classification
for retrieval noises in current studies stands in con-
trast to the diverse range of noises encountered in
real retrieval environments.

This paper systematically explores three types of
retrieval noises: (i) contexts that are superficially
related to the query but lack the correct answer
(Relevant retrieval noise), (ii) contexts that are ir-
relevant to the query (Irrelevant retrieval noise),
and (iii) contexts that are topically related to the
query but contain incorrect information (Counter-
factual retrieval noise). Our empirical study indi-
cates that LLMs exhibit varying robustness to these
three types of noise. Compared to entirely irrel-
evant texts, texts that are superficially related to
the query or those containing counterfactual details
often lead to more misinformation.

In response to diverse types of noises, we pro-
pose a novel approach named Retrieval-augmented
Adaptive Adversarial Training (RAAT), which em-
ploys adaptive adversarial training to dynamically
regulate the model’s training process in response
to retrieved noisy texts. Concretely, RAAT gen-
erates adversarial samples (noises) by consider-
ing the model’s sensitivity to different types of
noises during training, which aligns with the min-
max paradigm of adversarial training (Morris et al.,
2020; Ivgi and Berant, 2021). Moreover, RAAT
utilizes multi-task learning (Ruder, 2017) to encour-
age the LLMs to generate tokens that are aware of

noises, thereby enabling the model to internally
recognize retrieved noisy contexts and improve the
overall generation performance.

The main contributions of this paper can be sum-
marized as follows:

• We systematically explore three types of retrieval
noises and investigate the sensitivity of LLMs to
these diverse types of noises.

• We propose a novel adaptive adversarial training
method (called RAAT) to enhance the robust-
ness of RALMs against various retrieval noises.
RAAT dynamically adjusts the training process
of the model in diverse noise environments. In
addition, it integrates multi-task learning to en-
courage the model to improve its ability to dis-
cern different types of noises.

• We set up a benchmark (named RAG-Bench)
for assessing the noise robustness problem of
RALMs based on three open-domain question-
answering datasets. Experimental results demon-
strate that our RAAT method enhances robust-
ness across diverse retrieval noise environments.

2 Related Work

Retrieval-Augmented Generation with Noisy
Context Retrieval-Augmented Language Models
(RALMs) have shown impressive performance in
various NLP tasks (Gao et al., 2023; Zhu et al.,
2023). However, limited by the capabilities of the
retriever, retrieval-augmented systems inevitably
introduce irrelevant or partially relevant knowledge
to the models (Yin et al., 2023). Recent studies
(Yu et al., 2023; Yoran et al., 2023; Chen et al.,
2023) have increasingly focused on the impact of
noisy information on retrieval-augmented genera-
tion. For example, Jia and Liang (2017); Creswell
et al. (2022) observed that adding irrelevant noise
to the context could detrimentally affect model per-
formance. Chen et al. (2023) demonstrated that
as the proportion of noise in the retrieval context
increases, the performance of LLMs experiences
a notable decline. Similar phenomena have been
reported by Yoran et al. (2023) and Thakur et al.
(2023).

Adversarial Training Adversarial training is rec-
ognized as a crucial method for enhancing model
robustness, initially proposed by Goodfellow et al.
(2014). Early studies widely investigated adversar-
ial training in the computer vision domain (Kurakin
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et al., 2016; Madry et al., 2017). In the NLP do-
main, Miyato et al. (2016) applied perturbations
to word embeddings, making the model less prone
to overfitting. Similarly, perturbations on different
granularities have been extensively studied, encom-
passing various aspects of NLP tasks (Yasunaga
et al., 2017; Wu et al., 2017; Zhu et al., 2019; Wang
et al., 2020; Ni et al., 2023; Liang et al., 2023).

Recently, several studies have concentrated on
generating adversarial examples designed to in-
duce LLMs to generate harmful or non-factual con-
tent (Zou et al., 2023; Shen et al., 2023) instead
of merely causing the model to make inaccurate
predictions. Shen et al. (2023) employed decision-
based perturbation at different levels to craft adver-
sarial examples, revealing vulnerabilities in Chat-
GPT to both sentence-level and character-level ad-
versarial attacks. Shi et al. (2023) added irrelevant
context to an arithmetic reasoning dataset, finding
that including irrelevant information distracted the
model’s predictions. Zou et al. (2023) proposed
a method that could reliably generate adversarial
attack suffixes, yielding adversarial prompts that
exhibit high transferability.

In this study, we investigate adversarial training
concerning LLMs in response to various retrieval
noises, aiming to efficiently obtain adversarial ex-
amples that enhance model robustness while reduc-
ing training overhead. We construct noisy adver-
sarial examples by sampling or paraphrasing the
original dataset. This approach ensures more de-
pendable and precise outputs even when confronted
with imperfect retrieved contexts.

3 Methodology

3.1 Problem Setup

In the standard RALM, given input query x, a re-
triever r is designed to retrieve relevant contexts
C = {c1, c2, . . .} from an external database. Dur-
ing inference, the content of retrieval context is
concatenated with x to form d, which is then fed
into the pre-trained language model M , yielding a
response ŷ regarding x. If the retrieved context c
contains the correct answer y about x, we can de-
note c as cgolden, representing the golden retrieval
context. However, if c does not contain the correct
answer y or contains partially irrelevant content,
we can denote c as cnoisy.

In our study, we transform open-domain ques-
tion answering (QA) into a reading comprehension
task to meet the RAG settings. Formally, given

the objective f of an open domain question an-
swering task is f : {x} → y, we can formulate
the objective of the reading comprehension task as
f : {cgolden, x} → y. In examining the challenge
of the retrieval noise robustness problem of RALM,
we aim to obtain a fine-tuned model M ′ that can
not only fulfill the function f : {cgolden, x} → y
but also produce accurate answers even in the pres-
ence of additional retrieval noise cnoisy and achieve
function f : {cgolden, cnoisy, x} → y.

3.2 Diverse Retrieval Noises
We systematically classify the retrieval noise
present in cnoisy to closely mimic real-world con-
ditions. Existing studies (Yoran et al., 2023; Yu
et al., 2023) on retrieval noise robustness often
dichotomize noise into relevant and irrelevant cat-
egories. However, we contend that such a classifi-
cation may not fully align with the retrieval noise
robustness of RALMs. In this work, we propose a
more nuanced classification of retrieval noise, dif-
ferentiating it into three distinct types: Relevant re-
trieval noise, Irrelevant retrieval noise, and Coun-
terfactual retrieval noise. Specifically, Relevant
retrieval noise (denoted as cr) pertains to contexts
that exhibit superficial relevance to the query x but
lack the information necessary for the correct an-
swer y. These contexts may appear relevant at first
glance but ultimately mislead the model. Irrele-
vant retrieval noise (denoted as ci) encompasses
contexts with low relevance to the query x, often
arising from erroneous retrievals and generally be-
ing off-topic. Counterfactual retrieval noise (de-
noted as cc) encompasses contexts that are topically
related to x but contain incorrect and misleading
information, often attributed to inaccuracies in the
retriever’s database.

To examine the influence of three distinct
types of retrieval noise on LLMs, we estab-
lish a benchmark for assessing retrieval noise
robustness in LLMs by employing three open-
domain question-answering datasets: Natural Ques-
tions (Kwiatkowski et al., 2019), TriviaQA (Joshi
et al., 2017), and WebQ (Berant et al., 2013). Lever-
aging this benchmark, we evaluated the suscepti-
bility of various open-source large language mod-
els to the effects of the three identified types of
noise. The details of the construction of this bench-
mark can be found in Section 4.1. Leveraging this
benchmark, we evaluate the sensitivity of various
LLMs to the effects of the three types of noise.
Specifically, we conduct experiments on six LLMs,

10030



0
10
20
30
40
50
60
70

LLaMA2-7b LLaMA2-13b LLaMA2-70b Qwen-7b Qwen-14b ChatGPT-3.5

No retrieval Golden Context Irrelevant Retrieval Noise Relevant Retrieval Noise Counterfactual Retrieval Noise

Figure 2: Exact match (EM) scores of various models under different types of retrieval noises. “Golden Context”
denotes instances where LLMs respond to questions with reference to the golden retrieval context. “No Noise”
indicates instances where LLMs answer questions without any retrieval. The experimental configurations of other
models involve the introduction of different types of noises on the foundation of the “Golden Context”.

including ChatGPT3.5, LLaMA27B (Touvron
et al., 2023), LLaMA213B (Touvron et al., 2023),
LLaMA270B (Touvron et al., 2023), Qwen7B (Bai
et al., 2023), and Qwen14B (Bai et al., 2023). For
each model, our experiments encompass two dis-
tinct settings: one with the exclusive presence of
the golden retrieval context cgolden and another in-
corporating the introduction of three different types
of retrieval noise cnoisy. As shown in Figure 2,
all LLMs experience varying degrees of impact
from the three types of noise. The performance
of LLMs exhibits a decline ranging from 0.2% to
13.43%. Through a comparative analysis of the
effects of the three types of noise, we observe that
irrelevant retrieval noise has a comparatively mi-
nor impact on LLMs with substantial capabilities.

3.3 Retrieval-augmented Adaptive
Adversarial Training

Recently, several studies (Yoran et al., 2023; Li
et al., 2022) attempted to enhance the noise ro-
bustness of LLMs through noisy training, which
involves incorporating retrieved noisy contexts into
fine-tuning data. The essence of noisy training
involves the exploration of offline data augmenta-
tion, while in contrast, adversarial training lever-
ages online data augmentation for a similar pur-
pose (Ivgi and Berant, 2021). The core idea of
adversarial training is to fortify the models against
adversarial conditions by introducing adversarial
perturbations (Jain et al., 2023). In the construction
of adversarial samples, also known as noise sam-
ples, the min-max optimization strategy assumes a
pivotal role, encompassing two fundamental steps.
Initially, the maximization process involves ad-
justing the input data to intentionally mislead the
model, inducing the maximum prediction error.

Then, the minimization process entails fine-tuning
the model’s parameters to enhance its resistance
against these meticulously crafted input perturba-
tions (Bai et al., 2021). This strategy seeks to strike
a balance, allowing the model to accurately iden-
tify normal data while robustly defending against
potential attacks from adversarial examples.

In this study, we aim to refine the objective of
adversarial training while exploring the noise ro-
bustness challenges of RALMs. Considering a
given query x, we assume the existence of four
types of data augmentation, namely, golden re-
trieval context only (dag), additional relevant re-
trieval noise (dar), additional irrelevant retrieval
noise (dai), and additional counterfactual retrieval
noise (dac). The space of data augmentation is
denoted as DA = {dag, dar, dai, dac}. Then, the
optimization problem can be formulated as follows:

min
θ

E(x,y)∼D

[
max
da∈DA

L(θ, da(x), y)
]

(1)

where D denotes training data, L is the loss func-
tion, θ denotes the parameters of LLMs, and da(x)
represents the data augmentation of x.

Building upon the optimization problem outlined
above, we introduce adaptive adversarial training
as a tailored approach to enhance the robustness
of RALMs against retrieval noise. Within adaptive
adversarial training, the model refrains from up-
dating parameters across all adversarial samples.
Instead, it initiates the process by computing the
generation loss for each adversarial sample, quan-
tifying its adaptability to varying noise environ-
ments. Notably, a higher generation loss implies
reduced adaptability of the model to the noisy en-
vironment. Given that each query involves one
sample with a golden retrieval context and three
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How much money did the film “Titanic” make?

"The Interstellar" soared to global box office success in 
2014, raking in a whopping $675 million worldwide. 
                                                                      

                  

                            

"Titanic" amassed $659.4 million in North America and 
an additional $2.528 billion internationally. This 
culminated in a global revenue of $5.187 billion.

A ship is a large vessel that travels the world's oceans and 
other navigable waterways, carrying cargo or passengers, 
or in support of specialized missions.
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Counterfactual
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Diverse Retrieval Noises 

Including revenue from the 2012 and 2017 reissues, 
"Titanic" earned $659.4 million in North America and 
$1.528 billion in other countries, for a worldwide total of 
$2.187 billion. 
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Figure 3: The overview of our proposed RAAT method, which incorporates three distinct types of retrieval noises
and the golden retrieval context during the training process.

adversarial samples, the model generates four dis-
tinct generation losses in each iteration. Following
a min-max optimization strategy, the model pri-
oritizes the selection of the largest loss to guide
subsequent parameter update. Formally, we define
the generation loss function L′ for the augmented
input x′ as:

L′ (θ, x′, y
)
= − 1

|y|

|y|∑

t=1

logPθ

(
yt | x′, y<t

)
(2)

where x′ = da(x) represents the augmented noise
context of x.

To effectively enhance performance across di-
verse noise environments, adaptive adversarial
training incorporates a regularization term into its
loss function. This incorporation of a regulariza-
tion term is designed to mitigate the risk of the
model overfitting to a particular type of noise. The
regularization term acts as a stabilizing factor, pro-
moting generalization and preventing the model
from becoming overly specialized in its response
to a specific noise profile. To achieve this goal,
we introduce a regularization term specifically de-
signed to mitigate the variance between these gen-
eration losses. This regularization term operates by
identifying the largest L′

max and the smallest L′
min

of the four generation losses at each training step.
L′
max is the generation loss with the highest nu-

merical value among four losses being considered.
Conversely, L′

min is the loss function with the low-
est numerical value. Here, an increased loss value
indicates a greater magnitude of error or dispar-

ity in the aspect of the model’s performance being
assessed. This suggests that the model exhibits
heightened sensitivity to adversarial examples re-
flecting retrieval noise. These adversarial examples
are designed to probe and exploit weaknesses in
the model’s processing capabilities, especially in
how it deals with noisy information in its input
data. The regularization term, calculated as the
square of the difference between L′

max and L′
min,

aims to reduce the model’s sensitivity to retrieval
noise by encouraging a more balanced optimiza-
tion. Formally, we design the regularization term
Lreg as:

Lreg = ∥L′
max − L′

min∥22 (3)

Subsequently, we define the adaptive adversarial
training loss function Lada as follows:

Lada = L′
max + wreg · Lreg (4)

where wreg is a pre-defined hyperparameter to con-
trol the weight of Lreg.

3.4 Incorporating Noise Awareness
Accurately identifying retrieval noise plays a piv-
otal role in fortifying the robustness of RALMs
against the retrieval noise. Models endowed with
the ability to discern different types of noise can
more effectively choose and utilize training data,
leading to an improvement in the overall quality
of their generated outputs. This capacity to dis-
tinguish between various noise types contributes
significantly to the model’s adaptive learning pro-
cess, enabling it to optimize performance in the
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presence of diverse noise scenarios. Inspired by
the above motivation, we propose an auxiliary task
designed to autonomously recognize the types of
noisy retrieval texts, aiming to significantly bolster
the retrieval robustness of RALMs. This auxiliary
task serves as a valuable augmentation, contribut-
ing to the overall adaptability and effectiveness of
the model in scenarios involving retrieval noise.

Specifically, we attempt to enable the model to
generate tokens that are sensitive to noise, thereby
improving the model’s capacity to discern various
types of retrieval noise internally. Specifically, we
first incorporate a linear layer beneath LLMs. Sub-
sequently, a classification loss Lcls is computed for
each of the golden retrieval context and the three
adversarial samples corresponding to each input
x. One-hot encoding is employed in classification
tasks, assigning values from 1 to 4 as labels to train
the classifiers, where each classifier is tailored to
a different retrieval noise type. The loss function
Lcls is computed using cross-entropy.

Finally, we formulate the final RAAT loss LRAAT
by combining the adaptive adversarial training loss
and the classification loss in the context of multi-
task learning:

LRAAT = wada · Lada + wcls · Lcls (5)

where wada and wcls represent pre-defined hyperpa-
rameters used to balance the importance of these
two different tasks.

4 Experiments

4.1 Dataset Construction
We have formulated a benchmark named RAG-
Bench that is specifically designed to evaluate the
retrieval noise robustness of LLMs. RAG-Bench
is established upon three widely available datasets
that center around open-domain question answer-
ing (QA): Natural Questions (NQ) (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017), and
WebQ (Berant et al., 2013). For each dataset, we
employ the retrieval model DPR (Karpukhin et al.,
2020) as our retriever, which retrieves ten passages
from Wikipedia for each query. Then, we apply
filtering to the queries, ensuring that each query in
the filtered subset contains at least two golden re-
trieval contexts, indicating the presence of correct
answers. Detailed statistics for both the full set and
the filtered subset can be found in Table 1.

Each sample in our dataset contains a golden
retrieval context and is deliberately designed to in-

Datasets Train Test

#Full #Subset #Full #Subset

NQ 79,168 40,551 3,610 1,833
TriviaQA 78,785 51,202 11,313 7,010

WebQ 3,778 2,316 2,032 1,057

Table 1: The statistics of the three QA datasets.

corporate three types of augmented retrieval noise.
To introduce relevant retrieval noise, we choose
the context most pertinent to the query from the
set of ten retrieval texts, excluding the golden re-
trieval context. In the case of irrelevant retrieval
noise, no selection is made from the retrieval texts
associated with the current query. Instead, a pas-
sage is randomly chosen from the retrieval contents
of other queries, ensuring its complete irrelevance
to the current query. For the counterfactual re-
trieval noise, we randomly select one passage from
the two golden retrieval contexts and substitute its
answer entity with an incorrect one.

The test set of RAG-Bench comprises 1000 ran-
domly chosen samples from the test sets of three
QA datasets, resulting in a total of 3000 samples.
The training set consists of 1500 samples randomly
selected from the training sets of the three datasets,
totaling 4500 samples. The validation set, drawn
from the training sets of three QA datasets, con-
tains 300 samples. Notably, careful measures were
taken to ensure no overlap with the training data of
RAG-Bench.

4.2 Evaluation Metrics
We evaluate the effectiveness of our method using
two metrics: exact match (EM) and F1 score (Chen
et al., 2017). Concretely, EM assesses the extent to
which the answer generated by the system aligns
precisely with the standard answer without any
disparities at the character level. In contrast, the F1
score incorporates precision and recall, accounting
for the equilibrium between correctly identifying
answers and avoiding omitting correct answers.

4.3 Baseline Methods
We conduct a comparison of our RAAT method
against zero-shot LLMs, as well as finetuning ap-
proaches applied to LLaMA27B , which shares a
common backbone with RAAT.

Zero-Shot Methods Within the open-source
community, many foundational and supervised fine-
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Method Golden Only Golden & ci Golden & cr Golden & cc Avg

F1 EM F1 EM F1 EM F1 EM F1 EM

LLaMA27B 65.56 51.80 56.14 42.87 53.10 39.73 51.81 38.37 56.68 43.19
Qwen7B 62.57 47.07 61.48 46.06 55.50 40.50 53.26 36.90 58.20 42.63

LLaMA213B 69.27 55.00 63.25 49.47 62.27 47.97 62.07 47.17 64.22 49.90
Qwen14B 67.45 51.43 66.71 51.20 61.88 46.16 58.65 41.30 63.67 47.52

LLaMA270B 71.43 56.56 70.05 55.13 65.97 51.33 63.91 48.27 67.84 52.82
ChatGPT3.5 73.98 60.50 72.24 60.30 70.65 56.89 69.00 54.64 71.47 58.10

RALMgolden 80.31 74.03 79.33 72.73 73.26 66.33 73.08 65.40 76.50 69.62
RetRobust 80.10 73.80 79.25 72.97 74.81 68.30 75.46 68.43 77.41 70.88

RALMretrieved 80.04 73.40 81.09 74.80 75.99 69.10 73.10 65.67 77.55 70.74
RALMmultiple 85.47 80.17 85.27 81.20 83.07 78.33 83.25 79.23 84.27 79.73

RAAT 87.15 83.07 86.80 82.73 85.14 81.00 86.29 82.10 86.35 82.23

Table 2: Experimental results on our RAG-Bench benchmark. “Golden Only” denotes a scenario where LLMs only
consult the golden retrieval context. In “Golden & ci/cr/cc”, LLMs consider both the golden retrieval context and
irrelevant retrieval noise/relevant retrieval noise/counterfactual retrieval noise.

tuning (SFT) models have emerged. In our experi-
ments, we select six renowned LLMs as baselines:
ChatGPT3.5, LLaMA27B (Touvron et al., 2023),
LLaMA213B , LLaMA270B , Qwen7B (Bai et al.,
2023), and Qwen14B .

Fine-tuning Methods We further compare
RAAT with various fine-tuning methods.

• RALMgolden This is a RALM with instruc-
tion tuning (Lin et al., 2023). It prepends a
golden retrieval text cgolden in context to fine-
tune LLaMA27B .

• RetRobust To ensure that the model is exposed
to both golden retrieval texts and various retrieval
noise during training, Yoran et al. (2023) pro-
poses RetRobust. For each query, RetRobust
selects top-1, low-ranked, or random retrieved
passages with equal probability for training.

• RALMretrieved This variant is a RALM in-
corporating instruction tuning. In contrast to
RALMgolden, RALMretrieved does not manually
design retrieval noise in the training set but di-
rectly uses the top-2 retrieved passages. This
training method is more aligned with real re-
trieval environments.

• RALMmultiple This approach closely resembles
RetRobust, differing only in the construction of
the training dataset. In RALMmultiple, rather
than introducing one type of retrieval noise ran-
domly for each query, each type of retrieval noise

is combined with the sample and incorporated
into the dataset. That is, each query is associated
with four augmented noisy samples.

4.4 Implementation Details

Our RAAT method relies on LLaMA2-7B as the
foundational model. We set the weight parame-
ters as follows: wreg to 0.1, wraat to 2, and wcls to
1. The sequence length, epoch, and learning rate
are configured to 512, 2, and 5e-6, respectively.
Our experiments are conducted on a computational
cluster equipped with 4 NVIDIA A100 GPUs, each
boasting a capacity of 80GB.

5 Experimental Results

5.1 Main Results

Table 2 illustrates the efficacy of our RAAT method
compared to the baselines in terms of F1 and EM
scores. We observe that all models are affected by
three different types of retrieval noise attacks. The
influence of irrelevant retrieval noise is marginal,
while counterfactual retrieval noise exerts the most
significant impact. For the models sharing the same
architecture, larger parameter sizes correlate with
superior performance and better robustness against
retrieval noise. For instance, LLaMA27B exhibits
a 12.46% reduction in F1 score when confronted
with relevant retrieval noise, whereas LLaMA213B
only experiences a 7% decrease under identical
conditions. This trend is also evident in Qwen.
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Method Golden Only Golden & ci Golden & cr Golden & cc Avg

F1 EM F1 EM F1 EM F1 EM F1 EM

RAAT 87.15 83.07 86.80 82.73 85.14 81.00 86.29 82.10 86.35 82.23
RAAT w/o Lcls 86.76 82.77 86.45 82.27 84.69 80.63 85.54 81.20 85.86 81.71
RAAT w/o Lreg 86.87 83.03 83.92 79.86 84.69 80.57 87.02 82.80 85.63 81.57

Table 3: Ablation test results in terms of EM and F1 score.

From Table 2, we can also observe that fine-
tuning enables LLMs to better utilize information
from the retrieval texts. Fine-tuned models signifi-
cantly outperform the zero-shot LLMs with varying
parameter sizes. Moreover, RALMmultiple shows
a significant improvement over RALMgolden,
RALMretrieved and RetRobust, reflecting the sen-
sitivity of retrieval noise to the training dataset and
the importance of diversity in noise attacks during
training. Our RAAT method achieves even better
performance than RALMmultiple in all four envi-
ronments, with an average increase of 2.08% in the
F1 score and 2.5% in the EM score, demonstrating
its superior ability to handle diverse retrieval noise.

5.2 Ablation Study

To gain a comprehensive understanding of the in-
dividual contribution of each component within
RAAT to the overall performance, we conducted
an ablation study by removing the regularization
term loss (denoted as w/o Lreg) and the noise-aware
classification loss (denoted as w/o Lcls). The ex-
perimental results are shown in Table 3. After re-
moving the classification loss, we observe that the
average performance of the model decreased by
0.49% and 0.52% in terms of F1 score and EM
score, respectively. While removing the regular-
ization term, there was a significant performance
decrease in handling irrelevant retrieval noise.

5.3 Further Discussion

What types of adversarial samples does RAAT
employ during training? To gain a comprehen-
sive understanding of the underlying mechanisms
of RAAT, particularly its utilization of specific
retrieved data to augment model robustness, we
undertook an in-depth examination of its training
process, involving meticulously tracking the train-
ing iterations and conducting a thorough statistical
analysis to quantify the number of different types
of adversarial examples incorporated during the
training phase. The statistical results are illustrated

1758
1371

2706
3165

Golden Context Irrelevant Retrieval Noise 
Relevant Retrieval Noise Counterfactual Retrieval Noise

Figure 4: The number of queries and parameter updates
are 4,500 and 9,000, respectively. The statistical content
in this table pertains to different types of retrieval noises
selected by RAAT each time the model parameters un-
dergo an update.

in Figure 4. We observe that RAAT prioritizes the
selection of adversarial examples that can signif-
icantly improve model robustness, as reflected in
its tendency to choose certain types of adversarial
examples. This is consistent with our empirical
findings described in Section 3.2. RAAT tends
to select adversarial examples associated with rel-
evant retrieval noise and counterfactual retrieval
noise for training.

6 Conclusion

This work initially investigated retrieval noises in
RALMs and categorized them into three distinct
types, reflecting real-world environments. In addi-
tion, we introduced RAAT as a solution to address
the noise robustness challenges faced by RALMs,
which leveraged adaptive adversarial learning and
multi-task learning to enhance the model’s capa-
bility. Moreover, we established a benchmark to
verify the effectiveness of RAAT based on three
open-domain QA datasets. Experimental results
demonstrate substantial improvements in F1 and
EM scores for the LLaMA2 7B model fine-tuned
with RAAT across diverse noise conditions.
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7 Limitations

In this section, we delve into the limitations in-
herent in our work, with the objective of pinpoint-
ing areas for refinement and bolstering the perfor-
mance of our model in future endeavors. Two prin-
cipal limitations have been identified. Firstly, the
benchmark constructed for our experiments relies
exclusively on datasets sourced from three open-
domain question answering repositories. Going for-
ward, we intend to compile additional high-quality
datasets from varying NLP tasks and endeavor to
retrieve texts from a more extensive array of knowl-
edge bases. This strategic expansion aims to facil-
itate the creation of a more diversified and expan-
sive benchmark tailored for evaluating the retrieval
noise robustness of large language models. Sec-
ondly, within the framework of RAAT, our efforts
have been singularly concentrated on fortifying the
retrieval noise robustness at the LLM end. How-
ever, the prospect of jointly training large language
models and retrieval models emerges as a promis-
ing avenue for enhancing the overall robustness of
RALMs. Although this dimension was not the pri-
mary focal point of our current work, in our subse-
quent investigations into retrieval noise robustness,
we plan to delve into this avenue. This approach
would facilitate the synchronized progress of both
the large language model and the retrieval model,
contributing to an overall improvement in their ro-
bustness.
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A Has the Model Truly Attained Noise
Awareness?

Our preliminary investigation focused on the in-
trinsic capability of RALMgolden and RetRobust
to classify the types of retrieval noises. Drawing
inspiration from previous work (Gueta et al., 2023),
we approached this matter through the application
of clustering algorithms. The results, illustrated
in Figure 5, reveal suboptimal clustering of text
vectors from RALMgolden and RetRobust, sug-
gesting that the internal representations for noise
classification in these models may lack clarity. Con-
sequently, we introduced a noise classification loss
Lcls into our RAAT method. The experimental re-
sults demonstrated tangible benefits with the incor-
poration of the classification loss. Additionally, we
assessed the clustering effectiveness in models fine-
tuned with RAAT, observing minimal distances
among samples of irrelevant, relevant, and no re-
trieval noises, in contrast to the considerable dis-
tance from counterfactual retrieval noise samples.
In particular, counterfactual retrieval noise posed
the most significant challenge to LLMs; however,
after RAAT tuning, it exhibited superior clustering
and representation learning outcomes, indirectly
validating the efficacy of RAAT.

Figure 5: The results of T-SNE visualization. Follow-
ing the introduction of four types of adversarial sam-
ples (i.e., retrieval noises) into models tuned by vari-
ous methods, the hidden state of the last token is ex-
tracted. Subsequently, dimensionality reduction using
t-SNE, clustering, and visualization are performed. This
visual representation includes three methods, namely
RALMgolden, RetRobust, and RAAT.
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