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Abstract

Intuitively, reasoning abilities are considered
language-agnostic. However, existing LLMs
exhibit inconsistent reasoning abilities across
different languages, e.g., reasoning in the dom-
inant language like English is superior to other
languages due to the imbalance of multilin-
gual training data. To enhance reasoning abil-
ities in non-dominant languages, we propose
a Multilingual-Alignment-as-Preference Opti-
mization framework (MAPO) to align the rea-
soning processes in other languages with the
dominant language. Specifically, we harness
an off-the-shelf translation model for the con-
sistency between answers in non-dominant and
dominant languages, which we adopt as the
preference for optimization, e.g., Direct Prefer-
ence Optimization (DPO) or Proximal Policy
Optimization (PPO). Experiments show that
MAPO stably achieves significant improve-
ments in the multilingual reasoning of various
models on all three benchmarks (MSVAMP
+16.2%, MGSM +6.1%, and MNumGLUESub
+13.3%), with improved reasoning consistency
across languages 1.

1 Introduction

The reasoning ability of large-scale models has at-
tracted much attention (Cobbe et al., 2021; Wang
et al., 2022; Wei et al., 2023; Yu et al., 2023).
Though we consider reasoning to be language-
agnostic, existing studies (Chen et al., 2023) show
that due to the imbalance of pre-training and fine-
tuning data across languages, the mathematical rea-
soning ability of existing large-scale models varies
across languages, e.g., English, is far superior to
that of the other languages.

To improve the reasoning ability in other lan-
guages, Chen et al. (2023) translated the English

*Corresponding author
1The project is available at https://github.com/

NJUNLP/MAPO

reasoning processes into other languages for su-
pervised fine-tuning (Ouyang et al., 2022, SFT).
Although SFT brings in preliminary capability for
multilingual reasoning, we argue that two problems
hinder further improvement.

Firstly, the annotation for the reasoning process
is expensive to obtain even for the dominant lan-
guage, and the reasoning processes involve com-
plex mathematical reasoning, which may result
in translation errors (Chen et al., 2023). As a re-
sult, the translated reasoning annotation for non-
dominant languages is limited in both scale and
quality. Without sufficient and diverse data, the
results of supervised training are limited. It may
also suffer from generalization issues in versatile
task scenarios (Zheng et al., 2023; Ouyang et al.,
2022), indicating potential difficulty in adapting to
the out-of-domain test set.

More importantly, although supervised training
with translated reasoning processes improves the
reasoning ability for almost all trained languages,
this strategy only fills in the missing reasoning an-
notation for non-dominant languages that originate
from the dominant language. Thus the inherent gap
between dominant and non-dominant languages is
hardly narrowed.

Different from existing attempts, we propose to
use the reasoning ability of the dominant language
as the director for improving non-dominant lan-
guages. As the reasoning process is critical for
obtaining the correct result, the multilingual rea-
soning ability may be improved by encouraging the
reasoning in non-dominant languages to be similar
to that in the dominant language. Therefore, we
propose a Multilingual-Alignment-as-Preference
Optimization (MAPO) framework by aligning the
reasoning process of non-dominant languages to
the dominant. Notably, MAPO exploits the strong
reasoning ability in the dominant language and re-
quires no annotation for the reasoning process.

More specifically, MAPO consists of two stages:
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preference estimation via multilingual alignment
and preference optimization. During preference
estimation, the reasoning processes to the same
question are sampled from the LLM in both domi-
nant and non-dominant languages. A well-trained,
off-the-shelf translation model is employed to yield
the translation probability between the reasoning
in dominant and non-dominant languages. Since
higher translation probability indicates a more con-
sistent reasoning aligned with the dominant lan-
guage, the corresponding reasoning in the non-
dominant language is considered better and shall be
promoted. During preference optimization, Prox-
imal Policy Optimization (Schulman et al., 2017,
PPO) and Direct Preference Optimization (Rafailov
et al., 2023, DPO) are adopted to optimize the pre-
viously estimated preference. So the LLMs are
trained to reason in the non-dominant languages as
they do in the dominant language. We also conduct
Iterative DPO for further preference optimization.

Experiments are conducted on three challeng-
ing multilingual reasoning test sets, namely
MSVAMP (Chen et al., 2023), MGSM (Shi et al.,
2022), and MNumGLUESub constructed from
NumGLUE (Mishra et al., 2022), each covering
10 languages. MAPO achieves accuracy improve-
ments of up to 16.2%, 6.1%, and 13.3% on the three
benchmarks, respectively, reaching state-of-the-art
performance on 7B models, thereby demonstrating
the effectiveness of our method. Among them,
the improvement on the out-of-domain dataset
MSVAMP (+16.2%) shows that, by enhancing mul-
tilingual reasoning consistency, MAPO improves
the multilingual reasoning capabilities of the model
in a generalizable manner.

2 Preliminary

2.1 Multilingual Reasoning

A straightforward measurement to evaluate the effi-
cacy of large language models (LLMs) lies in their
proficiency in tackling complex reasoning, e.g.,
their performance in solving mathematical reason-
ing. Recent work (Wei et al., 2023; Wang et al.,
2022) has verified a substantial improvement when
LLMs are guided through a step-by-step reasoning
process, instead of conducting a direct answer.

Some research has introduced mathematical rea-
soning datasets in the form of application prob-
lems, such as GSM8K (Cobbe et al., 2021),
NumGLUE (Mishra et al., 2022), and SVAMP (Pa-
tel et al., 2021). To evaluate the multilingual rea-

soning capabilities of LLMs, Shi et al., 2022 pro-
pose MGSM by manually translating 250 samples
of the GSM8K test set from English to other lan-
guages. Subsequent researches focus on enhancing
the multilingual reasoning of LLMs. Chen et al.,
2023 translate the GSM8K training data into other
languages for supervised fine-tuning (SFT), which
improves the model’s multilingual reasoning capa-
bilities. However, SFT suffers from data scarcity
and catastrophic forgetting. Its out-of-domain gen-
eralization is also hard to guarantee (Zheng et al.,
2023). Multilingual reasoning via LLMs remains
an open challenge.

2.2 Preference Optimization
SFT maximizes the likelihood of annotated outputs
and equips models with preliminary capabilities.
However, models still exhibit various issues after
SFT. Some researchers have further adjusted model
behaviors and enhanced model capabilities through
preference optimization.

RLHF (Zheng et al., 2023; Bai et al., 2022b) fur-
ther rectifies these model behaviors via reinforce-
ment learning by preference. RLHF introduces a
reward model rθ(x, y) given input x with its cor-
responding output y that captures the preference
nuance from the human feedback. Then, rθ(x, y)
scores arbitrary LLM outputs y given input x for
iterative policy rectifications during proximal pol-
icy optimization (Schulman et al., 2017, PPO). The
tuning is guided by Eq 1 to maximize the expected
rewards of the LLM policy πθ with the minimum
deviation from the SFT policy:

LPPO = E(x,y)∼Dπ
[rθ(x, y)− γ log

πθ(y|x)
πSFT(y|x)

],

(1)
where πSFT is the original LLM via SFT, γ is a
hyperparameter that constrains policy updates.

Though RLHF via PPO is effective in adapting
LLMs to versatile human preferences, it involves
four sub-models, making the training complex and
costly. DPO (Rafailov et al., 2023) proposes to
distill a referential SFT policy πref by polarizing the
preference. DPO tuning involves a pair of outputs
(yw, yl) in Eq 2:

LDPO(πθ;πref) = −E(x,yw,yl)∼D[
log σ

(
β log

πθ(yw | x)
πref(yw | x) − β log

πθ(yl | x)
πref(yl | x)

)]
,

(2)

where yw is favored over yl, and β is a hyperparam-
eter.
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建议加入土豆泥的学生比建议培根的学生多166 ...
(There were 166 more students who suggested

adding mashed potatoes than bacon)

182名学生建议在菜单中加入土豆泥，而其他人建议加
入培根。如果有比建议加入土豆泥的学生多166人建议

加入培根，有多少学生建议加入培根？

Collect Alignment
Preference Ranking Pair

Policy Model
Outputs Sampled

Preference Optimization

Preference
Optimization

RC RARB＞ ＞

Estimate Alignment between
Non English Outputs and

English Outputs

如果建议加入土豆泥的学生多63人建议加入培根 ...
(If more students suggest adding mashed

potatoes 63 suggest adding bacon)

建议加入土豆泥的学生人数是182 ...
(The number of students recommended to add

mashed potatoes is 182)

182 students suggested adding mashed potatoes while others
suggested adding bacon to the menu .if 166 more students
suggested adding bacon than those that suggested mashed

potatoes how many students suggested bacon ?

The number of students who suggested adding
mashed potatoes is 182.

...

We know that the number of students who
...

Suggesting mashed potatoes were 182 students
...

建议加入土豆泥的学生人数是182 ...
(The number of students recommended to add

mashed potatoes is 182)

RS

182名学生建议在菜单中加入土豆泥，而其他人建议
加入培根。如果有比建议加入土豆泥的学生多166人

建议加入培根，有多少学生建议加入培根？

MultiLingual
Questions

DPO Process PPO Process

Figure 1: Illustration of our alignment framework. For brevity, we only show three sampling results and simplified
optimization processes of DPO and PPO. The green and blue colors represent the same problem in Chinese and
English, respectively. The white robots represent the original policy model and the colored robots represent the
policy model with parameters updated through preference optimization.

3 Method

3.1 Preference Estimation
Intuitively, reasoning ability is language-agnostic.
However, LLM reasoning varies across different
languages, where we consider a dominant language
to provide a better reference in reasoning for lesser
languages. Therefore, a straightforward approach
is to align reasoning in non-dominant languages
to a dominant language. That is, we can rec-
tify LLM’s output reasoning in non-dominant lan-
guages by favoring answers that are more aligned
with the dominant language.

We simply adopt a well-trained multilingual
translation model to calculate the ‘alignment’
scores between answers in non-dominant and dom-
inant languages as a preference. Since the trans-
lation model is optimized on a large scale parallel
data in source and target languages (Y, Ȳ ) by max-
imizing conditional generation probability in Eq 3:

argmax
θ

P (Ȳ |Y ; θ), (3)

with more aligned target language Ȳ to Y ,

the higher the conditional generation probability
P (Ȳ |Y ). Then, we input the answers in non-
dominant languages and force-decode a corre-
sponding answer Ȳ in the dominant language for
the ‘alignment’ score. Correspondingly, answers
with higher ‘alignment’ scores in non-dominant
languages are preferred during the following pref-
erence optimizations.

3.2 Preference Optimization
With ‘alignment’ scores as a preference, we adopt
two state-of-the-art preference optimizations: PPO
and DPO, to optimize the alignment scores of rea-
soning in non-dominant languages given that in a
dominant language. To make life easier, since En-
glish is dominant in both reasoning and translation,
we adopt English as the dominant language in the
rest of the paper.

3.2.1 Optimization with PPO
In our setup, the ‘alignment’ score P (Ȳ |Y ) given
query x depicts the preference as the reward model
rθ(x, Y ) do in PPO, thus we directly adopt the mul-
tilingual machine translation model as the reward
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model. During each optimization, we collect a
batch of non-English outputs {Yi} with an English
output Ȳ , respectively. PPO then maximizes the
expected alignment score within the batch by Eq 4:

LPPO = Ei[P (Ȳ |Yi, x)− γ log
πθ(Yi|x)
πSFT(Yi|x)

]. (4)

3.2.2 Optimization with DPO
DPO involves an input pair (Yw, Yl), where Yw is
favored over Yl. Correspondingly, we collect n out-
puts within one non-English language, making

(
n
2

)

pairs of (Yw, Yl) ranked by the alignment scores
given the same English answer Ȳ . We additionally
copy and freeze the original supervised fine-tuned
LLM as the reference policy πref in Eq 2. Finally,
our DPO is optimized by Eq 5:

LDPO(πθ;πref) = −E(x,Ȳ ,Yw,Yl)∼D[
log σ

(
β log

πθ(Yw | x)
πref(Yw | x) − β log

πθ(Yl | x)
πref(Yl | x)

)]
.

(5)

3.2.3 Iterative DPO
Recent studies such as LLaMA2 (Touvron et al.,
2023) and Claude (Bai et al., 2022a) suggest that
preference data updated through multiple iterative
rounds is beneficial for preference optimization.
Therefore, we further conduct iterative DPO to
optimize reasoning alignments across languages.
Specifically, we will further train πθi on the pref-
erence data sampled by itself, which yields an up-
dated model πθ(i+1)

. Subsequently, we continue the
iteration by preference data sampled given πθ(i+1)

for ongoing updates.

4 Experiment

4.1 Experiment Setup

Base Models Our experiments2 include four
base models. MathOctopus-7/13B is fine-
tuned from LLaMA2-7/13B with the multi-
lingual reasoning processes MGSM8KInstruct3

(Chen et al., 2023). Yu et al., 2023 pro-
posed MetaMath-7/13B and MetaMath-Mistral-
7B, which have stronger English reasoning
abilities. We fine-tune these models with
MGSM8KInstruct and get MetaMathOctopus-
7/13B and MistralMathOctopus-7B.

2More training details in Appendix A
3GSM8K translated to nine non-English languages.

Dataset Type Number

MGSM In-Domain 2,500
MNumGLUESub In-Domain 5,530
MSVAMP Out-of-Domain 10,000

Table 1: Statistics of three benchmarks. “Type" indi-
cates whether its corresponding training set was used
during the training. “ Number” refers to the total num-
ber of samples in the test data.

Preference Estimation To obtain the mathemat-
ical problems for preference optimization, we se-
lected tasks 1, 4, and 8 from the eight tasks in
NumGLUE (Mishra et al., 2022), which is a multi-
task arithmetic reasoning benchmark, and trans-
late the questions into the same nine languages
as in MGSM8KInstruct, resulting the dataset
MNumGLUESub. MNumGLUESub with only
1700 problems. When constructing the preference
dataset for DPO, we use the corresponding base
model for sampling and calculate the alignment
feedback using NLLB-600M-distilled 4.

Preference Optimization We experimented with
both PPO and DPO. For simplicity, we report the
results of the third iteration of DPO by default. For
detailed results of PPO-LoRA and each round in
Iterative DPO, please refer to Appendix B.

Evaluation Datasets We utilize three challeng-
ing benchmarks: MSVAMP, MGSM (Shi et al.,
2022), and MNumGLUESub (statistics are shown
in Table 1). Among them, MSVAMP, serving as an
Out-of-domain test set that does not participate in
the training, is used to analyze the model’s robust-
ness and generalization ability. MGSM is the test-
set corresponding to MGSM8KInstruct, on which
the base models are trained. MNumGLUESub is
the testset corresponding to the data for preference
estimation and optimization.

Evaluation Metric
• Accuracy: We use the accuracy of problem-

solving to measure the model’s reasoning
ability, with a higher accuracy representing
stronger reasoning ability.

• PPL (PPL-based Alignment Score): We in-
put the target non-English answer and apply
NLLB-600M-distilled to get the perplexity of
the given English answer. Less perplexity indi-
cates better alignment between the reasoning

4https://huggingface.co/facebook/
nllb-200-distilled-600M
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Model Bn Th Sw Ja Zh Ru De Es Fr En Avg

GPT-3.5-Turbo 33.7 42.9 46.2 45.6 46.2 48.9 50.4 50.7 50.9 50.5 46.6

MAmmoTH 7B† 4.3 6.3 4.2 26.7 26.8 33.7 39.6 42.9 39.9 45.1 26.3
WizardMath 7B† 16.1 17.0 10.3 37.9 36.3 37.4 39.2 44.8 37.7 48.5 32.5
MetaMath 7B 14.8 17.7 14.8 51.8 54.4 59.4 59.6 63.2 62.0 64.8 46.2

MathOctopus 7B 27.7 35.9 39.4 41.6 42.7 44.2 44.0 45.1 45.3 46.4 41.2
+ m-RFT 37.9 46.4 46.4 49.6 50.8 50.4 50.7 51.6 53.4 49.4 48.7
+ MAPO-DPO(ours) 48.8 55.2 56.0 60.3 58.8 58.3 58.1 59.7 60.8 58.4 57.4

MetaMathOctopus 7B 36.1 47.5 49.4 51.3 54.5 53.6 56.6 60.0 57.2 64.2 53.0
+ m-RFT 44.8 54.2 56.2 58.4 57.7 56.2 59.2 59.3 57.8 63.1 56.7
+ MAPO-DPO(ours) 50.1 61.6 61.7 65.9 65.7 64.8 68.4 68.5 68.6 71.6 64.7

MistralMathOctopus 7B 47.0 52.6 54.4 58.8 60.2 59.8 62.1 60.8 60.4 74.4 59.0
+ m-RFT 57.4 63.5 60.8 65.2 69.8 67.4 67.2 69.1 68.0 71.3 66.0
+ MAPO-DPO(ours) 62.9 71.3 71.4 73.7 76.0 74.9 77.8 78.1 79.0 81.1 74.6

MAmmoTH 13B† 5.0 13.7 12.9 42.2 47.7 50.7 52.3 53.9 53.8 53.4 38.6
WizardMath 13B† 13.7 16.3 12.5 29.5 37.0 43.8 48.7 49.4 49.4 56.3 35.7
MetaMath 13B 14.6 15.7 17.4 57.0 56.6 63.7 67.3 65.9 64.7 67.7 49.1

MathOctopus 13B 35.2 46.8 42.8 43.2 48.8 47.6 44.4 48.0 48.4 53.2 45.8
+ m-RFT 43.4 50 52.1 54.9 55.4 57.1 59.2 56.4 59.5 55.2 54.3
+ MAPO-DPO(ours) 51.8 58.9 56.4 60.4 58.8 62.1 63.5 62.0 61.7 65.0 60.1

MetaMathOctopus 13B 41.6 52.1 50.9 57.3 53.1 59.1 60.1 61.1 60.8 66.8 56.3
+ m-RFT 48.1 59.6 61.4 60.5 58.9 61.0 62.7 65.3 64.3 65.4 60.7
+ MAPO-DPO(ours) 54.7 64.7 62.9 69.0 68.2 68.2 69.5 70.6 71.3 70.5 67.0

Table 2: Model Performances on MSVAMP test set. “Avg” represents the average performance in ten languages
and bold text denotes the best results within the same size. Results marked with † come from Chen et al., 2023.

processes.
• ACR (Answer Consistency Ratio) : Let m

denote the set of questions answered correctly
in English, and n denote those answered cor-
rectly in non-English. ACR is then calculated
as: ACR = |m∩n|

|n| . Higher ACR indicates
a greater degree of overlap in reasoning ca-
pabilities between non-English and English
languages.

Baselines The selected base models are already
strong baselines, which have been fine-tuned on
MGSM8KINSTRUCT. Moreover, motivated by
Rejection sampling Fine-Tuning (RFT) (Yuan et al.,
2023), we employ another strong baseline m-RFT,
where the solutions that yield correct answers dur-
ing sampling are used to further fine-tune the base
model. To alleviate catastrophic forgetting, we
fine-tune the model for only one epoch with a mi-
nor learning rate (1e-5). For comparison, we also
incorporated other recent LLaMA2-base models:
MAmmoTH (Yue et al., 2023) is developed by uti-
lizing diverse datasets for math instruction, while
WizardMath (Luo et al., 2023) employs Reinforce-
ment Learning from Evol-Instruct (RLEIF). Meta-
Math 7B (Yu et al., 2023) is fine-tuned from the
strongest English reasoning dataset, MetaMathQA.

5 Experiment Results

5.1 Preference Optimization Improves
Multilingual Reasoning Effectively

Experimental results5 in Table 2,3,8 consistently
demonstrate that our method has effectively en-
hanced the reasoning capabilities of the various
base models and achieved state-of-the-art perfor-
mance. More specifically, the improvement is most
impressive on the out-of-domain dataset MSVAMP,
where we achieved an average accuracy improve-
ment of 16.2% and 14.7% MathOctopus7B and
MathOctopus13B, respectively. Even for the most
powerful 7B model MistralMathOctopus 7B, our
method can further boost its performance to an
impressive 74.6%. We also observe significant im-
provements in MGSM and MNumGLUESub.

From the perspective of languages, most lan-
guages have improvement after alignment and it is
more significant in some low-resource languages
that previously under-performed. Take MathOcto-
pus 7B as an example, our method has increased the
accuracy on MSVAMP for Bengali, Thai, Swahili,
and Japanese by 21.1%, 19.3%, 16.6%, and 18.7%,

5we facilitate a multilingual reasoning leader-
board: https://huggingface.co/spaces/kevinpro/
Open-Multilingual-Reasoning-Leaderboard
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Model Bn Th Sw Ja Zh Ru De Es Fr En Avg

GPT-3.5-Turbo 31.2 38.0 40.0 36.0 44.0 43.2 46.0 47.2 41.6 54.4 42.2

MAmmoTH 7B† 3.6 4.8 2.4 10.8 17.2 26.0 33.2 32.4 32.8 49.6 21.3
WizardMath 7B† 2.0 4.0 3.4 24.0 22.4 30.8 30.4 34.8 30.4 47.6 23.0
MetaMath 7B 6.4 4.0 3.2 39.2 38.8 47.2 56.8 58.0 52.8 63.2 37.0

MathOctopus 7B 29.2 33.6 36.4 35.2 39.2 38.8 44.8 42.4 43.2 52.0 39.5
+ m-RFT 25.6 31.2 28.8 34.0 39.2 36.0 34.8 34.4 36.4 43.2 34.4
+ MAPO-DPO(ours) 30.8 38.0 37.6 45.2 47.2 42.0 45.2 43.2 40.8 45.6 41.6

MetaMathOctopus 7B 25.6 42.8 36.4 40.0 46.4 46.8 49.6 54.4 46.4 66.4 45.5
+ m-RFT 23.2 33.6 34.0 34.0 47.2 43.2 45.6 47.6 44.8 62.8 41.6
+ MAPO-DPO(ours) 36.0 44.8 44.8 47.6 55.2 53.6 53.6 56.8 52.4 70.8 51.6

MistralMathOctopus 7B 44.0 54.4 50.4 55.6 59.2 58.8 62.4 62.0 56.8 76.0 58.0
+ m-RFT 41.2 46.8 46.8 48.4 57.2 62.8 61.6 59.2 57.6 72.0 55.4
+ MAPO-DPO(ours) 55.2 60.4 61.6 58.0 74.0 70.8 67.6 74.0 69.2 82.0 67.3

MAmmoTH 13B† 3.6 5.2 1.6 19.2 31.2 36.8 45.6 50.0 39.6 56.4 28.9
WizardMath 13B† 6.4 5.6 5.6 22.0 28.0 34.4 40.4 45.6 42.0 52.8 28.3
MetaMath 13B 11.6 6.4 7.6 42.8 49.2 63.6 64.8 65.2 65.2 67.2 44.4

MathOctopus 13B 42.4 39.2 44.8 38.8 49.6 45.2 48.4 53.6 43.2 54.8 46.0
+ m-RFT 29.6 30.8 34.4 36.4 40.4 39.2 42.0 42.8 40.4 48.0 38.4
+ MAPO-DPO(ours) 38.8 46.8 42.0 47.6 53.6 49.2 52.0 54.4 46.4 54.0 48.5

MetaMathOctopus 13B 34.4 42.8 41.6 49.2 52.8 54.4 54.4 59.2 53.6 71.6 51.4
+ m-RFT 22.8 29.6 30.4 35.2 39.2 40.0 43.6 43.6 41.2 59.2 38.5
+ MAPO-DPO(ours) 44.8 47.6 55.2 56.0 59.6 59.2 59.2 63.6 62.8 71.6 58.0

Table 3: Model Performances on MGSM test set. “Avg” represents the average performance in ten languages and
bold text denotes the best results within the same model size. Results marked with † come from Chen et al., 2023.

respectively.
Surprisingly, our preference optimization dataset

does not contain English, but the accuracy of En-
glish has also improved. After alignment, Meta-
MathOctopus even surpassed the English math-
ematical reasoning models on English questions
across three datasets. We believe this is primarily
due to the alignment facilitating a more consistent
understanding of reasoning across different lan-
guages, which contributes to the enhancement of
general reasoning capabilities.

Meanwhile, our approach has also achieved sta-
ble and impressive improvements on the MetaMath-
Octopus 7B which has stronger reasoning capabili-
ties, propelling it past the ChatGPT and the larger
scale model MetaMathOctopus13B, demonstrating
the robustness and potential of our framework.

5.2 Alignment is the Key to Enhanced
Multilingual Reasoning

We adopt PPL and ACR to evaluate the degree of
alignment in reasoning processes and final answers
between other languages and English, respectively.

Regarding the alignment of the reasoning pro-
cess, as shown in Figure 2, our method effectively
improves the consistency of the reasoning process,

particularly for languages where the base model
had poorer alignment, such as Bengali, Thai, and
Japanese. This proves that the model can show
more similar reasoning thinking to English on non-
English after alignment.

Additionally, we notice that alignment also con-
tributes to more consistent final answers. A higher
ACR indicates that there is a greater overlap be-
tween the questions answered correctly in non-
English and those answered correctly in English.
From the results in Figure 3, our alignment frame-
work has greatly increased the ACR for each lan-
guage. This means that the performance gains in
Table 2 stem from the parts that intersect with En-
glish. These observations demonstrate that our
method effectively aligns the model’s non-English
reasoning processes with English, thereby enhanc-
ing reasoning abilities in non-English languages.

5.3 Generalizable Multilingual Reasoning

As indicated in Table 2, on the out-of-domain test
set, MAPO achieved a 16.2% and 11.7% increase
in accuracy, which is significantly higher than the
7.5% and 3.7% achieved by m-RFT. Surprisingly,
while MAPO effectively improves the multilingual
reasoning performance on both two datasets, it also
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Figure 2: PPL across nine languages on MSVAMP.
Lower PPL indicates higher consistency in reasoning
processes.

Figure 3: ACR across nine languages on MSVAMP.
Higher ACR indicates higher answer consistency.

MGSM MNumGLUESub

Acc. on MSVAMP 31.6 54.9
Self-BLEU(En) 0.81 0.53
Self-BLEU(Non-En) 0.84 0.60

Table 4: Comparison between MGSM8KInstruct
(MGSM) and MNumGLUESub. We report the average
Self-BLEU scores for the sampled reasoning in English
and non-English.

improves the performance on MGSM. In contrast,
m-RFT exhibited a 5.1% and 3.9% performance
degradation.

We believe that this is mainly because the model
directly learns the given labels during SFT. The
labels inevitably involve data-specific attributes,
which are difficult to generalize. Conversely, our
method does not offer the model with “correct an-
swers”, but guides the model to generate outputs
we prefer, which is more effective in allowing the
model to learn multilingual reasoning with better
generalization.

6 Analysis

6.1 Preference Estimating on a Dataset
Different from SFT

We conduct experiments with preference optimiza-
tion using the MGSM8KInstruct dataset instead of
the MNumGLUESub. Table 4 presents the aver-
age accuracy over 10 languages on MSVAMP. The
results indicate that preference optimization based
on the SFT dataset hurts performance on the out-
of-domain test set MSVAMP. We suggest that SFT
forces the model to stick to the oracle reasoning
process, which hurts generation diversity. Thus,
the policy model struggles to follow the desirable

System MSVAMP MGSM

MetaMathOctopus7B 53.0 45.5
+ Ours & NLLB 600M 61.1 48.9
+ Ours & MBART-MMT-600M 59.9 49.6
+ Ours & M2M-1.2B 61.4 49.3

Table 5: Average accuracy on ten languages on
MSVAMP and MGSM. Note that we only conduct one
iteration MAPO-DPO with different translation models.

alignment preferences and easily falls into the trap
of overfitting.

For further analysis, We randomly sample
1000 reasoning processes of LLMs from the
MGSM8KInstruct and MNumGLUESub, then cal-
culated the Self-BLEU (Zhu et al., 2018) on the
sampled reasoning process within each problem-
solving. The results (Table 4) suggest that on the
MGSM dataset, LLMs tend to generate more con-
sistent reasoning compared with MNumGLUESub,
which confirms the diversity degradation.

6.2 Robustness over Different Translation
Models

To verify the robustness of our framework across
various translation models, we conduct experi-
ments using MBART-MMT-600M 6 and M2M-
1.2B 7, which have the different model architec-
tures, scales, and training datasets. The results, pre-
sented in Table 5, demonstrate that our framework
consistently achieves performance improvements.
The performance is even slightly enhanced when
with M2M-1.2B. These experimental results con-
clusively confirm the robustness of our framework.

6https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

7https://huggingface.co/facebook/m2m100_1.2B
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English Question 182 students suggested adding mashed potatoes while others suggested adding bacon to the
menu. if 166 more students suggested adding bacon than those that suggested mashed potatoes
how many students suggested bacon ?

Chinese Question 182名学生建议在菜单中加入土豆泥，而其他人建议加入培根。如果有比建议加入土豆
泥的学生多166人建议加入培根，那么有多少学生建议加入培根？

English Solution The number of students who suggested mashed potatoes is 182. The number of students who
suggested bacon is 182+166=348. ✓

Chinese Solution [Before Alignment]
建议加入土豆泥的学生比建议加入培根的学生多166人，所以两边减去166得到差值
为182 - 166 = 16，因此，建议加入培根的学生人数为16。(There are 166 more students
recommending mashed potatoes than bacon so subtract 166 from both sides to get a difference
of 182-166 = 16. Therefore, the number of students recommended to join Bacon is 16.) ✗
[PPL]: 2.65

[After Alignment]
建议加入土豆泥的学生人数是182。建议加入培根的学生人数是182 + 166 = 348。 (The
number of students who suggested mashed potatoes is 182. The number of students who
suggested bacon is 182+166=348.) ✓
[PPL]: 0.97

Table 6: An example from the MSVAMP test set. The example clearly demonstrates that, through our preference
optimization method, the model successfully corrects erroneous reasoning processes and generates reasoning
processes that is more consistent with English.

Figure 4: Average accuracy on non-English math prob-
lems and ACR versus preference optimization step on
MSVAMP. MathOctopus 13B and ChatGPT are selected
for comparison.

In addition, we have conducted experiments on
translation models of different scales, and the re-
sults also demonstrate the robustness of our method.
For more details, please refer to the Appendix D.

6.3 Reasoning Alignment during Preference
Optimization

To better analyze the optimization preference pro-
cess, we tested the checkpoints of the DPO and
PPO-LoRA on MSVAMP and visualized the accu-
racy and ACR respectively in Figure 4.

The results show that the optimization of DPO
is quite efficient. DPO enabled the MathOctopus
7B model to achieve higher accuracy and ACR
than both ChatGPT and MathOctopus 13B within
just 100 steps. As the optimization continues, the
accuracy remains relatively stable while the degree
of alignment still shows an increasing trend.

Meanwhile, although the optimization speed of
PPO is slower, it take fewer than 1000 steps to sur-
pass MathOctopus 13B. As the model continued to
explore and optimize the preferences, it achieved
superior multilingual reasoning performance com-
pared to ChatGPT at 1600 steps.

The experimental results demonstrate that the
model continuously aligns non-English reason-
ing with English reasoning, effectively enhancing
its multilingual reasoning capabilities. For PPO-
LoRA, although optimization is halted around 2500
steps due to the limitations on computational re-
sources, we notice that growth in multilingual rea-
soning consistency and ability continues even be-
yond 2500 steps, indicating the potential of our
preference optimization framework.

6.4 Alignment Reasoning for Improvements

The example in Table 6 directly illustrates how our
framework can improve reasoning ability by align-
ing reasoning in other languages to English. For the
given English problem, the basic model correctly
analyzes that an addition should be conducted to
find the number of students recommended to join
Bacon. However, when given the same problem in
Chinese, LLM misjudges the relationship of vari-
ables and writes a significantly different reasoning
process. This directly proves that although the base-
line model has been fine-tuned with multilingual
reasoning data, its reasoning and thoughts are in-
consistent, whereas non-English reasoning is more
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System MSVAMP MGSM

MetaMathOctopus7B 53.0 45.5
+ Ours & En-as-Dominant 61.1 48.9
+ Ours & Es-as-Domiant 59.9 47.7

Table 7: Average accuracy on ten languages on
MSVAMP and MGSM. Note that we only conduct
one iteration MAPO-DPO with different dominant lan-
guage.

prone to errors. After alignment, the reasoning
thoughts are more similar to the English answer,
and the reasoning thoughts are also corrected.

6.5 Flexible Choice of the Dominant
Language

Due to the relatively strong translation and reason-
ing capabilities of English, our main experimental
section reported results aligned with English. In
addition, there are other high-resource languages
such as Spanish, German, etc., which also possess
relatively strong reasoning abilities. Intuitively, our
method can also take these languages as the domi-
nant language and enhance multilingual reasoning
capabilities. Therefore, we chose Spanish as the
target alignment language and repeated the afore-
mentioned experiments. The experimental results,
as shown in Table 7, indicate that aligning with
Spanish can also improve the model’s multilingual
reasoning capabilities, although the extent of im-
provement is slightly less than that of English. This
demonstrates the flexibility and robustness of our
method; when English resources are not available
or other languages perform better, our method can
still effectively enhance the model’s capabilities.

7 Conclusion

In this paper, we propose MAPO, a novel multilin-
gual alignment-as-preference optimization frame-
work, enhancing reasoning ability in non-dominant
languages by aligning them with dominant lan-
guages. Experimental results demonstrate that our
framework achieves significant improvements on
various base models across all three benchmarks,
especially with a notable 16.2% increase in average
accuracy on the out-of-domain datasets MSVAMP.
The analysis confirms that enhancing alignment
through our method is the key to improvements in
multilingual reasoning capabilities.
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Limitation

Similar to previous work on preference optimiza-
tion, our method necessitates a policy model that
has preliminary multilingual reasoning capabilities
through SFT. Meanwhile, due to limitations in com-
putational resources, our experiments are confined
to aligning models of 7B and 13B size and explor-
ing two preference optimization algorithms, PPO
and DPO. Should resources permit, we aim to ex-
tend our exploration to models of 70B sizes and
examine the performance of a broader spectrum of
preference optimization algorithms.
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A Experiment Details

Our code is primarily based on the trl 8 , with some
minor modifications made. The modified code will
also be made available at our project.
Prompt: During the sampling, training, and testing
phases, we consistently use the same prompt as
MathOctopus (Chen et al., 2023).
LoRA: For experiments using LoRA, such as PPO
LoRA, we optimize the [q_proj, v_proj, o_proj]
modules. The values of r and alpha are set to 128
and 256, respectively.
DPO: We employ a learning rate of 1e-6, with β
set at 0.1, and a warmup step count of 100. For
models like Mistral that originally adopted a lower
learning rate (5e-6) during their SFT phase, we
will reduce the learning rate to 2e-7. The batch size
is configured to 128. The optimization process is
capped at a maximum of 1000 steps, and we save
the checkpoint that corresponds to the lowest loss
on the validation set. The training takes around 4
hours on 8 H100 GPUs.
PPO: We have configured a learning rate of 2e-5,
with a batch size of 64 and 2 ppo epochs. We adopt
the AdamW optimizer to improve the stability of
the optimization, setting the epsilon value to 1e-
5. Additionally, we have implemented a linear
learning rate warm-up technique for the first 150
steps. All other hyperparameters are set to the
default values provided by the trl library. We set
the maximum optimization steps to 2600 and report
the results at this checkpoint.

B Supplemental Experiment Results

To verify the robustness of our method, we con-
ducted experiments on different preference opti-
mization algorithms. Due to the limited computa-
tional resources, we optimized the PPO algorithm
using LoRA. The detailed experimental results of
PPO LoRA and each round in Iterative DPO are
shown in Table 9.

Experiments demonstrate that our framework
achieves an effective improvement in multilingual
reasoning capabilities based on both PPO and
DPO. Despite the limited computational resource,
where PPO only updated a part of the parameters
with merely 2600 steps, it has already brought im-
pressive performance enhancements on all three
datasets. Additionally, with the increasing rounds
of DPO, the model exhibited progressively stronger

8https://github.com/huggingface/trl

Figure 5: Accuracy across ten languages on MSVAMP
after training MathOctopus 7B on preference datasets
constructed using translation models of different scales.

multilingual reasoning abilities that have not yet
reached its limit, revealing the potential of our ap-
proach.

C Used Scientific Artifacts

Below are the scientific artifacts used in our work.
For the sake of ethics, our use of these artifacts is
consistent with their intended use.

• Transformers (Apache-2.0 license), a frame-
work to facilitate downloading and training
state-of-the-art pretrained models.

• trl (Apache-2.0 license), a full stack library
that provides a set of tools to train transformer
language models with Reinforcement Learn-
ing. The library is built on top of the Trans-
formers library.

D Scaling of Translation Model

We also conducted ablation experiments compar-
ing the translation models used during the prefer-
ence estimation phase. In addition to NLLB-600M-
distilled, we employed NLLB-1.3B-distilled and
NLLB-3.3B to estimate the preference and repeat
the experiments. The results are shown in Figure 5,
where we find that all three models achieved im-
pressive results, showing stable improvements over
the Base Model and ChatGPT across ten languages.
These results demonstrate that our method is robust
for translation models of various sizes.
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Model Bn Th Sw Ja Zh Ru De Es Fr En Avg

GPT-3.5-Turbo 36.2 42.6 47.2 58.1 60.6 42.6 41.5 54.9 39.4 70.6 49.4

MAmmoTH 7B 1.7 4.7 4.5 23.5 29.9 26.9 34.7 37.9 36.5 42 24.2
WizardMath 7B 9.8 13 6.2 31.8 36 34.3 34.1 39.9 36.5 45.4 28.7
MetaMath 7B 13.2 19.2 12.1 50.7 53.3 52.9 54.2 56.5 56.7 63.3 43.2

MathOctopus 7B 26.6 30.9 34.3 40.9 44.4 36.0 32.6 42.0 36.2 46.9 37.1
+ m-RFT 38.0 42.9 41.8 48.2 51.6 45.2 42.9 49.3 42.9 51.2 45.4
+ MAPO-DPO(ours) 41.8 45.8 46.9 52.9 54.4 49.9 50.7 54.0 51.4 55.9 50.4

MetaMathOctopus 7B 24.5 35.2 36.2 44.1 45.8 39.2 32.6 45.2 36.7 52.5 39.2
+ m-RFT 40.3 45.0 45.2 51.4 57.8 51.6 51.6 58.8 50.1 65.3 51.7
+ MAPO-DPO(ours) 40.7 46.0 45.0 58.2 59.3 53.1 51.4 57.4 52.0 66.1 52.9

MistralMathOctopus 7B 45.2 50.7 49.5 56.5 65.3 59.1 51.4 62.1 53.9 74.6 56.8
+ m-RFT 52.7 60.6 61.0 67.2 70.8 65.9 61.2 71.6 64.4 78.3 65.4
+ MAPO-DPO(ours) 62.3 64.6 61.6 72.1 75.1 68.0 69.3 74.4 74.2 78.5 70.0

MAmmoTH 13B 6.8 10.5 10.4 31.6 38 41.1 41.4 43.3 42.6 46.7 31.2
WizardMath 13B 9.8 14.3 12.4 30.5 39.0 36.5 35.2 43.9 39.2 47.8 30.9
MetaMath 13B 10.9 16.0 16.0 55.2 57.4 56.5 58.9 60.6 58.0 64.2 45.4

MathOctopus 13B 42.4 39.2 44.8 38.8 49.6 45.2 48.4 53.6 43.2 54.8 46.0
+ m-RFT 44.1 49.9 51.0 51.0 55.6 49.0 47.1 53.3 46.1 57.4 50.5
+ MAPO-DPO(ours) 49.0 53.3 52.2 55.0 57.4 53.3 52.2 55.9 50.7 58.8 53.8

MetaMathOctopus 13B 34.4 42.8 41.6 49.2 52.8 54.4 54.4 59.2 53.6 71.6 51.4
+ m-RFT 40.1 51.6 47.5 60.5 62.0 58.9 54.8 62.5 54.2 66.5 55.9
+ MAPO-DPO(ours) 52.9 55.4 55.0 67.2 65.0 54.8 54.4 65.2 57.4 70.4 59.8

Table 8: Model Performances on MNumGLUESub test set. “Avg” represents the average performance in ten
languages and bold text denotes the best results within the same model size.
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Model Bn Th Sw Ja Zh Ru De Es Fr En Avg

Benchmark: MSVAMP

MathOctopus 7B 27.7 35.9 39.4 41.6 42.7 44.2 44.0 45.1 45.3 46.4 41.2
+ PPO LoRA 38.9 47.5 47.1 51.0 51.7 51.1 50.3 51.6 51.4 52.7 49.3
+ DPO Iter1 42.0 53.2 52.7 54.7 56.4 56.9 55.7 58.5 59.3 59.6 54.9
+ DPO Iter2 45.3 53.9 53.8 56.8 58.1 56.6 58.7 59.1 58.5 60.0 56.1
+ DPO Iter3 48.8 55.2 56.0 60.3 58.8 58.3 58.1 59.7 60.8 58.4 57.4

MetaMathOctopus 7B 36.1 47.5 49.4 51.3 54.5 53.6 56.6 60.0 57.2 64.2 53.0
+ PPO LoRA 45.7 52.0 52.2 61.2 58.3 57.0 58.7 60.7 61.7 67.5 57.5
+ DPO Iter1 44.1 58.2 59.0 60.3 62.3 63.5 65.1 63.7 64.2 70.2 61.1
+ DPO Iter2 48.5 61.8 59.2 64.3 64.3 64.4 65.0 66.1 65.4 70.9 63.0
+ DPO Iter3 50.1 61.6 61.7 65.9 65.7 64.8 68.4 68.5 68.6 71.6 64.7

Benchmark: MGSM

MathOctopus 7B 29.2 33.6 36.4 35.2 39.2 38.8 44.8 42.4 43.2 52.0 39.5
+ PPO LoRA 31.2 38.4 38.4 37.2 43.6 35.2 46.0 44.0 38.8 51.2 40.4
+ DPO Iter1 29.2 36.4 35.6 35.6 41.6 38.4 40.8 42.0 37.6 46.8 38.4
+ DPO Iter2 30.4 36.0 37.6 38.0 45.2 39.6 42.0 47.6 41.2 45.2 40.3
+ DPO Iter3 30.8 38.0 37.6 45.2 47.2 42.0 45.2 43.2 40.8 45.6 41.6

MetaMathOctopus 7B 25.6 42.8 36.4 40.0 46.4 46.8 49.6 54.4 46.4 66.4 45.5
+ PPO LoRA 36.0 41.2 41.6 46.4 54.8 53.6 54.0 55.6 51.6 68.0 50.3
+ DPO Iter1 32.8 43.2 40.4 48.8 49.2 52.8 54.4 52.8 50.0 64.8 48.9
+ DPO Iter2 34.0 48.0 45.2 40.4 54.0 52.0 50.8 54.0 49.2 70.4 49.8
+ DPO Iter3 36.0 44.8 44.8 47.6 55.2 53.6 53.6 56.8 52.4 70.8 51.6

Benchmark: MNumGLUESub

MathOctopus 7B 26.6 30.9 34.3 40.9 44.4 36.0 32.6 42.0 36.2 46.9 37.1
+ PPO LoRA 34.3 41.1 40.7 45.6 49.3 39.5 34.3 46.7 36.3 51.6 41.9
+ DPO Iter1 32.6 41.4 42.0 42.7 45.0 42.2 40.7 47.8 40.9 47.8 42.3
+ DPO Iter2 35.6 39.7 42.2 45.6 50.7 44.1 42.6 49.3 42.9 49.7 44.2
+ DPO Iter3 41.8 45.8 46.9 52.9 54.4 49.9 50.7 54.0 51.4 55.9 50.4

MetaMathOctopus 7B 34.7 41.4 37.9 47.8 54.2 45 43.1 52.5 45.0 60.8 46.3
+ PPO LoRA 42.4 46.7 45.4 55.2 58.9 45.0 41.6 55.7 44.6 64.6 50.0
+ DPO Iter1 37.7 46.3 43.5 54.8 58.4 50.5 52.2 60.1 51.6 62.1 51.7
+ DPO Iter2 40.7 46.9 45.0 53.5 58.4 50.8 51.4 58.4 49.9 64.6 52.0
+ DPO Iter3 40.7 46.0 45.0 58.2 59.3 53.1 51.4 57.4 52.0 66.1 52.9

Table 9: Model Performances on three benchmarks. We report the results of PPO LoRA and each round in Iterative
DPO. “Avg” represents the average performance in ten languages
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