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Abstract

Embodied agents equipped with GPT as their
brains have exhibited extraordinary decision-
making and generalization abilities across vari-
ous tasks. However, existing zero-shot agents
for vision-and-language navigation (VLN) only
prompt GPT-4 to select potential locations
within localized environments, without con-
structing an effective “global-view” for the
agent to understand the overall environment.
In this work, we present a novel map-guided
GPT-based agent, dubbed MapGPT, which
introduces an online linguistic-formed map to
encourage global exploration. Specifically, we
build an online map and incorporate it into
the prompts that include node information and
topological relationships, to help GPT under-
stand the spatial environment. Benefiting from
this design, we further propose an adaptive
planning mechanism to assist the agent in per-
forming multi-step path planning based on a
map, systematically exploring multiple candi-
date nodes or sub-goals step by step. Extensive
experiments demonstrate that our MapGPT is
applicable to both GPT-4 and GPT-4V, achiev-
ing state-of-the-art zero-shot performance on
R2R and REVERIE simultaneously (~10%
and ~12% improvements in SR), and show-
casing the newly emergent global thinking and
path planning abilities of the GPT.

1 Introduction

Large language models (LLMs) (Touvron et al.,
2023a,b; Chowdhery et al., 2022; Anil et al., 2023)
have demonstrated strong performance in vari-
ous domains. As the most powerful LLMs, the
GPT series models (Brown et al., 2020; OpenAl,
2023a,b,c) can even serve as the brains of embod-
ied agents (Huang et al., 2023; Mu et al., 2023;
Ahn et al., 2022), enabling them to engage in ex-
plicit thinking and decision-making process. More-
over, these GPT-based agents are typically zero-
shot or few-shot, eliminating the burdensome tasks
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Figure 1: A comparison of the thinking process of the
GPT agent without and with topological maps. Given
only a local action space, the agent may explore aim-
lessly, especially when navigation errors have already
occurred. Incorporating topological maps enables the
agent to understand spatial structures and engage in
global exploration and path planning.

of data annotation and model training, and they
also demonstrate remarkable sim-to-real abilities.

Recently, LLMs have also been adopted in
vision-and-language navigation (VLN), where
agents are given human instructions that require
them to visually perceive and navigate an indoor
environment. Previous learning-based VLN meth-
ods (Anderson et al., 2018b; Fried et al., 2018; Qi
et al., 2020a; Chen et al., 2022; Qiao et al., 2022;
Wang et al., 2023) relied on the training on large-
scale domain-specific data with expert instruction
annotations to execute navigation tasks. To ad-
dress their reliance on training data and potential
sim-to-real gap, some GPT-based zero-shot agents
(Zhou et al., 2023; Long et al., 2023) with explain-
able decision-making abilities have been proposed.
These methods translated visual observations into
textual prompts and required GPT-4 to act as an
agent to select the correct position or direction.
Besides, they also employed multiple additional ex-
perts to handle various subtasks in text form, such
as summarizing the history and fusing repeated
expert predictions.
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However, such zero-shot VLN agents face some
challenges. Firstly, these methods are developed
for a multi-expert pure language system based on
GPT-4, necessitating the conversion of visual obser-
vations into text and multiple rounds of text summa-
rizations, which inevitably lead to information loss
and hinder the application to multimodal LLMs
(e.g., GPT-4V). More importantly, these agents
make decisions based solely on the observations of
the local environment. As shown in Figure 1 (left),
given only the local action space, when an agent
realizes that it has engaged in an erroneous explo-
ration, it can only continue to explore surrounding
environment aimlessly.

In this paper, we propose MapGPT which con-
tains a topological map in the linguistic form to
assist in global exploration and adaptive path plan-
ning. We first develop a simple yet efficient prompt
system with only one navigation expert that can
be applied to both GPT-4 and multimodal GPT-
4V flexibly. To encourage global exploration, we
propose a map-guided prompting method for the
GPT model, to build a “global-view” for the agent.
Specifically, for an online constructed map, we
have discarded the precise GPS coordinates that
are difficult for GPT to understand, while preserv-
ing the topological relationships between nodes
and incorporating them into prompts to assist in un-
derstanding the navigation environment, as shown
in Figure 1 (right). Given this tailored map, we
further propose an adaptive planning mechanism
to activate GPT’s multi-step path planning ability.
Instead of documenting the thinking process of
each step as in previous works, MapGPT gener-
ates a multi-step planning similar to a human work
plan, and updates it iteratively to achieve strate-
gic exploration of potential objectives. Benefiting
from this, the agent can adaptively perform path
planning based on the map, systematically explore
multiple candidate nodes or sub-goals step by step,
and backtrack to a specific node for re-exploration
when necessary.

We conduct experiments on two popular VLN
benchmarks, namely R2R (Anderson et al., 2018b)
and REVERIE (Qi et al., 2020b), which contain
step-by-step and high-level instructions respec-
tively. Experimental results show the superiority of
MapGPT over existing zero-shot VLN agents. Es-
pecially in REVERIE, MapGPT exhibits enhanced
competitiveness (31.6% SR), surpassing even some
learning-based methods trained on REVERIE. Ex-
tensive ablation studies reveal the advantage of

our introduced map and adaptive path planning
mechanism in encouraging systematic exploration
to improve navigation.

Our contributions can be summarized as follows.

* We propose a novel map-guided prompting
method, which introduces an online linguistic-
formed map including node information and
topological relationships to encourage GPT’s
global exploration.

* An adaptive planning mechanism is utilized to
activate GPT’s multi-step path-planning abil-
ity, enabling systematic exploration of multi-
ple potential objectives.

* MapGPT can be applied to both GPT-4 and
GPT-4V and is more unified as it can adapt to
varying instruction styles effortlessly, achiev-
ing state-of-the-art zero-shot performance on
both the R2R and REVERIE datasets.

2 Related Work

Vision-and-Language Navigation (VLN) As a
representative multi-modal embodied Al task, VLN
requires an agent to combine human instructions
and visual observations to navigate and locate tar-
gets in real-world scenes. Previous learning-based
approaches (Wang et al., 2019; Ma et al., 2019;
Deng et al., 2020; Qi et al., 2020a) proposed vari-
ous model architectures and trained their models on
domain-specific datasets. Besides, pretrained mod-
els (Hong et al., 2021; Chen et al., 2021b, 2022;
Qiao et al., 2022; Guhur et al., 2021; An et al.,
2022; Lin et al., 2022; Qiao et al., 2023; Wang
et al., 2023; Pan et al., 2023) have been widely
applied to produce better multi-modal representa-
tions. Recently, to address the reliance on domain-
specific data and the possible sim-to-real gap, some
zero-shot agents based on GPT (Zhou et al., 2023;
Long et al., 2023) have been proposed. However,
they suffer from several limitations. For example,
NavGPT (Zhou et al., 2023) has limited perfor-
mance and relies on a two-stage language-only sys-
tem. DiscussNav (Long et al., 2023) introduces a
sequential multi-experts system to discuss and sum-
marize various information and fuses five repeated
predictions to improve performance. Some of their
designs limit the agent’s capability to only address
step-by-step instructions in the R2R dataset (An-
derson et al., 2018b), and have not been validated
on other styles of instructions (e.g., REVERIE (Qi
et al., 2020b)). Besides, these agents are limited
to local exploration as they can only reason and
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make decisions within adjacent navigable points.
In this paper, we propose a map-guided prompt-
ing method with adaptive path planning for global
exploration, achieving impressive performance on
both R2R and REVERIE.

Large Language Models (LLMs) LLMs (Ope-
nAl, 2023a,b,c; Chiang et al., 2023; Touvron et al.,
2023a,b; Anil et al., 2023) have demonstrated re-
markable capabilities in multiple domains. Re-
cently, LLM-based agents (Huang et al., 2023; Mu
et al., 2023; Ahn et al., 2022; Pan et al., 2023;
Brohan et al., 2023; Schumann et al., 2023; Hu
et al., 2023; Lin et al., 2024) have also attracted
significant interest of the community. For exam-
ple, VoxPoser (Huang et al., 2023) utilizes LLM
and vision-language models to extract affordances
and constraints, which enables motion planners to
generate trajectories for manipulation. LangNav
(Pan et al., 2023) employs LLMs for navigation,
but it merely utilizes GPT-4 (OpenAl, 2023a) to
synthesize some data and performs fine-tuning us-
ing Llama2 (Touvron et al., 2023b) as the back-
bone, rather than directly employing LLM as a
zero-shot agent. In fact, the application of LLM-
based zero-shot agents in navigation tasks is still
limited, and how to prompt LLMs (including mul-
timodal GPT-4V) to activate global thinking and
planning abilities required by navigation task have
yet to be explored (Yang et al., 2023).

Maps for Navigation Maps used for navigation
tasks can be primarily categorized into two types,
i.e., metric maps and topological maps. Employing
SLAM (Fuentes-Pacheco et al., 2015) for construct-
ing metric maps (Chaplot et al., 2020; Thrun, 1998)
is widely used in navigation. However, this type
of approach requires a trade-off between map size
and computational efficiency, which affects nav-
igation performance. To address this limitation,
graph-based topological maps (Chen et al., 2021a,
2022; An et al., 2022) have been proposed for pre-
exploring environment or enabling global explo-
ration, such as backtracking to previously visited
nodes. However, these methods are all designed
for model learning. It remains unexplored how to
build a map with prompts and leverage the power-
ful capabilities of LLMs for zero-shot reasoning
and planning based on the map.

3 Method

In this section, we introduce our newly designed
prompt system (Sec. 3.1), the details of our map-

guided prompting method to help the agent under-
stand global environment (Sec. 3.2), and the novel
adaptive mechanism that encourages the agent to
make multi-step path planning (Sec. 3.3).

3.1 Single Expert Prompt System

Previous works such as NavGPT (Zhou et al., 2023)
and DiscussNav (Long et al., 2023) are two-stage
systems. They first gather visual observations from
all the views and translate them into textual descrip-
tions which are then fed into language-only GPT-
4 (OpenAl, 2023a) for decision-making. Besides,
they rely on complex multi-expert designs, where
GPT plays different roles to achieve various func-
tions, such as instruction parsing, summarizing tex-
tual descriptions and history, etc. However, these
intricate designs are only geared towards text pro-
cessing, which limits their research value. Powerful
multimodal large models, such as GPT-4V (Ope-
nAl, 2023b,c), can directly serve as the agent’s
brain to process multimodal information and make
decisions (Yang et al., 2023).

Compared with previous works, our proposed
single expert prompt system has several unique
features. (1) We eliminate the need for a separate
design of an additional historical summary expert
or instruction decomposing expert based on GPT
models, which makes it convenient to incorporate
both visual/textual inputs and additional informa-
tion, such as maps. (2) Our navigation expert can
utilize GPT-4V to make decisions directly based
on visual observations in one stage. It can also take
text descriptions as inputs and flexibly apply them
in the two-stage GPT-4 system. (3) Simple yet ef-
ficient. In the R2R dataset, our two-stage system
requires an average of 672 input tokens and 115
output tokens per step. In comparison, NavGPT
utilizes three GPT experts, resulting in an average
cost of 2,465 input tokens and 317 output tokens
per step.

As shown in Figure 2, we collect various funda-
mental inputs for the agent, including instruction
1, history Hy, observation Oy, and action space A;.
The meaning of these inputs, as well as the require-
ments for output, are clearly pre-defined in the task
description D. We utilize a prompt manager PM
to organize these prompt inputs which are then fed
into the large language model LLM to generate
the current thought 7; and select a specific action
at; € Aq. The pipeline can be formulated as

Tt, At = LLM(PM(D,I,Ht, Ot, At)) (1)
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[Task background] [Input Definitions] [Output Requirements]
F ental Inputs: Instruction: Go straight and pass the bar ... pass the clear glass table
W|th the whlte chalrs and turn right. Wait in that hallway. [History] [Observation]
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Previous Planning:
1. Go to Place 1 to check if it matches the first part of the instruction. 2. If it matches,
continue to follow the instruction. If not, consider backtracking or exploring other places

Thought: ... The map shows that Place 1 is connected with Place 4 which matches ...
New Planning: 1. Go to Place 4, which matches the first part of the instruction. 2. After
reaching Place 4, look for the clear glass table with white chairs mentioned in the
instruction. 3. If found, turn right and wait in the hallway as instructed. Action: B

(b) Map-Guided Prompting with Adaptive Path Planning

Figure 2: Our basic system consists of two types of prompts, namely task description and fundamental inputs.
We introduce a map-guided prompting method that builds an online-constructed topological map into prompts,
activating the agent’s global exploration. We further propose an adaptive mechanism to perform multi-step path
planning on this map, systematically exploring candidate nodes or sub-goals. Note that vision models are optional,
and viewpoint information can be represented using either the image or textual description of the observations.

3.1.1 Task Description

As shown in Figure 2, our prompts for task descrip-
tion D consist of three main parts. We set the task
background for GPT, provide some definitions re-
garding the inputs at each step, and propose some
basic requirements regarding how the agent should
accomplish this task.

3.1.2 Fundamental Inputs

Instruction / Since we aim to adapt both fine-
grained and high-level instructions, we directly
feed the raw instructions to GPT without any initial
analysis or decomposition.

Visual Observation O; Our agent is equipped
with an RGB camera to capture M images of the
environment. Unlike NavGPT (Zhou et al., 2023)
that gathers excessive environmental information,
we prioritize the observations of navigable points,
which can be formulated as O; = {Ot,i}i]\il’ where
N is the number of navigable viewpoints at step
t. Bach o;; represents the observation towards a
specific navigable point. These observations are
original images for a one-stage system based on
GPT-4V and can also be replaced with caption and
detection results in a two-stage system, where we
follow NavGPT (Zhou et al., 2023) and utilize off-
the-shelf vision models BLIP-2 (Li et al., 2023a)
and Faster R-CNN (Ren et al., 2015; Anderson
et al., 2018a) to acquire scene description and ob-
ject detection respectively. NavGPT also utilizes
the bounding boxes provided by the REVERIE
dataset to extract an additional object list of all
the views, which is then used for the R2R experi-
ment. We also utilize this object list and name it

the “Surroundings”. However, we do not utilize
this additional information in R2R. We only utilize
it to enable the agent to determine whether to stop
in the REVERIE dataset since we do not specify
the directions of these surrounding objects.

Action Space A; NavGPT allows the agent to
directly select a viewpoint and DiscussNav enables
the model to predict a direction. In this paper, we
incorporate both directional phrases (e.g., turn left
to) and the corresponding observations of each di-
rection into the action space for GPT to select from,
making the decision-making process more intu-
itive.

Specifically, we take as an input the action space
A = {at,i}ij\io for GPT model. N is also the
number of navigable points and we additionally
define a; o as “A. stop” so that the agent has N +
1 options in total. Each a;; in the remaining N
options is formulated using the template:

“{label} {direction} {o.; }”.

At each step ¢, the agent only needs to choose one
option a; ; € A;. For the output format, we require
the agent to simply provide a single option label,
such as "Action: B".

History H; We record all previous actions ag ~
a¢—1 for history. The following prompt template is
utilized for appending the actions into Hy:

“step 0: {a}}, ..., step t-1: {a;_,}",

in which ¢ > 1 and @™ denotes the selected action
a but with the option label removed. The initial
history is defined as Hy =
begun, with no history”.

“The navigation has just
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3.2 Map-Guided Prompting

For the VLN task, previous work (Zhu et al., 2021;
Chen et al., 2022; An et al., 2023) has demonstrated
the effectiveness of online constructed maps for
global navigation. However, how to construct the
maps and transform them into a certain form to
prompt LLMs has not been investigated in this do-
main. Additionally, we observe that GPT-4V strug-
gles slightly in its attempts to understand naviga-
tion environments based on multiple precise coor-
dinates. Therefore, we propose a novel map-guided
prompting approach that converts topological rela-
tionships of a map into textual prompts, as shown
in Figure 2(b).

Topological Mapping Inthe VLN task, the agent
has never explored the entire environment and must
construct a map based on its own observations on-
line. We store the map as a dynamically updated
graph, following the graph-based method DUET
(Chen et al., 2022). At each step ¢, we record all
observed nodes along the navigation trajectory and
their connectivity into the graph G; = {V}, E;},
where V; = {v;;}X | are a series of K observed
nodes marked with the index ¢ in the order of ob-
servations. All the edges between these observed
nodes are recorded in E;. At any step ¢, given the
current location, the simulator will provide sev-
eral neighboring nodes that are currently navigable.
These new nodes and edges will be utilized for
updating the graph from G¢_; to Gy.

3.2.1 Constructing Maps with Prompts

After we have obtained a topological connectivity
graph representing the structure of the environment,
the next step is to transform it into an appropriate
prompt and add map annotations to form a com-
plete map-guided prompt to help the agent under-
stand the navigation environment. For each step
t, we categorize all observed nodes in the environ-
ment into three types, namely (1) explored nodes
{en;}t_, (including starting node eng and current
node en;), (2) accessible nodes {any, an}, ...}, and
(3) unexplored inaccessible nodes {ung, uni, ...}.

Trajectory As we have already marked each lo-
cation during the navigation process, it follows
logically that we can create a simplified trajectory
prompt to help the agent understand its navigation
path in the map and avoid repeated exploration as
far as possible. For the explored nodes, we formu-
late our trajectory prompt using the template:

“Trajectory: Place {eng} ... {ens}”,

where each en; corresponds to a node vy; € V;
stored in the order of observation. Thus, we con-
sider the index ¢ as the ID of the node and fill it
into the template to denote en;;.

Map Connectivity Unlike DUET, which also
converts precise GPS coordinates into embeddings
for graph learning, we only retain the topological
relationships of the map nodes since we discover
that it seems challenging for GPT to understand
precise coordinate data. These topological relation-
ships are transformed into textual prompts, making
it easier to comprehend spatial structures. Since
the connectivity can only be observed at explored
nodes, we always start with “Place {en:} is con-
nected with ...”. All IDs corresponding to the neigh-
boring accessible nodes of these exploded nodes
will be listed using the following template:

“Map:
Place {eng} is connected with Places { cm8 -
Place {en1} is connected with Places { cm(f -

Place {en;} is connected with Places { ang}, L

where all the nodes should be filled with their node
IDs. Note that this map connectivity does not need
to be updated if the agent decides to backtrack and
revisit some previously explored nodes.

Map Annotations The final step involves adding
an annotation to each node of this topological map,
enabling the agent to refer to them for path plan-
ning. As we have already provided currently ac-
cessible nodes in the action space, and the selected
actions are also included in the history to form ex-
plored nodes, there is no need to repeat them. It is
sufficient to simply add the node IDs in the action
space at each step. Specifically, each a;; in the
action space A; is reformulated as

“flabel} {direction} Place {ani}: {ori}”.

The agent can therefore find the corresponding
explored nodes and accessible nodes in history H,
and action space A; respectively. However, we still
have some unexplored and currently inaccessible
nodes that are important, especially when the agent
encounters obstacles in exploration and needs to
revisit previous nodes for re-exploration. These in-
accessible nodes are considered as supplementary
information to assist the agent in backtracking to
the most suitable node. In “Supplementary Info”
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prompts, we record their raw images for the one-
stage system, whereas in the two-stage system, it
can be replaced with the corresponding scene de-
scriptions.

3.3 Adaptive Path Planning

NavGPT and DiscussNav record the thinking pro-
cess of the agent at each step. Despite employ-
ing another GPT expert for summarization, they
still involve a significant amount of redundancy.
This is also not consistent with human thinking,
as we usually do not document every moment of
our thoughts. Instead, we tend to document a work
plan and update it as necessary.

Inspired by the above insight and benefiting from
the utilization of maps, we propose an adaptive
planning module that demands the agent to dynam-
ically generate and update its multi-step path plan-
ning at each step. Concretely, the agent is required
to combine the thought, map, and previous plan-
ning to adaptively update a new multi-step path
planning. The entire process is iterative, where
the planning output of the current step serves as
the input to the next step, allowing the agent to
refer to previous plans. Therefore, at step ¢, the
agent should refer to the last planning P;_1, where
Py is set as “Navigation has just started, with no
planning yet”.

In summary, the proposed MapGPT that com-
bines map M; and path planning P;_; can be de-
fined as follows:

Ea Pta ag :LLM(PM(D7 I7 Ht7 Ota At7

2
Mtapt—l))- ( )

In addition to the widely-used thought and action
on the previous agents, MapGPT outputs addi-
tional multi-step planning information. Thanks
to the powerful reasoning abilities of LLMs, the
agent can focus on multiple potential nodes or
sub-goals during planning, instead of being lim-
ited to predicting only one optimal choice from
the global action space in a probabilistic manner
without interpretability, as in the previous DUET
model. Furthermore, the agent can adaptively
update its plan, choosing to continue exploring
sub-goals or backtrack to a previous node for re-
exploration, which enhances the agent’s navigation
performance. Some analysis of these capabilities
is presented in Section 4.

Methods LLMs Exp|NE| OSRT SRT SPLt
NavGPT (Zhou etal.) GPT-3.5 3 [8.02 26.4 16.7 13.0
MapGPT (Ours) GPT-3.5 1 [8.48 29.6 194 11.6
DiscussNav (Long etal.) GPT-4 5 |6.30 51.0 37.5 33.3
MapGPT (Ours) GPT-4 1 |5.80 61.6 41.2 254
MapGPT (Ours) GPT-4V 1 |5.62 57.9 47.7 38.1

Table 1: Results on 72 various scenes of the R2R dataset.
“Exp” refers to the number of GPT experts.

4 Experiments

4.1 Experimental Settings

Datasets and Evaluation We choose two
datasets, R2R (Anderson et al., 2018b) and
REVERIE (Qi et al., 2020b), to validate our
MapGPT since they have distinct instruction styles.
R2R provides detailed step-by-step instructions
while REVERIE only offers a high-level descrip-
tion of finding the target object, which usually re-
quires more exploration in the environment. To
unify the prompt system, we focus only on nav-
igation performance, which involves finding the
correct location or object to stop, while neglect-
ing the object grounding sub-task in REVERIE.
We therefore adopt several evaluation metrics for
navigation, including Navigation Error (NE, the
distance between agent’s final location and the tar-
get location), Success Rate (SR), Oracle Success
Rate (OSR, SR given Oracle stop policy), and SR
penalized by Path Length (SPL).

4.2 Experimental Results

4.2.1 Results on the Room-to-Room Dataset

Various scenes. As shown in Table 1, we employ
an identical sampled subset (72 scenarios, 216 tra-
jectories) as in NavGPT’s experiment to evaluate
the zero-shot performance across various scenar-
ios. In addition, some of DiscussNav’s experiments
fuse five repeated predictions to enhance perfor-
mance. For a fair comparison, we evaluate the per-
formance of our MapGPT, and previous NavGPT
and DiscussNav under the single-prediction set-
ting. For a two-stage system, MapGPT outper-
forms previous models when applied to different
LLMs (including GPT-3.5 and GPT-4). When uti-
lizing GPT-4V as a one-stage agent, combined with
the proposed map-guided prompting with adaptive
path planning, MapGPT achieves a success rate of
47.7%. MapGPT (GPT-4 based) has limited perfor-
mance on the SPL metric, which could be attributed
to the fact that map-guided prompting encourages
the agent to continue global exploration when en-
countering insufficient textual descriptions. The
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Settings Methods NE] OSR?T SR SPLT
Seq2Seq (Anderson et al., 2018b) 7.81 28 21 -

Train  Speaker (Fried et al., 2018) 6.62 45 35 -
EnvDrop (Tan et al., 2019) 522 - 52 48
LangNav (Pan et al., 2023) - - 43 -
PREVALENT (Hao et al., 2020) 4.71 - 58 53

RecBERT (Hong et al., 2021) 393 69 63 57
HAMT (Chen et al., 2021b) 229 73 66 61
DUET (Chen et al., 2022) 331 81 72 60
ScaleVLN (Wang et al., 2023)  2.09 88 81 70

NavGPT (Zhou et al., 2023) 6.46 42 34 29
7S MapGPT (with GPT-4) 6.29 57.6 38.8 25.8
MapGPT (with GPT-4V) 5.63 57.6 43.7 34.8

Pretrain

Table 2: Results on the validation unseen set of the
R2R dataset. MapGPT outperforms two non-pretrained
methods and the zero-shot NavGPT.

agent has a longer navigation path, thus impacting
the SPL metric. On the other hand, MapGPT based
on GPT-4V avoids the issue of information loss
during vision-to-text conversion and achieves an
SPL of 38.1%.

Validation unseen set. We further compare the
navigation performance between the proposed
MapGPT and previous NavGPT on a larger val-
idation unseen set with 11 scenes and 783 trajecto-
ries. As shown in Table 2, due to the distribution
difference, the success rate of MapGPT is slightly
lower (38.8% with GPT-4 and 43.7% with GPT-
4V) compared to the results on the 72 scenes. Com-
pared to NavGPT (GPT-4 based), MapGPT (GPT-
4 based) exhibits a noticeable reduction in NE,
leading by 4.8% in SR, and a substantial 15.6%
improvement in OSR. Obviously, our proposed
map-guided prompting with adaptive planning has
raised the upper limit of agent navigation ability
(OSR), thus increasing final success rate. However,
due to information loss in the two-stage pipeline,
MapGPT (GPT-4 based) tends to continue explor-
ing when encountering insufficient description and
has a weaker SPL performance. Nevertheless, the
GPT-4V-based agent does not suffer from this issue,
thus achieving 34.8% in SPL.

4.2.2 Results on the REVERIE Dataset

Benefiting from the flexible single-expert sys-
tem and the utilization of a universal map-guided
prompting and planning, we effortlessly apply
MapGPT to the REVERIE dataset with different
instruction styles. Considering the API costs and
easier comparison for future work, we randomly
sample 500 instructions from the validation unseen
set for the zero-shot setting REVERIE benchmark.
Validation unseen set. As shown in Table 3,

Settings Methods OSR?T SR?T SPL1
Seq2Seq (Anderson et al., 2018b) 8.07 4.20 2.84
Train RCM (Wang et al., 2019) 14.2 9.29 6.97
SMNA (Ma et al., 2019) 11.3 8.15 6.44
FAST-MATTN (Qi et al., 2020b) 28.2 14.4 7.19
HAMT (Chen et al., 2021b) 354 31.6 29.6
Pretrain DUET (Chen et al., 2022) 50.0 45.8 35.3
LAD (Li et al., 2023b) 64.0 57.0 37.9
NavGPT (Zhou et al., 2023) 28.3 19.2 14.6
ZS MapGPT (with GPT-4) 42.6 28.4 14.5
MapGPT (with GPT-4V) 36.8 31.6 20.3

Table 3: Comparison on a randomly sampled subset
from the validation unseen set of the REVERIE dataset.
Note that we have retested the released HAMT and
DUET on this same subset.

MapGPT exhibits greater competitiveness on
REVERIE (31.6% SR), significantly outperform-
ing zero-shot NavGPT and some training-only mod-
els across all metrics. Moreover, when compared
to HAMT which benefits from the pretraining
and fine-tuning process, MapGPT demonstrates
a highly competitive performance as well.
Backtracking ratio. We analyze the trajectory of
each case, and if there are repeated visits to previ-
ously visited locations, we consider it as backtrack-
ing and calculate the ratio of such occurrences in
both NavGPT and MapGPT for comparison on the
REVERIE dataset. MapGPT experiences at least
one instance of backtracking in 49% of cases, and
among them, there is an 80% probability of suc-
cessfully correcting its erroneous navigation path at
least once. As a comparison, NavGPT, which does
not utilize any maps and planning, performs poorly
on this metric. Only 18% of cases involve back-
tracking to visited nodes, and among these cases,
53% of instances successfully correct the previous
exploration error at least once.

4.3 Ablation Study

As shown in Table 4, we explore the effectiveness
of different prompt designs on 72 various scenes
of the R2R dataset.

Coordinate Maps vs. Topological Maps. DUET
encodes the precise GPS coordinates of each node
for graph learning. We also attempt to input these
coordinates into GPT for understanding and rea-
soning. However, the agent appears to struggle
with global exploration based on the coordinates,
resulting in a performance decline compared to
the baseline that does not utilize the map. On the
other hand, our proposed map-guided prompting
method provides the topological relationship in a
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Step4 Task Description: [Task background] [Input Definitions] [Output Requirements]

Instruction: Go to third level bathroom and clean the washbasin

History: step 0: go up to Place 2 which is corresponding to Image 2, step 1: turn around to Place 3
which is corresponding to Image 3, ..., step 3: turn around to Place 4 which is corresponding to Image 4
Surroundings: plant, cabinet. Action options (step 4): ['A. stop', 'B. turn right to Place 9 which is
corresponding to Image 9', 'C. turn around to Place 2 which is corresponding to Image 2', 'D. turn
around to Place 5 which is corresponding to Image 5']

Trajectory: Place 02324 Supplementary Info:

Map: Place 1, which is corresponding to Image 1
Place 0 is connected with Places 1, 2, 3 Place 6, which is corresponding to Image 6
Place 2 is connected with Places 0, 4, 3, 7,8 Place 7, which is corresponding to Image 7
Place 3 is connected with Places 0, 2,6, 7, 8, 5 Place 8, which is corresponding to Image 8
Place 4 is connected with Places 9, 2, 5

Previous Planning: If Place 4 turns out to be the bathroom, | will stop and clean the washbasin as
instructed. If it is not the bathroom, | will return to Place 2 and then consider exploring Place 5, 6, 7, or
8, as these are the remaining unexplored connections from Place 2.

Thought: ... . I am currently at Place 4, which, based on Image 4, does not appear to be a bathroom.
Therefore, | should not stop here. My previous planning suggested that if Place 4 was not the bathroom, |
should return to Place 2 and consider exploring Place 5, 6, 7, or 8. Since Place 4 is not the bathroom, | will
explore these places that | have not yet visited, which could potentially be the bathroom I'm looking for...
New Planning: | will explore Place 5, 6, 7, or 8 in search of the bathroom. | will start with Place 5, as it is
directly connected to Place 4 where | am currently located, and | have not yet observed it. If Place 5 is not

the bathroom, | will return to Place 2 and then proceed to explore Place 6, followed by Place 7 and Place 8

if necessary. Action: D.

Figure 3: A successful case on REVERIE showcases MapGPT’s (GPT-4V based) various abilities, including global
exploration (blue), map understanding (yellow), and adaptive multi-step path planning (green). The six images on
the right represent six unexplored places at step 4. Among these, MapGPT focuses on four possible places and
systematically explores them until it discovers the bathroom when moving to place 8.

LLMs | Map Planning |[NE] OSR?T SRf SPL?t
X X 6.49 495 329 194

GPT-4 |Topological X 6.40 59.7 375 24.8
Topological Adaptive|5.80 61.6 41.2 25.4

X X 596 588 42.6 34.7

Coordinate X 6.12 55.1 412 328
GPT-4V | Topological X 5.89 56.5 449 36.5
Topological Action |5.82 583 454 35.6
Topological Adaptive|5.62 57.9 47.7 38.1

Table 4: Ablation of different map or planning designs
on 72 various scenes of the R2R dataset.

natural language form for GPT-4 and GPT-4V to
understand, leading to a significant performance
improvement.

Global Action Planning vs. Adaptive Path Plan-
ning. DUET develops a global action planning,
which involves selecting an optimal node from both
accessible and unexplored inaccessible nodes, and
teleporting the agent to that node. We also imple-
ment a similar agent that incorporates nodes from
the “Supplementary Info" into the action space for
action planning by GPT-4V. Experimental results
indicate that this approach does not significantly
improve the zero-shot agent equipped with GPT.
Instead, we adopt an adaptive planning approach,
where GPT explicitly outputs a segment of multi-
step path planning, allowing flexible attention to
multiple potential nodes or sub-goals and the ability
to correct previous errors. This effectively lever-
ages the advantages of the GPT for thinking and

planning, rather than selecting a single action.

4.4 Case Study

In Figure 3, we showcase a successful example
from REVERIE that demonstrates the various abil-
ities of MapGPT (GPT-4V based). This example
poses some challenges for a zero-shot agent since
the places observed at place 4, namely places 5
and 9, as well as the previously observed places
1, 6, 7, and 8, do not contain the bathroom which
is behind the door. Additionally, the instructions
in REVERIE typically do not include information
about turning or any other specific actions. There-
fore, the agent needs to explore the entire environ-
ment to determine the correct direction. Benefiting
from map-guided prompting with adaptive plan-
ning, MapGPT demonstrates a strong understand-
ing of the topological relationships between nodes
and adaptively performs multi-step path planning.
Based on six unexplored global candidates, the
agent systematically conducts global exploration
by selecting the four most probable nodes, as they
are situated within the bedroom and are more likely
to be connected to the bathroom. Besides, the plan-
ning content mentions the possibility of backtrack-
ing to place 2 for re-exploration if necessary, and is
also adaptively updated upon discovering the direct
connection between places 5 and 4 in the map. Af-
ter several steps, when the agent moves to place 8,
it discovers the bathroom hidden behind the door
and successfully reaches the destination.
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5 Conclusion

In this paper, we propose a novel zero-shot agent,
named MapGPT, for the VLN task. MapGPT uti-
lizes map-guided prompting, which builds online
constructed maps using prompts that provide GPT
with node information and topological relation-
ships to activate global exploration. Additionally,
we propose an adaptive planning mechanism that
enables multi-step path planning based on the map,
allowing the agent to systematically explore poten-
tial objectives. Through extensive experiments, we
demonstrate that MapGPT achieves state-of-the-art
zero-shot performance with global thinking and
path planning capabilities.

Limitations

Despite the significant performance gap between
MapGPT and models based on pre-training and
fine-tuning, zero-shot VLN still holds significant re-
search value. GPT’s pre-training corpus contains a
large amount of real-world image data, thus demon-
strating great potential in terms of generalization
and sim-to-real transfer. However, MapGPT is only
experimented within a simulator that incorporates
certain ideal assumptions. Developing LLM-based
agents directly in the real world and addressing var-
ious real-world challenges would be a meaningful
future direction.
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Appendices
A More Details

A.1 Prompts

Task Description We provide specific task de-
scription prompts that are directly fed into the sys-
tem content of GPT-4V (OpenAl, 2023b,c) APL
As shown in Figure 4, our unified prompts con-
sist of three parts, namely task background, input
definitions, and output requirements.

We have achieved effortless adaptation between
fine-grained R2R (Anderson et al., 2018b) instruc-
tions and high-level REVERIE (Qi et al., 2020b)
instructions with only a few intuitive and necessary
modifications. These modifications are primarily
utilized for ignoring the extensive interactive ac-
tions with objects in REVERIE, since our unified
agent is designed to focus on the navigation task.
The stopping conditions also differ, as R2R only
requires the agent to stop at the destination, while
REVERIE demands the agent to check the target
object in its surroundings before stopping.

Templates All of the environmental information
collected at each step (including observations, his-
tory, maps, etc.) will be incorporated into the user
messages of GPT.

For a two-stage prompt system, we formulate
the observations that have been converted into text
as O; = {om-}fil, where N is the number of navi-
gable viewpoints at step ¢. Each oy ; represents the
observation towards a specific navigable point and
is formulated using the prompt template:

“<{scene}>, which also includes <{objects}>".
Besides, we have defined six directional concepts,
namely “go forward to”, “turn left to”, “turn right
to”, “turn around to”, “go up to”, and “go down
to”, according to the directions of navigable view-
points. Thus, a complete action a; could be “B.
turn around to Place 1: <a room with blue walls>,

which also includes <bed, curtain, picture>".
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For a one-stage system based on GPT-4V, we
directly require the agent to refer to images corre-
sponding to various places. At the beginning of
the user messages, we input the image IDs and
observed images in an interleaved format, such as
“Image 0: <Img0> Image 1: <Imgl> ...”. There-
fore, these images can be directly referenced in
subsequent prompts. For example, when used in
the action space, an action a; could be “C. turn
around to Place 2 which is corresponding to Im-
age 2”. Prompts in history and maps also employ
similar templates.

A.2 Implementation Details

We conduct experiments in the Matterport3D simu-
lator (Chang et al., 2017), which provides a discrete
navigation environment with predefined navigable
viewpoints. At each viewpoint, the agent can obtain
visual observations and some connected navigable
candidate viewpoints which are incorporated into
prompts for GPT. Once GPT has selected one of
these candidates by predicting the corresponding
label in the prompts, we can convert it into the can-
didate’s ID which can be executed in the simulator
and teleport the agent to the selected viewpoint.
In this work, we have built the first GPT-4V-
based (OpenAl, 2023b,c) agent in the VLN field,
directly processing multimodal inputs in one stage.
For a fair comparison with previous methods specif-
ically designed for GPT-4 (OpenAl, 2023a), we
have also implemented a two-stage system, where
we follow NavGPT (Zhou et al., 2023) and uti-
lize BLIP-2 (Li et al., 2023a) to provide a caption
for the observation, and employ Faster R-CNN
(Ren et al., 2015) to detect existing objects. Our
core contributions, namely map-guided prompting
and adaptive path planning, can be applied to both
of these systems. To adapt our MapGPT to the
REVERIE dataset, we only make some simple yet
necessary modifications, which demonstrates that
our MapGPT is more unified in the VLN field.

B More Qualitative Examples

We provide additional successful and failure cases
to qualitatively analyze the capabilities and limita-
tions of our proposed MapGPT.

Figure 5 demonstrates a successful case on the
R2R dataset. In step 6, after thoroughly explor-
ing places 3 and 4 connected to place 1, the agent
decides to backtrack to place 1 and subsequently
explore currently inaccessible places 6 and 7. Ulti-

mately, the agent successfully terminates at place 7
in step 10.

As shown in Figure 6, we further summarize two
typical types of failure cases, which are also com-
mon challenges for other zero-shot VLN agents. (a)
The agent may fail to follow the details in the in-
structions accurately. For instance, instead of walk-
ing straight into a bedroom in the eleven o’clock
direction as instructed, it turns left in step 1 and
enters another incorrect bedroom, and stops there.
(b) The scenes are highly challenging, and the in-
structions may not provide sufficient clues. Thus,
the agent may fail to explore the correct direction
in time.
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R2R Task Description

[Task background]

You are an embodied robot that navigates in the real world. You need to explore between some places marked with IDs and ultimately find the destination to stop.
At each step, a series of images corresponding to the places you have explored and have observed will be provided to you.

[Input Definitions]

'Instruction’ is a global, step-by-step detailed guidance, but you might have already executed some of the commands. You need to carefully discern the commands
that have not been executed yet.

'History' represents the places you have explored in previous steps along with their corresponding images. It may include the correct landmarks mentioned in the
'Instruction’ as well as some past erroneous explorations.

'Trajectory' represents the ID info of the places you have explored. You start navigating from Place 0.

'Map' refers to the connectivity between the places you have explored and other places you have observed.

'Supplementary Info' records some places and their corresponding images you have ever seen but have not yet visited. These places are only considered when
there is a navigation error, and you decide to backtrack for further exploration.

'Previous Planning' records previous long-term multi-step planning info that you can refer to now.

'Action options' are some actions that you can take at this step.

[Output Requirements]

For each provided image of the places, you should combine the 'Instruction' and carefully examine the relevant information, such as scene descriptions, landmarks,
and objects. You need to align 'Instruction' with 'History' (including corresponding images) to estimate your instruction execution progress and refer to '‘Map' for
path planning. Check the Place IDs in the 'History' and 'Trajectory', avoiding repeated exploration that leads to getting stuck in a loop, unless it is necessary to
backtrack to a specific place. If you can already see the destination, estimate the distance between you and it. If the distance is far, continue moving and try to stop
within 1 meter of the destination. Your answer must include four parts: 'Thought', 'Distance’, 'New Planning', and 'Action'. You need to combine 'Instruction’,
'Trajectory', 'Map', 'Supplementary Info', your past 'History', 'Previous Planning', 'Action options', and the provided images to think about what to do next and why,
and complete your thinking into 'Thought’. Based on your 'Map', 'Previous Planning' and current 'Thought', you also need to update your new multi-step path
planning to 'New Planning’. At the end of your output, you must provide a single capital letter in the 'Action options' that corresponds to the action you have
decided to take, and place only the letter into 'Action’, such as "Action: A".

REVERIE Task Description

[Task background]

You are an embodied robot that navigates in the real world. You need to explore between some places marked with IDs and ultimately find the target object to stop.
At each step, a series of images corresponding to the places you have explored and have observed will be provided to you.

[Input Definitions]

'Instruction’ is a global guidance that you should follow. You only need to find the indicated or hidden target object within it, stop, and ignore any actions
mentioned in the 'Instruction’ regarding the target object. You don't need to excessively adhere to the color details about landmarks and the target object in the
'Instruction’, as the descriptions about colors might be incorrect.

'History' represents the places you have explored in previous steps along with their corresponding images. It may include the correct landmarks mentioned in the
'Instruction’ as well as some past erroneous explorations.

'Trajectory' represents the ID info of the places you have explored. You start navigating from Place 0.

'Map' refers to the connectivity between the places you have explored and other places you have observed.

'Supplementary Info' records some places and their corresponding images you have ever seen but have not yet visited. These places are only considered when
there is a navigation error, and you decide to backtrack for further exploration.

'Previous Planning' records previous long-term multi-step planning info that you can refer to now.

'Surroundings' represent some objects you can touch in your surrounding environment at this step.

'Action options' are some actions that you can take at this step.

[Output Requirements]

For each provided image of the places, you should combine the 'Instruction' and carefully examine the relevant information, such as scene descriptions, landmarks,
and objects. Then, check the image of your current place and see if the touchable objects in 'Surroundings' include any possible target object that you may need to
stop at. If not, you should utilize commonsense knowledge, such as potential room layouts in indoor environments, to explore possible directions and places. You
need to align 'Instruction’ with 'History' (including corresponding images) to estimate your instruction execution progress and refer to 'Map' for path planning.
Check the Place IDs in the 'History' and 'Trajectory', avoiding repeated exploration that leads to getting stuck in a loop, unless it is necessary to backtrack to a
specific place. If you can already see the target object, estimate the distance between you and it. If the distance is far, continue moving util the target is touchable.
Your answer must include four parts: 'Thought', 'Distance’, 'New Planning', and 'Action’. You need to combine 'Instruction’, 'Trajectory', 'Map', 'Supplementary Info',
your past 'History', 'Previous Planning', 'Surroundings' and 'Action options' information to think about what to do next and why, and complete your thinking into
'Thought’. Based on your 'Map', 'Previous Planning' and current 'Thought', you also need to update your new multi-step path planning to 'New Planning'.

At the end of your output, you must provide a single capital letter in the 'Action options' that corresponds to the action you have decided to take, and place only
the letter into 'Action’, such as "Action: A".

Figure 4: Task description prompts for the R2R and REVERIE datasets. We make some simple yet necessary
modifications to transfer MapGPT from the R2R task to REVERIE. This work focuses on unified navigation, while
instructions in REVERIE often require some interactive actions on objects. Therefore, we require the agent to
ignore these actions.
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Step6 Task Description: [Task background] [Input Definitions] [Output Requirements]

Instruction: Go forward toward the windows. Go toward the the far couch, Stop next to the couch, in front of the windows.

History: step 0: turn around to Place 1: <a lobby with blue couches and a fireplace>, which also includes <teapoy, bin, 2 window
frames, shape sofa, 2 armchairs, ceiling, plant, floor, ledge>, ...... step 5: turn left to Place 3: <a blue and white kitchen with a bar>,
which also includes <kitchen cabinet, 3 walls, kitchen island, 2 ceilings, 2 stools, cabinet, shape sofa, pipe>

Action options (step 6): ['A. stop', 'B. turn around to Place 0: <the lobby of the savannah hotel>, which also includes <2 floors, 3 walls,
3 armchairs, picture, tv stand, teapoy, ceiling>', 'C. turn around to Place 1: <the lobby at the savoy hotel>, which also includes <2
ceilings, ledge, 2 walls, tv stand, 3 armchairs, picture, fireplace, tv>', 'D. turn around to Place 2: <a modern office with a circular bar>,
which also includes <floor, 2 plants, 2 walls, 3 ceilings, ledge, 2 shape sofas, window frame, cabinet, stool>']

Trajectory: Place0145413 Supplementary Info:

Map: Place 4 is connected with Places 1, 5,6, 7 Place 6: <the living room at the san antonio hotel>
Place 0 is connected with Places 1, 2, 3 Place 5 is connected with Places 4, 8, 6 Place 7: <the living room at the san antonio hotel>
Place 1 is connected with Places 0, 4, 3 Place 3 is connected with Places 0, 1, 2 Place 8: <a staircase leading to a building>

Previous Planning: From Place 1, | will turn left to Place 3, which is a blue and white kitchen with a bar. If I still can't find the couch in
front of the windows, | will then move to Place 0, which is connected to Places 1, 2, and 3. | will continue this process until | find the
couch in front of the windows.

Thought: According to the instruction, | need to find a couch in front of windows. From the history, | have visited a few places with
couches and windows, but none of them match the instruction. The previous planning was to go to Place 3, which is a kitchen, and
then to Place 0. However, the kitchen does not match the instruction and Place 0 is the starting point, which | have already visited.
Therefore, | need to update my planning. From the map, | can see that Place 4 is connected to Place 6 and 7, both of which are living
rooms at the San Antonio hotel. It's possible that one of these places matches the instruction. | should consider visiting these places.

New Planning: From Place 3, | will go back to Place 1, then to Place 4, and finally to Place 6 or 7. | will check these places to see if
they match the instruction.

Action: C. turn around to Place 1: <the lobby at the savoy hotel>, ...

Step10 Thought: According to the instruction, | need to find a place with a couch and windows. Currently, | am at Place 7, which is
described as "a living room with couches and a large window". This place seems to match the instruction ...... Therefore, | believe that |
am currently at the correct place.

New Planning: Since | believe that | am currently at the correct place, | do not need to plan any further steps.
Action: A. stop

Figure 5: A successful example on the R2R dataset. We demonstrate some crucial steps that leverage map-guided
global exploration and planning capabilities, ultimately resulting in successful navigation.
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Task Description: [Task background] [Input Definitions] [Output Requirements]
(a) Instruction: Go all the way down the stairs and then go down the hallway in the 11 o'clock position from the base of the stairs. Keep
walking straight until you enter a bedroom and stop after entering.
History: step 0: go down to Place 2: <a hallway with blue stairs and a painting>, ..., step 1: turn left to Place 3: <a bedroom with a blue
door>, ... step 2: turn around to Place 4: <a blue guitar and a blue door>, ... step 3: turn around to Place 3: <a bedroom with a view of the
mountains>, which also includes <2 walls, bed, door, side table, 3 doorframes, 2 floors, tv>
Action options (step 4): [‘A. stop’, ‘B. turn around to Place 4: <a blue guitar and a blue door> ... ]

Trajectory: Place02343 Supplementary Info:

Map: Place 1: <a staircase with a painting on it>

Place 5: <a hallway with a painting of albert einstein>
Place 4 is connected with Places 2, 6, 3,5

Previous Planning: From Place 4, | will turn around to Place 3. From Place 3, | will go to Place 7.

Thought: The instruction indicates that | should go down the stairs, then go down a hallway, and finally enter a bedroom. From the history, |
can see that | have already gone down the stairs to Place 2, and then entered a bedroom at Place 3. However, | then turned around to Place
4 and back to Place 3 again, which seems to be a mistake as it doesn't align with the instruction. The instruction doesn't mention turning
around. Now, | am at Place 3, which is a bedroom. According to the instruction, | should stop after entering the bedroom. Therefore, |
believe | have reached the destination.

New Planning: Since | believe | have reached the destination, there is no need for further planning. Action: A. stop

Task Description: [Task background] [Input Definitions] [Output Requirements]
(b) Instruction: Wash the soap dispenser in the spa room at the end of the hall

History: step 0: go down to Place 1: <a spa room with a large tub> ... step 2: turn right to Place 13: <a room with a hot tub and a
circular light>, which also includes <3 walls, ceiling, lounge chair, window>
Surroundings: vent. Action options (step 4): [‘A. stop’, 'B. turn around to Place 12: <a living room with a couch and a television>, ...", 'C. turn
around to Place 2: <a bathroom at a hotel>, which also includes <door, cabinet, towel, stair, 3 floors, wall otherroom, wall>',... ]

Trajectory: Place 01713 Supplementary Info:

Map: Place 3: <a hallway with tiled walls and a door>
Place 0 is connected with Places 1, 2, 3, 4 Place 4: <a hallway with a white tiled wall>

Place 1 is connected with Places 5, 6, 7, 8, 2,9, 10, 0 Place 5: <a room with a massage table and chairs>
Place 7 is connected with Places 6, 11, 12, 13,2, 8,1,5 Place 6: <a room with a massage table and chairs>
Place 13 is connected with Places 12, 2, 10, 8, 7 Place 9: <a bathroom with a bathtub and a shower>

Place 11: <a small living room with a bar and a television>

Previous Planning: My previous plan is to first explore Place 13. If | don't find the soap dispenser there, | will then go to Place 12. If I still
don't find the soap dispenser, | will continue exploring the other places.

Thought: I am currently in Place 13, which is described as a room with a hot tub and a circular light. However, | do not see a soap dispenser
in my surroundings, which is the target object according to the instruction. Looking at the map, | see that Place 13 is connected to Places 12,
2, 10, 8, and 7. Among these, Place 2 is described as a bathroom at a hotel, which might contain a soap dispenser. However, the instruction
specifically mentions a spa room, and none of the connected places seem to fit that description. | have already visited Places 1 and 7, both
described as spa rooms, but did not find the soap dispenser there. Therefore, | should continue exploring the other places.

New Planning: My new plan is to first explore Place 12. If | don't find the soap dispenser there, | will then go to Place 2. If | still don't find the
soap dispenser, | will continue exploring the other places. Action: B.

Figure 6: Two typical reasons for failure. (a) Stopping erroneously in similar locations. (b) Failure to timely
backtrack and explore the correct direction if the scene is complex and the instruction does not provide much
guidance (the agent has explored place 1 and plans to explore place 2, while the correct direction is 0—3).
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