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Abstract

Security practitioners maintain vulnerability re-
ports (e.g., GitHub Advisory) to help develop-
ers mitigate security risks. An important task
for these databases is automatically extracting
structured information mentioned in the report,
e.g., the affected software packages, to acceler-
ate the defense of the vulnerability ecosystem.

However, it is challenging for existing work on
affected package identification to achieve high
precision. One reason is that all existing work
focuses on relatively smaller models, thus they
cannot harness the knowledge and semantic
capabilities of large language models.

To address this limitation, we propose VulLib-
Gen 1, the first method to use LLM for affected
package identification. In contrast to existing
work, VulLibGen proposes the novel idea to
directly generate the affected package. To im-
prove the precision, VulLibGen employs super-
vised fine-tuning (SFT), retrieval augmented
generation (RAG) and a local search algorithm.
The local search algorithm is a novel post-
processing algorithm we introduce for reduc-
ing the hallucination of the generated packages.
Our evaluation results show that VulLibGen
has an average precision of 0.806 for identify-
ing vulnerable packages in the four most pop-
ular ecosystems in GitHub Advisory (Java, JS,
Python, Go) while the best average precision in
previous work is 0.721. Additionally, VulLib-
Gen has high value to security practice: we
submitted 60 <vulnerability, affected package>
pairs to GitHub Advisory (covers four ecosys-
tems) and 34 of them have been accepted and
merged.

1 Introduction

With the increasing usage of third-party software
packages, their security vulnerabilities pose great

∗*Corresponding author
1Our data and code can be found at https://github.

com/q5438722/VulLibGen.

Github Advisory

Description
Jenkins Mail Commander Plugin for Jenkins-ci Plugin
1.0.0 and earlier stores passwords unencrypted in job
config.xml files on the Jenkins controller where they can
be viewed by users with Extended Read permission, or
access to the Jenkins controller file system.

org.jenkins-ci.plugins:mailcommander
EcosystemLibrary Name

GitHub Advisory Database / GitHub Reviewed / 
CVE-2020-2318

(Maven)

Package Affected Versions
<= 1.0.0

Figure 1: GitHub Advisory Report for CVE-2020-2318

challenges to software and network systems. A
recent study (Wang et al., 2020) shows that 84%
third-party packages contain security vulnerabili-
ties and 60% of them are high-risk ones. To miti-
gate the security risks, security practitioners main-
tain databases (e.g., NVD and GitHub Advisory)
for each unique vulnerability (i.e., Common Weak-
ness Enumeration or CVE). These databases pro-
vides metadata including the vulnerability descrip-
tion, affected packages, and affected versions. For
example, Figure 1 shows the report of CVE-2020-
2318. By providing the affected package names
and versions, developers can be aware of the vulner-
able packages and quickly apply patches/fixes; the
affected packages also help with security knowl-
edge management and task prioritization.

In recent years, automatically identifying pack-
age names and versions given the CVE report has
become a popular task (Chen et al., 2020; Dong
et al., 2019; Haryono et al., 2022; Lyu et al., 2023;
Chen et al., 2023b) due to the high cost of maintain-
ing such information. GitHub Advisory and other
databases rely on the community to first submit
the package names, the database maintainers then
validate the submitted information before merging
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them to the database (Wu et al., 2024). Neverthe-
less, GitHub users sometimes submit incorrect in-
formation (Haryono et al., 2022; Dong et al., 2019),
while the maintainers’ reviewing process takes a
long time (GitHub, 2024b).

Several existing works have studied automatic
affected package identification (Chen et al., 2020;
Dong et al., 2019; Haryono et al., 2022; Lyu et al.,
2023; Chen et al., 2023b), however, it is challeng-
ing for them to achieve high precision due to the
limited model size they employ. Existing works
typically rank/retrieve the package name from a list
of pre-defined packages by computing the similar-
ity between the vulnerability description and the
package description. Since the time complexity of
retrieval is linear to the size of the list (e.g., 435k
Java packages), the cost of each model inference
has to be kept quite low and only smaller mod-
els have been used, e.g., BERT and linear regres-
sion (Chen et al., 2020; Lyu et al., 2023; Haryono
et al., 2022; Chen et al., 2023b).

To leverage the extensive knowledge and seman-
tic capabilities of LLMs for this task, we propose a
different strategy: we directly generate the affected
package names using LLMs, rather than retriev-
ing them. Our framework, VulLibGen, is the first
framework to directly generate the mentioned pack-
age name given the vulnerability description. Since
generation requires the LLM inference to be in-
voked only once, our approach can easily scale to
larger language models such as Llama-13B and
Vicuna-13B on a single GPU server.

Our initial investigation shows that the raw out-
puts of LLMs suffer from several types of er-
rors including hallucination. Motivated by an
empirical study of these errors, we propose the
following techniques for improving VulLibGen.
First, we leverage supervised fine-tuning (SFT),
in-context learning, and retrieval-augmented gener-
ation (RAG) to enhance the domain knowledge of
a LLM. Second, we propose a novel local search
technique to post-process the raw output for re-
ducing hallucination, i.e., ensuring that the gen-
erated package name actually exists. Our local
search algorithm matches the raw output with the
closest existing package name based on the edit
distance. Since the sub-level package informa-
tion (e.g., mailcommander in Figure 1) is often more
directly mentioned than the top-level package in-
formation (e.g., org.jenkins-ci.plugins), our local
search algorithm first matches the suffix before the

prefix.
We evaluate VulLibGen on four vulnerability

ecosystems: Java, JS, Python, and Go. Our evalua-
tion attains three main findings. First, we observe
that the precision of VulLibGen (0.806) signifi-
cantly outperforms existing ranking approaches us-
ing smaller models (Chen et al., 2020; Haryono
et al., 2022; Lyu et al., 2023; Chen et al., 2023b)
(0.721) and the computational time costs are com-
parable. Second, our ablation studies show that
SFT, RAG, and local search all help improve the
precision of VulLibGen and SFT contributes to the
most improvement. In particular, the fine-tuned
open-source Vicuna-13B outperforms the unfine-
tuned commercial ChatGPT and GPT-4 models.
Our local search algorithm can significantly reduce
the hallucination in the original LLM output, and
it is especially helpful for longer package names
such as Java and Go. Third, VulLibGen provides
high value to security practice: at the time of the
writing, we have submitted 60 pairs of <vulnera-
bility, affected package> to GitHub Advisory (25
Java, 14 JS, 11 Python, 10 Go) and 34 of them have
been accepted and merged.

2 Existing Work on Vulnerable Package
Identification

This section summarizes existing work on affected
package identification and analyze the scalability
challenge.
Formal Definition of Affected Package Identifi-
cation. Given a security vulnerability (CVE) sub-
mitted to a software ecosystem (e.g., GitHub Advi-
sory), the goal of affected package identification is
to link the description q of the CVE to an existing
software package name p (e.g., a Maven or PyPi
package) that is affected by the CVE. An example
of the linked package can be found in Figure 1,
where the description mentions the affected pack-
age org.jenkins-ci.plugins:mailcommander.
Smaller Models Have Lower Precision. Exist-
ing approaches on vulnerable package identifica-
tion (Chen et al., 2020; Dong et al., 2019; Haryono
et al., 2022; Lyu et al., 2023) all suffer from lower
precision (Lyu et al., 2023; Chen et al., 2023b).
Given the vulnerability q, existing works rank all
packages p of the ecosystem by computing the sim-
ilarity score between the descriptions of q and p.
Due to the large number of packages (e.g., Maven
has 435k packages), existing work cannot afford
using large language models to compute the score.
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Table 1: An Empirical Study on ChatGPT’s Incorrect Response in Maven (Java ecosystem)

Error Reason Example (w/ link) ChatGPT’s Output Ground Truth (Affected Packages)

Type 1: Incorrect
but exist (23% of
all errors)

CVE-2015-3158 org.picketlink:picketlink org.picketlink:picketlink-tomcat-common
Description: “The invokeNextValve function in identity/federation/bindings/tomcat/idp/AbstractIDPValve.java
in PicketLink before 2.7.1.Final does not properly check role based authorization, which allows remote
authenticated users to gain access to restricted application resources via a (1) direct request . . . ”

Type 2: Non-Exist,
Partially correct
(58% of all errors)

CVE-2011-2730 org.springframework:spring-framework org.springframework:spring-core
Description: “VMware SpringSource Spring Framework before 2.5.6.SEC03, 2.5.7.SR023, and 3.x before
3.0.6, when a container supports Expression Language (EL), evaluates EL expressions in tags twice which
allows remote attackers to obtain sensitive information. . . . ”

CVE-2020-2167 org.jenkins-ci.plugins:openshift-pipeline com.openshift.jenkins:openshift-pipeline
Description: “OpenShift Pipeline Plugin 1.0.56 and earlier does not configure its YAML parser to prevent
the instantiation of arbitrary types. This results in a remote code execution (RCE) vulnerability exploitable
by users able to provide YAML input files to OpenShift Pipeline Plugin’s build step. . . . ”

Type 3: Non-Exist,
Completely incorrect
(19% of all errors)

CVE-2020-11974 mysql:mysql-connector-java org.apache.dolphinscheduler:dolphinscheduler
Description: “In DolphinScheduler 1.2.0 and 1.2.1, with mysql connector a remote code execution vulnerab
-ility exists when choosing mysql as database.”

CVE-2019-13234 N/A org.opencms:opencms-core
Description: “In the Alkacon OpenCms Apollo Template 10.5.4 and 10.5.5 there is XSS in the search engine.”

All of them thus rely on smaller models, e.g., lo-
gistic regression (Gupta et al., 2021; Lyu et al.,
2023) and BERT (Haryono et al., 2022; Chen et al.,
2023b). Despite various methods introduced for
improving the precision (Dong et al., 2019; Anwar
et al., 2021), the precision remains low (Chen et al.,
2023b).
Existing Work’s Efforts on Scaling to Larger
Models. To improve the precision, existing work
leverages re-ranking with the BERT model (Chen
et al., 2023b). More specifically, they first use TF-
IDF to rank all packages in the ecosystem (435k in
Java and 506k in Python), then re-rank the top-512
packages using BERT. The re-ranking approach
achieves a reasonable precision with a saved in-
ference cost, but there remains a large room for
improving the precision (Chen et al., 2023b).

3 Two Challenges with LLM Generation

In contrast to existing work, we propose the first
work, VulLibGen, that leverages LLMs for affected
package identification. Due to the scalability chal-
lenge of the retrieval approach, our approach di-
rectly generates rather than retrieves the affected
package. VulLibGen thus only need to invoke the
LLM inference once for each vulnerability q. Nev-
ertheless, there exist two challenges with the gener-
ative approach.
Challenge 1: Lack of Domain Knowledge.
The first challenge is that there may exist a
knowledge gap for the LLM to generate the cor-
rect package. This is because the description
may not contain the full information about the
affected package name. For example, CVE-
2020-2167 in Table 1 is about the Java package

com.openshift.jenkins.openshift-pipeline, but the
the description does not mention the word "Jenk-
ins". To predict the correct package name, the
LLM has to rely on domain knowledge to complete
this information. Existing work have used various
methods to bridge the knowledge gap of LLMs,
e.g., supervised fine-tuning (Prottasha et al., 2022;
Church et al., 2021) and retrieval augmented gen-
eration (Lewis et al., 2020; Mao et al., 2020; Liu
et al., 2021; Cai et al., 2022).
Challenge 2: Generating Non-Existing Package
Names. Following a previous study on Reddit2,
the second challenge is that the LLM may generate
library names that do not exist in the ecosystem. Ex-
isting work has adopted post-processing to reduce
the non-existing package issue in code translation
and program repair (Jin et al., 2023; Roziere et al.,
2022). Following existing work, we can potentially
leverage post-processing by matching the gener-
ated package with the closest existing package.

To understand whether post-processing is
promising for solving Challenge 2 and to study
how to design the post-processing algorithm, we
conduct an empirical study on ChatGPT’s incorrect
response, the study result can be seen in Table 1.
The study uses 2,789 Java vulnerability descrip-
tions collected in a recent work (Chen et al., 2023b).
We divide all ChatGPT responses into four types:
1. the package is incorrect but it exists (13%, 23%
of errors); 2. the package does not exist and is par-
tially correct (34%, 58% of errors); 3. the package
is completely incorrect (11%, 19% of errors). 4.

2https://www.reddit.com/r/ChatGPT/comments/
zneqyp/chatgpt_hallucinates_a_software_library_
that/
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the package is correct (42% of all cases);
From the study result, we draw the conclu-

sion that post-processing by matching is a promis-
ing approach to solve Challenge 2. This is
because the majority errors are Type 2 errors,
while post-processing is the most effective in
helping with Type 2 errors. For example, for
CVE-2020-2167, ChatGPT generates org.jenkins-
ci.plugins:openshift-pipeline. While the suffix is
correct, the prefix and suffix never co-occur in any
existing package name. We can fix this case by
matching the prefix to the closest co-occured one.
By applying a naive edit-distance matching on the
ChatGPT output, the precision is improved from
42% to 51%.

4 VulLibGen Framework

To address the two challenges in LLM generation,
we employ the following techniques: first, we use
supervised fine-tuning and in-context learning to
enhance the domain knowledge in LLM; second,
we further employ the retrieval-augmented frame-
work (RAG) to enhance the knowledge when SFT
is not easy; third, we design a local search tech-
nique which alleviates the non-existing package
name problem. The VulLibGen framework can be
found in Figure 2 3.

4.1 Supervised Fine-Tuning/In-Context
Learning

To solve the first challenge (Section 3), we incorpo-
rate supervised fine-tuning (Prottasha et al., 2022;
Church et al., 2021) and in-context learning (Dong
et al., 2022; Olsson et al., 2022) in VulLibGen. For
SFT, we use the full training data (Table 2); for ICL,
we randomly sample 3 examples from the training
data for each evaluation vulnerability. For both
SFT and ICL, the input and output of the LLM fol-
low the following format: Input: the same prompt
as Figure 2 3, Output: "The affected package is
[package name]". The hyper-parameters used for
ICL and SFT are listed in Table 11 of Appendix.

4.2 Retrieval-Augmented Generation (RAG)

To further enhance the LLM’s domain knowledge
especially when SFT is not easy (e.g., ChatGPT

3Our prompt in Figure 2 is: "Below is a [Programming
Language] vulnerability description. Please identify the soft-
ware name affected by it. Input: [DESCRIPTION]. The top
k search results are: [L1][L2]· · · [Lk]. Please output the
package name in the format "ecosystem:library name". ###
Response: The affected packages:".

and GPT4), we employ retrieval-augmented gener-
ation (RAG) in VulLibGen.
Retriever Setting. Given the description of a
vulnerability, our retriever ranks existing package
names in an ecosystem (Table 2) based on the simi-
larity score between the vulnerability description
and the package description. The descriptions of
Java, JavaScript, Python, and Go packages are ob-
tained from Maven 4, NPM 5, Pypi 6, and Go 7

documentations. For example, the description of
the package org.jenkins-ci.plugins:mailcommander

is “This plug-in provides function that read a mail
subject as a CLI Command.”. Our retriever follows
(Chen et al., 2023b)’s re-ranking strategy, i.e., first
rank all packages (e.g., 435k in Java) using TF-IDF,
then re-rank the top 512 packages using a BERT-
base model fine-tuned on the same training data in
Table 2.

4.3 Local Search
To solve the second challenge (Section 3), we incor-
porate post-processing in VulLibGen. Based on the
empirical study results in Section 3, we design a
local search technique to match the generation out-
put with the closest package name from an existing
package list (Algorithm 1 in Appendix 10.1).

Algorithm 1 employs the edit distance as the
metric and respects the structure of the package
name. Formally, a package name can be divided
into two parts: its prefix and suffix (separated by a
special character, e.g., ‘:’ in Java). The prefix (e.g.,
the artifact ID of Java packages) specifies the main-
tainer/group of this package, and the suffix (e.g.,
the group ID of Java packages) specifies the func-
tionalities of this package. Specifically, Java, Go,
and part of JS packages can be explicitly divided
while Python and the rest of JS packages only spec-
ify their functionalities in their names. We denote
the prefix of a package name as empty if it can not
be divided.

Algorithm 1 first compares the generated suffix
with all existing suffix names and matches the suf-
fix to the closest one. After fixing the suffix, we
can then obtain the list of prefixes that co-occur at
least once with this suffix. We match the generated
prefix with the closest prefix in this list. The reason
that we opt to match the suffix first is twofold. First,
our study shows that the vulnerability description

4https://mvnrepository.com
5https://www.npmjs.com
6https://pypi.org
7https://pkg.go.dev
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Jenkins Mail Commander Plugin for
Jenkins-ci Plugin 1.0.0 and earlier
stores passwords unencrypted in
job config.xml files on the Jenkins
controller ...

Package Description

LLM Generation

L1

L2

Local Search

Vulnerability Description

org.jenkins-ci.plugins:mailer
org.jenkins-ci.plugins:mailer

“The Jenkins Plugins Parent
POM Project”

Ecosystem's
Packages

maven:org.jenkins-ci.plugins:mailcommander
maven:org.jenkins-ci.plugins:mailer
maven:org.jenkins-ci.plugins:job-direct-mail
...

maven:org.jenkins-
ci.plugins:mailcommander

Retriever

...

Below is a Java vulnerability description. Please
identify the software name affected by it.  Input:

[Jenkins Mail Commander Plugin for Jenkins-ci...]

The top k search results are 

Please output as the format "ecosystem:library name"
### Response: The affected packages:

LkL1 L2 L3 ...

LLM Raw Output

The affected package is
"maven:org.jenkins-
ci.plugins:mail-commander" in
versions 1.0.0 and earlier.

Supervised
 Fine-Tuning

Figure 2: The VulLibGen Framework

more frequently mentions the suffix than the pre-
fix: among all 2,789 vulnerabilities investigated in
Section 3, their description mentions 12.4% of the
tokens in the prefixes of the affected packages and
66.0% of the tokens in their suffixes of the affected
packages; second, our study also shows that each
suffix co-occurs with fewer unique prefixes than
conversely. In all 435k Java packages, each pre-
fix has 5.86 co-occurred suffixes while each suffix
has only 1.13 co-occurred prefixes on average. As
a result, it is easier to identify the prefix by first
matching the suffix, and then matching the suffix
with the co-occurred prefix list.

5 Evaluation

5.1 Evaluation Setup

Dataset. Among existing work on affected package
identification (Chen et al., 2020; Haryono et al.,
2022; Lyu et al., 2023; Chen et al., 2023b), two
datasets are frequently used: VeraCode (Chen et al.,
2020) and VulLib (Chen et al., 2023b). In this
work, we choose to use VulLib instead of VeraCode
because it is of better quality. The VulLib dataset
contains 2,789 Java vulnerabilities collected from
GitHub Advisory. Each package name in VulLib is
manually verified by security experts from GitHub
Advisory (GitHub, 2024a). In contrast, VeraCode
is not verified thus it is prone to errors 8. Since
VulLib only focuses on Java, we further extend it
to JS, Python and Go by collecting the data from
GitHub Advisory following a similar workflow as
VulLib.

The statistics of our dataset are listed in Table 2.
In total, our dataset includes 2,789 Java, 3,193 JS,

8VeraCode does not use explicit package names ecosys-
tems. For example, the affected package of CVE-2014-2059
is “org.jenkins-ci.main:jenkins-core” while VeraCode labels
it as three packages: “jenkins”, “openshift-origin-cartridge-
jenkins”, and “jenkins-plugin-openshift”

Table 2: The Statistics of the GitHub Advisory Dataset

Java JS Python Go

#Vulnerabilities:
Training 1,668 1,915 1,342 810
Validation 556 639 447 270
Testing 565 639 448 271
Total 2,789 3,193 2,237 1,351

#Unique packages in the dataset:
2,095 2,335 710 601

#Total packages in their ecosystems:
435k 2,551k 507k 12k

#Avg. tokens of packages:
13.44 4.56 3.96 8.24

2,237 Python, and 1,351 Go vulnerabilities, respec-
tively. To the best of our knowledge, this is the first
dataset for identifying vulnerable packages with
various programming languages. For each PL, we
split the train/validation/test data with the 3:1:1 ra-
tio. The split is in chronological order to simulate
a more realistic scenario and to prevent lookahead
bias (Kenton, 2024).
Comparative Methods. To evaluate the effective-
ness of VulLibGen, we contrast it with four existing
ranking approaches, FastXML (Chen et al., 2020),
LightXML (Haryono et al., 2022), Chronos (Lyu
et al., 2023), and VulLibMiner (Chen et al., 2023b)
for comparison. Recent studies (Lyu et al., 2023;
Chen et al., 2023b) show that they outperform other
approaches, such as Bonsai (Khandagale et al.,
2020) and ExtremeText (Wydmuch et al., 2018).
Models in VulLibGen. The models we evalu-
ate for the VulLibGen framework include both
commercial LLMs, e.g., ChatGPT (gpt-3.5-turbo)
and GPT4 (gpt-4-1106-preview), and open-source
LLMs, e.g., LLaMa (Touvron et al., 2023) and Vi-
cuna (Chiang et al., 2023).

We assess open-source LLMs in two scenarios:
few-shot in-context learning using 3 examples ran-
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Table 3: Precision@1 of VulLibGen and Baselines

Approach Java JS Python Go Avg.

Ranking-based Non-LLMs:
FastXML 0.292 0.078 0.491 0.277 0.285
LightXML 0.450 0.146 0.529 0.494 0.405
Chronos 0.516 0.447 0.550 0.710 0.556
VulLibMiner 0.669 0.742 0.825 0.647 0.721

Commercial LLMs:
ChatGPT 0.758 0.732 0.915 0.646 0.763
GPT4 0.783 0.768 0.868 0.712 0.783

Few-Shot ICL on Open-Source LLMs:
LLaMa-7B 0.002 0.237 0.036 0.000 0.069
LLaMa-13B 0.122 0.238 0.049 0.048 0.114
Vicuna-7B 0.110 0.495 0.694 0.428 0.432
Vicuna-13B 0.186 0.513 0.527 0.394 0.405

Full SFT on Open-Source LLMs:
LLaMa-7B 0.710 0.773 0.924 0.716 0.781
LLaMa-13B 0.720 0.765 0.904 0.775 0.791
Vicuna-7B 0.697 0.768 0.929 0.782 0.794
Vicuna-13B 0.710 0.773 0.935 0.804 0.806

domly sampled from the training data and super-
vised fine-tuning using the full training data. For
the open-source LLMs, we use ICL/SFT + RAG
+ local search, whereas for commercial LLMs, we
use RAG + local search only.
Evaluation Environments Our evaluations are
conducted on the system of Ubuntu 18.04. We
use one Intel(R) Xeon(R) Gold 6248R@3.00GHz
CPU, which contains 64 cores and 512GB memory.
We use 8 Tesla A100 PCIe GPUs with 40GB mem-
ory for model training and inference. In total, our
experiments constitute 200 GPU days (32 groups
in RQ1 + 68 groups in RQ2, and each group costs
0.25 GPU days across 8 GPUs).
Metrics. Following previous work (Chen et al.,
2023b, 2020), we use three metrics for evaluating
VulLibGen and baselines: Precision@k, Recall@k,
and F1@k (k = 1, 2, 3).

5.2 Evaluation of VulLibGen

In this subsection, we evaluate the effectiveness of
VulLibGen. We seek to answer the following re-
search question: How does VulLibGen compare to
existing work on identifying vulnerable packages?
Overall Performance: Existing Work vs. VulLib-
Gen. In Table 3, Table 4, Table 5, and Table 6 (Ap-
pendix), we compare the performance of VulLib-
Gen and baselines. From these tables we can ob-
serve that for all programming languages, VulLib-
Gen achieves substantially higher precision com-
pared to existing work. As a result, by leverag-
ing LLMs, VulLibGen can effectively generate the

Table 4: Precision@2, 3 of VulLibGen and Baselines

Approach Java JS Python Go Avg.

Precision@2:
Chronos 0.673 0.598 0.554 0.767 0.648
VulLibMiner 0.695 0.725 0.789 0.669 0.720
GPT4 0.762 0.752 0.851 0.692 0.764
Vicuna-13B 0.722 0.779 0.858 0.747 0.777

Precision@3:
Chronos 0.741 0.648 0.569 0.781 0.685
VulLibMiner 0.724 0.723 0.782 0.715 0.736
GPT4 0.758 0.749 0.754 0.678 0.735
Vicuna-13B 0.743 0.776 0.841 0.785 0.786

Table 5: Recall@k of VulLibGen and Baselines

Approach Java JS Python Go Avg.

Recall@1:
Chronos 0.400 0.412 0.286 0.605 0.426
VulLibMiner 0.520 0.709 0.499 0.544 0.568
GPT4 0.596 0.714 0.542 0.580 0.608
Vicuna-13B 0.552 0.736 0.621 0.688 0.649

Recall@2:
Chronos 0.623 0.591 0.346 0.778 0.585
VulLibMiner 0.647 0.719 0.561 0.653 0.645
GPT4 0.705 0.744 0.585 0.675 0.677
Vicuna-13B 0.669 0.771 0.622 0.733 0.699

Recall@3:
Chronos 0.722 0.645 0.392 0.605 0.591
VulLibMiner 0.705 0.720 0.603 0.713 0.685
GPT4 0.737 0.745 0.597 0.675 0.689
Vicuna-13B 0.720 0.773 0.657 0.782 0.733

names of affected packages with high precision.
Overall, VulLibGen using supervised fine-tuning

on the Vicuna-13B model has the best perfor-
mance. Fine-tuning Vicuna-13B even outperforms
the larger ChatGPT and GPT4 models on all
datasets besides Java. As a result, the knowl-
edge gap of LLMs can be effectively bridged by
leveraging supervised fine-tuning. In Table 12
of Appendix, we further report statistical signif-
icance tests (Kim, 2015) between the overall best-
performing generative approach (i.e., VulLibGen
using Vicuna-13B SFT) and the best-performing ex-
isting work (i.e., VulLibMiner (Chen et al., 2023b)).
The p-values in all tests are smaller than 1e-5.
When Is VulLibGen More Advantageous? From
Table 3 observe that the gap between VulLibGen
Vicuna-13B SFT and the best-performing exist-
ing approach for each programming language are
0.041, 0.031, 0.11, and 0.157. By comparing with
the data statistics in Table 2, we can see that this
gap is highly correlated with #Unique packages in
the dataset and #Total packages in the ecosystem.
In general, VulLibGen is less advantageous when
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Table 6: F1@k of VulLibGen and Baselines

Approach Java JS Python Go Avg.

F1@1:
Chronos 0.451 0.429 0.376 0.653 0.482
VulLibMiner 0.585 0.725 0.622 0.591 0.635
GPT4 0.677 0.740 0.667 0.639 0.684
Vicuna-13B 0.621 0.755 0.746 0.741 0.719

F1@2:
Chronos 0.647 0.594 0.426 0.772 0.615
VulLibMiner 0.670 0.722 0.656 0.661 0.680
GPT4 0.732 0.748 0.693 0.683 0.718
Vicuna-13B 0.694 0.775 0.721 0.740 0.736

F1@3:
Chronos 0.731 0.646 0.464 0.682 0.634
VulLibMiner 0.714 0.721 0.681 0.714 0.710
GPT4 0.747 0.747 0.666 0.676 0.711
Vicuna-13B 0.731 0.774 0.738 0.783 0.759

Figure 3: Trade-Offs between Efficiency and Precision

the output package name is longer and has a larger
token space.

Efficiency of Existing Work vs. VulLibGen. In
Figure 3, we visualize the actual computational
cost and precision of each method in Table 3. We
further mark the upper bound of the ranking-based
approach using LLMs for comparison. The Pre-
cision@1 is upper-bounded by the recall@512 of
TF-IDF, i.e., the best possible Precision@1; while
the time cost is upper-bounded by the time cost of
invoking the 13B model 512 times (10 mins).

We can observe the VulLibGen achieves a sweet
spot in the effectiveness and efficiency trade-off.
When compared with existing work, VulLibGen
achieves a better Precision@1 while the time
cost is comparable to the best-performed existing
work (Chen et al., 2023b). When compared with
the upper bound, VulLibGen achieves a slightly
lower Precision@1 while consuming less than
1/100 time and computation resources.

Table 7: RAG’s Improvement (Precision@1RAG −
Precision@1Raw)

Language Java JS Python Go

Commercial LLMs:
ChatGPT 16.1% ↑ 3.6% ↑ 38.8% ↑ 57.6% ↑
GPT4 12.1% ↑ 0.9% ↑ 0.9% ↑ 31.0% ↑
Full SFT on Open-Source LLMs:
LLaMa-7B 2.2% ↑ 2.2% ↑ 3.1% ↑ 1.8% ↓
LLaMa-13B 3.3% ↑ 0.4% ↑ 2.0% ↑ 3.7% ↑
Vicuna-7B 13.6% ↑ 2.3% ↑ 3.8% ↑ 3.7% ↑
Vicuna-13B 8.7% ↑ 1.2% ↑ 4.9% ↑ 0.0% -

Average 9.3% ↑ 1.8% ↑ 8.9% ↑ 15.7% ↑

5.3 Ablation Studies on VulLibGen

In this subsection, we conduct ablation studies on
the three components of VulLibGen: supervised
fine-tuning, RAG, and local search.
SFT’s Improvement. By comparing the results
of in-context learning vs supervised fine-tuning in
Table 3, we can see that SFT outperforms ICL by a
larger margin. This result indicates that for the 7B
and 13B models, supervised fine-tuning on the full
training data is essential in bridging the models’
knowledge gap.
RAG’s Overall Improvement: Table 7 shows
the improvement of our RAG technique in Preci-
sion@1. Specifically, it improves the Precision@1
by 9.3%, 1.8%, 8.9%, and 15.7% on each program-
ming language, respectively. These improvements
indicate that our RAG technique is effective in help-
ing generate the names of vulnerable packages. We
further report paired t-test results for Table 7 in
Table 13 of Appendix.

Table 7 also indicates that RAG’s improvement
in commercial LLMs is higher than that of open-
source LLMs. Especially in Go vulnerabilities,
our RAG technique improves the Precision@1 by
57.6% and 31.0% on ChatGPT and GPT4. The
main reason is that both ChatGPT and GPT4 do
not have sufficient domain knowledge about Go
packages as they are relatively newer than packages
of other programming languages (Hall, 2023).
RAG Improvement vs. k/Retrieval Algorithm
Choice. We evaluate whether k and the choice of
retrieval algorithm affect the end-to-end effective-
ness of VulLibGen. Specifically, we focus on Java
vulnerabilities (as Java package names are the most
difficult to generate). The result can be found in
Table 8.

For k, we conduct an Analysis of Variance
(ANOVA) (St et al., 1989) among the Precision@1
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Table 8: Precision@1 with Various RAG Inputs in Generating the Names of Java Affected Packages

IR Model: None TF-IDF Results BERT Results

#RAG packages: 1 2 3 5 10 20 1 2 3 5 10 20

Commercial LLMs:
ChatGPT 0.597 0.523 0.498 0.508 0.552 0.540 0.567 0.758 0.743 0.722 0.718 0.715 0.710
GPT4 0.676 0.619 0.559 0.588 0.619 0.626 0.638 0.783 0.773 0.784 0.792 0.797 0.792

Full SFT on Open-Source LLMs:
LLaMa-7B 0.688 0.692 0.697 0.701 0.563 0.591 0.609 0.710 0.701 0.710 0.678 0.665 0.683
LLaMa-13B 0.687 0.688 0.687 0.696 0.653 0.635 0.623 0.720 0.702 0.701 0.701 0.704 0.703
Vicuna-7B 0.561 0.596 0.398 0.404 0.441 0.439 0.421 0.697 0.701 0.683 0.685 0.706 0.683
Vicuna-13B 0.623 0.609 0.450 0.418 0.650 0.655 0.680 0.710 0.712 0.701 0.722 0.719 0.720

of six representative numbers of RAG packages
(ranging from 1 to 20). Although k = 20 has a
slightly higher precision than k = 1 for both TF-
IDF and BERT, this difference is not significant.
In fact, the paired t-test results show that there is
no significant difference among the Precision@1
of different k values (p = 0.814 for TF-IDF and
p = 0.985 for BERT).

As for the retrieval algorithm, we observe that
Precision@1 with TF-IDF results is quite similar to
that of non-RAG inputs, and the Precision@1 with
BERT results is substantially higher than that of
non-RAG/TF-IDF results. As a result, it is essential
to use BERT-retrieved results in RAG.
Local Search’s Improvement. Table 9 shows the
end-to-end improvement in Precision@1 of VulLib-
Gen before and after local search. Our local search
technique improves the Precision@1 by 3.43%,
1.02%, 1.57%, and 6.20% on each programming
language. We further report paired t-test results for
Table 9 in Table 14 of Appendix.

We make the following observations. First, local
search is more effective on commercial LLMs (an
average improvement of 4.58%) than fine-tuned
open-source LLMs (an average improvement of
2.29%). Since commercial LLMs are not fine-
tuned, local search plays an important role in im-
proving the effectiveness of generation. Second,
local search is more effective on Java and Go than
JS and Python. The reason is that since Java and Go
packages are longer (8-14 tokens), LLMs are more
prone to generating partially correct, non-existing
outputs (i.e., Type 2 error in Table 1). Local search
can effectively reduce this type of error.

5.4 Evaluating VulLibGen Performance in
Real World Setting

To examine VulLibGen’s performance in the real-

Table 9: Local Search’s Improvement
(Precision@1Search − Precision@1Raw)

Language Java JS Python Go

Commercial LLMs:
ChatGPT 4.1% ↑ 1.2% ↑ 0.7% ↑ 11.1% ↑
GPT4 5.3% ↑ 2.5% ↑ 2.9% ↑ 8.8% ↑
Full SFT on Open-Source LLMs:
LLaMa-7B 2.9% ↑ 0.9% ↑ 2.2% ↑ 7.0% ↑
LLaMa-13B 3.3% ↑ 0.3% ↑ 0.7% ↑ 4.1% ↑
Vicuna-7B 3.9% ↑ 0.9% ↑ 1.8% ↑ 3.3% ↑
Vicuna-13B 1.1% ↑ 0.3% ↑ 1.1% ↑ 2.9% ↑
Average 3.4% ↑ 1.0% ↑ 1.4% ↑ 6.2% ↑

world setting, for each programming language, we
randomly sample and report a subset of <vulnera-
bility, affected package> pairs that are not listed in
GitHub Advisory (Java: 25, JS: 14, Python: 11, Go:
10). We use VulLibGen to generate the package
names and submit the generated names (VulLibGen
with Vicuna-13B) to GitHub Advisory.

At the time of the writing, the results are summa-
rized below. Java: 21 of them have been accepted
and merged into GitHub Advisory. Among the
remaining 4 packages, 2 of them are considered
non-vulnerabilities, and 2 of them are considered
incorrect affected packages. JS, Python, and Go:
13 of them have been accepted and merged into
GitHub Advisory (2 JS, 8 Python, 3 Go). The de-
tails of these packages are listed in Table 15 of
Appendix.

This result highlights the real-world perfor-
mance of VulLibGen in automatically identifying
affected package names.

6 Related Work

Vulnerable Package/Version Identification. Nu-
merous existing works have proposed methods to
improve the precision of affected package identi-
fication. Multiple existing works model this prob-
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lem as a named entity recognition (NER) problem,
i.e., extracting the subset of description about the
package (Dong et al., 2019; Anwar et al., 2021; Jo
et al., 2022; Kuehn et al., 2021; Yang et al., 2021)
or version (Dong et al., 2019; Zhan et al., 2021;
Zhang et al., 2019; Backes et al., 2016; Zhang et al.,
2018; Tang et al., 2022; Gorla et al., 2014; Wu
et al., 2023). The NER approach works well for the
software version identification since many version
numbers are already in the description (Dong et al.,
2019). On the other hand, the package names are
often only partially mentioned (e.g., CVE-2020-
2167 in Table 1), therefore the NER approaches are
less effective (Lyu et al., 2023). Another branch
of work models the package identification problem
as extreme multi-label learning (XML) where each
package is a class (Chen et al., 2020; Haryono et al.,
2022; Lyu et al., 2023). However, these methods
are limited to less than 3k classes (the labels in their
dataset). Finally, (Chen et al., 2023b) leverages the
re-ranking approach using BERT; however, there
still exists a gap between their method’s precision
and the best possible performance (Table 3).

Retrieval vs Generation. Existing work has in-
vestigated scenarios of replacing the retrieval with
generation. For example, Yu et al. (Yu et al., 2023)
leverages LLM to generate the context documents
for question answering, rather than retrieving them
from a text corpus. Their experiment shows that
the generative approach has a comparable perfor-
mance to the retrieval approach on the QA task.
However, since our task requires us to generate the
exact package name, their conclusion is not directly
transferrable to our task.

Retrieval-Augmented Generation Retrieval-
augmented generation (RAG) (Lewis et al., 2020;
Mao et al., 2020; Liu et al., 2021; Cai et al., 2022)
is a widely used technique and has shown its
effectiveness in various generation tasks, e.g., code
generation or question answering. Specifically,
RAG enhances the performance of a generative
model by incorporating knowledge from a database
so that LLMs can extract and comprehend correct
domain knowledge from the RAG inputs.

Reducing Hallucination. In Section 3, we
show that ChatGPT’s raw output package name
may not exist. This phenomenon is similar
to hallucination (Ji et al., 2023; Tonmoy et al.,
2024), which occurs in various LLM-related tasks.
Among hallucination reduction approaches, post-
processing (Madaan et al., 2023; Kang et al., 2023)

is a widely used one. For example, in code-related
tasks, existing work (Jin et al., 2023; Chen et al.,
2023a; Zhang et al., 2023; Huynh Nguyen et al.,
2022) adopts post-processing techniques to re-
duce/rerank programs generated by LLMs, e.g.,
using deep-learning models, test cases, or compil-
ers to determine whether a generated program is
correct and remove incorrect programs. However,
such techniques cannot be directly adopted in our
task because validating the generated names of af-
fected packages is relatively difficult. It requires a
Proof-of-Chain (PoC) (Mosakheil, 2018), which is
often unavailable due to security concerns. There-
fore, we design our local search algorithm focusing
on Type 2 errors in Table 1.

7 Conclusion

In this paper, we have proposed VulLibGen, the
first framework for identifying vulnerable pack-
ages using LLM generation. VulLibGen conducts
retrieval-augmented generation, supervised fine-
tuning, and a local search technique to improve the
generation. VulLibGen is highly effective, achiev-
ing an average precision of 0.806 while the best
SOTA approaches achieve only 0.721. VulLibGen
has shown high value to security practice. We have
submitted 60 pairs of <vulnerability, affected pack-
age> to GitHub advisory and 34 of them have been
accepted and merged.

8 Limitation

Our work has several limitations, which we plan
to address in our future work:
Challenges in Generating Long and Complex
Package Names. As discussed in Section 5.2, the
effectiveness of VulLibGen depends on the token
length and the number of unique packages. Ta-
ble 3 shows Java is more challenging than others
while having the highest token length and unique
packages (Table 2). To improve the generation
of complicated languages such as Java, we plan
to further enhance the knowledge of LLM using
techniques such as constrained decoding (Post and
Vilar, 2018). We leave this as our future work. In
particular, it may pose further challenges to gener-
ate packages that are exceptionally long. To under-
stand the distribution of token lengths, we report
the quantile statistics of the token lengths in Ta-
ble 10 of Appendix. Table 10 shows that the major-
ity of the package names are shorter than 20 tokens,
therefore, exceptionally long package names are
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very rare.
Challenges in Generating Package Names with
Limited Ecosystem Knowledge. Though VulLib-
Gen has demonstrated its effectiveness in four
widely-used programming languages, some other
programming languages, e.g., C/C++, do not have
a commonly used ecosystem that maintains all its
packages. Thus, it is difficult to generate/retrieve
the affected packages of C/C++ vulnerabilities as
we do not have specific ranges during the RAG step
of VulLibGen. Exploring how to generate RAG re-
sults without a commonly used ecosystem (e.g.,
Maven or Pypi) or collecting other useful informa-
tion for RAG is the future work of this paper.

9 Ethical Consideration

License/Copyright. VulLibGen utilizes open-
source data from GitHub Advisory, along with four
third-party package ecosystems. We refer users to
the original licenses accompanying the resources
of these data.
Intended Use. VulLibGen is designed as an auto-
matic tool to assist maintainers of vulnerability
databases, e.g., GitHub Advisory. Specifically,
VulLibGen helps generate the names of affected
packages to complement the missing data of these
databases. The usage of VulLibGen is also il-
lustrated in Section 4 and our intended usage of
VulLibGen is consistent with that of GitHub Advi-
sory (GitHub, 2024a).
Potential Misuse. Similar to existing open-source
LLMs, one potential misuse of VulLibGen is gen-
erating harmful content. Considering that we
use open-source vulnerability data for LLM fine-
tuning, the LLM might view harmful content dur-
ing this step. To avoid harmful content, we use only
reviewed vulnerability data in GitHub Advisory, so
such misuse will unlikely happen. Overall, the sci-
entific and social benefits of the research arguably
outweigh the small risk of their misuse.
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10 Appendix

10.1 Our Local Search Algorithm

Algorithm 1: Local Search
Input :rawName, a generated package name
Output :vulnNames, names of affected packages.

// Pre-process on name list
1 nameDict, suffixes =← {}, ∅;
2 for name ∈ nameList do
3 prefix, suffix← name.split(“/:”);
4 nameDict[suffix].add(prefix);

// Search the closest prefix/suffix
5 prefix, suffix← rawName.split(“/:”);
6 edit.weight← (Winsert,Wdelete,Wreplace);
7 suffix′ ← argmin

s∈suffixes

edit(suffix, s);

8 prefixes← nameDict[suffix′];
9 if prefixes.isEmpty() then

10 return {suffix′};
11 else
12 prefix′ ← argmin

p∈prefixes

edit(prefix, p);

13 return {prefix′} : {suffix′};

The pseudocode of our local search algorithm is
shown in Algorithm 1. The input of this algorithm
includes one package name generated by LLM to-
gether with the name list of existing libraries under
the same ecosystem. The output of this algorithm is
the name of one existing package that is the closest
to the generated package name.

In Lines 1-4, we pre-process the name list of
candidate packages. Now that we divide a package
name into its prefix and suffix, we first construct
the dictionary nameDict that maps a suffix into
its corresponding prefix.

In Lines 5-13, we search for the closest package
name of the input package name, rawName. In
Line 7, we use its suffix, suffix to find its clos-
est and existing suffix, suffix′. Then in Lines
8-13, we first determine whether it contains a cor-
responding prefix. If it has no prefix (e.g., a Python
package), we directly return the closest suffix. Oth-
erwise, we find its closest prefix, prefix′, from all
prefixs that correspond to suffix′. Additionally,
in Line 6, we manually set the weight used in cal-
culating the edit distances because LLMs change
the package names in terms of tokens instead of
characters. Thus, the weight of inserting one char-
acter should be smaller than that of deleting and
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Table 10: The Quantile Statistics of the Number of
Tokens in the Package Names

quantile 0.5 0.75 0.95 1

Maven 13 15 20 40
npm 4 6 9 16
pypi 3 5 8 15
go 13 15 18 34

Table 11: Parameters Used in Fine-Tuning LLMs

Supervised Fine-Tuning Parameters:

Train Batch Size : 4 Learning Rate : 2e-5
Evaluation Batch Size : 4 Weight Decay : 0.00
Learning Rate schedule : Cosine Warmup Ratio : 0.03
Max Sequence Length: 512 Use Lora: True

In-Context Learning Parameters:

Max Sequence Length: 512 #Shots : 3

replacing one, and we set the empirical weights as
follows, Winsert = 1,Wdelete = 4,Wreplace = 4.

10.2 Statistical Significance Test between
VulLibGen and Baselines

VulLibGen vs the Best Baseline. Table 12 shows
the P-values between the best Precision@1 of the
generative approach (i.e., VulLibGen using Vicuna-
13B SFT) and the best Precision@1 of existing
work (i.e., VulLibMiner (Chen et al., 2023b)), i.e.,
the P-values for Table 3. From this table, we can
observe that the P-values of all tests are smaller
than 1e-5, indicating the significant improvement
of VulLibGen’s effectiveness.
Significance of Using RAG. Table 13 shows the P-
values between VulLibGen’s Precision@1 before
and after RAG in Table 7. We highlight the P-
values that are larger than 0.05 in Table 13. We
can observe that RAG significantly improves the
effectiveness of VulLibGen in most combinations
of LLMs and programming languages.
Significance of Using Local Search. Table 14
shows the P-values between VulLibGen’s Preci-
sion@1 before and after local search in Table 9.
We highlight the P-values that are larger than 0.05
in Table 14. We can observe that local search’s
improvement is less significant in JS and Python
and more significant in Java and Go.

Table 12: The P-Values between VulLibGen vs VulLib-
Miner’s Best Precision@1 in Table 3

Approach Java JS Python Go Avg.

Commercial LLMs:
ChatGPT 2e-13 8e-03 1e-10 3e-01 7e-02
GPT4 1e-18 5e-05 1e-05 3e-05 2e-05

Full SFT on Open-Source LLMs:
LLaMa-7B 7e-07 1e-05 1e-11 9e-06 5e-06
LLaMa-13B 5e-08 1e-04 1e-09 1e-9 4e-05
Vicuna-7B 5e-05 6e-05 1e-12 5e-10 3e-05
Vicuna-13B 7e-07 1e-05 6e-13 1e-11 3e-06

Average 1e-05 1e-03 2e-06 5e-02 1e-02

Table 13: The P-Values between VulLibGen’s Preci-
sion@1 before vs after RAG in Table 7

Language Java JS Python Go Avg.

Commercial LLMs:
ChatGPT 3e-23 1e-06 3e-49 1e-52 3e-07
GPT4 1e-17 2e-02 4e-02 2e-23 2e-02

Fine-Tuned Open-Source LLMs:
LLaMa-7B 3e-04 2e-04 3e-04 4e-02 1e-02
LLaMa-13B 2e-05 0.16 5e-03 8e-04 4e-02
Vicuna-7B 5e-13 8e-03 2e-06 nan 2e-03
Vicuna-13B 8e-03 3e-01 2e-02 8e-03 9e-02

Average 1e-03 8e-02 1e-02 1e-02 3e-02

Table 14: The P-Values between VulLibGen’s Preci-
sion@1 before vs after Local Search in Table 9

Language Java JS Python Go Avg.

Commercial LLMs:
ChatGPT 1e-06 8e-03 0.08 1e-08 2e-02
GPT4 3e-08 6e-05 2e-04 1e-06 6e-05

Fine-Tuned Open-Source LLMs:
LLaMa-7B 3e-05 2e-02 2e-03 9e-06 5e-03
LLaMa-13B 2e-05 0.16 0.08 4e-04 6e-02
Vicuna-7B 2e-06 2e-02 4e-03 2e-03 6e-03
Vicuna-13B 8e-03 0.32 2e-02 8e-03 3e-02

Average 1e-03 0.09 3e-02 1e-03 3e-02
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Table 15: Status of Submitted <Vulnerability, Affected Package> Pairs

CVE ID Language VulLibGen’s Output Status

CVE-2021-41803 Go github.com/hashicorp/consul Closed
CVE-2023-1296 Go github.com/hashicorp/nomad Closed
CVE-2023-2197 Go github.com/hashicorp/vault Closed
CVE-2023-3072 Go github.com/hashicorp/nomad Merged
CVE-2023-3114 Go github.com/hashicorp/terraform Closed
CVE-2023-3299 Go github.com/hashicorp/nomad Merged
CVE-2023-3300 Go github.com/hashicorp/nomad Closed
CVE-2023-3518 Go github.com/hashicorp/consul Merged
CVE-2023-3774 Go github.com/hashicorp/vault Closed
CVE-2023-3775 Go github.com/hashicorp/vault Closed
CVE-2007-2379 JS jquery Closed
CVE-2012-5881 JS yui2 Merged
CVE-2013-2022 JS jplayer Closed
CVE-2013-4383 JS jquery-countdown Closed
CVE-2013-6837 JS types/jquery.prettyphoto Closed
CVE-2014-6071 JS jquery Non-Vuln
CVE-2014-6071 JS jquery Closed
CVE-2018-7747 JS calderajs/forms Incorrect
CVE-2020-10960 JS mediawiki Merged
CVE-2021-32821 JS mootools Closed
CVE-2021-36713 JS datatables Closed
CVE-2021-37504 JS jquery-file-upload Closed
CVE-2021-43956 JS fisheye Closed
CVE-2021-43956 JS crucible Closed
CVE-2010-5327 Java com.liferay.portal:portal-impl Merged
CVE-2010-5327 Java com.liferay.portal:portal-service Merged
CVE-2012-3428 Java org.jboss.ironjacamar:ironjacamar-jdbc Merged
CVE-2013-1814 Java org.apache.rave:rave-core Merged
CVE-2013-1814 Java org.apache.rave:rave-portal-resources Merged
CVE-2013-1814 Java org.apache.rave:rave-web Merged
CVE-2014-0095 Java org.apache.tomcat.embed:tomcat-embed-core Merged
CVE-2014-0095 Java org.apache.tomcat:tomcat-coyote Merged
CVE-2014-1202 Java com.smartbear.soapui:soapui Merged
CVE-2014-9515 Java com.github.dozermapper:dozer-parent Non-Vuln
CVE-2015-3158 Java org.picketlink:picketlink-bindings-parent Incorrect
CVE-2017-1000397 Java org.jenkins-ci.main:maven-plugin Merged
CVE-2017-1000406 Java org.opendaylight.integration:distribution-karaf Merged
CVE-2017-3202 Java com.exadel.flamingo.flex:amf-serializer Merged
CVE-2017-7662 Java org.apache.cxf.fediz:fediz-oidc Merged
CVE-2018-1000057 Java org.jenkins-ci.plugins:credentials-binding Merged
CVE-2018-1000191 Java com.synopsys.integration:synopsys-detect Merged
CVE-2018-1229 Java org.springframework.batch:spring-batch-admin-manager Merged
CVE-2018-1256 Java io.pivotal.spring.cloud:spring-cloud-sso-connector Merged
CVE-2018-3824 Java org.elasticsearch:elasticsearch Merged
CVE-2018-5653 Java wordpress/weblizar-pinterest-feeds Incorrect
CVE-2019-10475 Java org.jenkins-ci.plugins:build-metrics Merged
CVE-2019-5312 Java com.github.binarywang:weixin-java-common Merged
CVE-2020-8920 Java com.google.gerrit:gerrit-plugin-api Merged
CVE-2022-25517 Java com.baomidou:mybatis-plus Non-Vuln
CVE-2008-0252 Python CherryPy Merged
CVE-2008-1474 Python roundup Merged
CVE-2008-1475 Python roundup Merged
CVE-2009-0669 Python ZODB3 Merged
CVE-2009-2265 Python Products.FCKeditor Closed
CVE-2009-2737 Python roundup Merged
CVE-2009-2959 Python Buildbot Merged
CVE-2009-2967 Python Buildbot Merged
CVE-2009-3611 Python backintime Closed
CVE-2010-0667 Python moin Merged
CVE-2021-35958 Python tensorflow Closed

“Merged”: Its corresponding package name is accepted and merged into GitHub Advisory.
“Non-Vuln”: GitHub Advisory’s maintainers do not consider it as a vulnerability.
“Incorrect”: VulLibGen’s output is incorrect and not accepted by maintainers.
“Closed”: VulLibGen’s output is not reviewed by maintainers and automatically closed due to out-of-date.

9780

https://github.com/advisories/GHSA-hr3v-8cp3-68rf
https://github.com/advisories/GHSA-hhvx-8755-4cvw
https://github.com/advisories/GHSA-33j2-92xf-fwm3
https://github.com/advisories/GHSA-rpvr-38xv-xvxq
https://github.com/advisories/GHSA-fhmj-jv7w-vvg2
https://github.com/advisories/GHSA-9jfx-84v9-2rr2
https://github.com/advisories/GHSA-v5fm-hr72-27hx
https://github.com/advisories/GHSA-9rhf-q362-77mx
https://github.com/advisories/GHSA-7j85-mwfj-2gr8
https://github.com/advisories/GHSA-37gg-8xjr-m6x4
https://github.com/advisories/GHSA-w97x-8w5v-6mh4
https://github.com/advisories/GHSA-jjg9-mf63-vqrp
https://github.com/advisories/GHSA-3jcq-cwr7-6332
https://github.com/advisories/GHSA-mjh3-g7qw-vgfv
https://github.com/advisories/GHSA-xc36-3p8q-x8x7
https://github.com/advisories/GHSA-q44p-q588-242q
https://github.com/advisories/GHSA-q44p-q588-242q
https://github.com/advisories/GHSA-jcxc-mh25-387r
https://github.com/advisories/GHSA-pfm2-mqwj-ggm5
https://github.com/advisories/GHSA-v63q-hgqc-qvpg
https://github.com/advisories/GHSA-8q87-cc79-vwjj
https://github.com/advisories/GHSA-43x9-7hfv-mxrf
https://github.com/advisories/GHSA-9p4g-cjcf-q3x2
https://github.com/advisories/GHSA-9p4g-cjcf-q3x2
https://github.com/advisories/GHSA-97gm-mcv6-cphm
https://github.com/advisories/GHSA-97gm-mcv6-cphm
https://github.com/advisories/GHSA-ppg2-ww3w-hq84
https://github.com/advisories/GHSA-428j-q447-47rw
https://github.com/advisories/GHSA-428j-q447-47rw
https://github.com/advisories/GHSA-428j-q447-47rw
https://github.com/advisories/GHSA-wf5v-jhxj-q632
https://github.com/advisories/GHSA-wf5v-jhxj-q632
https://github.com/advisories/GHSA-c2fp-mpmm-cqxv
https://github.com/advisories/GHSA-q79q-94j7-5mgg
https://github.com/advisories/GHSA-9qhq-j4xm-cw48
https://github.com/advisories/GHSA-qhxw-54m9-6wwc
https://github.com/advisories/GHSA-4px2-gqhv-mrc7
https://github.com/advisories/GHSA-j88v-q3vw-p9vr
https://github.com/advisories/GHSA-f5ch-36rg-vfcc
https://github.com/advisories/GHSA-38xm-xhvj-q2qf
https://github.com/advisories/GHSA-6w3h-vq7m-v3qf
https://github.com/advisories/GHSA-4cj8-779h-r25h
https://github.com/advisories/GHSA-q4q2-93pw-qwgf
https://github.com/advisories/GHSA-mjpc-qx7h-r8c9
https://github.com/advisories/GHSA-j3r9-f742-jp74
https://github.com/advisories/GHSA-f8w9-66fp-3jgw
https://github.com/advisories/GHSA-h755-h99p-9ffv
https://github.com/advisories/GHSA-g5q2-cxgq-h2rw
https://github.com/advisories/GHSA-4m48-j3xj-px27
https://github.com/advisories/GHSA-76x8-gg39-5jjg
https://github.com/advisories/GHSA-c3qv-mf8h-434r
https://github.com/advisories/GHSA-j59j-h3g7-cpmf
https://github.com/advisories/GHSA-5432-c996-hvhj
https://github.com/advisories/GHSA-4849-cfqq-r8pq
https://github.com/advisories/GHSA-9rj9-5wcv-xgf2
https://github.com/advisories/GHSA-jqqh-999x-w26w
https://github.com/advisories/GHSA-mj3x-wprp-mvj9
https://github.com/advisories/GHSA-vvf9-jwf6-834q
https://github.com/advisories/GHSA-876c-qmcf-cxv6
https://github.com/advisories/GHSA-4cm9-63x5-55wm

