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Abstract

Note-level Automatic Singing Voice Transcrip-
tion (AST) converts singing recordings into
note sequences, facilitating the automatic an-
notation of singing datasets for Singing Voice
Synthesis (SVS) applications. Current AST
methods, however, struggle with accuracy and
robustness when used for practical annotation.
This paper presents ROSVOT, the first robust
AST model that serves SVS, incorporating
a multi-scale framework that effectively cap-
tures coarse-grained note information and en-
sures fine-grained frame-level segmentation,
coupled with an attention-based pitch decoder
for reliable pitch prediction. We also estab-
lished a comprehensive annotation-and-training
pipeline for SVS to test the model in real-
world settings. Experimental findings reveal
that ROSVOT achieves state-of-the-art tran-
scription accuracy with either clean or noisy
inputs. Moreover, when trained on enlarged, au-
tomatically annotated datasets, the SVS model
outperforms its baseline, affirming the capabil-
ity for practical application. Audio samples
are available at https://rosvot.github.io. Codes
can be found at https://github.com/RickyL-
2000/ROSVOT.

1 Introduction

Note-level automatic singing voice transcription
(AST) refers to converting a singing voice record-
ing into a sequence of note events, including note
pitches, onsets, and offsets (Mauch et al., 2015;
Hsu et al., 2021; Wang et al., 2022a; Yong et al.,
2023). As part of the music information retrieval
(MIR) task, AST is widely used in professional mu-
sic production and post-production tuning. With
the recent advancements of singing voice synthesis
(SVS) (Liu et al., 2022; Huang et al., 2022; Zhang
et al., 2022b; He et al., 2023), there is a growing de-
mand for annotated data, while AST methods just
demonstrate the potential for automatic annotation.

*Corresponding author

Note transcription from singing voices is par-
ticularly difficult than from musical instruments,
as the pitch component of human voices is highly
dynamic. When singing, people articulate words,
leading to unstable pitches and blurry note bound-
aries. For instance, if a word starts with a voiceless
consonant, the pitch onset may be slightly delayed.
Also, singing techniques like vibrato and appog-
giatura further complicate boundary localization.

Singing Voice

Counting Stars...

Figure 1: AST and ASR systems serve SVS.

An AST task is mainly decomposed into two
steps: note segmentation and pitch estimation. The
first step predicts boundaries, or onset and offset of
each note, which is always implemented as classifi-
cation (Hsu et al., 2021; Yong et al., 2023) or object
detection (Wang et al., 2022a) tasks. For pitch esti-
mation, previous works primarily adopt weighted
median or average operations on FO values.

Despite previous accomplishments, there is no
AST model that, to our knowledge, achieves a com-
plete annotation pipeline for training an SVS model.
Applying AST approaches to automated annotation
for SVS tasks still faces several challenges:

* Insufficient accuracy. Despite numerous efforts
to improve accuracy, the performance is still in-
sufficient for automatic annotation. Currently,
AST results serve merely as a preliminary guide,
necessitating additional manual refinement for
actual application (Zhang et al., 2022a).

* Asynchronization between notes and texts.
SVS models often require text-note synchro-
nized annotation. Currently, transcribing singing
voices without the supervision of word/phoneme
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boundaries requires additional post-processing
for alignment, introducing accumulative errors.
* Inadequate robustness. Web crawling is a pop-
ular method for data collection (Ren et al., 2020),
but the quality varies. AST methods are vulner-
able to noise as sound artifacts tend to disrupt
boundary localization and pitch perception.

In this paper, we present ROSVOT, a RObust
Singing VOice Transcription model that ultimately
serves SVS. The note boundary prediction is formu-
lated as one-dimensional semantic segmentation,
and an attention-based decoder is employed for
pitch prediction. To achieve both coarse-grained
semantic modeling and fine-grained frame-level
segmentation, we devise a multi-scale architecture
by integrating Conformer (Gulati et al., 2020) and
U-Net (Ronneberger et al., 2015). Moreover, the
model incorporates word boundaries to guide the
segmentation process. We randomly mix the in-
put waveforms with MUSAN (Snyder et al., 2015)
noise to simulate a noisy environment, forming a
bottleneck and bolstering denoising capabilities.

To demonstrate the potential of ROSVOT in prac-
tical annotation applications, we conduct extensive
experiments on a comprehensive annotation-and-
training pipeline on an SVS task, simulating real-
world scenarios. We choose and slightly modify
RMSSinger (He et al., 2023), one of the state-of-
the-art SVS models, to be the singing acoustic
model. Experiments show that the SVS model
trained with pure transcribed annotations achieves
91% of the pitch accuracy compared to manually
annotated data, without loss of overall quality. We
also explore the generalization performance on
cross-lingual tasks, where we use ROSVOT trained
with Mandarin corpora to annotate an English cor-
pus, which is then used to train an SVS model. Our
contributions are summarized as follows:

* We propose ROSVOT, the first robust AST model
that serves SVS, which achieves state-of-the-art
transcription accuracy under either clean or noisy
environments.

* We construct a comprehensive annotation-and-
training pipeline to investigate the effect of auto-
matically transcribed annotations on SVS tasks.

* The proposed multi-scale model outperforms the
previous best published method by 17% relative
improvement on pitch transcription, and by 23%
with noisy inputs.

* By incorporating automatically annotated large-
scale datasets, we demonstrate ROSVOT’s capa-

bility of practical application and the opportunity
to alleviate data scarcity in SVS.

* We explore the cross-lingual generalization capa-
bilities of ROSVOT.

2 Related Works

2.1 Automatic Singing Voice Transcription

AST is useful not only in automatic music transcrip-
tion (AMT) (Bhattarai and Lee, 2023), but also a
promising task for audio language models (Yang
et al., 2023) and speech-singing interaction model-
ing (Li et al., 2023). TONY (Mauch et al., 2015)
predicts note events by applying hidden Markov
models (HMM) on extracted pitch contours. VO-
CANO (Fu and Su, 2019; Hsu et al., 2021) consid-
ers the note boundary prediction as a hierarchical
classification task. and leverages a hand-crafted sig-
nal representation for feature engineering. MusicY-
OLO (Wang et al., 2022a) adopts object detection
methods from image processing to localize the on-
set and offset positions. Considering the linguistic
characteristic of singing voices, Yong et al. (2023)
introduces extra phonetic posteriorgram (PPG) in-
formation to improve accuracy. However, a PPG ex-
tractor requires an extra training process and makes
the AST model difficult to generalize across lan-
guages. Gu et al. (2023) attempts to achieve robust
transcription through self-supervised pre-training
and multimodal injection.

2.2 Singing Voice Synthesis

Recently, there has been notable progress in the
field of SVS. HifiSinger (Chen et al., 2020) and
WeSinger (Zhang et al., 2022c) employ GAN-based
networks for high-quality synthesis. (Liu et al.,
2022) introduces a shallow diffusion mechanism
to address over-smoothness issues in the general
Text-to-Speech (TTS) field. Taking inspiration
from VITS (Kim et al., 2021), VISinger (Zhang
et al., 2022b) constructs an end-to-end architecture.
To achieve singer generalization, NaturalSpeech 2
(Shen et al., 2023) and StyleSinger (Zhang et al.,
2023) utilize a reference voice clip for timbre and
style extraction. To bridge the gap between realistic
musical scores and MIDI annotations, RMSSinger
(He et al., 2023) proposes word-level modeling
with a diffusion-based pitch modeling approach.
Open-source singing voice corpora also boost the
development of SVS (Huang et al., 2021; Zhang
et al., 2022a; Wang et al., 2022b). However, the
quantity of annotated singing voice corpora is still
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small compared to speech, while note annotations
of some corpora are even unavailable.

3 Method

3.1 Problem Formulation

In the note segmentation step, the model pre-
dicts onset/offset states at each timestep ¢, where
t € [1,T] and T is the temporal length of the spec-
trogram. Without loss of generality, we introduce
silence notes to connect each note in the entire
sequence end-to-end, replacing the onset/offset tu-
ples by a single note boundary notation sequence
Yod = (Y Yigs - Yiyl, where yty = 1if the state
is boundary at timestep ¢ and O is not. The si-
lence note has a pitch value of 0. Notice that
S Ypa = len(p) — 1, where p = [pl,p?, ... p"]
is the pitch value sequence, L is the total number
of notes, and len(-) computes lengths of sequences.
Therefore, the first step can be treated as semantic
segmentation, predicting a binary-label sequence.
The second step is to predict the pitch sequence p.

3.2 Overview

As shown in Figure 1, a common data collec-
tion pipeline for SVS consists of two stages: a)
phoneme/word annotation and b) note annotation,
where the former can be achieved by utilizing au-
tomatic speech recognition (ASR) approaches and
forced alignment tools, such as MFA (McAuliffe
etal., 2017). The second stage, however, is far from
reaching a fully automatic level. Arduous manual
annotation hinders large-scale data collection. A
high-precision and robust annotator is required.

Note segmentation is a multi-scale classifica-
tion task, in that the note events are coarse-grained
while the predicted boundary sequence ¥y, is fine-
grained. Therefore, we construct a multi-scale
model, combining a U-Net backbone and a down-
sampled Conformer, as illustrated in Figure 2. The
model takes Mel-spectrograms, FO contours, and
word boundaries as inputs. To improve robust-
ness, we train the model under noisy environments
and apply various data augmentation operations.
For pitch prediction, we adopt an attention-based
method to obtain dynamic temporal weights and
perform weighted averages. The note segmentation
part and the pitch prediction part are trained jointly
to acquire optimal results.

3.3 Data Augmentation
3.3.1 Label Smoothing

The exact temporal positions of note onset and
offset are difficult to demarcate on a microscopic
scale, because transitions between notes are con-
tinuous and smooth. Therefore, label smoothing is
a popular strategy in AST tasks (Hsu et al., 2021;
Yong et al., 2023). Also, soft labels carry more
information than hard labels, such as the desired
confidence for the model. Specifically, we apply
temporal convolution operation between the label
sequence Y,y and a Gaussian filter G[n]:

2

o S Wg
G[n] = 5mo¢ 2, if|n[ <] 2 : (1)
0, otherwise

where the filter G[7| is normalized before convo-
lution, so the middle of each soft label remains 1.
W indicates the window length of the filter.

3.3.2 Noise

We mix realistic noise signals with waveforms be-
fore extracting spectrograms. MUSAN noise cor-
pus is utilized to randomly incorporate the inter-
ference. MUSAN corpus consists of a variety of
noises, such as babble, music, noise, and speech.
The intensity of incorporated noise is randomly ad-
justed according to a signal-to-noise ratio (SNR)
interval of [6,20]. The noise signal 77 is repeated
or chunked to meet the length of each training
sample. In the training stage, we conduct noise
mixing followed by on-the-fly extraction of Mel-
spectrograms:

RMS(y/lO(SNR/zo)) 3
RMS (1) )

X =Fy) “)

y=y+nx

where F(-) is Mel-spectrogram extraction opera-
tion, RMS(+) is root-mean-square operation, and
X is the resulting spectrogram.

In addition to spectrograms, we also add noise to
FO contours and label sequences. Since the model
takes FO contours as input, a clean FO contour can
leak information. We simply add Gaussian noise to
logarithmic FO contours and soft labels to improve
robustness.
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Figure 2: The overall architecture. Ey;, Eg, and Ep represent encoders of Mel-spectrogram, word boundaries, and
FO contour input. Dg and Dp stand for decoders of note boundaries and pitches. The "Down" and "Up" parts denote
the encoder and decoder of the U-Net backbone. The "Seg." and "Smooth" notations indicate temporal segmentation
and label smoothing operations. Eyy indicates an optional extractor used to provide word boundaries.
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Figure 3: Word-note synchronization.

3.4 Word Boundary Condition

To regulate segmentation results and better suit
practical annotation, we incorporate word bound-
ary conditions. The word boundary sequence y,, 4
has the same form as note boundaries Y4, involv-
ing silence or "NONE" words. The regulation is
necessary because, in practical annotation, word
sequence and note sequence need to be temporally
synchronized, as shown in Figure 3. In other words,
the presence of a word boundary at timestep ¢ im-
plies the existence of a note boundary at ¢, but the
reverse may not hold true. This is because melisma
is a commonly used singing technique. Without
regulation, additional post-processing is required
to synchronize words and note sequences.

Since in practice, the note annotation stage fol-
lows the phoneme annotation stage, word bound-
aries should already be obtained through forced
alignment tools like MFA. We directly encode word
boundaries as an additional condition to ensure
word-note synchronization. Moreover, to provide
note-only support, we train an extra word boundary
extractor Ew to deal with scenarios like vocal tun-
ing in music industries, where word alignment is

unavailable. More details are listed in Appendix A.

3.5 Multi-scale Architecture

The semantic information of note events is coarse-
grained and high-level, while the segmentation re-
sult y,4 is fine-grained and frame-level. To tackle
this problem, we design a multi-scale model, in-
corporating multiple feature encoders and a pitch
decoder, illustrated in Figure 2.

For precise segmentation, high-resolution results
are essential to prevent rounding errors. Hence, we
employ a U-Net architecture for its ability to down-
sample representations while ensuring detailed re-
construction. To capture the high-level features as-
sociated with note events, we utilize a Conformer
network, one of the most popular ASR models. The
U-Net architecture envelops the Conformer, direct-
ing its focus towards the downsampled features and
easing the computational load of processing long
sequences. Through the integration of skip con-
nections, our model achieves refined frame-level
accuracy by fusing features across multiple scales.

The U-Net backbone’s encoder and decoder each
comprise K downsampling and upsampling layers,
respectively. The downsampling rate is set to 2, and
the channel dimension remains the same as input
to alleviate overfitting. The intermediate part of the
backbone is replaced by a 2-layer Conformer block
with relative position encoding (Dai et al., 2019).
The detailed architecture is listed in Appendix B.
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3.6 Decoders and Objectives

3.6.1 Note Segmentation

We adopt a note boundary decoder, denoted as Dg,
to transform the output feature Z from the U-Net
backbone into logits 4,4, where Z € R7*¢ and C
is the channel dimension. Dy is implemented by a
single matrix Wg € RE*1. A binary cross-entropy
(BCE) loss Lp is applied to train note segmenta-
tion. The details of loss functions are listed in
Appendix D, similarly hereinafter.

It is worth mentioning that in the note segmenta-
tion task, there is a significant imbalance between
positive and negative samples, with a ratio of ap-
proximately 1:500'. Also, the inclusion of word
boundary conditions results in varying classifica-
tion difficulties, with some boundaries being inher-
ently easier to classify than others. To tackle this
imbalance problem, we employ a focal loss (Lin
et al., 2017), Lgc, to focus more on hard samples.

3.6.2 Pitch Prediction

For pitch value prediction Dp, we leverage an
attention-based weighted average operation to ag-
gregate the fine-grained features, instead of simply
applying a weighted median or average. Given
the output feature Z € R7*, we obtain an atten-
tion weight matrix S through a projection matrix
Wa € RO § = 5(ZW,), where S € RT*H
and H denotes the number of attention heads.
Then we perform an outer product operation be-
tween each vector of Z and S along the time di-
mension to obtain a pre-weighted representation:
Zt = 7' ® St and Z; € RT*OXH which is fur-
ther averaged along the head dimension to acquire
the weighted representation @ € R7*“. In addi-
tion, we compute the averaged weights s € R” by
averaging along the head dimension.

Subsequently, we use the note boundary se-
quence Y4 to segment () along the time axis, re-
sulting in a group sequence G = [G',G?, ..., G¥]
with length of L, number of notes. Each group
(or segment) G" contains I; consecutive vectors:
G = [QIF, QIT2 .., QIth], where YK 1 =
T,i¢e[l,L],5 € [1,T], and ygd = 1. We also
do the same for the averaged weights s: G =
[s7T1, 5712 .. s7tl]. For each group, we compute
a weighted average z*:

i l; j
D MDY S0
> G Zfﬁ: | stk

!Statistically, there are approximately 2.42 note boundaries
per second in our datasets.

6))

Finally, we multiply z with a matrix W to com-
pute the logits: p = zWo, where z € RL*C and
Wo € RE*P . P is the number of pitch categories.
A cross-entropy (CE) loss, Lp, is utilized.

3.7 Training and Inference Pipeline

In the training stage, we use ground-truth (GT) note
boundaries to segment the intermediate features
and optimize the pitch decoder. The overall loss
L = XgLp + AecLrc + ApLp is controlled by
balancing parameters \g, Arc, and Ap.

In the inference stage, firstly we compute the
boundary probability o (9,,) and use a threshold p
to decide the boundary state. That is, a note bound-
ary exists at time step t if o(¢,q) > ., otherwise,
it does not. The predicted results will undergo post-
processing to clean up boundaries with excessively
small spacing between them. Finally, we segment
the intermediate feature Z and decode pitches.

It is worth mentioning that p can control the
granularity of generated notes. In other words, a
lower 1 may result in more fine-grained and sub-
divided pitches, while a higher one ignores small
fluctuations. This is because a lower . allows more
boundaries.

3.8 Singing Voice Synthesis System

Once we complete the inference and automatically
annotate a dataset, the new datasets are used to train
an SVS system to further investigate the practical
performance. We choose RMSSinger as the singing
acoustic model and a pre-trained HiFi-GAN (Kong
et al., 2020) model as the vocoder. RMSSinger is
originally proposed for word-level realistic music
score inputs, denoted as S. To suit our settings, we
drop the word-level attention module and directly
use the fine-grained MIDI input. The alignment be-
tween MIDI notes and phonemes and other settings
are reproduced according to He et al. (2023).

4 Experiments

In this section, we begin by showcasing experi-
ments on AST tasks, followed by simulations and
comparisons of a comprehensive annotation-and-
training pipeline for an SVS task. We also inves-
tigated the model’s performance in low-resource
scenarios; however, due to space limitations, this
part is included in Appendix G.

4.1 Experimental Setup

Data We utilize two Mandarin datasets. The first is
M4Singer (Zhang et al., 2022a), a multi-singer and
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multi-style singing voice corpus, which is approxi-
mately 26.5 hours after pre-processing. Secondly,
we collect and annotate a high-quality song corpus,
denoted as D;. D; is composed of songs sung by
12 professional singers, with a total length of 20.9
hours. For training AST models, these two datasets
are used jointly, with two 3% subsets used as the
validation and the testing sets. Two 1% subsets of
MUSAN noise corpus are also isolated. The details
of data collection are listed in Appendix C.

Implementation and Training The sample rate
of waveforms is 24 kHz. FO contours are extracted
through a pre-trained RMVPE (Wei et al., 2023)
estimator, where each FO value is quantized into
256 categories. The length of softened boundaries
is set to 80 ms. The U-Net backbone is constructed
with 4 down- and up-sampling layers, with 16X
downsampling rate. For inference, the boundary
threshold p is set to 0.8. More details are listed in
Appendix B.

Evaluation We utilize the mir_eval library (Raf-
fel et al., 2014) for performance evaluation. Specif-
ically, we apply the metrics proposed in (Molina
et al., 2014): COn (correct onset), COff (correct
offset), COnP (correct onset and pitch), COnPOff
(correct onset, pitch, and offset). An average over-
lap ratio (AOR) is also calculated for correctly tran-
scribed note duration, and a raw pitch accuracy
(RPA) for overall perception performance. Given
GT and corresponding predicted notes, their over-
lap ratio (OR) is defined as the ratio between the
duration of the time segment in which the two notes
overlap and the time segment spanned by the two
notes combined. The AOR is given by the mean
OR computed over all matching GT and predicted
notes. For RPA, we transform the GT and pre-
dicted note events into frame-level sequences and
compute matching scores.

We remove silence notes and designate the
boundaries that enclose each note as onset and
offset for the evaluation of ROSVOT. This step
is unnecessary for other baselines. The onset tol-
erance is set to 50 ms, and the offset tolerance is
the larger value between 50 ms and 20% of note
duration. The pitch tolerance is set to 50 cents. All
numbers demonstrated are multiplied by 100.

Baselines We compare ROSVOT, denoted as M,
with multiple baselines: 1) TONY (Mauch et al.,
2015), an automatic software with visualization;
2) VOCANO (Hsu et al., 2021), retrained on the
joint datasets; 3) MusicYOLO, retrained; 4) (Yong

et al., 2023), reproduced and retrained. We also
compare the results of several variants of M: 1)
M (conformer), where the U-Net is dropped and
the backbone is the Conformer alone; 2) M (conv),
where the middle Conformer blocks are replaced
by 8-layer convolution blocks; 3) M (w/o wbd),
canceling word boundary condition; 4) M (w/o
noise), which is identical to M but trained without
noisy environment; 5) M (w/ Ey), meaning that
the GT word boundaries are not available and need
to be extracted from the extractor Ey.

4.2 Main Results

We run two sets of experiments under clean and
noisy environments, respectively. The noisy envi-
ronment is produced by mixing MUSAN noises
with a probability of 0.8 and an SNR range of
[6, 20]. The main results are listed in Table 1. For
the sake of brevity, only major scores are listed here,
and the complete scores are listed in Appendix F.

From the results, we can see that 1) the proposed
multi-scale model achieves better performances for
both boundary detection and pitch prediction by
a large margin, even without noises; 2) Training
under a noisy environment significantly improves
the robustness, while the performances of baselines
are severely degraded when facing noisy inputs; 3)
The involvement of noises in training stage also
improves the inference performance facing clean
waveforms, this may because the noise mixing op-
eration forms a bottleneck to force the model to
focus on note-related information.

4.3 Ablation Study

To demonstrate the effectiveness of several designs
in the proposed method, we conduct ablation stud-
ies and compare the results of different hyperpa-
rameters. From Table 1 we can see that dropping
the U-Net backbone or replacing the Conformer
with convolution blocks decreases the performance.
In particular, the performance of M (conformer)
significantly deteriorates when dealing with noisy
inputs, suggesting that the downsampling layers
contribute to a denoising effect. This is also vali-
dated in the results of M (w/o noise), indicating
that even though it is trained with clean samples,
it still exhibits a certain level of robustness. For
a fair comparison, we test M (w/ Ey) to demon-
strate the performance in note-only scenarios. The
results indicate that despite the accumulated errors
introduced by the word boundary extractor Ey, the
performance does not decline significantly.
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Method COn (F) 1T | COff (F) 1 | COnPOff (F) 1 | Pitch (AOR) 1 | Melody (RPA) 1
clean noisy | clean noisy [clean noisy |clean noisy |clean  noisy
TONY 67.5 492 | 57.8 47.0 | 43.9 284 | 73.8 46.6 | 739 45.2
VOCANO 758 647 | 71.2 66.1 | 50.2 434 814 719 | 76.6 59.8
MusicYOLO 822 79.7|81.7 76.5 | 589 51.5 854 78.6 | 81.6 78.9
(Yong et al., 2023)| 92.0 88.5 | 91.4 89.7 | 65.8 62.1 91.6 864 | 83.1 80.6
M (conformer) 92.1 90.6 | 91.8 90.8 | 70.3 69.8 959 953 | 839 83.1
M (conv) 91.6 915|926 926|709 708 96.8 96.8 | 84.1 84.1
M (w/o whbd) 913 91.1 | 91.8 912|702 699 |955 951 |838 834
M (w/o noise) 93.8 909 [ 942 915|764  70.1 97.1 952 | 87.1 83.1
M (w/ Ey) 933 9351932 929 | 77.1 77.0 | 965 962 | 875 87.2
M (ours) ‘ 94.0 938 | 945 944 | 774 77.0 |97.0 971 | 87.6 87.4

Table 1: Evaluation results of AST systems.

Rate Step (ms) | COn COff COnPOff

2 10.7 9277 924 70.7
4 213 939 93.6 73.6
8 427 944 94.1 76.8
16 85.3 940 945 77.4
32 170.7 943 941 77.2

Table 2: Comparisons of different downsampling rates.
"Step" denotes the downsampled step size in the Con-
former, measured in milliseconds.

We record the comparison results of different
overall downsampling rates of the U-Net backbone
in Table 2, where only F1 scores are listed. The
results align remarkably well with the length of
the soft labels, which are both about 80 ms. We
choose the rate of 16 in the final architecture M as
it achieves better overall performance.

For pitch prediction, we compare the results be-
tween the proposed attention-based method and the
weighted median method used in previous works.
We drop the pitch decoder Dp and apply a weighted
median algorithm on the FO contours according to
(Yong et al., 2023). The F1 and AOR scores of
this algorithm with clean inputs are 70.5 and 92.6,
while the scores with noisy inputs are 63.2 and 86.6.
The results indicate that a simple weighted median
is insufficient in dealing with fluctuated pitches in
singing voices, which are full of expressive tech-
niques like portamentos. Also, its performance is
largely dependent on the FO extractor.

4.4 Towards Automatic Annotation

The experimental results indicate that ROSVOT
achieves superior performance, but what practical
significance does it hold? In this section, we estab-

lish a comprehensive SVS pipeline, using ROSVOT
as the automatic annotator.

4.4.1 Implementation and Pipeline

Data. We re-align and re-annotate the OpenSinger
corpus (Huang et al., 2021), which consists of 84.8
hours of singing voices recorded by 93 singers. We
also perform cross-lingual generalization by anno-
tating an English corpus D,, which has a length
of 6 hours. For future reference, we use the term
pseudo-annotations for the automatically generated
transcriptions. Details are listed in Appendix C.
Evaluation. For objective evaluation, we also ap-
ply the RPA score to measure the reconstructed
FO contours. The RPA scores for GT Mel are
computed between FOs from GT vocoder gener-
ations and GT waveforms, while the others are
between GT and generations. For subjective evalu-
ation, we conducted crowdsourced mean opinion
score (MOS) listening tests. Specifically, we score
MOS-P and MOS-Q corresponding to pitch recon-
struction and overall quality. The metrics are rated
from 1 to 5 and reported with 95% confidence inter-
vals. For a more intuitive demonstration, we record
Comparative Mean Opinion Scores (CMOS) and
discuss the results in Appendix F.

4.4.2 SVS Results

Firstly, we investigate the effect of training with
pseudo-annotations at different ratios. We only
utilize M4Singer to train ROSVOT M, which is
used to generate the pseudo annotations. Pseudo
annotations with different ratios are mixed into D;
to form the training set. For inference, we reserve
two 1% segments from each real and pseudo group
for validation and testing. The results are listed in
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. . RPA MOS-P MOS-Q

Real R.Size Pseudo P.Size R P R p R p

- - - - \ 95.5 4.16+0.11 4.08+0.08
D, 20.9 - 0.0 |67.6 61.1|3.69+0.09 3.5440.07|3.811+-0.04 3.744-0.05
D; x50% 105 Dy x50% 10.5 [66.0 61.0]3.62+0.03 3.56+0.08 | 3.76+0.07 3.72+0.03
Dy x10% 2.1 Dy x90% 18.8 [65.9 61.3|3.65+0.05 3.554+0.05|3.71£0.08 3.73+0.04
Dy x 5% 1.0 Dy x95% 199 [63.0 63.3[3.61+0.05 3.574+0.04 |3.73+0.05 3.78+0.03
Dy x 1% 02 Dy x99% 20.7 |63.5 64.7|3.60+£0.04 3.5940.04 | 3.744+0.06 3.76+0.04
- 0.0 D, 209 |61.8 64.6|3.604+0.06 3.584+0.03|3.734+0.04 3.7340.08
M4 26.5 - 0.0 |68.1 67.7|3.63+£0.05 3.60+0.04|3.794+0.05 3.7740.07
M4+D; 474 - 0.0 |67.4 66.5|3.67+0.07 3.5940.08|3.814+0.04 3.8040.06
M4 26.5 D, 209 |66.6 64.9|3.644+0.08 3.611-0.04 | 3.804+0.07 3.8040.04
M4 26.5 D;+O0P 105.7 |66.1 64.1|3.63+0.10 3.604+0.07|3.83+0.09 3.81+-0.08

Table 3: Evaluation results of SVS pipelines. The first row is for GT Mel, where we generate waveforms using the
vocoder from GT Mel-spectrograms. "M4" denotes M4Singer, and "OP" denotes OpenSinger. "R" and "P" denote
inference results using real or pseudo annotations, respectively. The sizes are measured in hours.

Model | RPA

GT 96.1
S(large) | 45.2

MOS-P MOS-Q

4.02+£0.05 4.04 +£0.06
336 £0.12 3.45+0.09

Table 4: Results of cross-lingual SVS generalization.

Table 3, rows 2-7. From the results, we can see
that the pitch accuracy of real annotation inputs
decreases when mixing more pseudo annotations,
but the accuracy of pseudo inputs increases. This
suggests a minor discrepancy in the distributions
of real and pseudo annotations. However, the per-
formance degradation is not significant: 99% of
the pseudo mixing contributes only a 6% drop in
performance. The MOS-Q scores share a similar
pattern, but they involve a comprehensive evalua-
tion with considerations of audio quality and more.
A decrease in pitch accuracy does not necessarily
lead to an overall decline in quality.

We further investigate the performance as data
size increases. While the AST model remains the
same, we train S only using M4Singer as the base-
line. Next, we gradually mix D; and OpenSinger
to expand the data size. To consume the largest
datasets in the last row, we construct a large ver-
sion of RMSSinger with 320-dimensional channels
and a 6-layer decoder?, denoted as S(large). The
results are listed in Table 3, rows 8-11. A slight
reduction in pitch accuracy can be observed when
integrating diverse datasets, which may result from
the inherent differences in dataset characteristics

The dictionary of the text encoder is also merged with
English phonemes for the following cross-lingual experiments.

and annotation styles. However, the overall quality
slightly improves, as the model has been exposed
to a sufficient variety of pronunciation styles and
singing patterns. This indicates that ROSVOT pro-
vides an opportunity for SVS models to scale up,
which could be beneficial for large-scale singing
voice pre-training or zero-shot SVS.

4.4.3 Cross-lingual Generalization

We further investigate the zero-shot cross-lingual
capability of ROSVOT, and explore the feasibility
of generalizing a Mandarin SVS model to English.
We use the same ROSVOT model combined with
Ew trained with M4Singer and test it on TONAS
(Gbémez and Bonada, 2013), a flamenco a cappella
singing corpus. The quantitative results are listed
in Table 6 in Appendix F. Performance is de-
graded, and we believe it may be due to the fla-
menco singing style (which has rich techniques
like appoggiatura) and the unseen language, since
the model is trained with Mandarin pop songs.

For SVS, we finetune the pre-trained model
S(large) on the English corpus Do, a 6-hour dataset
transcribed automatically using MFA and the AST
model above. Note that since the word duration
information is obtained using MFA, we drop Ew
and directly generate word-note synchronized tran-
scriptions. We finetune both stages 1 and 2 of
RMSSinger for 100k steps. The evaluation results
are listed in Table 4.

Although the performance is not superior, the
results still demonstrate certain cross-lingual ca-
pabilities. There are vast differences in pronunci-
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ation rules and phonetic characteristics between
English and Mandarin, since they belong to two
distinct language families. If a model possesses
a certain capability to transfer from Mandarin to
English, it essentially demonstrates a degree of gen-
eral cross-linguistic ability. We will leave elaborate
validations and evaluations of general cross-lingual
capabilities for future work.

5 Conclusion

In this paper, we introduced ROSVOT, the first ro-
bust AST model that ultimately serves SVS. We
leveraged a multi-scale architecture to achieve a
balance between coarse-grained note modeling and
fine-grained segmentation. An attention-based de-
coder with dynamic weight was devised for pitch
regression. Additionally, we established a com-
prehensive pipeline for SVS training. Experimen-
tal results revealed that our model achieved the
best performance under either clean or noisy en-
vironments. Annotating and incorporating larger
datasets improved the SVS model’s performance,
indicating the capability of practical annotation of
ROSVOT.

Limitations and Potential Risks

The proposed method acknowledges two primary
limitations. First, the cross-lingual capability is
only tested on a small-scale English dataset, neces-
sitating extensional experiments for a comprehen-
sive evaluation of generalization performance. Sec-
ond, due to space constraints, only one SVS model
is examined as the baseline. Additional verifica-
tions involving different SVS models are required
to fully demonstrate practical performance. Future
work will involve testing automatically annotated
transcriptions on a more diverse set of SVS models.

The misuse of the proposed model for singing
voice synthesis could potentially lead to copyright-
related issues. To address this concern, appropriate
constraints will be implemented to mitigate any
illegal or unauthorized usage.
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A Word Boundary Condition

Word boundary conditions are introduced to regu-
late segmentation results. It seems similar to Yong
et al. (2023), but a word boundary sequence forms
a much narrower information bottleneck without
introducing unnecessary information. In practice,
we embed the word boundary sequences to inform
the model of boundary conditions. Also, we use
the word boundary sequence as a reference to reg-
ulate the predicted note boundaries. Specifically,
we remove the note boundaries that are too close to
the reference word boundaries, where the threshold
is 40 ms.

This regulation is only for automatic annota-
tion. For a note-only application, word-note syn-
chronization is not necessary. In this scenario,
we build a word boundary extractor Ew to pro-
vide weak linguistic supervision. The extractor
shares the same architecture as the note segmenta-
tion part of ROSVOT. The multi-scale architecture
also functions well in localizing frame-level word
boundaries. Specifically, we use an MFA-aligned
AISHELL-3 Mandarin corpus to pre-train Ew, fol-
lowed by fine-tuning it with M4Singer and D;.

B Architecture and Implementation
Details

B.1 Hyperparameters

For hyperparameters, we sample waveforms with
a sample rate of 24000 Hz. Mel-spectrograms are
computed with a window size of 512, and a hop
size of 128. The number of Mel bins is set to 80. To
form a bottleneck and alleviate overfitting, we only
use the first 30 bins (low-frequency part) as input.
MUSAN noises are added to the waveforms with
a probability of 0.8 and an SNR range of [6, 20].
Gaussian noise is added to the logarithmic FO con-
tours with a random standard deviation range of
[0,0.04], and is added to the softened boundary
labels with [0,0.002]. FO contours are extracted
through a pre-trained RMVPE (Wei et al., 2023)
estimator, where each FO value is quantized into
256 categories. We set P, the number of pitch cate-
gories, to 120, where each pitch number is the exact
MIDI number. The length of softened boundaries
is set to 80 ms, indicating a 15-frame window Wg.
The temperature parameters 77 and 75 are set to 0.2
and 0.01. To balance the various objectives, we set
AB, Arc, andAp to 1.0, 3.0, and 1.0. For inference,
the boundary threshold p is set to 0.8. The hyperpa-
rameters « and +y in the boundary decoder are set to
1/(2.42 x 128/24000) and 5.0, where the 2.42 in
the former indicates the number of note boundaries
in one second, and 128 and 24000 indicate the hop
size and the audio sample rate.

We train the AST model for 60k steps using 2
NVIDIA 2080Ti GPUs with a batch size of 60k
max frames. An AdamW optimizer is used with
B = 0.9, B = 0.98,e¢ = 1078, The learning
rate is set to 10> with a decay rate of 0.998 and a
decay step of 500 steps.

B.2 Architecture

For model architecture, we apply three encoders
Ewm, Eg, Ep to encode Mel-spectrograms, word
boundaries, and FO contours. The encoders con-
sist of a linear projection or an embedding layer,
followed by residual convolution blocks.

The U-Net backbone’s encoder and decoder each
comprise K downsampling and upsampling layers,
respectively, where K = 4 in our case, with 16 x
downsampling rate. A downsampling layer con-
sists of a residual convolution block and an average
pooling layer with a downsampling rate of 2, result-
ing in an overall downsampling rate of 2%, For an
upsampling layer, the input feature is firstly upsam-
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pled through a transposed convolution layer, and is
then concatenated with the corresponding skipped
feature before a final convolution block. The down-
sampling rate is set to 2, and the channel dimension
remains the same as input to alleviate overfitting.
The intermediate part of the backbone is replaced
by a 2-layer Conformer block with relative position
encoding. The Conformer network is 2-layer with
a kernel size of 9 and a head size of 4. The head
dimension in the pitch decoder is 4. The overall
channel dimension is 256. The overall architecture
is listed in Table 5.

As for the N-layer residual convolution blocks
mentioned many times in the main text, the config-
uration is illustrated in Figure 4.

LayerNorm

Convlx1

LeakyRelLU

/ sqrt(dim)

LayerNorm

NS )

Figure 4: N-layer Residual convolution blocks.

C Data

We recruit 12 professional singers (8 female, 4
male) to record D; and 8 singers (5 female, 3 male)
for Ds. Each singer was compensated at an hourly
rate of $600. Singers were informed that the record-
ings were for scientific research use. For Dy, we
have hired music experts to manually annotate the
note and word information. Each annotator was
compensated at an hourly rate of $20. Participants
were informed that the data would be used for sci-
entific research. For Dy, we automatically annotate
the words and notes through an ASR model (Rad-
ford et al., 2023), MFA, and the proposed AST
model. The length of D; is 20.9 hours and D- is
6 hours. We use all the datasets under license CC
BY-NC-SA 4.0.

Hyperparameter Model
Encoder Kernel 3
Mel Encoder L 2
Encoder ncoder Layers
Encoder Hidden 256
Pitch Embedding 300
UV Embedding 3
Condition WBD Embedding 3
Encoder Encoder Kernel 3
Encoder Layers 1
Encoder Hidden 256
Kernel 3
Enc & Dec Layers 4
U-Net Downsampling Rate 16
Enc & Dec Hidden 256
Kernel 9
Heads 4
Conformer Layers 2
Attention Hidden 256
FFN Hidden 1024
Total Number of Parameters 12M

Table 5: Hyperparameters of the proposed modules.
"WBD" represents word boundary.

D Objectives

The binary cross-entropy (BCE) loss applied to
train the note segmentation stage:

1 ~
Ly -7 Z BCE(Ybas Yba)

T

1 T

t=1

(?Aft;d m(g@ﬁd/Tl))

+ (1= 7ba) In(1 — o (Gpa/T1)))  (6)

where T7 is the temperature hyperparameter, and
o(-) stands for sigmoid function.

To tackle the imbalance problem, we employ a
focal loss (Lin et al., 2017), Lgc, to focus more on

hard samples:

Pt = Ypa®(Ypa) + (1 = Ypa) (1 — o (Ypa)) (7
= aypg + (1 — a)(1 — Ypq)

1 .
Lrc = 7 Z (1 = p)"BCE(Ypq; Upa)  (9)

(®)

where « is a hyperparameter controlling weight of
positive samples, and ~y controls balance between
easy and hard samples.
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The cross-entropy (CE) loss used to train the
pitch prediction stage:

L P .
1 ; exp(pe/T2)
o=} Y P
L i=1 e=1 > k1 exp(PE/T2)
(10)
where 75 is the temperature hyperparameter.

E Details of Evaluation

For each SVS experiment task, 20 samples are ran-
domly selected from our test set for subjective eval-
uation. Professional listeners, totaling 20 individ-
uals, are engaged to assess the performance. In
MOS-Q evaluations, the focus is on overall synthe-
sis quality, encompassing clarity and naturalness.
For MOS-P, listeners are exposed to GT samples
and instructed to concentrate on pitch reconstruc-
tion, disregarding audio quality. In both MOS-Q
and MOS-P evaluations, participants rate various
singing voice samples on a Likert scale from 1
to 5. It is crucial to highlight that all participants
were remunerated for their time and effort, compen-
sated at a rate of $10 per hour, resulting in a total
expenditure of approximately $300 on participant
compensation. Participants were duly informed
that the data were for scientific research use.

F Extensional Experiments

F.1 Additional AST Results

The additional experimental results are listed in
Table 9 and Table 10, where the former is under a
clean environment and the latter is noisy.

F.2 Additional Comparisons

We perform additional out-of-domain (OOD) tests
on ROSVOT and compare with (Gu et al., 2023),
which focuses more on multimodality, but still
has noticeable audio-only AST capability. We
directly run OOD tests on datasets MIR-ST500
(Wang and Jang, 2021) and TONAS (G6mez and
Bonada, 2013), where the former is used by (Gu
et al., 2023) as an in-domain (ID) set and the latter
also an OOD set. The ROSVOT model in this test
is still trained with only M4Singer. The results are
listed in Table 6 (the results of (Gu et al., 2023) are
copied from their original paper).

From the results, we can see that ROSVOT out-
performs (Gu et al., 2023) in an OOD setting (i.e.,
on TONAS) in terms of COnPOff and COnP, but
falls short in COn. We believe this is because (Gu
et al., 2023) incorporated English data in training,

which has a relatively closer pattern to flamenco
singing than M4Singer. ROSVOT also underper-
forms facing MIR-ST500. There are three possible
reasons:

* Since each song in MIR-ST500 spans several
minutes and needs to be source-separated first, it
contains non-negligible un-voiced sections. We
do not know whether (Gu et al., 2023) segments
the voiced parts according to some rules. Hence,
we transcribe the whole song and compute the
scores at once, resulting in a smaller proportion
of positive samples of on/offsets due to longer si-
lences, hereby influencing the performance. An-
other noteworthy point is that ROSVOT is able
to load a 5-minute song into one single 2080ti
GPU and transcribe it at once, demonstrating
considerable efficiency.

* The source-separation result influences the per-
formance. The separator recognizes harmonies
as vocals, thus resulting in polyphonic singing
voices. We focus on solo vocal note transcription
and harmonies are not considered noise in our
settings. ROSVOT tends to transcribe vocal har-
monies when the main vocal is silent, degrading
the accuracy.

e MIR-ST500 is an ID test set to the model of (Gu
et al., 2023), so it should have an advantage.

In conclusion, we believe that ROSVOT demon-
strates comparable or superior performance. Con-
sidering the total number of parameters, ROSVOT
shows considerable efficiency and the capability to
process long sequences.

F.3 Additional SVS Results

In Table 3, the quality of test samples could be
very similar; without a specific evaluation objective,
evaluators may struggle to determine differences in
quality. Therefore, we conduct comparative eval-
uations and record CMOS scores of two typical
data combinations compared to 100% real D1. We
believe CMOS scores, rating from -2 to 2, allow
the disregard of unrelated factors. The results are
listed in Table 7.

The results demonstrate a trend that, when the
ratio of pseudo annotations in the training set in-
creases, the quality of samples generated using
real annotation inputs decreases, while that using
pseudo annotations also increases. This may indi-
cate that there are certain biases in the annotations
within datasets, and the AST model could learn
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Method MIR-ST500 TONAS

COn COnP COnPOff | COn COnP COnPOff
(Guetal., 2023) | 78.1 70.0 52.8 644 369 241
M (ours) 72.1 65.9 474 55.7 494 30.0

Table 6: Additional comparison with (Gu et al., 2023) on OOD tests.

. . CMOS-P CMOS-Q

Real R.Size Pseudo P. Size R p R p
Dy x 10% 2.1 D1 x90% 18.8 |-0.26 +0.08 | -0.34 -0.05
- 0.0 D1 209 |-043 +0.21|-0.36 +0.02

Table 7: Results of comparative evaluation. Evaluators are requested to provide relative scores on each sample
compared with reference samples which are generated using the SVS model trained with 100% real D;.

its own bias, which creates a domain gap of the
annotation styles among different datasets.

G Low-resource Scenarios

Conformer
Blocks

Figure 5: Injection of self-supervised features.

Model Ratio ‘ COn (F) COff (F) COnPOff (F)

M 100%| 93.7 94.3 77.1
M 50% | 93.6 93.9 79.6
M 10% | 93.0 92.6 71.6
M 1% 92.0 91.7 68.4
M(ssl) 100% | 94.3 94.0 76.2
M(ssl) 50% | 94.0 93.7 74.9
M(ssl) 10% | 93.8 93.9 73.5
M(ssl) 1% 93.7 93.8 73.6

Table 8: Results under low-resource scenarios. "Ratio"
indicates the proportion of the training set that is uti-
lized.

Considering the scarcity of annotated singing
voice datasets, we investigate the performance of
the proposed method under low-resource scenar-

i0s. We use M4Singer as the training set and test
the model on D;. Firstly, we gradually decrease
the amount of training data to see the performance
degradation. After that, we incorporate features ex-
tracted from a pre-trained self-supervised learning
(SSL) framework to enhance the performance.

Specifically, we modify the model architecture
by introducing a latent feature encoder Eg, trans-
forming the additional SSL representations into
256-dimensional features, and performing a fusion
by element-wise addition. This fusion can be illus-
trated as Figure 5. Eg comprises two convolution
layers and a convolution block, where the former
reduces the dimension of the input features to the
model channel dimension. The output of Eg is di-
rectly added to the output of the U-Net’s encoder
to perform the fusion.

We choose XLSR-53 (Conneau et al., 2020),
a wav2vec 2.0 (Baevski et al., 2020) model pre-
trained on 56k hours of speech in 53 languages,
to be the SSL feature extractor. We believe that
the knowledge of a pre-trained self-supervised
model alleviates data scarcity. To simulate the
low-resource environment, we actually can get ac-
cess to singing voice corpora, only without anno-
tations. Therefore, we use all the training data
mentioned before to fine-tune the XLLSR-53 model
with a batch size of 1200k tokens for 20k steps. In
this case, we incorporate self-supervised learning
to cope with the low-resource problem.

According to Singla et al. (2022), features from
the second layer of a 12-layer wav2vec 2.0 model
are the most related to audio features like pitch
and unvoiced ratio, we extract features from the
4th layer of the 24-layer XLLSR-53 to be the input
feature, which has a dimension of 1024. Before
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feeding the features to the model, we add Gaussian
noises with a standard deviation of 0.05 to perform
the data augmentation. The SSL-augmented model
is denoted as M(ssl).

The results are listed in Table 8. From the results,
we can see that there is no significant improvement
after involving SSL features, if enough training
data is utilized. However, when decreasing the
training data, the original model M exhibits a de-
cline in performance, while M(ssl) experiences a
comparatively smaller decrease.
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COn Coff COnP COnPOff

Method P R F|P R F|P R F|P R F AOR
TONY 650 70.2 67.5]59.6 56.1 57.8|46.1 454 45.7|46.1 42.1 439 73.8
VOCANO 737 781 75.8|69.1 735 7121563 599 58.0|484 52.1 502 814
MusicYOLO 84.1 804 82.2/83.7 79.8 817|684 66.1 672|613 56.8 589 85.4

(Yong et al., 2023) | 93.7 90.0 92.0|92.3 904 914|744 71.2 7271653 66.3 65.8 91.6

M (conformer) 90.2 93.0 93.7192.3 96.0 94.1|78.2 80.0 79.1 753 774 763 97.0
M (conv) 922 91.0 91.6(92.8 923 92.6|73.1 72.1 72.6|71.6 70.2 709 96.8
M (w/o noise) 94.5 932 93.894.7 93.7 942|799 79.3 79.6|76.0 76.8 764 97.1
M (w/o wbd) 92.1 94.5 933]91.6 94.8 932|79.2 80.9 80.1|759 784 77.1 96.5

M (ours) ‘92.4 96.2 94.0|93.0 96.8 94.5|79.5 81.2 80.3|764 78.9 774 97.0

Table 9: Additional results of AST systems. These results are from clean inputs.

Method COn COff COnP COnPOff

ctho P R F|P R F|P R F|P R F AOR
TONY 48.6 49.8 492|459 482 470|323 364 342|258 31.7 284 466
VOCANO 63.7 658 647|647 675 66.1|48.1 50.8 49.4|429 440 434 71.9
MusicYOLO 813 782 79.7|79.6 73.7 765|621 592 60.6|53.9 499 515 78.6

(Yong et al., 2023) | 89.7 87.2 88.5|90.1 89.3 89.769.2 66.7 67.9|63.4 60.8 62.1 864

M (conformer) 89.8 92.6 91.2/91.2 93.0 92.1|78.0 80.3 79.1|73.7 759 74.8 96.9
M (conv) 924 90.6 91.5(933 919 926|76.1 74.8 75.6|71.1 70.6 70.8 96.8
M (w/o noise) 919 899 909|923 90.7 915|788 774 78.1|70.2 70.0 70.1 95.2
M (w/o wbd) 924 94.6 935(91.6 942 929|83.2 83.8 835|763 77.7 77.0 96.2

M (ours) ‘92.9 94.7 93.8|93.5 953 944 83.2 844 83.8|76.7 773 77.0 97.1

Table 10: Additional results of AST systems. These results are from noisy inputs.
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