
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9510–9529
August 11-16, 2024 ©2024 Association for Computational Linguistics

T-Eval: Evaluating the Tool Utilization Capability of
Large Language Models Step by Step

Zehui Chen1,2∗ Weihua Du3,2∗ Wenwei Zhang2∗ Kuikun Liu2 Jiangning Liu2

Miao Zheng2 Jingming Zhuo4,2 Songyang Zhang2 Dahua Lin2 Kai Chen2† Feng Zhao1†
1University of Science and Technology of China 2Shanghai AI Laboratory

3Tsinghua University 4Jilin University

Abstract

Large language models (LLMs) have achieved
remarkable performance on various NLP tasks
and are augmented by tools for broader ap-
plications. Yet, how to evaluate and ana-
lyze the tool utilization capability of LLMs
is still under-explored. In contrast to previ-
ous works that evaluate models holistically,
we comprehensively decompose the tool uti-
lization into multiple sub-processes, includ-
ing instruction following, planning, reasoning,
retrieval, understanding, and review. Based
on that, we further introduce T-Eval to evalu-
ate the tool-utilization capability step by step.
T-Eval disentangles the tool utilization eval-
uation into several sub-domains along model
capabilities, facilitating the inner understand-
ing of both holistic and isolated competency
of LLMs. We conduct extensive experiments
on T-Eval and in-depth analysis of various
LLMs. T-Eval not only exhibits consistency
with the outcome-oriented evaluation but also
provides a more fine-grained analysis of the
capabilities of LLMs, providing a new per-
spective in LLM evaluation on tool-utilization
ability. The benchmark will be available at
https://github.com/open-compass/T-Eval.

1 Introduction

Large language models (LLMs) have fueled dra-
matic progress and emerged as a promising path
to more advanced intelligence (Zhao et al., 2023;
Kaddour et al., 2023; Chen et al., 2024a,b). To fur-
ther extend the capability of LLMs, tool utilization,
which empowers LLMs to leverage external tools
to solve more complicated problems, has spurred
vast research interests in both research and industry
(Parisi et al., 2022; Schick et al., 2023; Ji et al.,
2024; Mialon et al., 2023).

Despite the attractive ability achieved by aim-
ing LLMs with tools, how to evaluate LLMs in

∗ Equal Contributions
† Corresponding author

tool learning has not been fully explored. Exist-
ing works evaluate the tool utilization ability based
on the final output (Qin et al., 2023b) or only con-
sider the single-step tool calling (Li et al., 2023b).
However, real-world problems usually involve com-
plex planning and executing multiple tools. Simply
judging the quality through the final output omits
the assessment of the intermediate steps, making it
hard to identify the main bottlenecks of the tool-use
capability in LLMs. Besides, current benchmarks
mainly rely on real-time tool interactions (Qin et al.,
2023b; Li et al., 2023b), which overlooks the exter-
nal factors (instability of API service or temporal
information shift) on the overall judgment, leading
to evaluation variance and unfair comparison.

To overcome the above problems, we introduce
T-Eval, a step-by-step Tool Evaluation benchmark
for LLMs. Unlike prior works that appraise the
model from a holistic perspective, we explicitly
decompose the evaluation into several sub-tasks
along the basic capabilities of the language model.
Specifically, given the golden tool-utilization anno-
tations verified by human experts, we dedicatedly
designed the evaluation protocols and correspond-
ing instruction prompts based on the intermediate
steps along the annotation path. Such a paradigm
enables us to separately benchmark each compe-
tence of the LLMs, including planning, reasoning,
retrieval, understanding, instruction following, and
review. Additionally, thanks to the decomposed
evaluation protocols, our benchmark significantly
alleviates the exogenous influences (such as on-
line tools) during the evaluation process, yielding a
more stable and fair model assessment.

By conducting extensive experiments on T-Eval,
we carry out in-depth analysis and insights on the
results, pinpointing the main bottlenecks of current
LLMs in tool learning. Furthermore, we also prove
that our benchmark reveals consistent evaluation
of individual and comprehensive model abilities,
where higher individual ability scores lead to better

9510

https://github.com/open-compass/T-Eval

Figure 1: Overview of T-Eval: T-Eval decomposes the tool utilization capability into six necessary abilities:
PLAN, REASON, RETRIEVE, UNDERSTAND, INSTRUCT and REVIEW. To respond to a query with a given tool list,
LLM agents generate a plan first before calling tools. The solution path is multiple rounds of tool calling where
agents reason their thoughts, retrieve and understand the necessary tools and parameters, execute the instructions,
and finally review the tool response.

performance on complex downstream tasks, pro-
viding a new perspective in LLM evaluation on tool
utilization. Our major contributions are as follows:

• We introduce T-Eval, a step-by-step tool uti-
lization evaluation benchmark, which decom-
poses the evaluation into several sub-tasks,
gauging the fine-grained abilities of LLMs as
tool agents.

• T-Eval uses a multi-agent data generation
pipeline verified by human experts. This ap-
proach significantly reduces the impact of ex-
ternal factors, leading to a more stable and fair
assessment of the LLMs.

• Extensive experiments conducted with various
LLMs validate the effectiveness and general-
ization of T-Eval, providing valuable insights
into bottlenecks of current LLMs, and offering
new perspectives in improving tool-utilization
capabilities.

2 T-Eval

Benchmarking LLMs as tool agents involves multi-
ple dimensions of evaluations of LLM abilities and
suffers from the external influence of tools. There-
fore, we first thoroughly investigate each critical
dimension of the tool-calling process (§2.1), and
then establish tailored evaluation protocols for each
dimension (§2.2), named T-Eval, to enable a de-
tailed evaluation of tool utilization capability. To

guarantee the high quality of the golden solution
paths and tool-calling responses, we adopt a human-
in-the-loop data generation pipeline (§2.3), ensur-
ing the stability and longevity of T-Eval. Lastly,
we provide a statistical overview of T-Eval (§2.4).

2.1 Evaluation Decomposition

Tool utilization with large language models (LLMs)
encompasses a variety of scenarios, touching upon
multiple dimensions of capabilities. To better un-
derstand the whole process, we first deconstruct
the tool-calling process into several key aspects, as
depicted in Fig. 1.

First, solving complex real-world problems fre-
quently requires a multi-step approach to tool call-
ing. For example, to know the weather from a
month ago, an LLM must first confirm the cur-
rent date before it can query a weather tool. This
requires a robust planning ability (Fig. 1(a)) to
develop a strategy for tool calling that guides sub-
sequent actions. Moreover, the contexts in which
tools are utilized can be intricate, involving tool
descriptions, documentation, user queries, previous
interactions, and prior observations. Strong rea-
soning abilities (Fig. 1(b)) are essential for LLMs
to understand these contexts and tools, generat-
ing logical thoughts for the next steps. After gen-
erating a thought, selecting the appropriate tools
from a given list is crucial, demanding effective re-
trieval skills (Fig. 1(c)). Additionally, integrating
the correct parameters requires the understanding

9511

ability (Fig. 1(d)) to interpret tool documentation
and corresponding thoughts. Finally, executing
the tool-calling action mandates adept instruction
following skills (Fig. 1(e)) to formulate precise
requests for the relevant APIs. Each tool call ex-
ecuted by LLM must be evaluated to ensure the
response meets the intended objective, especially
when tools might be unavailable or not perform
as anticipated. This crucial evaluation, named the
review ability (Fig. 1(f)), involves examining tool
responses and ascertaining if adequate information
has been obtained to resolve the query.

In summary, thorough analyses of each dimen-
sion are vital for a comprehensive evaluation of
tool-utilization capabilities. Therefore, we intro-
duce T-Eval, a framework that decomposes the
multi-step tool-calling process into fundamental
abilities, evaluating them individually for a more
nuanced understanding of tool utilization.

2.2 Fine-Grained Evaluation Protocol

T-Eval takes all the ability dimensions as men-
tioned above (PLAN, REASON, RETRIEVE, UNDER-
STAND, INSTRUCT, and REVIEW) into considera-
tion, measuring not only the overall performance
of tool-utilization but also detailed scores in each
dimension.

2.2.1 Definition
To formalize, this paper considers a piece of query
data as a tuple (T, q), where T = [tool1, ..., toolk]
is the tool list and q is the query. For each query
data piece (T, q), we define the solution path S =
[(ti, ai, oi, ri)]

n
1 for the query q as a sequence of

thought(t)-action(a)-observation(o)-review(r) pair
along with the final answer A, where ti, ai, oi, ri
denotes the thought, the tool-calling action, the
observation (i.e., the tool response), and the review
on the response at step i. Moreover, an action is
regarded as a pair (tool, args), where tool is the
tool name and args is the parameters to call the
tool. Besides the solution path, a plan for a query
data piece is defined as a sequence P = [a1, ..., an]
donating the proposed action sequence to call at
each step.

2.2.2 Single-Index Evaluation
We create individual metrics to quantitatively an-
alyze LLM abilities for each dimension of tool
utilization. Here we describe the measurement of
each dimension, and the detailed metric function
can be found in Appendix C.

• PLAN: Given a tool list T and query
q, the LLM is asked to generate a pro-
posed tool-calling action sequence P pred =
[apred1 , apred2 , ..., apredn], where apredi is the pre-
dicted LLM action at step i. The plan-
ning evaluator then compares P pred with
the golden answer P gt by matching ac-
tions in both sequences using Sentence-BERT
(Reimers and Gurevych, 2019) for similar-
ity calculation and Hopcroft-Karp matching
(Hopcroft and Karp, 1973) for maximal simi-
larity pairing. The planning score is measured
by the length of the longest-ordered action
sequence in the similarity pairing.

• REASON: Given a tool list T , query q, and
a prefix of the solution path, the reasoning
evaluator asks the LLM to generate the next
thought tpredi+1 . The similarity between tpredi+1

and the golden answer tgti+1 is then measured.

• RETRIEVE: Given a tool list T , query q, and
a prefix of the solution path, the retrieval eval-
uator asks the LLM to choose the next tool
toolpred to call, comparing it with the golden
answer toolgt.

• UNDERSTAND: Given a tool list T , query q,
the understanding evaluator asks the LLM to
generate appropriate parameters argspred for
the next step and then compares them with the
golden answer argsgt for similarity.

• INSTRUCT: Given a thought ti with the de-
sired tool and parameters, the LLM is tasked
with generating a tool-calling request in a
specified format. The evaluator then calcu-
lates the accuracy of the tool name and param-
eter values in this format.

• REVIEW: Given a thought ti and a tool
response oi, the LLM is tasked with judg-
ing whether the tool response successfully
achieves the goal mentioned in the thoughts.
It must also determine the type of errors if
the goal is not achieved. This evaluation is
conducted as a multiple-choice problem with
five options: Success, Internal Error, Input
Error, Irrelevant Response, and Unable to Ac-
complish.

2.2.3 End-to-End Evaluation
End-to-end evaluation requires LLMs to generate
the whole solution path Spred as well as the fi-

9512

Figure 2: Overview of the dataset construction process. By randomly sampling tools from the tool database, we
prompt GPT-3.5 to generate initial queries and further refine them with GPT-4. After that, we develop a multi-agent
framework to resolve queries with the provided tools, collecting both solution paths and tool responses. Finally,
human experts are employed to verify the annotations and pick high-quality samples.

nal answer Apred given one query data piece. We
adopt the win rate proposed in ToolBench (Qin
et al., 2023b) to gauge the overall performance,
which evaluates LLM abilities by comparing their
response quality against that of GPT-3.5. The result
shows that our single-index evaluation is consistent
with the overall performance.

2.3 Dataset Construction
The construction of T-Eval consists of three main
phases: tool collection, instruction generation, and
golden solution annotation. The overview of the
construction is shown in Fig. 2.

2.3.1 Tool Collection
The collection quality of tools has a direct impact
on instruction generation and tool utilization evalu-
ation. We follow two principles during the collec-
tion process:
• High Availability and Usage Rate. Consider-
ing that T-Eval is expected to cover most daily
and practical use cases, we carefully select 1 ∼ 2
tools for each specific domain, including Research,
Travel, Entertainment, Web, Life, and Financials,
resulting in 15 tools as our basic tool set.
• Complete Documentation. Despite the nu-
merous tools collected in ToolBench (Qin et al.,
2023b) from RapidAPI, the documentation quality
is not guaranteed. To reduce the failure of tool-
calling cases caused by inadequate tool descrip-
tions, which focus the evaluation attention on pure
LLM abilities, we manually generate high-quality
and detailed tool documentation for each tool.

2.3.2 Instruction Generation
The testing instructions determine the practicality
and difficulty of our evaluation. To guarantee the
diversity of the queries, we uniformly sample 2 ∼ 3
tools each time and prompt GPT-3.5 to generate N

instructions Q = {q1, ..., qN} that need these tools.
Concretely, the prompt consists of three parts: (1)
the instruction that requests LLM to generate corre-
sponding queries, (2) detailed tool documentation,
and (3) few-shot examples. We randomly shuffle
the tool documentation list and select different few-
shot examples each time, so that the LLM can pay
different attention to the text thereby encouraging
the model to create wide-ranging instructions. Af-
ter that, the stronger GPT-4 is utilized to revise and
refine the generated instructions, aiming to further
enhance the feasibility and diversity. The detailed
prompts are listed in the Appendix B.

2.3.3 Golden Solution Annotation

Annotating the solution path manually to various
queries is labor-intensive and unable to scale up
the dataset quickly. To overcome this problem, we
leverage a novel multi-agent paradigm plugging
with simple human verification to resolve the com-
plicated and massive solution annotations. Specif-
ically, instead of instantiating only one LLM to
handle the whole solution annotation path, we ex-
plicitly disentangle the annotation task into three
different functionalities, including planner, execu-
tor, and reviewer: the planner decides what should
be done in the next step; the executor is respon-
sible for generating the exact tool name as well
as its parameters and executing the tool to obtain
the response. The reviewer is assigned to revise
the response from the tool and judge if the task is
finished given the external feedback.

Thanks to the decomposition of functionalities,
each agent can accomplish its duty without switch-
ing the role required by each step, therefore, sig-
nificantly reducing the error generation during the
annotation process compared to conventional CoT
(Wei et al., 2022) or ReAct (Yao et al., 2022) ap-

9513

proaches. To guarantee the quality of the call-
ing process, we adopt GPT-3.5 to accomplish the
whole machine annotation phase. In the end, hu-
man annotators are employed to review the solu-
tion chain and manually filter invalid instruction-
solution pairs.

2.3.4 Inclusive Difficulty Evaluation
During the evaluation, we empirically found that
a few LLMs, especially small-scale ones, demon-
strate poor ability in instruction following, there-
fore yielding responses that are unparseable with
the pre-agreed format. Due to the large amount of
parse failures on the response, the evaluation score
can get distorted, losing the authenticity to reflect
the real ability of the model.

To address the issue, we carefully designed the
instruction task prompt and the evaluation granu-
larity with both easy and difficult levels, provid-
ing inclusive evaluation on most language mod-
els. Specifically, the easy level adheres to a sim-
ple string format and focuses more on the seman-
tic quality of the text, while the difficult level
adopts JSON format, which is more commonly
used in products (e.g., the JSON mode1 in GPT-
4 (OpenAI, 2023)), and conducts a more strict, fine-
grained evaluation of the response content, e.g.,
exact match on tool name and parameters.

2.4 Dataset Summary

To this end, we generate 1,500 initial instruction-
solution pairs and pick 553 after two-round hu-
man verifications. We extract the desired infor-
mation required by each evaluation protocol to
construct the respective INSTRUCT, RETRIEVE,
PLAN, REASON, UNDERSTAND, REVIEW sub-
sets for T-Eval benchmark, resulting in 23,305 test
cases in total (Refer to Appendix A.1 for more
detailed statistics of T-Eval).

3 Experiments

3.1 Experimental Setup

We evaluate both API-based commercial and open-
source LLMs on T-Eval, with a total number of 20
models, aiming to provide a comprehensive bench-
mark for current large language models.
(1) For API-based LLMs, we select three represen-
tative models: GPT-3.5 and GPT-4 from OpenAI,

1https://openai.com/blog/new-models-and-developer-
products-announced-at-devday

Figure 3: T-Eval score v.s the size of models. Both
LLaMA2 and Qwen strengthen their tool utilization
abilities as the models scale up. However, there still
exists a clear performance gap between open-source
models and GPT-4.

and Claude2 from Anthropic. 2

(2) For open-source LLMs, we choose a wide
spectrum of models, including LLaMA2 (Tou-
vron et al., 2023), CodeLLaMA (Roziere et al.,
2023), QWen (Bai et al., 2023), InternLM (Team,
2023), Baichuan2 (Yang et al., 2023), WizardLM
(Xu et al., 2023b), Vicuna (Chiang et al., 2023),
AgentLM (Zeng et al., 2023), Mistral (Jiang et al.,
2023) and ChatGLM3 (Zeng et al., 2022).

3.2 Main Results

The detailed experimental results are shown in Tab.
1. In this section, We aim to answer three research
questions below.
Q1: Which Model is Better at Tool Utilization?
The results in Tab. 1 show that GPT-4 achieves
the highest score, with an overall score of 86.4,
setting the pilot of the well-instructed and skillful
tool-utilization LLMs. Apart from GPT-4, API-
based commercial LLMs, including GPT-3.5 and
Claude2, get competitive scores on both string and
JSON formats, indicating their strong abilities in
acting as tool agents.

As for open-source models, we evaluate models
with three different scales: around 7B, 13B, and
70B. It can be concluded from Fig. 3 that the per-
formance of the model monotonically increases as
the model scale increases. Among them, Qwen-7B
gets the best of two worlds in terms of the model
sizes and evaluation scores. With 7 billion param-
eters, Qwen-7B exhibits a competitive ability to
understand complicated instructions and reply in

2Our experiments are conducted between 12/01/2023 and
12/10/2023. The version for GPT-4 is gpt-4-1106-preview,
for GPT-3.5 is gpt-3.5-turbo-16k, and for Claude2 is
claude-2.1.

9514

https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-models-and-developer-products-announced-at-devday

Table 1: Main Results of T-Eval. Overall stands for the score calculated from an average of metrics on all subsets.
(bold denotes the best score among all models, and underline denotes the best score under the same model scale.)

Model
INSTRUCT PLAN REASON RETRIEVE UNDERSTAND REVIEW

Overall
String JSON String JSON String JSON String JSON String JSON Choice

API-Based
Claude2 97.7 97.8 87.1 84.9 62.9 62.8 76.5 78.2 74.9 82.0 70.4 78.8
GPT-3.5 94.1 99.1 86.6 86.6 65.2 70.3 98.3 86.2 82.9 88.1 75.6 84.0
GPT-4 96.7 95.9 88.9 86.7 65.6 65.1 91.3 86.6 83.2 88.3 94.5 86.4

Open-Sourced
LLaMA2-7B 68.7 0.2 47.0 9.1 37.1 7.1 30.3 3.5 36.8 12.1 38.6 27.4
CodeLLaMA-7B 96.0 0.9 61.4 44.3 28.7 0.9 3.6 1.2 25.4 1.4 40.0 28.6
AgentLM-7B 80.8 13.1 53.1 15.9 50.1 17.5 70.2 13.8 66.4 26.1 44.8 41.4
Vicuna-7B 65.3 30.8 13.4 47.8 47.6 49.9 12.4 32.6 66.8 54.2 58.5 44.8
InternLM-7B 48.4 29.9 67.7 43.1 48.8 25.0 72.1 22.2 70.4 30.2 46.2 45.8
ChatGLM3-6B 63.3 80.8 46.9 38.5 48.2 24.1 66.5 24.0 79.9 35.6 54.8 51.4
Mistral-7B 59.7 63.6 77.2 64.9 63.0 15.3 92.6 11.0 79.8 18.1 63.2 56.0
Baichuan2-7B 68.0 78.0 65.6 39.0 51.3 31.3 73.7 28.5 80.1 39.2 61.4 56.5
Qwen-7B 28.7 94.2 66.2 63.1 56.4 34.1 89.0 35.3 77.7 46.1 61.6 59.5

LLaMA2-13B 66.7 0.0 48.7 65.1 42.4 10.5 42.7 6.6 45.7 13.1 53.0 37.3
Vicuna-13B 67.0 30.8 25.8 54.0 56.3 49.1 19.8 20.9 73.0 58.8 60.8 48.1
WizardLM-13B 14.1 65.5 77.7 40.8 36.0 25.2 68.5 22.2 64.0 31.6 71.5 49.0
Baichuan2-13B 8.0 51.7 69.5 52.1 56.6 27.1 84.5 26.9 80.5 31.5 57.3 50.3
Qwen-14B 49.7 97.6 79.6 69.7 58.6 46.1 95.9 55.3 65.0 64.3 56.9 66.3
InternLM-20B 43.6 31.9 83.6 16.4 63.0 28.1 81.5 40.6 80.1 43.5 64.7 53.5

WizardLM-70B 9.6 31.7 81.5 42.7 38.4 47.0 38.3 56.2 66.1 61.1 28.7 44.2
LLaMA2-70B 84.5 73.4 58.0 63.1 44.7 17.5 62.0 17.1 67.3 22.3 62.8 53.0
Qwen-72B 27.8 98.3 85.1 73.4 63.5 55.4 76.8 65.0 84.5 66.1 80.3 71.4

a strict format in JSON. When scaled to 72B, the
overall score of Qwen rises to 71.4%, significantly
reducing the gap between open-source and API-
based models. We attribute this to the training
on a human-in-loop self-instruction dataset, which
encompasses high-quality format-specific instruc-
tions generated by Qwen team (Bai et al., 2023).
Q2: How Far Are We from Skillful Tool Agents?
By explicitly disentangling the evaluation through
model abilities, we can gain a deeper understanding
of the pros and cons of current LLMs, providing
new perspectives in developing better tool agents.

First, open-source LLMs lack the instruction-
following ability to respond with specific formats,
which is the very first step to constructing well-
regulated and high-usable tool agents. Without a
legal response format, the system can not success-
fully extract the information generated by LLMs
by a constant protocol, not to mention the correct
tool executions. However, only a small amount of

models achieve both high scores on INSTRUCT sub-
set under string and JSON format. Besides, there
are still large performance gaps between string and
JSON evaluation protocols on other subsets. Con-
sidering that the understand ability of the Qwen-
72B is comparable with GPT-4 evaluated in string
format (84.5 vs 83.2), its JSON format result is
more than 20 points lower, pinpointing the neces-
sity to enhance the ability of open-source LLMs
solving problems with specific formats.

Second, tool retrieval presents a relatively chal-
lenging task for most LLMs. Even the largest open-
source model, Qwen-72B only reaches 65.0%,
which is more than 20 points lower than GPT-3.5.

Lastly, compared to planning, LLMs are more
likely to perform worse in reviewing the status
of API responses (i.e., review in T-Eval), which
is a core capability to interact with the dynamic
environment when acting as an agent. Most models
only reach 50%∼60%, compared to 95% achieved

9515

by GPT-4, indicating that more attention should be
paid to the review ability of current LLMs.
Q3: What Makes for Good Training Data for
Tool Utilization? Supervised finetuning is an effi-
cient and necessary practice in empowering LLMs
with certain abilities on downstream tasks. Recent
research (Ouyang et al., 2022; Touvron et al., 2023)
finds that high-quality dialogue-style instruction
data is the key to well-instructed LLMs. However,
the analysis of what makes for good training data
for tool utilization is under-explored. We identify
two types of training data: (1) general instruction
following data, and (2) task-specific tuning data.

As for high-quality general instructions, Vicuna
adopts user-shared conversations collected from
ShareGPT3, and WizardLM uses complex and di-
verse instructions by evolving existing data in depth
and width. Both of them are trained starting from
LLaMA2, providing natural ablation on the effec-
tiveness of high-quality (diverse and complex) in-
structions to the tool learning ability of LLM. When
the model scale is small (7B), these data types en-
hance the model considerably. However, the incre-
ments diminish (even worse) as the model scales up
(see WizardLM-70B). This further indicates that
simply scaling the model scale does not always
bring improvements, proper training data also mat-
ter in the scaling law.

In terms of task-specific tuning data, we select
two typical types of corpus: code and agent, cor-
responding to CodeLLaMA and AgentLM, respec-
tively. Compared to CodeLLaMA, which uses code
data, AgentLM obtains better scores, showcasing
that agent-related data may bring more benefits to
tool learning. However, neither CodeLLaMA nor
AgentLM appears to have significant advantages
to Vicuna, indicating the necessity of high-quality
instruction following data for tool utilization.

4 Discussion

4.1 Format Following v.s Problem Solving
Format following is an essential ability of LLMs,
i.e., reply with a specific format when executing
certain tasks. There are massive efforts devoted to
enhancing this ability when using LLM as agents
(Zhou et al., 2023; Xu et al., 2023b). In our ex-
periments, we find that this ability may need to
be acquired jointly with problem-solving. For in-
stance, both ChatGLM3-6B and Baichuan2-7B ob-
tain roughly 80% with the JSON evaluation pro-

3https://sharegpt.com/

tocol on INSTRUCT subset, which reveals them
holding a strong ability in JSON format rendering.
However, they struggle to generate valid JSON
format responses on PLAN and REASON subsets,
i.e., the divergences of JSON and string scores are
quite large on these subsets. Such a phenomenon
suggests that the ability to output specific formats,
i.e., JSON, does not guarantee the ability to resolve
all the problems with this format. This further
indicates that one should integrate the requested
format into the tasks and train them jointly so that
the model can understand and behave well under
certain protocols.

4.2 Inclusive Evaluation Protocol
From Tab. 1, it can be observed that quite a few
amount of open-source LLMs struggle on the JSON
evaluated protocols, especially on the REASON,
RETRIEVE and UNDERSTAND subsets. Although
the JSON format evaluation best approximates the
real use cases of tool agents, it fails to provide hier-
archy discriminations across various models when
they are not adept at specific instructions requested
by the task. For instance, Baichuan2-13B exhibits
poor abilities in JSON format instruction (only 51.7
on INSTRUCT, JSON), which leads to low scores
under JSON evaluations in PLAN subset. How-
ever, it has little relationship with the basic ability
of model planning, since it achieves 69.1% when
evaluated with string format, which is 17.4 points
higher than its JSON format (52.1%). This vali-
dates the necessity to provide continual difficulty
level evaluation protocols (Schaeffer et al., 2023),
otherwise, one can get little understanding of the
detailed abilities of LLMs on this benchmark but a
low score simply due to the incorrect format, espe-
cially for weak models. In T-Eval, by seamlessly
converting the strict format matching into semantic
sentence analysis, our inclusive evaluation protocol
gets rid of the inflexible measurement, unearthing
the inner capability of the model.

4.3 Comparison to Other Benchmarks
We compare our fine-grained evaluation protocols
with existing tool evaluation approaches and inves-
tigate if they show the same trends as ours. We
adopt the win rate proposed in ToolBench (Qin
et al., 2023b) as the representative holistic evalua-
tion method, and evaluate several open-source mod-
els by comparing the response quality with GPT-
3.5-turbo, judged by GPT-4. The results are shown
in Fig. 4. We can find that the holistic evaluation

9516

https://sharegpt.com/

Figure 4: T-Eval average score v.s Win Rate proposed
in ToolBench (Qin et al., 2023b) on several represen-
tative LLMs. T-Eval score (objective) demonstrates
similar trends with Win Rate (judged by GPT-4).

reveals similar trends in these models with that in
T-Eval, which validates the reasonability and gen-
eralization of our benchmark. When taking a close
look at the results, we can observe that Qwen-7B
achieves a 52% win rate over GPT-3.5-turbo re-
sponse. However, there still exists a gap between
Qwen-7B and GPT-3.5 in various ability domains
under human judgment (Zheng et al., 2023), which
implies that holistic evaluation is sometimes inac-
curate. Our evaluation protocol not only reflects
such divergence clearly, but also showcases the de-
tails of abilities in tool utilization, suggesting that
T-Eval to be a more rational and comprehensive
evaluation benchmark for tool utilization.

5 Related Work

Augmenting LLMs with Tools There are two
paradigms to empower LLMs with external tools,
and the first one is regarding external tools as spe-
cific tokens and fine-tuning parts or full of the
model (Schick et al., 2023; Parisi et al., 2022;
Lewis et al., 2020; Hao et al., 2023). However,
these methods need a large amount of tool-relevant
data and struggle to adapt newly appeared tools.
Recently, the strong in-context learning ability
(Brown et al., 2020) promotes researchers to fo-
cus more on the second paradigm, which is aug-
menting LLMs with tools by giving in-context
tool descriptions and demonstrations (Hsieh et al.,
2023; Mialon et al., 2023; Ruan et al., 2023; Patil
et al., 2023). This paradigm has achieved great
tool-calling potentiality and resulted in successful
applications such as ChatGPT plugins. T-Eval fo-
cus on this paradigm and evaluate scores of various
foundation models.

Evaluating LLMs LLM evaluation is essential
to ensure that LLM can be effective in understand-
ing and generating human-preferred text and re-
liable for deployment in real-world applications
(Guo et al., 2023; Chang et al., 2023). Many bench-
marks have been established to evaluate base abili-
ties on question-answering tasks (Rajpurkar et al.,
2016; Clark et al., 2018; Glockner et al., 2018),
natural language understanding tasks (Wang et al.,
2018, 2019; Hendrycks et al., 2020), and common-
sense reasoning tasks (Lu et al., 2022). Recently,
LLM evaluation has extended towards specific di-
rections like code generation (Chen et al., 2021;
Austin et al., 2021; Du et al., 2023) and hallucina-
tion (Li et al., 2023a; Chen et al., 2023). Some
benchmarks also test the performance of LLM-
based agents in a wide range of scenarios (Liu
et al., 2023a; Wang et al., 2022).

Several benchmarks exist for evaluating tool uti-
lization, focusing primarily on aspects of response
comparison (e.g., ToolQA (Zhuang et al., 2023)),
tool call accuracy (e.g., Gorilla (Patil et al., 2023)),
or a combination of both (e.g., API-Bank (Li et al.,
2023b)). ToolBench (Qin et al., 2023b) introduces
a novel approach by employing an LLM as a judger
to assess the overall solution path. Furthermore, the
study in (Qin et al., 2023a) investigates the perfor-
mance improvement attributable to tool utilization.
Different from above, T-Eval emerges as the first
benchmark dedicated to the fine-grained evaluation
of tool utilization capabilities.

Prompting LLMs as Agents Prompting en-
hances the reasoning capabilities of LLMs by pro-
viding instructions or examples. Techniques such
as the Chain of Thought (CoT) and Tree of Thought
(ToT) (Wei et al., 2022; Yao et al., 2023) encour-
age LLMs to engage in comprehensive thinking
for more accurate reasoning. Advanced systems
like ReAct, ReWOO, SwiftSage, DyLAN, and DP-
LLM (Yao et al., 2022; Xu et al., 2023a; Lin et al.,
2023; Liu et al., 2023b; Dagan et al., 2023) further
develop LLM agents. These systems use advanced
prompting methods to guide LLMs, unleashing the
potential of models.

6 Conclusion

In this paper, we propose T-Eval, a comprehensive
and fine-grained tool utilization evaluation bench-
mark for LLMs. T-Eval explicitly disentangles
the tool utilization tasks along the model ability,
with dedicated evaluation protocols designed for

9517

respective tasks, unearthing the real ability of the
evaluated models. Such a step-wise evaluation de-
livers a thorough analysis and pinpoints the main
bottlenecks of current LLMs in tool learning, pro-
viding valuable insights into further development
of tool agents.

7 Limitations

Despite T-Eval mainly utilizing the advanced GPT
model for dataset generation, it still requires human
efforts to verify the correctness of the generated
content. It is essential to acknowledge that the
generated content may not be well aligned with
human preference. Therefore, it would be hard to
scale up the construction process to a larger scale.
We aim to address this problem in our future work.

8 Ethical Considerations

We used publicly available reference docu-
ments/APIs for our benchmarks, effectively cir-
cumventing any possible harm toward individu-
als or groups. The generated data by LLMs were
carefully selected and processed by humans to se-
cure privacy and confidentiality. No personal iden-
tification information was involved, and all data
were made anonymous before any analysis was
conducted. Besides, We use ChatGPT and Gram-
marly to polish the writing.

9 Acknowledgments

This work was supported by the JKW Research
Funds under Grant 20-163-14-LZ-001-004-01, and
the Anhui Provincial Natural Science Foundation
under Grant 2108085UD12. We acknowledge the
support of GPU cluster built by MCC Lab of Infor-
mation Science and Technology Institution, USTC.

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot

learners. Advances in neural information processing
systems, 33:1877–1901.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2023. A sur-
vey on evaluation of large language models. arXiv
preprint arXiv:2307.03109.

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.
2023. Benchmarking large language models in
retrieval-augmented generation. arXiv preprint
arXiv:2309.01431.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinwei Chen, Kun Li, Tianyou Song, and Jiangjian Guo.
2024a. Mix of experts language model for named
entity recognition. arXiv preprint arXiv:2404.19192.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024b. Agent-flan: Designing data and
methods of effective agent tuning for large language
models. arXiv preprint arXiv:2403.12881.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez,
et al. 2023. Vicuna: An open-source chat-
bot impressing gpt-4 with 90%* chatgpt quality.
https://vicuna.lmsys.org.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Gautier Dagan, Frank Keller, and Alex Lascarides.
2023. Dynamic planning with a llm. arXiv preprint
arXiv:2308.06391.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. Classe-
val: A manually-crafted benchmark for evaluating
llms on class-level code generation. arXiv preprint
arXiv:2308.01861.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking nli systems with sentences that
require simple lexical inferences. arXiv preprint
arXiv:1805.02266.

Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan
Shi, Linhao Yu, Yan Liu, Jiaxuan Li, Bojian Xiong,
Deyi Xiong, et al. 2023. Evaluating large language
models: A comprehensive survey. arXiv preprint
arXiv:2310.19736.

9518

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting
Hu. 2023. Toolkengpt: Augmenting frozen lan-
guage models with massive tools via tool embeddings.
arXiv preprint arXiv:2305.11554.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

John E Hopcroft and Richard M Karp. 1973. An nˆ5/2
algorithm for maximum matchings in bipartite graphs.
SIAM Journal on computing, 2(4):225–231.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models. arXiv preprint arXiv:2308.00675.

Ziwei Ji, Yuzhe Gu, Wenwei Zhang, Chengqi Lyu,
Dahua Lin, and Kai Chen. 2024. Anah: Analyti-
cal annotation of hallucinations in large language
models. arXiv preprint arXiv:2405.20315.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and applications of large language
models. arXiv preprint arXiv:2307.10169.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun
Nie, and Ji-Rong Wen. 2023a. Halueval: A large-
scale hallucination evaluation benchmark for large
language models. arXiv e-prints, pages arXiv–2305.

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu,
Zhoujun Li, Fei Huang, and Yongbin Li. 2023b. Api-
bank: A benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Prithvi-
raj Ammanabrolu, Faeze Brahman, Shiyu Huang,
Chandra Bhagavatula, Yejin Choi, and Xiang Ren.
2023. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. arXiv
preprint arXiv:2305.17390.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. 2023a. Agent-
bench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi
Yang. 2023b. Dynamic llm-agent network: An llm-
agent collaboration framework with agent team opti-
mization. arXiv preprint arXiv:2310.02170.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. In The 36th Conference on Neu-
ral Information Processing Systems (NeurIPS).

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, et al. 2023. Augmented language
models: a survey. arXiv preprint arXiv:2302.07842.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models. arXiv preprint
arXiv:2205.12255.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, and
Yusheng Su et al. 2023a. Tool learning with founda-
tion models.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023b. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Guoqing Du, Shiwei Shi, Hangyu
Mao, Xingyu Zeng, and Rui Zhao. 2023. Tptu: Task

9519

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354

planning and tool usage of large language model-
based ai agents. arXiv preprint arXiv:2308.03427.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
2023. Are emergent abilities of large language mod-
els a mirage? arXiv preprint arXiv:2304.15004.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

InternLM Team. 2023. Internlm: A multilingual lan-
guage model with progressively enhanced capabili-
ties.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and
Prithviraj Ammanabrolu. 2022. Scienceworld: Is
your agent smarter than a 5th grader? arXiv preprint
arXiv:2203.07540.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023a.
Rewoo: Decoupling reasoning from observations for
efficient augmented language models. arXiv preprint
arXiv:2305.18323.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023b. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong
Zhang, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, Fan Yang, et al. 2023. Baichuan 2:
Open large-scale language models. arXiv preprint
arXiv:2309.10305.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and
Chao Zhang. 2023. Toolqa: A dataset for llm ques-
tion answering with external tools. arXiv preprint
arXiv:2306.13304.

A T-Eval Benchmark Details

A.1 Dataset Statistics

T-Eval originates from 533 high-quality query-
solution annotation pairs, consisting of 23,305 test
cases in total, ranging from INSTRUCT, PLAN,
REASON, RETRIEVE, UNDERSTAND and REVIEW

subsets. Detailed statistics of each subset are shown
in Tab. 2. We also visualize the distribution of tool
calling steps in the whole annotation paths in Fig. 5.
T-Eval covers all tool sets and yields 5.8 average
calling steps for each query, validating the gen-
eralization and discrimination for tool utilization
evaluation.

9520

Figure 5: (a) Tool calling categorical distribution and (b)
tool calling step distribution accumulated in the whole
annotation paths in T-Eval.

Table 2: The statistics of the evaluation datasets in
T-Eval.

Dataset Test Cases

INSTRUCT 2660
RETRIEVE 6426

PLAN 553
REASON 6426
REVIEW 487

UNDERSTAND 6753

Total 23305

B Implementation Details

Experimental Details. To evaluate the pure ability
of the single model, we adopt ReAct (Yao et al.,
2022) as the basic agent paradigm for end-to-end
evaluation and limit the maximum action step to
20 to ensure the efficient and accurate question-
solving ability of LLM. As for the single-index
evaluation, we prompt with a multi-turn conversa-
tion style to the LLM and gauge the response. If not
specified, we choose the ‘chat’/‘instruct’ version
of open-sourced models for evaluation.

B.1 Prompts Demonstration

Please refer to the respective prompt block for a
detailed demonstration.

B.1.1 Query Generation
The corresponding prompt is presented in Fig. 6.

B.1.2 Query Refinement
The corresponding prompt is presented in Fig. 7.

B.1.3 Multi-Agent Annotation Prompt
The corresponding prompt is presented in Fig. 8.

B.2 Dataset Demonstration

Please refer to the respective prompt block for each
detailed dataset demonstration.

B.2.1 INSTRUCT

The corresponding prompt is presented in Fig. 9.

B.2.2 PLAN

The corresponding prompt is presented in Fig. 10.

B.2.3 REASON

The corresponding prompt is presented in Fig. 11.

B.2.4 RETRIEVE

The corresponding prompt is presented in Fig. 12.

B.2.5 UNDERSTAND

The corresponding prompt is presented in Fig. 13.

B.2.6 REVIEW

The corresponding prompt is presented in Fig. 14.

C Detailed Evaluation Metrics

T-Eval decomposes tool utilization capability into
six ability dimensions: INSTRUCT, PLAN, REA-
SON, RETRIEVE, UNDERSTAND and REVIEW, we
carefully designed evaluators and metrics for all
dimensions with two difficulty formats: JSON and
string. The JSON format asks the LLM to generate
standard JSON format responses, while the string
format allows the LLM to answer in a relatively
loose format.

Let us recap the formalization of each tool-
calling component first: A piece of query data
is considered as a tuple (T, q), where T =
[tool1, ..., toolk] is the tool list with k tools and
q is the query. For each query data piece (T, q),
the solution path S = [(ti, ai, oi, ri)]

n
1 is defined as

a sequence of thought(t)-action(a)-observation(o)-
review(r) pair along with the final answer A, where
ti, ai, oi, ri denotes the thought, the tool-calling
action, the observation (i.e. the tool response),
and the review on the response at step i, respec-
tively. Moreover, an action a is regarded as a pair
(tool, args), where tool is the tool name and args
is the parameters to call the tool. Besides the solu-
tion path, a plan for a query data piece is defined as
a sequence P = [a1, ..., an] donating the proposed
actions to call at each step.

C.1 INSTRUCT

The LLM is required to generate a tool-calling re-
quest using a specified template, based on the pro-
vided tool name and parameters. This request must
adhere to a predetermined format, either in JSON
or string, with varying template structures. Ini-
tially, the evaluator determines if the request meets

9521

the format requirements. A passing score of 0.5
is awarded for successfully meeting these format
standards. Once the format check is passed, the
request is further evaluated for parameter accuracy,
with a parameter score assigned. This score is
calculated as 0.5 multiplied by the percentage of
correctly matched parameters. The final score is
the sum of the passing score and the parameter
score.

C.2 PLAN

The LLM is tasked with generating a plan us-
ing a provided list of tools to solve a query. To
evaluate the similarity between the predicted plan
from the LLM P pred = [apred1 , apred2 , ..., apred

npred]

and the gold answer P gt = [agt1 , agt2 , ..., agtngt] from
human annotators, the planning evaluator begins
by computing a similarity matrix S. This ma-
trix represents the similarity scores for all action
pairs (ai = (tooli, argsi), aj = (toolj , argsj))
between the prediction and the golden answer:

Si,j = βσ(tooli, toolj)+(1−β)σ(argsi, argsj).

In this approach, σ is the similarity function be-
tween two sentences. We employ Sentence-BERT
(Reimers and Gurevych, 2019) as σ, which involves
embedding the two sentences and then calculating
the cosine similarity between these embeddings as
the similarity score. The underlying BERT model
used is all-mpnet-base-v2.4 Furthermore, β is
a hyperparameter that determines the relative im-
portance of the tool name in comparison to the
tool parameters in similarity calculation. In our
implementation, we set β = 0.75.

After getting the similarity matrix S, a bipartite
graph is built where one part is the set of predicted
actions and another part is the set of golden answer
actions. Two actions are linked if their similar-
ity is greater than a predefined threshold, set at
0.7 in our implementation. We then employ the
Hopcroft-Karp matching algorithm (Hopcroft and
Karp, 1973) to compute a max-weighted match
from this graph. Subsequently, the Longest Increas-
ing Subsequence (LIS) algorithm is used to deter-
mine the longest-ordered action sequence within
this max-weighted match. Denoting the length of
this sequence as l, we calculate the precision and
recall as p = l/npred and r = l/ngt, respectively.

4https://www.sbert.net/docs/pretrained_models.html

The plan score is thus defined as:

plan score =
2pr

p+ r
.

Regarding the input formats, in the JSON format,
the LLM is tasked with generating a list of actions,
with each action represented as a dictionary com-
prising the tool name and its corresponding param-
eters. Conversely, in the string format, the LLM
articulates each action in a separate line.

C.3 REASON

Given a tool list T , query q, and a prefix of the so-
lution path, the LLM is asked to generate the next
thought tpredi+1 . The similarity between tpredi+1 and the
golden answer tgti+1 is then measured, and the sim-
ilarity is calculated by Sentence-BERT (the same
as the planning evaluator). In the JSON format,
LLMs need to generate a dictionary containing the
next thought, as well as the next tool name and the
corresponding parameters, which means we eval-
uate REASON, RETRIEVE, UNDERSTAND using
the same LLM output. Regarding the string format,
LLMs only need to generate the next thought in a
single line.

C.4 RETRIEVE

Given a tool list T , query q, and a prefix of the so-
lution path, the LLM is asked to generate the next
tool name toolpredi+1 to call, and then the evaluator
judges whether the name is the same as the golden
answer toolgti+1, achieving score 1 if the same and
0 otherwise. As mentioned in Sec. C.3, the LLM
needs to generate a dictionary containing the next
thought, as well as the next tool name and its cor-
responding parameters in the JSON format, while
in the string format, the golden answer’s thought
is given, and the LLM only needs to generate the
next tool name in a single line.

C.5 UNDERSTAND

Given a tool list T , query q, and a prefix of the
solution path, the LLM is tasked with generating
the parameters argspredi+1 to call the next tool, and
the score is the similarity between argspredi+1 and
argsgti+1 calculated by Sentence-BERT (the same
as planning evaluator). As mentioned in Sec. C.3,
the LLM needs to generate a dictionary contain-
ing the next thought, as well as the next tool name
and its corresponding parameters in the JSON for-
mat, while in the string format, the golden answer’s

9522

https://www.sbert.net/docs/pretrained_models.html

thought and tool name are given, and the LLM
needs to generate the parameters in a single line.

C.6 REVIEW

Given a thought ti and a tool response oi, the LLM
is required to evaluate the tool response. It must
select one of the following categories to classify
the response: Success, Internal Error, Input Error,
Irrelevant Response, or Unable to Accomplish. The
evaluation is scored as 1 for a correct classification
and 0 if the classification is incorrect.

D API Documentation

We manually curate extensive API documentation
for each tool, following the annotation format de-
fined by OpenAI. Compared to official RapidAPI
documentation, our descriptions are more extensive
and detailed, which facilitates the understanding of
various tools and circumvents the failure cases due
to the incomplete API documentation provided in
the benchmark. Here, we provide the API docu-
mentation for BINGMap as an example in Fig. 15.

9523

B.1.1 Query Generation

Prompt:
You will be given a tool list with a few API descriptions. Please carefully read the API documenta-
tion. Your task involves creating 3 varied, innovative, and concrete queries. Respond strictly with
JSON. The JSON should be compatible with the TypeScript type Response from the following:
interface Response {

// 3 generated responses based on the given tools
cases: [

0: {
// list of tools selected , in the format "tool_name.api_name" e.g.,
AirbnbSearch.search_property_by_place
tools: list;
// describes one specific role , it should be a common role in our daily life
role: string;
// describes the detailed query content
query: string;

};
// rest 2 use cases
...

];
}

Rule:
1. API name is strictly prohibited from appearing in the generated query.
2. Each query must use all tools: {tool_names}. Query that only calls one tool will NOT be
accepted.
3. The QUERY and ROLE must be totally different from your previous response.
4. The query should contain every detail, especially parameter inputs required by the APIs, so that
it can be completed **without** using any external information.
5. The information provided in the query MUST truly exist, especially unique IDs required in
APIs.
6. The maximum requested number of items should be limited to 3.

Figure 6: An example prompt of query generation.

B.1.2 Query Refinement

Prompt:
You will be provided with 3 queries. Please carefully review and update the query so that the query
can be successfully executed. Respond strictly with JSON. The JSON should be compatible with
the TypeScript type Response from the following: {response_format}
Rules:
1. API name (e.g., search_property_by_coordinates) is strictly prohibited from appearing in the
query.
2. Provide the exact and real information in the query, Do NOT provide template information, e.g.,
YOUR_FILE_PATH.
3. Avoid saying ‘a specific xxx’, ‘the first/second xxx’ is preferred.
4. Fake information is strictly prohibited in the query (e.g., 1234567). You can modify part of the
query so that the desired information can be obtained by other APIs to avoid generating these fake
information.

Figure 7: An example prompt of query refinement.

9524

B.1.3 Multi-Agent Annotation Prompt

System Prompt:
Answer the following questions as best you can. Specifically, you have access to the following APIs:
{func_list}. Respond strictly with JSON. The JSON should be compatible with the TypeScript type
Response from the following:
interface Response {

// task id of the action
id: int;
// name of the action , must be function name
name: string;
// dependency/prerequisite of current action , list of task id
dep: list;
// input params required by current action.
args: Record <string , any >;
// the exact goal of executing this action
goal: string;

}

Remember:
1. ONLY generate one action at each time.
2. If you have finished ALL tasks requested by the query, please reply: {finish_example}
Begin!
Reviewer Prompt:
You are an expert in discriminating if the task is accomplished. You will be provided with the
following information:
Goal: the goal of the current task
Action: tool name of the current task
Response: response from the called tool

Respond strictly with JSON. The JSON should be compatible with the TypeScript type Response
from the following:
interface Response {

// explain why the task is accomplished/unaccomplished
thought: string;
// whether the task is done
is_finished: boolean;

}

Begin!

Figure 8: An example prompt of Multi-Agent Annotation Prompt.

B.2.1 Dataset Demonstration – INSTRUCT

System:
You have access to the following API:
{

’name ’: ’AirbnbSearch.search_property_by_place ’,
’description ’: ’This function takes various parameters to search properties on Airbnb.’,
’required_parameters ’: [{’name ’: ’place ’, ’type ’: ’STRING ’, ’description ’: ’The name of the
destination .’}],
’optional_parameters ’: [],
’return_data ’: [{’name ’: ’property ’, ’description ’: ’a list of at most 3 properties ,
containing id, name , and address .’}]

}

Please generate the response in the following format:
{

goal: goal to call this action
name: API name to call
args: JSON format API args in ONLY one line

}

User:
Call the function AirbnbSearch.search_property_by_place with the parameter as follows: ‘place’
is ‘Berlin’;

Figure 9: An example prompt in the INSTRUCT dataset.9525

B.2.2 Dataset Demonstration – PLAN

System:
You have access to the following API:
{API_docs}

Please generate a plan for answering the user’s questions, which should be a list of actions with
the following format:
[{

// id of the action
"id": number;
// the name of the action
"name": string;
// input params required by this action
"args": str(Record <string , any >);

}, ...
]

You can imagine args when you plan the action, and these instructions will be executed sequentially.
For example, if you want to call api1 with arg1 and arg2, you can write the following plan:
[

{
"id": 0,
"name": "api1",
"args": "{’arg1 ’: ’value1 ’, ’arg2 ’: ’value2 ’, ...}" ,

}, ...
]

The args should be a dictionary in string format. PLEASE use ‘’ in the args dictionary and use ""
in other places, DO NOT print args with value None or null.
You should only generate a list in JSON format. The list should be the full planning list without
‘...’ DO NOT generate any text to explain the JSON.
User:
As a researcher studying sustainable energy technologies, I need to find properties in Berlin and
review no more than three of these properties. Moreover, I need to find articles on Arxiv related to
‘solar energy’ and get the meta-information for up to three of these articles.

Figure 10: An example prompt in the PLAN dataset.

B.2.3 Dataset Demonstration – REASON

System:
You are an assistant who can utilize external tools. You can call the following tools:
{API_docs}

If you already know the answer, please call the FinishAction to provide the final response to the
answer.
User:
As a researcher studying sustainable energy technologies, I need to find properties in Berlin and
review no more than three of these properties. Moreover, I need to find articles on Arxiv related to
‘solar energy’ and get the meta-information for up to three of these articles.
User:
What is your thought at the current step?

Figure 11: An example prompt in the REASON dataset.

9526

B.2.4 Dataset Demonstration – RETRIEVE

System:
You are an assistant who can utilize external tools. You can call the following tools:
{API_docs}

If you already know the answer, please call the FinishAction to provide the final response to the
answer.
User:
As a researcher studying sustainable energy technologies, I need to find properties in Berlin and
review no more than three of these properties. Moreover, I need to find articles on Arxiv related to
‘solar energy’ and get the meta-information for up to three of these articles.
User:
What is your thought at the current step?
Assistant:
Find properties in Berlin.
User:
What is the tool name to call at the current step?

Figure 12: An example prompt in the RETRIEVE dataset.

B.2.5 Dataset Demonstration – UNDERSTAND

System:
You are an assistant who can utilize external tools. You can call the following tools:
{API_docs}

If you already know the answer, please call the FinishAction to provide the final response to the
answer.
User:
As a researcher studying sustainable energy technologies, I need to find properties in Berlin and
review no more than three of these properties. Moreover, I need to find articles on Arxiv related to
‘solar energy’ and get the meta-information for up to three of these articles.
User:
What is your thought at the current step?
Assistant:
Find properties in Berlin.
User:
What is the tool name to call at the current step?
Assistant:
AirbnbSearch.search_property_by_place
User:
What is the value of ’place’ required by the current tool?

Figure 13: An example prompt in the UNDERSTAND dataset.

9527

B.2.6 Dataset Demonstration – REVIEW

System:
You are presented with information about a task and its corresponding responses in the following
format:
Goal: [The intended goal or objective of the current task.]
Name: [The name of the tool used for the task.]
Args: [The arguments or parameters supplied to the tool.]
Response: [The response or output received from the tool after execution .]

Based on this information, your task is to evaluate whether the goal has been achieved. Select the
most appropriate option from the choices below to describe the task’s outcome:
A: Success – The task has been completed successfully and the goal is achieved. B: Internal error
– There is a malfunction or connectivity issue within the tool itself, leading to failure. C: Input
Error – The tool is mismatched to the query, or the parameters or arguments provided to the tool
are incorrect or inadequate for the task. D: Irrelevant Response – The output from the tool does
not align with the expected response as per the tool’s description or is ambiguous. E: Unable to
Accomplish – The tool’s response indicates that the task is impossible to accomplish or the tool’s
response is empty.
Your output should follow the following format:
Answer: [Insert your choice here , choosing from A, B, C, D, and E. This should be a single
character .]

Note that the place, the date, and the id in the parameters and the response are correct; please do
not judge the correctness of the parameters and the response based on the place, the date, and id.
User:

Goal: prints the details of the movie ’The Battle at Lake Changjin ’\\
Name: FilmDouban.print_detail \\
Args: {’film_name ’: ’Inception ’}\\
Response: {’text ’: ’Can not find the movie named Inception ’}\\

Figure 14: An example prompt in the REVIEW dataset.

9528

D. API Documentation – BINGMap

tool_description = dict(
name=’BINGMap ’,
standardized_name=’bing_map ’,
tool_description =" Plugin for lookup map information in America",
category ="Life",
api_list = [

dict(
name=" get_distance",
description ="Get the distance between two locations in km.",
required_parameters =[dict(name=’start ’, type=’STRING ’, description=’The start
location.’),

dict(name=’end ’, type=’STRING ’, description=’The end location.’)],
optional_parameters =[],
return_data =[dict(name=" distance", description ="the distance in km.")]

),
dict(

name=" get_route",
description ="Get the route between two locations in km.",
required_parameters =[dict(name=’start ’, type=’STRING ’, description=’The start
location.’),

dict(name=’end ’, type=’STRING ’, description=’The end location.’)],
optional_parameters =[],
return_data =[dict(name="route", description ="the route , a list of actions .")]

),
dict(

name=" get_coordinates",
description ="Get the coordinates of a location.",
required_parameters =[dict(name=’location ’, type=’STRING ’, description=’the location
need to get coordinates .’)],
optional_parameters =[],
return_data =[

dict(name=" latitude", description ="the latitude of the location ."),
dict(name=" longitude", description ="the longitude of the location .")

]
),
dict(

name=" search_nearby",
description = "Search for places nearby a location , within a given radius , and return
the results into a list. Put the location name at the end of the query.",
required_parameters =[dict(name=’search_term ’, type=’STRING ’, description=’the place
name ’)],
optional_parameters =[

dict(name=’places ’, type=’STRING ’, description=’the name of the location.’),
dict(name=’latitude ’, type=’FLOAT ’, description=’the latitude of the location.’),
dict(name=’longitude ’, type=’FLOAT ’, description=’the longitude of the location.’),
dict(name=’radius ’, type=’NUMBER ’, description=’radius in meters.’)

],
return_data =[

dict(name=" places", description ="the list of places , each place is a dict with
name and address , at most 5 places .")

]
),

]
)

Figure 15: An example API document: BINGMap.

9529

