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Abstract

Event Argument Extraction (EAE) aims to ex-
tract arguments for specified events from a
text. Previous research has mainly focused
on addressing long-distance dependencies of
arguments, modeling co-occurrence relation-
ships between roles and events, but overlook-
ing potential inductive biases: (i) semantic dif-
ferences among arguments of the same type
and (ii) large margin separation between argu-
ments of the different types. Inspired by pro-
totype networks, we introduce a new model
named HMPEAE, which takes the two induc-
tive biases above as targets to locate prototypes
and guide the model to learn argument repre-
sentations based on these prototypes. Specif-
ically, we set multiple prototypes to represent
each role to capture intra-class differences. Si-
multaneously, we use hypersphere as the out-
put space for prototypes, defining large mar-
gin separation between prototypes to encour-
age the model to learn significant differences
between different types of arguments effec-
tively. We solve the “argument-prototype”
assignment as an optimal transport problem
to optimize the argument representation and
minimize the absolute distance between ar-
guments and prototypes to achieve compact-
ness within sub-clusters. Experimental results
on the RAMS and WikiEvents datasets show
that HMPEAE achieves state-of-the-art perfor-
mances.

1 Introduction

Event Argument Extraction (EAE) is an essential
branch of event extraction that aims to extract the
arguments of specified events from a text and pre-
dict their roles. EAE is critical in many down-
stream tasks, such as question and answer, recom-
mender, and dialog systems.

In the EAE task, we observe two types of induc-
tive biases. The first is the presence of intra-class

*Corresponding author.

... Since the conflict began five years ago , 
the United States has donated $ 5.6 billion  
aid to refugees and... 

...spent weeks contacting charities in hopes of 
tracking down the "millions" Trump says he 
has donated to various organizations ...

Figure 1: We demonstrate two types of inductive biases
present in EAE. (1) arguments with the same role may
belong to different sub-clusters due to semantic differ-
ences, and (2) larger margin separations are ignored,
leading to unclear boundaries between different cate-
gories.

variance, where arguments for the same role may
fall into different sub-clusters in the embedding
space due to semantic differences. For example,
in Figure 1, both “America” and “Trump” play the
role of “giver” in the event “gift grant provide aid”.
However, the former can be regarded as an “or-
ganization”, while the latter denotes an “individ-
ual”. Similarly, both “various organizations” and
“refugees” play the role of “beneficiaries”, with the
former easily perceived as “entities” and the latter
representing a people “group”. The second is the
lack of clear boundaries between different role ar-
guments, leading to difficulties in explicitly delin-
eating various argument representations in the em-
bedding space and making model decisions chal-
lenging.

In this paper, we propose the HMPEAE to ad-
dress the two issues above. It is a prototype-based
approach similar to prototype networks. In pro-

9271



totype networks, the prototype is the mean out-
put vector of all samples per class, guiding the
model to learn the distribution of samples in the
embedding space(Jetley et al., 2015; Gao et al.,
2019; Li et al., 2019; Pan et al., 2019; Seth et al.,
2019; Mettes et al., 2019). However, traditional
prototype-based methods only assign one proto-
type per category, neglecting semantic variations
within the same category. This oversight can lead
to the model being influenced by intra-class vari-
ance. Additionally, the existing multi-prototype
method(Wu et al., 2023) does not consider the
large margin separation between classes. This
leads to fuzzy boundaries in the embedding space
for samples of different categories, causing model
decision difficulties and poor robustness.

HMPEAE sets multiple prototypes for each role,
allowing each prototype to represent a specific sub-
cluster. In this way, we can capture the intra-
class variance. Simultaneously, we use the hy-
persphere as the representation space(Mettes et al.,
2019) for prototypes to maximize the distances be-
tween class prototypes and achieve a large inter-
class separation. Further, we consider smaller dis-
tances between prototypes of roles with similar se-
mantics and larger distances between prototypes
of roles with larger semantic differences. Inspired
by RankNet(Burges et al., 2005), we consider the
similarity between semantics of roles as the prior
information and employ a ranking-based loss func-
tion as one of the objectives for locating proto-
types. We use the pre-trained prototypes to guide
the EAE model in learning the arguments’ repre-
sentations. Specifically, we adopt TabEAE (He
et al., 2023) as the backbone model, inheriting
its key modules such as encoder, decoder, prompt
templates, slot tables and span selectors. During
training, each argument should be assigned an ap-
propriate prototype to optimize its representation.
We consider such an “argument-prototype” assign-
ment an optimal transport problem while minimiz-
ing the absolute distances between arguments and
prototypes to achieve compactness for the same
sub-cluster. We summarize our contributions as
follows:

• We trained a group of role prototypes with
two overlooked inductive biases in mind,
which set multiple prototypes for each role
to capture intra-class differences and employ
the hypersphere as the output space for large
margin separation between classes.

• Each argument should be assigned an appro-
priate ground-truth prototype to optimize the
its representation during EAE model train-
ing. We solve the “argument-prototype” as-
signment as an optimal transport problem.

• We construct experiments on RAMS and
Wikievents. The results show that HM-
PEAE achieves sota performances, bringing
about gain effects of 0.6 and 2.5 on Arg-C
F1, respectively. The code is available at
https://github.com/GJZhang2866/HMPEAE.

2 Methodology

In this section, we first describe the task definition
of EAE in subsection 2.1, followed by a detailed
description of the process of constructing hyper-
spherical multi-prototypes in subsection 2.2. We
then briefly outline the backbone EAE model cho-
sen for this paper in subsection 2.3, and finally ex-
plore a solution to the optimal transport problem
between arguments and prototypes in subsection
2.4.

2.1 Task definition
Given a document D = {wi}Nw

i=1 consisting of Nw

words, with a predefined set of event types E , cor-
responding role sets Re for each event type e ∈ E
and its trigger word te ∈ D, the objective is to ex-
tract all (r, a) pairs from D, where r ∈ Re is the
role of argument a in the event e.

2.2 Hypersphere Prototypes
Due to semantic variations within a role, argu-
ments of the same role will form multiple subclus-
ters in the embedding space. Simultaneously, the
boundaries between different roles of arguments
in the embedding space become blurry, leading to
challenging model decisions. To address these, we
use multiple prototypes to represent each role type
and employ the hypersphere as the output space
of prototypes, capturing intra-class semantic vari-
ance and enabling large margin separation. As
shown in Figure 2, we set up three targets to lo-
calize the hyperspherical multi-prototypes.
Hypersphere Single-Prototype. For ease of intro-
duction, let’s first consider the case of setting one
prototype for each role. Specifically, for each role
r, let pr represent its prototype. Thus, P = {pi}Ki=1
constitutes the prototypes for all K roles. The
problem of how to distribute all prototypes as uni-
formly as possible on the hypersphere is known as

9272

https://github.com/GJZhang2866/HMPEAE


0,1

min(cos
)

q
0,4

mi
n(c
os

)
q 1P

2P

3P

4P

5P

Target 1: Maximize the distance 

between inter-class prototypes.

Target 2: Minimize the distance 

between intra-class prototypes.

Target 3: Semantically unrelated lables should be pushed 

further away than semantically related ones.

1

1p

3

1p

2

1p

Role1

Role2

Role3

Role4

Role5

C
o
si

n
e 

S
im

il
a

ri
ty

Encoder 1P

2P4P

Initialize Role Proyotypes

1

1p
3

1p
1

2p
3

2p
1

3p
3

3p
3

4p
1

5p
3

5p

1P 2P 3P 4P 5P

Role Lables

Employee, Place, 
Attacker Giver,Victim...

3P
5P

2
1,3

max(cos
)

q

22
,3

m
ax(cos

)
q

1

4p

1

2p

3

2p

2

2p

2

2,3q

2

1,3q

1,4 1,2cos cosq q>

1 4 1 2
( , ) ( , )r r r rd h h d h h>

1r
h

2r
h

4r
h

1 4q 1 2q

1 4q
1 2q

Figure 2: Three Training Goals for Training Hypersphere Multi-prototypes. Here, we randomly initialize three
prototypes for each role Pi = {pji}3j=1. In target 3, we freeze the encoder parameters and obtain only the embedding
representation of each role label.

the Tammes problem(Tammes, 1930). To address
this issue, (Mettes et al., 2019) observes that the
optimal set of prototypes P∗ ∈ RK×d is the one
that minimizes the maximum cosine similarity be-
tween any two prototypes pi ∈ Rd and pj ∈ Rd:

P∗ = arg min
P,i≠j,i,j∈K cos θpi,pj (1)

where d is the hidden dimension. For this purpose,
minimizing cosine similarity can be formulated as
the objective function for optimization. However,
computing all pairwise cosine similarities is highly
inefficient. Therefore, the following optimization
objective is proposed, where the goal is to opti-
mize the prototype with the maximum similarity
to the current prototype at each iteration:

Lp = 1

K

K∑
i=1 max

i≠j,j∈K Mij (2)

M = d(P̂, P̂T ) − 2E (3)

where P̂ ∈ RK×d is the current set of hyperspheri-
cal prototypes, E is the unit matrix, M denotes the
pairwise prototype similarities and d(⋅) represents
the cosine distance metric. By optimizing Lp, we
can we can obtain a hyperspherical single proto-
types.
Hypersphere Multi-Prototype. Next we extend
the single-prototype to the multi-prototype case.
Specifically, for each event role r, let Pr ={pr1, ..., prM} be the set of M prototypes represent-
ing r. Then P = {Pi}Ki=1 ∈ RK×M×d is s the collec-
tion of prototypes for all K roles. We aim to max-
imize the distance between prototypes of different

roles while minimizing the distance between pro-
totypes of the same role, so we set the following
loss:

Linter = 1

K

K∑
i=1( max

b(i)≠b(j),j∈K Mij) (4)

Lintra = 1

KM

K∑
k

M∑
ij

(1 −min
i≠j Mij) (5)

Lp = Linter +Lintra (6)

where b(i) denotes the role represented by the i-th
prototype. For Eq.4, we only consider the inter-
class situations thus excluding prototypes that be-
long to the same role, i.e., b(i) ≠ b(j). For Eq.5,
we only compute prototypes belonging to the same
role and set the optimization objective to maxi-
mize the minimum similarity between these pro-
totypes.
Prototype with prior information. While sepa-
rating prototypes of different roles is crucial, se-
mantically unrelated roles should be farther apart
than semantically related ones. To incorporate
this prior knowledge during the prototype con-
struction process, we leverage BERT to encode
the semantic information for each role, repre-
sented as HR = {hr1 , . . . , hrK}. Inspired by
RankNet(Burges et al., 2005), we use a ranking-
based loss function(Mettes et al., 2019):

S̄ijk = [[d(wi,wj) ≤ d(wi,wk)]] (7)

oijk = d(pi, pj) − d(pi, pk) (8)
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Sijk = eoijk

1 + eoijk (9)

Lrank = 1

T
∑(i,j,k)∈T (−S̄ijk logSijk

−(1 − S̄ijk) log(1 − Sijk))
(10)

where T denotes the set of all role triples. The
ground truth S̄ijk denotes the ordering of role
triples, with a indicator function [[⋅]]. Sijk repre-
sents the likelihood of ranking. Lrank optimizes the
hyperspherical prototypes, aligning its ranking or-
der with the semantic priors. We jointly optimize
the prototype by combining the ranking loss func-
tion with the formula loss function:

Lhp = Lp +Lrank (11)

After above steps, we are able to obtain hyper-
spherical multi-prototypes P∗ = {P∗i }Ki=1 for K
roles and each role is represented by M prototypes
denoted as P∗i = {pji }Mi=1
2.3 Backbone EAE Model

We choose TabEAE(He et al., 2023) as our back-
bone model and inherit its encoder, decoder,
prompt templates, slotted tables and span selector
for extracting event arguments.
Trigger-aware context encoding. Given a word
sequence D = {wi}Nw

i=1 containing k triggers, we
use a pair of tokens(<T-i>,</T-i >) to mark the i-
th trigger ti in the sequence, obtaining the input
sequence X . We then feed X into a transformer-
based encoder to obtain the contextual representa-
tions of D. Furthermore, it is passed to the de-
coder to obtain an event-oriented contextual rep-
resentation HX ∈ Rlc .Here, we skip the compu-
tation of cross-attention in the decoder and only
updated contextual representation HX through the
self-attention module:

Henc
X = Encoder(X) (12)

HX =Decoder(Henc
X ,Henc

X ) (13)

Slotted Table Construction. We follow (He et al.,
2023), modeling the co-occurrence relationships
of events by constructing a Slotted Table and using
it as input for the decoder. Specifically, the prompt
for each event is fed into the encoder in parallel,
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Figure 3: The overview of HMPEAE. We use
TabEAE(He et al., 2023) as the backbone model. Dur-
ing training , we collect predicted argument features,
solve the assignment problem between prototypes and
arguments using the optimal transport algorithm, and
introduce a compactness loss to achieve compactness
within each sub-cluster.

resulting in initialized column headers representa-
tion.

H
Ej

P = Encoder (PEj
) (14)

HCH = [HE1
P ∶ ... ∶HET

P ] (15)

where PEj is the j-th prompt,and T is the num-
ber of event types. HCH is the concatenation of
all prompts’ representations. The i-th row of the
table starts with the i-th trigger, followed by the
argument slots Si of the i-th prompt. The initial-
ization representations of the table can be obtained
through the following equation:

HTab = [HCH ∶Ht1 ∶HS1 ∶ ... ∶HtN ∶HSN
]
(16)

where Hti is the embedding of i-th trigger word,
copied from Henc

X . HSi is the average embedding
of the corresponding role and trigger.
Non-autoregressive table decoder The non-
autoregressive table decoder set a structure-aware
self-attention with mask MTab constructed by (He
et al., 2023) to make each element of the table
attend to the region related to it. The cross-
attention mechanism is the same as the one in
Transformer(Vaswani et al., 2017).

H̃Tab =Decoder(HTab,H
enc
X ) (17)

Span Selector. We can obtain the representa-
tion of the argument slots HS form last step out-
put H̃Tab. We transform each slot representation

9274



hSk
∈ HS through a linear transformation into a

span selector {φs
k, φ

e
k}:

φs
k = hSk

ws (18)

φe
k = hSk

we (19)

where ws and we are learnable weights. The span
selector {φs

k, φ
e
k} is responsible for choosing a

suitable span for the slot k in the context embed-
dings:

psk = Softmax(HXφs
k) (20)

pek = Softmax(HXφe
k) (21)

(ŝk, êk) = argmax(i,j)∈lc(psk(i) + pek(j)) (22)

where lc is the context length, ŝk and êk are the
start and end indices of the best span. Then, we
obtain the argument representation hk

a ∈ Rdh .
Furthermore, we follow the approach of (Ma

et al., 2022; He et al., 2023), utilizing the Hun-
garian algorithm to solve the assignment problem
between predicted argument spans and golden ar-
gument spans. We optimize the process using a
bipartite matching loss:

Lspan = − N∑
i=1∑k (log psk (sk) + log pek (ek))

(23)
where (sk, ek) are the golden span assigned to the
k-th argument slot.

2.4 Token-Prototype Assignment
As shown in Figure 3, we introduce role proto-
types to guide the backbone model learning argu-
ment representations. Due to multiple prototypes
representing each role, assigning each argument
to the appropriate ground-truth prototype is nec-
essary to optimize argument representations. We
use P∗r ∈ RM×d to denote M prototypes for role r
and Ar is represented as the set of arguments pre-
dicted as r. Each element hia ∈ Ar is the argument
representation, which can be obtain by mean pool-
ing: hia = Mean_pooling(HX[ŝi∶êi]). We aim
to compute the assignment matrix γr ∈ R∣Ar ∣×M .
We consider argument-prototype assignment as an
optimal transport problem:

γ̂r = argmin
γr
∑
i∈Ar

M∑
j=1γ

r
i,jC

r
i,j

s.t. γ̂r1 = a, γ̂r
⊺
1 = b,

(24)

where Cr
i,j = d(hi

a,p
r
j) serves as the cost ma-

trix, representing the distance between Ar andP∗r . There are two constraint conditions here: (1)
a = 1 ∈ R∣Ar ∣ ensures that each argument can be
assigned to one prototype, and (2) b = ∣Ar ∣

M 1 ∈ RM

prevents all arguments from being assigned to the
same prototype. We follow (Wu et al., 2023), sim-
ply set it to an even distribution We then utilize
the sinkhorn-knopp(Cuturi, 2013) algorithm to ad-
dress the assignment problem. We show more de-
tails in Appendix A.This approach allows us to
obtain a prototype assignment for all arguments.
We optimize the matching through standard cross-
entropy loss:

La = −∑
i∈r log

exp (d(hia, pc))∑j∈K×M exp (d(hia, pj)) , (25)

where pc is the ground-truth prototype obtained
from the previous step. To achieve compactness of
argument features within the same subset cluster,
we further optimize the absolute distance between
argument features and the ground-truth prototypes:

Lc =∑
i∈r(1 − d(hia, pc))2. (26)

The total loss can be calculated as follows:

L = Lspan + λaLa + λcLc, (27)

where λa and λc are regularization weights.
Prototype Updating. During the EAE model
training, we update each prototype based on the
argument features assigned to it. At each training
step t, we update the prototype using an exponen-
tial moving average (EMA):

pti = αpt−1i + (1 − α)∑i∈∣A∣hi
a∣A∣ , (28)

where α is the EMA update rate. In this manner,
the learned prototype can be considered as a rep-
resentation of some sub-cluster in the embedding
space.

3 Experiment

3.1 Experimental Settings
Dataset and Metrics We conduct experiments on
two widely used public datasets: RAMS(Ebner
et al., 2020) and Wikievents(Li et al., 2021). Fol-
lowing previous works (Ma et al., 2022; He et al.,
2023), we employ Argument Identification F1
(Arg-I) and Argument Classification F1 (Arg-C)
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Model PLM
RAMS WikiEvents

Arg-I Arg-C Arg-I Arg-C

EEQA⋆(2020b) BERT 48.7 46.7 56.9 54.5
EEQA⋆(2020b) RoBERTa 51.9 47.5 60.4 57.2

BART-Gen⋆(2021) BART 51.2 47.1 66.8 62.4
TSAR⋆(2022) RoBERTa 57.0 52.1 71.1 65.8
PAIE∗ (2022) BART 57.1 52.6 70.2 65.1

SCPRG(2023b) RoBERTa - 52.3 - -
(Ren et al., 2023) T5 54.6 48.4 69.6 63.4
SPEAE (2023) BART 58.0 53.3 71.9 66.1

TabEAE∗(m2m)(2023) RoBERTa 56.5 52.2 70.5 64.5
TabEAE∗(m2s)(2023) RoBERTa 57.3 53.1 69.8 63.9

HMPEAE(Ours) RoBERTa 58.6 53.7 72.1 66.6

Table 1: Overall results. We highlight the best result and underline the second-best result. * indicates that we
have rerun the relevant code. The symbol ⋆ indicates results from He et al. All pre-trained models (PLMs) are of
large-scale. Missing values are due to unreported metrics in the original paper. Other unmarked results are sourced
from the original paper.

as evaluation metrics. Arg-I refers to the correct-
ness of predicted arguments when the boundaries
of the predicted arguments match with any golden
arguments; Arg-C indicates correctness only when
both the boundaries and role types of the predicted
arguments are correct.

Implementation Details During the training of
the hyperspherical multi-prototype, we set up 2
prototypes for each role in the RAMS dataset
and 4 prototypes for each role in the WikiEvents
dataset. The experimental results in section 3.4
demonstrate that this is the optimal setup. We use
Bert-base(Devlin et al., 2018) as the encoder for
label semantic vectors and employ the SGD opti-
mizer with a learning rate of 0.1, momentum of
0.9, and run for 10,000 epochs. For training the
EAE model, we set EMA update rate α = 0.9 and
λc = 0.1. The other hyperparameters are consis-
tent with TabEAE(He et al., 2023). All experi-
ments we reran are only single experiment results.
We also report the average results with 5 random
seed in Appendix C.

Baselines We compare different classes of EAE
models, which mainly consist of classification-
based methods, e.g., EEQA(Du and Cardie,
2020b), TSAR(Xu et al., 2022), SCPRG(Liu
et al., 2023b) and generation-based methods, e.g.,
BART-Gen(Li et al., 2021), PAIE(Ma et al., 2022),
(Ren et al., 2023), SPEAE(Nguyen et al., 2023),
TabEAE(He et al., 2023). We show more details
in Appendix B.

3.2 Main results

We evaluate the proposed model HMPEAE and
baseline methods under all benchmarks. The
overall performances of our method compared
to baseline models is presented in Table 1. In
contrast to the baseline model PAIE, TabEAE,
HMPEAE demonstrates comprehensive improve-
ments across both datasets.Specifically, HMPEAE
achieves gains of 0.6 and 1.3 in Arg-I and Arg-C
metrics, respectively, on RAMS. And it shows an
improvement of 1.3 in Arg-I F1 1.9 and 2.5 in Arg-
C F1 on WikiEvents.

Compared to the previous state-of-the-art mod-
els, on the WikiEvents dataset, HMPEAE sur-
passes SPEAE by 0.2 in Arg-I and 0.5% in Arg-C
metrics. On the RAMS dataset, HMPEAE outper-
forms SPEAE, with an increase of 0.6 in Arg-I F1
and 0.4 in Arg-C F1. These results demonstrate
the effectiveness of our proposed method.

The performance improvement can be attributed
to two main factors: (1) The utilization of mul-
tiple prototypes to represent intra-class variance
enables better capture of intra-class semantic dif-
ferences, thereby enhancing the robustness of the
model. (2) Employing hyperspheres as prototype
output spaces facilitates significant margin separa-
tion, enhancing the model’s decision-making capa-
bilities.
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Model
RAMS Wikievents

Arg-I Arg-C Arg-I Arg-C

w/o Privileged info 57.1 52.3 69.3 63.1
w/o Multiple Prototype 56.9 51.4 70.2 65.1
w/o Hypersphere 56.4 52.1 70.2 63.8
w/o Compactness Loss 57.1 52.4 69.0 63.8
w/o La 57.3 52.6 69.9 65.0
w/o EMA 55.7 50.9 70.5 65.5

HMPEAE 58.6 53.7 72.1 66.6

Table 2: Ablation experiments on both datasets.

3.3 Ablation Studies

To verify the validity of different components in
HMPEAE, we perform a rich ablation study on
two datasets, and the results are shown in Table
2. (1) w/o Privileged info. We deprecated role
embedding as a priori information when locating
more than one hyperspherical prototype. (2) w/o
Multiple Prototypes. We dropp multiple proto-
types and set only one prototype for each role. (3)
w/o Hypersphere. We remove the hypersphere
setting, i.e., instead of using the principle of large
margin separation to locate prototypes, we simply
randomly generate multiple prototypes for each
role.(4) w/o Compactness Loss. In training the
EAE model, we remove the compactness loss. (5)
w/o La. We remove the cross-entropy loss be-
tween spans and prototypes and kept only the com-
pactness loss to optimize the absolute distance
of arguments to the matched prototypes. (6)w/o
EMA. During training, we freeze the prototypes
and do not optimize them.

The ablation experiments show that after remov-
ing the settings of multiple prototypes and hyper-
spheres, the model lost the ability to capture intra-
class semantic differences and handle decision dif-
ficulties, leading to a decrease in performance. Us-
ing role semantic similarity as prior information in
locating prototypes can enhance the model’s per-
formance. During EAE training, compact loss and
cross-entropy loss between prototypes and argu-
ments have been proven necessary. Additionally,
further fine-tuning of prototypes by EMA has pos-
itively contributed to improving performance.

3.4 Experiment on Different Number of
Prototypes

We analyze the impact of the number of prototypes
by increasing the number of role prototypes to
find the optimal setup for each dataset. As shown
in Table 3, setting two prototypes for each role

M
RAMS Wikievents

Arg-I Arg-C Arg-I Arg-C

1 57.1 52.3 69.3 63.1
2 58.6 53.7 70.2 65.1
3 57.1 52.4 72.1 66.6
4 57.3 52.6 69.9 65.0

Table 3: Experiment with the different number of pro-
totypes. M denotes the number of prototypes for each
role

achieves the best performance on RAMS. Setting
three prototypes for each role achieves the best
performance on WikiEvents. We did not conduct
prototype experiments with more settings because
additional prototypes would incur higher computa-
tional costs. And setting too large will affect the
performance because there may not be enough ar-
gument features to learn representative prototypes,
which leads to underfitting.

3.5 Visual Analysis
Visualization of Prototypes In Figure 4, we vi-
sualize the prototypes of roles relevant to event
type “Transaction.Donation.Unspecified” from
WikiEvents in the form of a 3D hypersphere
and simultaneously project them onto three 2D
planes for display. The prototypes have essen-
tially achieved our predefined targets, which in-
volve maximizing the distance between inter-class
prototypes while minimizing the distance between
intra-class prototypes. Additionally, the “Giver”
-“Recipient” prototype distances are shorter than
the “Giver” -“Place” distances, aligning with our
intuition and meeting the third objective: similar
roles’ prototypes have smaller distances than dis-
similar ones.
Visualization of Arguments. We extract
argument features of events type “con-
tact.requestadvise.n/a” from the best checkpoint
on RAMS and transform them into 2D features
using t-SNE. As shown in Figure 5, firstly, the
arguments playing the role of “place” form two
sub-clusters in the feature space, which suggests
intra-class variation. HMPEAE can capture such
intra-class variance by setting multiple prototypes
for each role so that arguments of the same
type are more compact than TabEAE. Second,
compared to TABEAE, there is a clear separation
between the argument types of “place” and
“recipient” in HMPEAE. Additionally, we observe
that arguments of “recipient” does not partition
into multiple sub-clusters within the feature space.
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(d) Visualization of role
prototypes on the Y-Z
plane.

Figure 4: Role prototypes for event type Transaction.Donation.Unspecified from WikiEvents, where we set three
prototypes for each role. We use different colors to represent different role prototypes.

This suggests that not all roles exhibit significant
semantic differences.

place
recipient
communicator

(a) TabEAE

place
recipient
communicator

(b) HMPEAE

Figure 5: The t-SNE visualization of part of argument
features.

4 Related Work

4.1 Classification-based Event Argument
Extraction

Initially, (Du and Cardie, 2020a; Wang et al.,
2021) adopt the paradigm of sequence labeling
based on BiLSTM-CRF for extracting event argu-
ments. (Huang and Peng, 2020) employs a deep
value network to capture cross-event dependen-
cies. (Du and Cardie, 2020b; Wei et al., 2021; Liu
et al., 2021) construct questions using predefined
templates, extracting corresponding arguments in
a question-answering (QA) paradigm. (Xu et al.,
2022) proposes an AMR-guided two-stream en-
coder to address long-distance dependency issues.
(Liu et al., 2023b) introduces context pooling to
capture context clues and role relevance. (Liu
et al., 2023a) proposes a chain reasoning paradigm,
utilizing first-order logical rules to capture long-
distance dependency relationships between candi-
date spans. (Zhou and Mao, 2022) construct an en-
tity co-reference graph to learn entity representa-
tions with co-reference awareness. (Li et al., 2023)
introduces an event intra- and inter-dependency-
aware graph network for establishing dependency

information between event argument roles.

4.2 Generation-based Event Argument
Extraction

With the rise of large language models and prompt-
based learning, there has been widespread atten-
tion on extracting event arguments in generations.
(Du et al., 2021) naturally model the dependen-
cies between entities and events by constructing
event templates, utilizing generative Transform-
ers to obtain arguments. (Zeng et al., 2022) de-
vises a context-enhanced event-aware argument
extraction method to enhance argument consis-
tency. (Ma et al., 2022) proposes a prompt-based
approach to extract arguments through slot fill-
ing. Building on this, (He et al., 2023) mod-
els the co-occurrence relationships of events, ex-
tending the prompt-based EAE model into a non-
autoregressive generation framework for paral-
lel extracting arguments from multiple events.
(Nguyen et al., 2023) introduces soft prompts to
enhance the representation of multiple related doc-
ument encodings. (Ren et al., 2023) designs a
retrieval-enhanced method to non-parametrically
incorporate prior external knowledge, enhancing
event argument extraction by sampling pseudo-
examples from the semantic region of events.

5 Conclusion

In this paper, we identify two potential inductive
biases overlooked in the EAE task. Therefore, we
propose the HMPEAE, which first pre-trains a set
of role hyperspherical multi-prototypes targeting
these two inductive biases and directs the EAE
model to learn argument representations based on
these prototypes. During EAE model training, we
solve argument-prototype assignment as an opti-
mal transport problem. Experimental results on
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two commonly used datasets show that HMPEAE
achieves state-of-the-art performance, confirming
the effectiveness of the approach proposed in this
study.

Limitations

There are still limitations in our model that need
further improvement.

• For different types, there are different num-
bers of sub-clusters in the embedding space.
Our approach uniformly sets the same num-
ber of prototypes for each role, which may
increase their inter-class variance for classes
that semantically do not have intra-class dif-
ferences while it does not fully capture the
internal variance for categories that contain
more subclusters.

• Some subclusters have relatively sparse sam-
ples, which leads to incomplete matching
between prototypes and arguments during
the training process, resulting in underfitting
phenomena. Therefore, further research is
needed to extend the hyperspherical multi-
prototype to few-shot scenarios.
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A Sinkhorn-Knopp Algorithm

We apply the sinkhorn-knopp algorithm (Cuturi,
2013) to solve for optimal transportation. Also we
follow (Wu et al., 2023) to add an entropy regular-

izer as follows:

γ̂ = argmin
γ
∑
j
∑
j

γi,jCi,j + λrH(γ),
s.t. γ1 = a, γ⊺1 = b

(29)
where λr is the weight of the regularization and
H(γ) = ∑i,j γi,j log(γi,j is the entropy of the as-
signment matrix. Algorithm 1 is the pseudo-code
of the sinkhorn-knopp algorithm. Here the ⊘ de-
notes the element-wise division, a and b are vec-
tors that represent the weights of each sample in
the source and target distributions.

Algorithm 1 Sinkhorn-Knopp Algorithm

Require: a,b,C, λr

u0 = 1,K = exp(−C/λr)
for i in 1, . . . , n do
vi = b⊘K⊺ui−1
ui = a⊘Kvi

end for
return γ = diag(un)Kdiag(vn)

B Baselines

Here we present the details of the compared base-
lines in detail.
EEQA(Du and Cardie, 2020b), redefines the EE
task as a question-answering task.
BART-Gen(Li et al., 2021) consider EE tasks as
seq-to-seq condition generation.
TSAR(Xu et al., 2022) adopts abstract semantic
representation for EAE and proposes local encoder
and global encoder to capture of contextual infor-
mation.
PAIE(Ma et al., 2022) is the first to perform EAE
task based on prompt learning.
SCPRG(Liu et al., 2023b) proposes context pool-
ing to capture context clues.
(Ren et al., 2023) introduces Retrieval-Enhanced
Strategies for Extracting Event arguments.
SPEAE (Nguyen et al., 2023) introduces soft
prompts to facilitate the encoding of individual ex-
ample context and multiple relevant documents to
boost EAE.
TabEAE (He et al., 2023) models the co-
occurrence relationships of events, extending
the prompt-based EAE model into a non-
autoregressive generation framework for parallel
extracting arguments from multiple events.
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Model PLM
RAMS WikiEvents

Arg-I Arg-C Arg-I Arg-C

TabEAE∗(m2s)(2023) RoBERTa 56.8 52.2 70.3 64.6

HMPEAE(Ours) RoBERTa 57.9 53.2 71.5 66.0

Table 4: Overall results averaged over 5 different random seeds.

C Additional Experiments

To validate the stability of the model we proposed
and ensure a fair comparison with the baselines,
we additionally conducted experiments under four
different random seeds and averaged the results.
The results are shown in Table 4. The results
show that our method still has advantages. Among
the five results, for the RAMS, the ranges of Arg-
I and Arg-C for HMPEAE are 57.3∼58.6 and
52.9∼53.7, respectively. The ranges of Arg-I and
Arg-C for TabEAE are 56.0∼57.4 and 51.7∼53.1,
respectively. For the WikiEvents, The ranges of
Arg-I and Arg-C for HMPEAE are 70.8∼72.1 and
65.5∼66.6, respectively. The ranges of Arg-I and
Arg-C for TabEAE are 69.3∼71.3 and 63.9∼65.6,
respectively.

D Datasets

In this section we describe the two datasets used
for the experiments and present the data statistics
in Table 5.
RAMS is derived from English online news. Since
the original dataset was stored on an event-by-
event basis, we followed the (He et al., 2023)
method to merge data from different events in the
same document.
WikiEvents is collected from English articles in
Wikipedia. We only use the exact argument anno-
tations in our experiments. experiments.

E Few-shot Performance

We analyze the performance of HMPEAE in a few-
shot setting and conduct experiments based on the
RAMS dataset. As shown in Figure 6, we com-
pare our approach with PAIE and TabEAE at dif-
ferent data sampling ratios. In a multi-event train-
ing mode, (He et al., 2023) employs a depth-first
search during the data processing stage to maxi-
mize the utilization of co-occurrence relationships
between events to obtain various event combina-
tions under the same document, thereby expand-
ing the dataset. Therefore, we train TabEAE and

Dataset RAMS WikiEvents

# Event types 139 50
# Args per event 2.33 1.40
# Events per text 1.25 1.78
# Roles 65 80

# Events
Train 7329 3241
Dev 924 345
Test 871 365

Table 5: The basic information for both datasets, where
Args stands for Arguments.

HMPEAE to ensure fair experimentation using a
single-single training-inference scheme. In the
case of limited data, HMPEAE did not demon-
strate significant advantages; only as data in-
creased did its advantages gradually become ap-
parent. The reason for this was the randomness
of the sampling, where samples under the same
class did not show intra-class differences, which
results in insufficient features to train the matching
relationship between the prototype and arguments.
In contrast, HMP w/o Multiple Prototype sets
one prototype for each class, retaining only the
maximum separation between classes. The HMP
wo/Multiple Prototype demonstrates the best per-
formance in the case of scarce training samples,
further validating the effectiveness of its separa-
tion effect.
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Figure 6: Arg-C F1 score on RAMS test set with differ-
ent data ratio.

9282



F Case Study

Figure 7 illustrates an individual test case from
RAMS. Among them, “confiscated” triggers
the “transaction.transaction.transfercontrol” event.
TabEAE erroneously predicts “Police” as “giver”,
whereas it should fundamentally be “beneficiary”,
two roles prone to confusion. In contrast, HM-
PEAE, by establishing maximum boundaries be-
tween categories, manages to circumvent such er-
rors.

Figure 7: A case from RAMS.

G Error Analysis

In this section, we will manually examine the 100
error predictions in the RAMS test set and analyze
their causes.
Absence of intra-class variance. Intra-class vari-
ance does not exist for all roles, e.g., “recipient”
in Figure 5. Therefore, forcing multiple proto-
types results in arguments being forced to opti-
mize towards different prototypes, which in turn
increases intra-class variance and negatively im-
pacts the model’s decision-making.

Insufficient training. Some roles have fewer sam-
ples during training, resulting in insufficient train-
ing of the corresponding role prototypes. This
leads to the inadequate fitting of arguments and
prototypes, and thus, the model affects its perfor-
mance and accuracy.

H Analysis of Computing Resources

The main challenges in the implementation of HM-
PEAE lies in determining the number of proto-
types for each role and the appropriate number of
iterations for the Sinkhorn-Knopp algorithm. For
the former, it necessitates in-depth analysis of the
data and conducting relevant experimental valida-
tions to select the most suitable number. We dis-
cuss the performance impact of setting different
numbers of prototypes and the potential risk of set-
ting too many prototypes in section 3.4; For the lat-
ter, in general, more iterations will result in a better
matching between arguments and prototypes, but
will also result in additional training time.

Additionally, the number of roles K and pro-
totypes M per role also impact the training effi-
ciency of hyperspherical multi-prototypes. Specif-
ically, to incorporate semantic priors into the train-
ing process, it is necessary to compare the cosine
similarity between prototypes pi and pj , pi and pk
for all triplets (i, j, k), where i ≠ j ≠ k, b(i) ≠
b(j) ≠ b(k), i.e., d(pi, pj) and d(pi, pk), to obtain
Lrank in Equ.(10). In this case, if K and M are
large, more triplets will be formed, leading to in-
creased computational overhead, additional train-
ing time, and memory usage. In the two datasets
used in this paper, training role prototypes for the
RAMS dataset (66 roles and two prototypes for
each role) only required 3 minutes and 2.7GB of
memory space, and training role prototypes for the
WikiEvents dataset (81 roles and three prototypes
for each role) only required 5 minutes and 3.4GB
of memory space.

I Analysis of Applicability and
Scalability

We find that our proposed Hyperspherical Multi-
Prototype(HMP) method exhibits significant scal-
ability. Therefore, it is necessary to analyze the
scalability and applicability of the method to facil-
itate its extension to other tasks.

The design of HMP is based on two inductive bi-
ases: large margin separation between classes and
semantic differences within classes. Inductive bi-
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ases are crucial for the design of machine learning
algorithms, which can be seen as prior assump-
tions and are validated through experiments. For
instance, the design of K-Nearest Neighbor(KNN)
is based on the assumption that neighboring sam-
ples in the feature space tend to belong to the same
class, while Word2Vec(Mikolov et al., 2013) is
designed based on the assumption that a word’s
meaning is given by the words that frequently ap-
pear close-by.

In the context of categorization, one significant
and long-standing inductive bias is optimal class
separation. A prominent example of utilizing this
bias is Support Vector Machines(SVM), which
work by maximizing the margin of the hyperplane
between samples of two class. Thus for the first in-
ductive bias, we can degenerate HMP into a hyper-
spherical single-prototype method and use it for
the classification tasks. The classification loss Lc
to minimize is given as:

Lc = N∑
i=1(1 −

∣xi ⋅ pyi ∣∣∣xi∣∣∣∣pyi ∣∣ )2, (30)

where xi is the features embeddings of i-th train-
ing example, pyi is the corresponding golden class
prototype and N is the number of training exam-
ples.

For the second inductive bias, it has already
been used in designing models for Named En-
tity Recognition(NER)(Wu et al., 2023) and has
achieved better performance. However, it is hard
to determine in advance whether a dataset for
a classification task has semantically differences
within one class. This may require an preliminary
assessment using data mining or clustering algo-
rithms, or confirming the existence of inductive
bias through designing models and validating it ex-
perimentally.
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