%:E- KnowCoder: Coding Structured Knowledge into LLMs for
Universal Information Extraction

Zixuan Li*', Yutao Zeng*, Yuxin Zuo*, Weicheng Ren*,

Wenxuan Liu, Miao Su, Yucan Guo, Yantao Liu, Xiang Li, Zhilei Hu, Long Bai,
Wei Li, Yidan Liu, Pan Yang, Xiaolong Jin', Jiafeng Guo’, Xueqi Cheng
Key Laboratory of Network Data Science and Technology,

Institute of Computing Technology, Chinese Academy of Sciences
{lizixuan, jinxiaolong, guojiafeng}@ict.ac.cn
https://ict-goknow.github.io/knowcoder.github.io/

Abstract

In this paper, we propose KnowCoder, a Large
Language Model (LLM) to conduct Universal
Information Extraction (UIE) via code genera-
tion. KnowCoder aims to develop a kind of uni-
fied schema representation that LLMs can eas-
ily understand and an effective learning frame-
work that encourages LLMs to follow schemas
and extract structured knowledge accurately.
To achieve these, KnowCoder introduces a
code-style schema representation method to
uniformly transform different schemas into
Python classes, with which complex schema
information, such as constraints among tasks in
UIE, can be captured in an LLM-friendly man-
ner. We further construct a code-style schema
library covering over 30,000 types of knowl-
edge, which is the largest one for UIE, to the
best of our knowledge. To ease the learning
process of LLMs, KnowCoder contains a two-
phase learning framework that enhances its
schema understanding ability via code pretrain-
ing and its schema following ability via instruc-
tion tuning. After code pretraining on around
1.5B automatically constructed data, Know-
Coder already attains remarkable generaliza-
tion ability and achieves relative improvements
by 49.8% F1, compared to LLaMA?2, under
the few-shot setting. After instruction tuning,
KnowCoder further exhibits strong generaliza-
tion ability on unseen schemas and achieves
up to 12.5% and 21.9%, compared to sota
baselines, under the zero-shot setting and the
low resource setting, respectively. Additionally,
based on our unified schema representations,
various human-annotated datasets can simulta-
neously be utilized to refine KnowCoder, which
achieves significant improvements up to 7.5%
under the supervised setting.

1 Introduction

Information Extraction (IE) aims to extract explicit
and structured knowledge following the manually

* Co-first author.
¥ Corresponding author.

iryTale(WrittenWork) :
class Entity:

for all relation on of a person ...
or Atk retations: polotsk) ...

Wi (Lin Eigy it__(self, head_entity: Human, tail_entity:

class Transportation(Event):

Description: A TRANSPORTATION Event occurs whenever ..

str, # Examp jo, ¢
stl Entity 1, ...

Figure 1: An illustration of KnowCoder schemas.

designed schemas. The IE schemas define high-
level types of knowledge (i.e., concepts) and struc-
tures among them (Hogan et al., 2021), which in-
clude various types of entities, relations, and events.
To simultaneously extract various knowledge under
different schemas via a single model, the Universal
Information Extraction (UIE) task is proposed (Lin
et al., 2020a). Recently, Large Language Mod-
els (LLMs) have demonstrated general understand-
ing abilities through large-scale pretraining, which
drives their increasing utilization in UIE. However,
their performance on UIE is still limited because
of two main challenges: (1) the lack of a unified
schema representation method that LLMs can eas-
ily understand; (2) the lack of an effective learning
framework that encourages LLMs to accurately
follow specific schemas for extracting structured
knowledge.

For the first challenge, the existing UIE models
first represent different schemas in a universal way,
such as classification labels (Lin et al., 2020a), key-
words (Gui et al., 2023), or a specifically-designed
formal language (Lu et al., 2022). These schema
representation methods have three main restric-
tions: (1) ignoring information like taxonomies
(e.g., “fairytale” is a subclass of “written work™)
and constraints among concepts (e.g., “spouse” re-
lation exists between two “human’ entities); (2)

8758

Proceedings of the 62nd Annual Meeting of the Association for lelputational Linguistics (Volume 1: Long Papers), pages 8758-8779

August 11-16, 2024 ©2024 Association for Computational Linguistics

https://ict-goknow.github.io/knowcoder.github.io/

classification labels or a specifically designed for-
mal language is hard for LLMs to understand and
follow; (3) designed for specific IE datasets and
lacking a general schema library.

To solve these restrictions, in this paper, we pro-
pose a kind of code-style schema representation
method, with which various types of knowledge
are generally defined as Python classes. As shown
in Figure 1, the class inheritance mechanism is
adopted to describe the concept taxonomies. A
mechanism of type hint is employed to model con-
straints among different concepts. The class com-
ments are used to provide clear definitions of con-
cepts. And, the class methods are used to post-
process the results according to specific IE guide-
lines. Upon this method, we construct a compre-
hensive code-style schema library covering over
29,000 entity types, 900 relation types, and 500
event types based on Wikidata, the largest one for
UIE, to the best of our knowledge, currently re-
ported in the open literature.

For the second challenge, the existing learning
framework for UIE directly conducts instruction
tuning on LLMs to extract knowledge following
specific and limited schemas (Sainz et al., 2023;
Wang et al., 2023b). The enormous concepts in the
constructed schema library challenge the existing
training framework. To help LLMs better under-
stand and follow these schemas, we propose an ef-
fective two-phase framework containing a schema
understanding phase and a schema following phase.
The former improves the ability of LLMs to un-
derstand different concepts in schemas via large-
scale code pretraining on the schema definition
code and corresponding instance code. The latter
advances their abilities to follow specific schemas
in an IE task via instruction tuning. After code pre-
training on around 1.5B automatically constructed
data, KnowCoder already attains remarkable gener-
alization ability and achieves NER improvements
compared to the base model, LLaMA2, by 49.8%
relative F1 point under the few-shot setting on
NER. After instruction tuning on 1.5B automat-
ically annotated data, KnowCoder experimentally
demonstrates strong generalization ability on un-
seen schemas. Under the zero-shot setting, Know-
Coder achieves average relative improvements up
to 12.5% on the NER task. Under the low-resource
setting, KnowCoder gets average relative improve-
ments up to 21.9% on all the IE tasks. Addition-
ally, based on our unified schema representation,
various IE datasets can be simultaneously utilized

to refine KnowCoder. After refinement, Know-
Coder achieves consistent improvements across all
IE tasks under the supervised setting, getting up to
7.5% improvement on the relation extraction task,
respectively. In general, the main contributions of
this paper include:

* We propose a code-style schema representa-
tion method to uniformly represent different
schemas for UIE. Using this method, we con-
struct a large code-style schema library cover-
ing more than 30, 000 types of knowledge.

* We propose an effective learning framework
for LLMs in a two-phase manner, which first
enhances the schema understanding through
code pretraining and then boosts schema fol-
lowing via instruction tuning.

» After training on billions of automatically
annotated data and refining with human-
annotated IE datasets, KnowCoder demon-
strates superior performance on different IE
tasks under the zero-shot, low-resource, and
supervised settings.

* The constructed schema library, training data,
code, and models are released for future re-
search.

2 KnowCoder Schema

The proposed schema representation method uses
code, a language that LLLMs easy to understand, to
define schemas. Specifically, KnowCoder schema
adopts a series of programming language features
to comprehensively model schema information, in-
cluding the concept taxonomies, the constraints
among different concepts, the definition of con-
cepts, and other extraction requirements. Besides,
considering that previous schema representation
methods are only designed for specific datasets
and contain limited types of knowledge, we further
construct a large-scale schema corpus containing a
wide range of knowledge.

2.1 Code-style Schema Representation
Method

The code-style schema representation method com-
prises three basic classes, namely, “Entity”,
“Relation”, and “Event”. Based on the three ba-
sic classes, we represent all the concepts in the
schemas by the corresponding classes. Then, the
instances of each concept can be represented by the

8759

2

objects of the corresponding class. In the follow-
ing, we will introduce four features of the proposed
representation method.

Class Inheritance. We adopt the class inheri-
tance mechanism to account for the taxonomies
in the schemas. Specifically, we let class A inherit
all the class members from class B if the corre-
sponding concept A is the hyponym of concept B
in the taxonomies. For a concept with multiple
hypernyms, the hypernym concept with the most
instances is selected. The class of an unseen con-
cept can inherit from an existing class or directly
from the basic class.

Class comment. Similarto Sainz et al. (2023),
we adopt class comments to provide clear defini-
tions of concepts. As shown in Figure 1, a class
comment includes a natural language description
that explains the corresponding concept and the
examples of instances corresponding to that type.
When there is an unseen concept, we use the de-
scription in its annotation guidelines ' and manu-
ally give out a few examples.

Type Hint. Type hint is a formal solution to in-
dicate the type of a value in the code. We adopt
type hints in the initialization function of a class
to define its constraints with other classes strictly.
Thus, the constraints among the concepts in the
schemas are modeled. As shown in Figure 1,
taking the relation “PlaceOfBirth” for example,
“def __init__(self, head_entity: Human,
tail_entity: SpatialEntity)” denotes that
the head entity must be a “Human” and the tail
entity must be a “SpatialEntity”.

Class Method. A class method is bound to the
class and not the object of the class. They are uti-
lized to post-process the extracted instance results
of a class. For example, some IE tasks may not
consider the pronouns “he” and “she” as instances
of the “Human” concept. To address this, a class
method can be added to the “Human” class to filter
out such pronouns from the extraction results, en-
suring that the output aligns with the task’s unique
criteria. Note that, class methods are manually de-
signed for specific IE tasks based on their task con-
straints. We take a few IE datasets to demonstrate
the effectiveness of class methods in our experi-
ments, as shown in the Appendix C.

'If the annotation guidelines are missing, we use the de-
scription generated by GPT-4.

2.2 Schema Library Construction

We construct the code-style schema library based
on Wikidata 2. We select the concepts included
in the existing IE datasets created from Wikidata,
i.e., KELM (Agarwal et al., 2021), Universal-
NER (Zhou et al., 2023), InstructIE (Zhang et al.,
2023), and LSEE (Chen et al., 2017). We derive
the constraints among concepts according to their
co-occurrences. To construct the taxonomies, we
extract the “SubclassOf” relations among these
concepts from Wikidata. To obtain the description
of a concept, we use its definition from Wikidata
directly or generate its descriptions using GPT-4
if its definition in Wikidata is missing. Finally,
the constructed schema library encompasses over
29, 177 entity types, 876 relation types, and 519
event types. The detailed statistics of the schema
are in Appendix I.

3 Learning Framework of KnowCoder

To discriminate enormous concepts defined in
schemas, we first let KnowCoder understand each
concept through its definition and instances. Sub-
sequently, we enhance KnowCoder to discriminate
among a few concepts and extract corresponding
knowledge. Thus, as shown in Figure 2, the pro-
posed learning framework contains two phases, i.e.,
the schema understanding phase and the schema
following phase. In the schema understanding
phase, KnowCoder undergoes code pretraining to
understand each concept in two manners: 1) Go
through the class definition code of each concept.
2) Go through the instance codes of each concept.
In the schema following phase, KnowCoder is fine-
tuned using instruction tuning code, where multiple
task-demanded concepts are given in the schemas,
enhancing KnowCoder’s ability to follow schemas
and generate instantiating code accordingly.

3.1 Schema Understanding Phase

3.1.1 Training Data Generation

To enhance KnowCoder’s schema understanding
abilities, we construct a large-scale training dataset
based on the schema library. As shown in the left
part of Figure 2, the training data consists of two
kinds of codes, i.e., schema definition codes and
instance codes. The schema definition codes are
generated based on the schema library, where we
randomly sample a certain number of concepts (de-
cided by the maximum sequence length) from the

2We use the Wikidata dump up to 20220704.

8760

3

» Schema Understanding Phase

SCHEMA DEFINITION CODE

Instruction

» Schema Following Phase

INSTRUCTION-TUNING CODE

M Inference

GENERATING RESPONSE...

class Human (Entity):
Description: First, middle and last names of people, class Relation:
aninals and fictional characters aliases. 1 ;

Examples: Clinton, Dole, Arafat tail entity: Entity):

pass

class Place0fBirth(Relation):
Description: Place where a person is born. Railent o REntotyls

Examples: (Ted Grouya,Bucharest), (Maarten
Fontein, Leiden)

&

Llama2

f __init_(self, head_entity: Human, tail entity:)

SpatialEntity):
super().__init_(
head_entity = head_entity,
taillentity = tail_entity

super().__init__(

def _init__(self, head_entity: Entity,

self.head_entity = head_entity
self.tail_entity = tail_entity

class Place0fDeath(Relation):
def _init__(self, head_entity: Entity,

head_entity = head_entity,
tail_entity = tail_entity

This is an object-oriented programming task: some
Classes are defined above, Please instantiate all the
corresponding Objects in the following sentence.

from Entities import Human, SpatialEntity
class Place0fBirth(Relation):

Description: Place where a person is born.
Examples: (Ted Grouya, Bucharest), (Maarten
Fontein, Leiden)

def _init_(self, head_entity: Human,
tail_entity: SpatialEntity):
super().__init_(
head_entity = head_entity,
tail_entity = tail_entity

-8

KNOWCODER)

This is an object-oriented programning task:
some Classes are defined above. Please
instantiate all the corresponding Objects in the

following sentence.

TInput
sentence
1935 in Madrid ...

= "Dionisio Pérez Gutiérrez died 23 February]

sentence = "Ann Dunham (1942-1995), was born in
Wichita."

from Entities import Human, AssociationFootballClub
from Relations import Member0fSportsTeam

Output
results = [

results = [Place0fDeath(

Member0fSportsTean(
Human("Gzim Tstr

efi"),
AssociationFootballClub("Carlstad United BK")

)
]

Entity("Dionisio Pérez Gutiérrez"),
Entity("Madrid")

results = [
Place0fBirth(
Human("Ann Dunhan®) ,
SpatialEntity("Wichita")
)
1

Figure 2: An diagram of training and inference processes of KnowCoder.

schema library to consist of a training sample. As
the aim of the schema understanding phase is to
understand each concept but not to discriminate
various concepts, the instance code corresponding
to a single concept contains three parts, i.e., a sen-
tence containing instances of the given concept, an
import clause to introduce the corresponding class
of the given concept, and an instantiating clause to
give out all the instances of the given concept in
the sentence. The schema-instance codes are con-
structed based on KELM corpus (Agarwal et al.,
2021), which contains 15, 628, 486 synthetic sen-
tences to describe the structured knowledge from
Wikidata. We do data cleaning for the corpus. The
cleaning details are in Appendix H.

3.1.2 Code Pretraining

After obtaining the data, we apply regular code
pretraining to make LLM understand the diverse
concepts in the schemas. Given a training sample
with length of L, X = zg, z1, ..., x4, ..., X1, the
model attempts to predict every token z; based
on the xg, ..., x;_1, where l = 0, ..., L. — 1. Some
training details are as follows:

Schema Importing. The straightforward way to
construct a pretraining sample is to directly give
the whole schema definition for the corresponding
instance code. However, this manner may cause
the model to overfit the schema definition code
because they are frequently repeated in every in-
stance code. To address this problem, we separate
the schema definition code from the instance code
and use the “import” clause to introduce the corre-
sponding schema definition to the instance code.
The position of the “import” clause is also crit-
ical for the LLMs to learn. We study two posi-
tions for the “import” clause, i.e., “Import-First”

and “Sentence-First”. We adopt “Sentence-First”
because it performs better than the others. The
comparison results are in Appendix A.

3.2 Schema Following Phase
3.2.1 Training Data Generation

To enhance the schema following abilities of Know-
Coder, we construct instruction tuning training data
for UIE tasks. As shown in the middle part of Fig-
ure 2, a typical instruction tuning sample contains
three parts of codes, i.e., instruction code 7', input
code I, and output code O.

The instruction code T' comprises two snippets,
i.e., schema definition and task description. The
schema definition snippet includes definitions of
some concepts selected from the former phase,
which defines specific concepts to be extracted.
The task description snippet includes a comment
that contains a natural language description of an
IE task. For example, the task description of Rela-
tion Extraction (RE) is “This is an object-oriented
programming task: some Classes are defined above.
Please instantiate all the corresponding Objects in
the following sentence.”. The input I contains the
sentence to be extracted, which is denoted as a vari-
able “sentence”, i.e., “sentence = ...”. The output O
contains all the golden knowledge in the sentence,
denoted as a list variable “results”, i.e., “results =
[...]”. We have conducted a performance compar-
ison of different versions of the instructions, and
the corresponding results are in Appendix D.

We construct the training corpus from three data
sources. For Named Entity Extraction (NER),
ChatGPT-annotated Pile corpus (Zhou et al., 2023)
is selected. For Relation Extraction (RE) and Event
Extraction (EE), we adopt the data sources con-

8761

4

structed in Gui et al. (2023)° and LSEE (Chen
et al., 2017), respectively.

3.2.2 Instruction Tuning

The objective of instruction tuning is to learn an
LLMf : (I xT) — O. The LLM takes input code
1, and instruction code 7" as input. Subsequently,
the LLM is tuned to generate every token in the
output O. Some training details are as follows:

Negative Class Sampling. In the constructed
schema library, there are more than 30000 con-
cepts. It is challenging for the model to accom-
modate all the corresponding class definitions in
a single prompt. Consequently, KnowCoder em-
ploys a negative class sampling strategy. For each
training sample, in addition to the classes anno-
tated in the sentence, we randomly sample several
classes (20% number of the golden classes) from
the remaining classes.

Fully negative Sample Construction. In real-
world scenarios, many sentences do not contain
any knowledge of a specific IE task. To handle
these scenarios, we collect some sentences and ask
the model to extract types that are not mentioned in
these sentences, which we call fully negative sam-
ples. Specifically, we randomly sample 5% sen-
tences. For each sentence, we replace the golden
classes with five random negative classes and set
the expected outputs as empty lists.

3.3 Refinement

After schema understanding and following, we ob-
tain KnowCoder, an LLM that demonstrates strong
generalization ability on unseen schemas. Addi-
tionally, based on our unified schema representa-
tion, KnowCoder can be further refined by various
human-annotated datasets simultaneously. In this
phase, we conduct instruction tuning based on the
datasets used in previous work (Wang et al., 2023b;
Sainz et al., 2023).

In different IE datasets, concepts with the
same name may follow different annotation guide-
lines. Take “PERSON” for example, in MultiN-
ERD (Tedeschi and Navigli, 2022), entities do not
include the pronouns, e.g., “he” and “she”, while
ACEO5 (Walker and Consortium, 2005) consider
personal pronouns as “PERSON”. To alleviate the
problem, we add specific dataset information in the
instructions to distinguish annotation guidelines

3We use the English version of the constructed data source.

for different datasets. For example, the instruction
for the ACEOQS dataset is “... Please instantiate all
the corresponding Event Objects in the following
sentence from DATASET ACEQ5.”.

4 Experiment Setup

Datasets and Metrics. We conducted experi-
ments using 33 specific domain Information Ex-
traction (IE) datasets, including 23 datasets for
Named Entity Extraction (NER), 8 datasets for Re-
lation Extraction (RE), 2 datasets for Event Detec-
tion (ED) and Event Argument Extraction (EAE).
The detailed statistics of these datasets are in Ap-
pendix I. Among these NER datasets, following
Wang et al. (2023b); Zhou et al. (2023), we take 7
datasets as the zero-shot benchmark, including 5
datasets of different domains from CrossNER (Liu
et al., 2020), MIT-Movie (Liu et al., 2019) and MIT-
Restaurant (Liu et al., 2019). For RE, we adopt
GIDS (Jat et al., 2018) as the zero-shot dataset. Fol-
lowing (Sainz et al., 2023), we adopt CASIE (Lu
et al., 2021) as the zero-shot ED dataset.

To balance the evaluation coverage and costs, we
introduce the KnowCoder benchmark, a composite
derived from existing NER, RE, and EE datasets.
Under the supervised setting, a sampling strategy
was developed for NER and RE tasks to maintain
the distributions of original datasets and ensure the
broad coverage of knowledge types. Details on the
proposed strategy and comprehensive benchmark
information are available in Appendix F. For the
metrics, we report the span-based offset Micro-F1
following previous methods (Lu et al., 2022; Lin
et al., 2020b). More details about the metrics are
in Appendix G.

Implementation Details. KnowCoder is fine-
tuned based on LLaMA2-base-7B (Touvron et al.,
2023). We utilize the Megatron-LM frame-
work (Shoeybi et al., 2019) for schema understand-
ing. We set the context length to 2048, the learning
rate to 5 x 107, the global batch size to 1M to-
kens, and the maximum training step to 4500. For
the schema following and refinement phases, we
use LoRA (Hu et al., 2021) for parameter-efficient
fine-tuning. We set the lora rank and lora alpha
parameters to 32 and 64, respectively. The warmup
ratio is set to 0.03 and the dropout ratio is set to
0.1. The learning rates for these two phases are
set to 3 x 10~%. We limit the sequence length to
4096 and set the batch size to 256. Detailed infor-
mation about the training process is available in

8762

5

Model

|Movie. Rest. AI Litera. Music Politics Science| Average

LLaMA2-7B 31.0 19.6 30.8 24.1 280 38.7 44.1 30.9
LLaMA2-13B 326 252 375 365 370 60.3 51.7 40.1
LLaMA2-7B 31.0 19.6 30.8 24.1 280 38.7 44.1 30.9
KnowCoder-7B (SU. only)| 37.2 36.4 41.8 42.6 538 60.6 51.6 |46.3™3%
Table 1: Results on NER under the few-shot setting.
Model Movie. Rest. AI Litera. Music Politics Science Average
w. refinement
InstructUIE-11B (Wang et al., 2023b) - - 484 48.8 54.4 49.9 494 -
GoLLIE-7B (Sainz et al., 2023) 63.0 434 59.1 627 67.8 57.2 55.5 58.4
GoLLIE-13B (Sainz et al., 2023) 62.5 498 56.7 59.7 65.5 544 56.2 57.8
UniNER-7B (refined) (Zhou et al., 2023) 59.4 312 62.6 64.0 66.6 66.3 69.8 60.0
w.o. refinement
Vicuna-7B (Chiang et al., 2023) 6.0 53 128 16.1 17.0 20.5 13.0 13.0
Vicuna-13B (Chiang et al., 2023) 0.9 04 227 227 26.6 27.2 22.0 17.5
ChatGPT (Ouyang et al., 2022) 5.3 328 524 39.8 66.6 68.5 67.0 47.5
UniNER-7B (Zhou et al., 2023) 424 31.7 535 594 65.0 60.8 61.1 534
KnowCoder-7B 50.0 482 603 611 700 722 59.1 60.1M125%

Table 2: Results on NER under the zero-shot setting. w. refinement denotes methods that are refined on human-
annotated data, which is unfair for KnowCoder to compare with.

Appendix K. During the inference phase, we use
greedy search and set the temperature to 0. The
maximum output length is set to 640.

5 Results and Analyses

5.1 Few-shot Evaluation After Schema
Understanding

Considering that a pre-trained LLM cannot give
proper results without given examples, we study
the generalization ability of KnowCoder after the
schema understanding phase, denoted as Know-
Coder (SU. only), under the few-shot setting.
Specifically, We utilize the first five samples from
the training data as examples and report the NER
F1 score in Table 1 across zero-shot NER datasets.
The results demonstrate that KnowCoder (SU.
only) outperforms LLaMA2-7B with an average
relative improvement of 49.8%. Remarkably,
KnowCoder (SU. only) gets an average F1 of
46.3% with only a few examples, which are compa-
rable to InstructUIE refined using human-annotated
datasets. The results strongly support the effective-
ness of the schema understanding phase in enhanc-
ing model generalization and performance in NER.

Dataset | SoTA | @B7B

GIDSks | (Ouyangetal, 2022)9.9 | 25.5
CASIEgp | (Sainzetal., 2023) 59.3" | 58.2

Average | 34.6 | 41.9"11%

Table 3: Results on RE and ED tasks under the zero-shot
setting. t indicates that it is unfair for KnowCoder to
compare with the score.

5.2 Zero-Shot Evaluation After Schema
Following

To verify the generalization ability of KnowCoder,
we conduct zero-shot experiments on 9 datasets
across NER, RE, and ED tasks. In this setting, we
employ KnowCoder after schema understanding
and following to conduct extraction. KnowCoder
is compared with two kinds of baselines. One is
the LLM-based IE method that refined on human-
annotated data, including InstructUIE (Wang
et al., 2023b), GoLLIE (Sainz et al., 2023), and
UniNER (Zhou et al., 2023). The other is mod-
els without refinement, including Vicuna (Chiang
etal., 2023), ChatGPT, UniNER (Zhou et al., 2023).
The results of these three baselines are from Zhou
et al. (2023). Note that KnowCoder is unfair when
compared with methods after refinement.

Main Results. The results of zero-shot NER are
in Table 2. It can be seen that KnowCoder sur-

8763

6

‘ Task

Ratio ‘ ‘ Average

Model
\ INER RE ED EAE|
UIE-base 82.8 30.8 415 12.8| 420
1% | LLaMA2-7B | 72.3 32.1 35.3 33.3 | 433
KnowCoder-7B| 79.2 43.3 50.3 38.5 |52.8121.9%
UIE-base 88.3 51.7 55.7 304 | 56.5
5% | LLaMA2-7B | 89.3 35.7 52.6 463 | 56.0
KnowCoder-7B| 90.6 51.1 59.0 48.3 |62.3110-3%
UIE-base 89.6 59.2 60.3 363 | 614
10% | LLaMA2-7B | 91.2 48.6 60.7 52.3 | 63.2
KnowCoder-7B| 92.2 53.6 62.2 55.1 | 65.8T41%

Table 4: Low-resource results on IE tasks, where Aver-
age is the average F1 across four IE tasks.

passes baselines without refinement across four
NER datasets, registering a relative performance
enhancement of 12.5%. This improvement is at-
tributed to KnowCoder’s training on a large-scale,
automatically generated dataset within a two-phase
learning framework, which enhances its generaliza-
tion capabilities for NER, even surpassing methods
refined with human-annotated data. The results
of zero-shot RE and ED are in Table 3. For ED,
KnowCoder’s performance is inferior to GoLLIE,
a baseline model trained on high-quality, human-
annotated data. This emphasizes that human-
annotated datasets can enhance performance for
more difficult IE tasks, such as ED. To further sub-
stantiate the point, we further refine KnowCoder
with the ACEQS5 dataset, the same EE training
data employed by GoLLIE. This refinement sig-
nificantly improves zero-shot F1 performance to
72.0% on the CASIE dataset. This represents a
significant advancement over GoLLIE of 59.3%,
marking a relative improvement of 21.4%.

5.3 Low Resource Evaluation After Schema
Following

To further investigate the generalization ability of
KnowCoder for IE tasks, we conduct low-resource
experiments by fine-tuning KnowCoder with three
different partitions of the original training sets
(1/5/10% ratio) across four tasks. Following Lu
et al. (2022), we adopt CoNLLO3, CoNLLO04,
ACEO5gp and ACEO5 g 4 g as the benchmarks for
NER, RE, ED, and EAE tasks. LLaMA?2 denotes
directly fine-tuning LLaMA2 with these partial
training data. The results are in Table 4. It can
be shown that KnowCoder gets the highest aver-
age F1 scores across all IE tasks in low-resource
settings at varying ratios. In ratio 1%, KnowCoder
gets the relative average improvement of 21.9%

Dataset ‘ SoTA‘ 7B
ACE04 (Lu et al., 2022) 87.6| 86.2
ACEQ5 (Sainz et al., 2023) 89.6| 86.1
AnatEM (Zhou et al., 2023) 88.9| 86.4
Broad Twitter| (Zhou et al., 2023) 79.8| 78.3
CoNLLO03 (Zhou et al., 2023) 94.8| 95.1
DIANN (Sainz et al., 2023) 84.1| 94.7
FabNER (Zhou et al., 2023) 82.3| 82.9
FindVehicle | (Zhou et al., 2023) 98.4| 99.4
GENIA (Zhou et al., 2023) 80.3| 76.7
Movie (Zhou et al., 2023) 90.2| 90.6
Rest. (Wang et al., 2023b) 82.6/ 81.3
MultiNERD | (Zhou et al., 2023) 93.9| 96.1
OntoNotes 5 | (Sainz et al., 2023) 84.6| 88.2
WikiANN (Zhou et al., 2023) 85.4| 87.0
WNUT17 (Sainz et al., 2023) 54.3| 66.4
bc2gm |(Wang et al., 2023b) 80.5| 82.0
beScdr (Zhou et al., 2023) 91.5| 89.3
ncbi (Wang et al., 2023b) 85.0) 83.8
Average ‘ 85.2 ‘ 86.111-1%

Table 5: Results on NER under the supervised setting.

compared to UIE, which shows that KnowCoder
has strong adaptability to downstream IE tasks after
pretraining on large-scale data under the two-phase
learning framework.

5.4 Supervised Evaluation After Refinement

Under the supervised evaluation, KnowCoder is fur-
ther refined with the IE datasets. We conduct super-
vised experiments on four IE tasks, including NER,
RE, ED, and EAE. KnowCoder is compared with
three kinds of methods. The first is the traditional
UIE method (Lou et al., 2023; Lu et al., 2022),
which is based on relatively small language models
(i.e., million-level parameters). The latter two are
based on LLMs (i.e., ChatGPT, LLaMA?2). They
adopt the in-context learning (Guo et al., 2023;
Li et al., 2023; Ashok and Lipton, 2023) and su-
pervised fine-tuning paradigms (Zhou et al., 2023;
Wang et al., 2023b; Sainz et al., 2023), respectively.
As some baselines only report results for specific
IE tasks, we report the SOTA results of the above
methods in each dataset, denoted as “SoTA” in
the tables. As highlighted by Zhou et al. (2023),
the evaluation script of InstructUIE (Wang et al.,
2023b) contains issues. Furthermore, the bench-
mark in Zhou et al. (2023) remains pending re-
lease. In the end, we have implemented these two
baselines on KnowCoder benchmark using their
released models.

8764

7

Dataset | SoTA| @7B
ACEO5 (Sainz et al., 2023) 70.1| 64.5
semevalRE |(Wang et al., 2023b) 65.8| 66.3
CoNLL04 (Lou et al., 2023) 78.8| 73.3
NYT (Wang et al., 2023b) 91.0| 93.7
ADE corpus |(Wang et al., 2023b) 82.8| 84.3
kbp37 |(Wang et al., 2023b) 30.6| 73.2
GIDS (Wang et al., 2023b) 76.9| 78.0
SciERC (Lou et al., 2023) 37.4| 40.0
Average | 66.7|71.7175%

Table 6: Results on RE under the supervised setting.

Main Results. The results for NER, RE, EE (in-
cluding ED and EAE) tasks are shown in Tables 5,
6 and 7, respectively. We can observe that: (1)
KnowCoder outperforms the SOTA baselines on
most datasets for NER, RE, ED, and EAE, respec-
tively. Based on the code-style schemas, Know-
Coder universally models IE tasks and effectively
transfers IE abilities after conducting schema un-
derstanding, following, and refinement on large-
scale training data. (2) In more challenging UIE
tasks, such as RE, KnowCoder demonstrates im-
pressive advancements up to the relative improve-
ment of 8.6% compared to the SOTA baselines.
KnowCoder achieves the performances of 73.9%
for ED and 66% for EAE. This is the first time
LLM-based UIE methods surpass smaller models
like UIE in ED and EAE tasks. The code-style
schemas and the learning framework enable a more
precise definition and understanding of this com-
plex structured knowledge, leading to a significant
improvement. (4) UniNER (Zhou et al., 2023)
achieves comparable results to KnowCoder on
NER. Nonetheless, KnowCoder surpasses UniNER
in several respects. Primarily, UniNER is limited to
extracting one type of entity per iteration, leading
to a cost-time complexity. In contrast, KnowCoder
can extract multiple entity types in a single itera-
tion, enhancing efficiency. Additionally, UniNER
relies on a text-style schema, making it hard to
represent and extract relations and events effec-
tively. Conversely, KnowCoder, as a UIE model,
offers broader versatility and efficacy comparing to
UniNER. (3) KnowCoder gets better results than
baselines with code-style prompt (Li et al., 2023;
Guo et al., 2023; Sainz et al., 2023). This is be-
cause KnowCoder provides a more comprehensive
schema representations and conducts two-phase
training to understand these schemas.

Model | ACE055p ACE05p4p
UIE 734 69.3
UsM 69.3 63.3
Code4UIE | 374 57.0
InstructUIE-11B 432 56.8
GoLLIE-7B 722 66.0
KnowCoder-7B | 74.2 70.3

Table 7: Results on ED and EAE under the supervised
setting.

5.5 Ablation Study

To show how the schema following and understand-
ing phases contribute to KnowCoder under the zero-
shot setting, we further conduct ablation studies re-
moving these two phases, denoted as KnowCoder
(w.o. SU) and KnowCoder (w.o. SF), respectively.
The results are shown in Table 8. It can be seen that:
(1) KnowCoder gets better results than KnowCoder
(w.0. SF) on most NER datasets. It is because
the schema understanding phase helps KnowCoder
to understand concepts in the schema by training
on definition and instance codes and increases its
generalization ability. (2) Results of KnowCoder
(w.0. SF) decrease extremely, which proves the
importance of schema following. Due to the lack
of in-context learning ability, a 7B model without
instruction tuning is hard to understand instructions
under the zero-shot setting, thus making it hard to
finish the IE tasks.

To demonstrate the effectiveness of the proposed
KnowCoder schema, we conduct an extra ablation,
denoted as "w.o. GI" in Table 8, which removes the
guideline information in the schemas. The signifi-
cant decline in performance verifies the importance
of guideline information. Without the absence of a
comprehensive schema definition, models struggle
to understand concepts and cannot extract corre-
sponding instances effectively.

6 Related Work

Universal Information Extraction. Universal
Information Extraction aims to conduct different IE
tasks via a single model. The existing UIE models
first represent different schemas for IE tasks in a
universal way. OnelE (Lin et al., 2020a) represents
schemas as classification labels, InstructUIE (Wang
et al., 2023b) uses keywords (Gui et al., 2023; Lou
et al., 2023) of concepts to represent schemas, and
UIE (Lu et al., 2022) uses a specifically-designed
formal language to represent schemas. Based on

8765

8

Dataset ‘ B7B ‘ w.0. SU w.o. SF w.o. GI

Movie. | 50.0 +1.6 -50.0 -18.7
Rest. 48.2 -0.8 -46.1 -25.1
Al 60.3 -4.5 -57.7 -194
Litera. | 61.1 +0.6 -59.0 -12.7
Music 70.0 -3.1 -69.0 -11.9
Politics | 72.2 -1.8 -70.8 -12.1
Science | 59.1 -2.7 -55.6 -12.5

Table 8: Ablation study under the zero-shot setting.

such schema representations, these models adopt
language models to understand the schemas and
extract the corresponding structured knowledge.

Large Language Models for IE. Due to the
strong generation abilities of LLMs, they have been
used in IE recently (Xu et al., 2023). LLM-based
IE methods can be divided into two categories: In-
Context Learning (ICL) based methods and Super-
vised Finetuning (SFT) based methods. The ICL-
based IE methods (Li et al., 2023; Guo et al., 2023;
Ashok and Lipton, 2023; Wang et al., 2023a) make
predictions only based on contexts augmented with
a few examples. The SFT-based methods (Wang
et al.; Gui et al., 2023; Wang et al., 2023b; Zhou
et al., 2023; Xu et al., 2023; Sainz et al., 2023) use
the annotated data to finetune LLMs.

Some existing work uses code-style prompts to
conduct IE. Most of them are ICL-based meth-
ods. Wang et al. (2022) uses the code-style prompt
to conduct event argument extraction. Li et al.
(2023) uses the code-style prompt to conduct the
named entity extraction and relation extraction.
(Guo et al., 2023) proposes a reterive-argumented
method to conduct the universal IE. These methods
show relatively poor performance compared to SFT-
based methods because of the lack of training to
follow the schemas in the prompt. The most similar
work with KnowCoder is GoLLIE, an SFT-based
UIE method that gives out definitions of schemas
as code comments. The difference between Know-
Coder and GoLLIE is that KnowCoder designs a
more comprehensive code-style schema represen-
tation method, including taxonomies, constraints,
and class methods, and further constructs a large-
scale schema library. Besides, GoLLIE conducts
instruction tuning on human-annotated data, while
KnowCoder contains a two-phase learning frame-
work that enhances schema understanding and fol-
lowing ability via automatically annotated data.

Conclusion

In this paper, we introduced KnowCoder for
UIE leveraging Large Language Models. Know-
Coder is based on a code-style schema represen-
tation method and an effective two-phase learning
framework. The code-style schema representation
method uniformly transforms different schemas
into Python classes, with which the UIE task can be
converted to a code generation process. Based on
the schema representation method, we constructed
a comprehensive code-style schema library cover-
ing over 30, 000 types of knowledge. To let LLMs
understand and follow these schemas, we further
proposed a two-phase learning framework that first
enhances the schema comprehension ability and
then boosts its schema following ability. After train-
ing on billions of automatically annotated data and
refining with human-annotated IE datasets, Know-
Coder demonstrates remarkable performance im-
provements on different IE tasks under the various
evalution settings.

Limitations

The schemas utilized in our approach are predomi-
nantly constructed from Wikidata, which occasion-
ally results in some schemas lacking definitions or
other relevant information. This necessitates the
generation of additional data to supplement these
missing elements. During the pretraining phase,
we adopted a combination of automatic generation
and distant supervision methods to amass a large
corpus. However, this approach inevitably intro-
duces a certain degree of noise. Furthermore, there
remains room for improvement in terms of the rich-
ness and complexity of the current corpus. Further
exploration of pretraining settings could also be
beneficial in enhancing the zero-shot capabilities
for relation and event-related tasks.

Acknowledgements

The work is supported by the Strategic Priority
Research Program of the CAS under grant No.
XDB0680102, the National Natural Science Foun-
dation of China under grant No. 62306299, the
National Key Research and Development Program
of China under grant No. 2022QY0703, the Bei-
jing Academy of Artificial Intelligence under grant
No. BAAI2019ZD0306, the KGJ Project under
grant No. JCKY?2022130C039, and the Lenovo-
CAS Joint Lab Youth Scientist Project. We thank
reviewers for their insightful suggestions.

8766

9

References

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami
Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3554-3565, Online. As-
sociation for Computational Linguistics.

Dhananjay Ashok and Zachary C Lipton. 2023. Prompt-
ner: Prompting for named entity recognition. arXiv
preprint arXiv:2305.15444.

Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and
Jun Zhao. 2017. Automatically labeled data genera-
tion for large scale event extraction. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 409419, Vancouver, Canada. Association for
Computational Linguistics.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https.://vicuna.
Imsys. org (accessed 14 April 2023).

Leon Derczynski, Kalina Bontcheva, and Ian Roberts.
2016. Broad Twitter corpus: A diverse named entity
recognition resource. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1169—
1179, Osaka, Japan. The COLING 2016 Organizing
Committee.

Leon Derczynski, Eric Nichols, Marieke Van Erp, and
Nut Limsopatham. 2017. Results of the wnut2017
shared task on novel and emerging entity recognition.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 140-147.

Rezarta Islamaj Dogan, Robert Leaman, and Zhiyong
Lu. 2014. Ncbi disease corpus: A resource for dis-
ease name recognition and concept normalization.
Journal of biomedical informatics, 47:1-10.

Runwei Guan. 2022. Findvehicle and vehiclefinder:
A ner dataset for a text-image cross-modal vehicle
retrieval system.

Honghao Gui, Jintian Zhang, Hongbin Ye, and Ningyu
Zhang. 2023. Instructie: A chinese instruction-
based information extraction dataset. arXiv preprint
arXiv:2305.11527.

Yucan Guo, Zixuan Li, Xiaolong Jin, Yantao Liu, Yu-
tao Zeng, Wenxuan Liu, Xiang Li, Pan Yang, Long
Bai, Jiafeng Guo, et al. 2023. Retrieval-augmented
code generation for universal information extraction.
arXiv preprint arXiv:2311.02962.

Harsha Gurulingappa, Abdul Mateen Rajput, Angus
Roberts, Juliane Fluck, Martin Hofmann-Apitius, and

Luca Toldo. 2012. Development of a benchmark
corpus to support the automatic extraction of drug-
related adverse effects from medical case reports.
Journal of Biomedical Informatics, 45(5):885-892.
Text Mining and Natural Language Processing in
Pharmacogenomics.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid O Séaghdha, Sebastian
Pado, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. Semeval-2010 task 8: Multi-
way classification of semantic relations between pairs
of nominals. In *SEMEVAL.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Clau-
dia d’Amato, Gerard de Melo, Claudio Gutiér-
rez, Sabrina Kirrane, José Emilio Labra Gayo,
Roberto Navigli, Sebastian Neumaier, Axel-Cyrille
Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid,
Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda,
Steffen Staab, and Antoine Zimmermann. 2021.
Knowledge Graphs. Number 22 in Synthesis Lec-
tures on Data, Semantics, and Knowledge. Springer.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Sharmistha Jat, Siddhesh Khandelwal, and Partha Pra-
tim Talukdar. 2018. Improving distantly supervised
relation extraction using word and entity based atten-
tion. ArXiv, abs/1804.06987.

Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi
Tsujii. 2003. Genia corpus—a semantically anno-

tated corpus for bio-textmining. Bioinformatics (Ox-
ford, England), 19 Suppl 1:1180-2.

Veysel Kocaman and David Talby. 2020. Biomedical
named entity recognition at scale. In ICPR Work-
shops.

Aman Kumar and Binil Starly. 2021. “fabner”: infor-
mation extraction from manufacturing process sci-
ence domain literature using named entity recogni-
tion. Journal of Intelligent Manufacturing, 33:2393 —
2407.

Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J. Mattingly, Thomas C. Wiegers,
and Zhiyong Lu. 2016. Biocreative v cdr task corpus:
a resource for chemical disease relation extraction.
Database: The Journal of Biological Databases and
Curation, 2016.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuan-
bin Wu, Xuanjing Huang, and Xipeng Qiu. 2023.
Codeie: Large code generation models are better
few-shot information extractors. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
15339-15353. Association for Computational Lin-
guistics.

8767

10

https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/P17-1038
https://doi.org/10.18653/v1/P17-1038
https://aclanthology.org/C16-1111
https://aclanthology.org/C16-1111
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.18653/v1/2023.acl-long.855
https://doi.org/10.18653/v1/2023.acl-long.855

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020a.
A joint neural model for information extraction with
global features. In Proceedings of the 58th annual
meeting of the association for computational linguis-

tics, pages 7999-8009.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020b.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999-8009, Online. Association for
Computational Linguistics.

Yijin Liu, Fandong Meng, Jinchao Zhang, Jinan Xu,
Yufeng Chen, and Jie Zhou. 2019. GCDT: A global
context enhanced deep transition architecture for se-
quence labeling. CoRR, abs/1906.02437.

Zihan Liu, Yan Xu, Tiezheng Yu, Wenliang Dai, Ziwei
Ji, Samuel Cahyawijaya, Andrea Madotto, and Pas-
cale Fung. 2020. Crossner: Evaluating cross-domain
named entity recognition.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Jie Lou, Yaojie Lu, Dai Dai, Wei Jia, Hongyu Lin, Xi-
anpei Han, Le Sun, and Hua Wu. 2023. Universal
information extraction as unified semantic matching.
AAAL

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jia-
long Tang, Annan Li, Le Sun, M. Liao, and Shaoyi
Chen. 2021. Text2event: Controllable sequence-to-
structure generation for end-to-end event extraction.
ArXiv, abs/2106.09232.

Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu
Lin, Xianpei Han, Le Sun, and Hua Wu. 2022. Uni-
fied structure generation for universal information
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5755-5772, Dublin,
Ireland. Association for Computational Linguistics.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction.

Alexis Mitchell, Stephanie Strassel, Shudong Huang,
and Ramez Zakhary. 2005. Ace 2004 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, 1:1-1.

openbiocorpora. 2015. openbiocorpora anatem.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth-
man, Kevin Knight, and Heng Ji. 2017a. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1946-1958, Vancouver, Canada.
Association for Computational Linguistics.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Noth-
man, Kevin Knight, and Heng Ji. 2017b. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1946-1958, Vancouver, Canada.
Association for Computational Linguistics.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions without
labeled text. In ECML/PKDD.

Dan Roth and Wen tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Conference on Computational Natu-
ral Language Learning.

Oscar Sainz, Iker Garcfa-Ferrero, Rodrigo Agerri,
Oier Lopez de Lacalle, German Rigau, and Eneko
Agirre. 2023. Gollie: Annotation guidelines improve
zero-shot information-extraction. arXiv preprint
arXiv:2310.03668.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the conll-2003 shared task: Language-
independent named entity recognition.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-Im: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Simone Tedeschi and Roberto Navigli. 2022. MultiN-
ERD: A multilingual, multi-genre and fine-grained
dataset for named entity recognition (and disambigua-
tion). In Findings of the Association for Compu-
tational Linguistics: NAACL 2022, pages 801-812,
Seattle, United States. Association for Computational
Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

C. Walker and Linguistic Data Consortium. 2005. ACE
2005 Multilingual Training Corpus. LDC corpora.
Linguistic Data Consortium.

Chenguang Wang, Xiao Liu, Zui Chen, Haoyun Hong,
Jie Tang, Dawn Song, and UC Berkeley. Deepstruct:
Pretraining of language models for structure predic-
tion.

8768

11

https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
http://arxiv.org/abs/1906.02437
http://arxiv.org/abs/1906.02437
http://arxiv.org/abs/1906.02437
http://arxiv.org/abs/2012.04373
http://arxiv.org/abs/2012.04373
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/2022.acl-long.395
http://arxiv.org/abs/1808.09602
http://arxiv.org/abs/1808.09602
http://arxiv.org/abs/1808.09602
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
http://arxiv.org/abs/cs/0306050
http://arxiv.org/abs/cs/0306050
https://doi.org/10.18653/v1/2022.findings-naacl.60
https://doi.org/10.18653/v1/2022.findings-naacl.60
https://doi.org/10.18653/v1/2022.findings-naacl.60
https://doi.org/10.18653/v1/2022.findings-naacl.60
https://books.google.com/books?id=SbjjuQEACAAJ
https://books.google.com/books?id=SbjjuQEACAAJ

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,
Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang.
2023a. Gpt-ner: Named entity recognition via large
language models. arXiv preprint arXiv:2304.10428.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze
Chen, Yuansen Zhang, Rui Zheng, Junjie Ye,
Qi Zhang, Tao Gui, et al. 2023b. Instructuie: Multi-
task instruction tuning for unified information extrac-
tion. arXiv preprint arXiv:2304.08085.

Xingyao Wang, Sha Li, and Heng Ji. 2022. Code4struct:
Code generation for few-shot structured predic-
tion from natural language. arXiv preprint
arXiv:2210.12810.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. Ontonotes release 5.0
1dc2013t19. Linguistic Data Consortium, Philadel-
phia, PA, 23:170.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, and
Enhong Chen. 2023. Large language models for
generative information extraction: A survey. arXiv
preprint arXiv:2312.17617.

Dongxu Zhang and Dong Wang. 2015. Relation classi-
fication via recurrent neural network.

Ningyu Zhang, Jintian Zhang, Xiaohan Wang, Hong-
hao Gui, Kangwei Liu, Yinuo Jiang, Xiang Chen,
Shengyu Mao, Shuofei Qiao, Yuqi Zhu, Zhen Bi,
Jing Chen, Xiaozhuan Liang, Yixin Ou, Runnan
Fang, Zekun Xi, Xin Xu, Lei Li, Peng Wang, Men-
gru Wang, Yunzhi Yao, Bozhong Tian, Yin Fang,
Guozhou Zheng, and Huajun Chen. 2023. Knowlm
technical report.

Wenxuan Zhou, Sheng Zhang, Yu Gu, Muhao Chen,
and Hoifung Poon. 2023. Universalner: Targeted dis-
tillation from large language models for open named
entity recognition. arXiv preprint arXiv:2308.03279.

A Analyses on Schema Importing

To get insight into how the data organization
method contributes to the results of schema under-
standing, we compare the performance of Know-
Coder training on different version data with dif-
ferent schema importing methods. Specifically, we
generate three versions of training data, named
“Import-First”, “Sentence-First”, and “Whole”.
“Import-First” denotes that we import the class first
and then give out the sentence. “Sentence-First”
denotes that we import the class following the sen-
tence, which is the version KnowCoder adopts.
“Whole” denotes the version that we give out the
class after the sentence with their whole definitions.

Sentence-First Import-First —@— Whole

50.0

~N——

50 100 150 200 250 300
Step

Figure 3: Detailed Analysis of different schema import-
ing methods.

We train the model under the same setting and re-
port the micro F1 curve on the test set of seven
zero-shot NER datasets. The results are shown in
Figure 3. It can be seen that “Sentence-First” per-
forms best. If the “import” clause is before the
sentence, LLMs are trained to predict the specific
class after “from Entities import” without giv-
ing any information. The “Whole” method makes
the model overfitting to the definition code because
they are repeated frequently.

B Analyses on Class Name

The same concept may have different names in
different IE datasets, and the concept name in
downstream datasets may conflict with the name
in KnowCoder schema. For example, “Human” in
KnowCoder schema shares the same meaning as
“Person” in ACEOQS. To eliminate conflicts among
names of concepts in different schemas, we align
the concept names in IE datasets to KnowCoder
schema. Note that, for a fair comparison, we make
sure the number of concepts in a dataset does not
change during the alignment process. Figure 4 il-
lustrates the F1 performance across all types under
aligned and unaligned experimental settings. With
average scores of 81.37 and 81.35, respectively,
it can be inferred that aligning schemas does not
significantly impact the model’s outcomes.

C Analyses on Class Methods

Class methods are utilized to post-process the ex-
tracted results generated by LLMs. Three cases
of the used class methods are listed in Table 9.
To demonstrate the effectiveness of class methods,
We conduct experiments on five NER datasets, in-
cluding ACEQS, Broad Twitter, MIT Movie, MIT
Restaurant, and Ncbi-disease. The results are
shown in Table 10. It can be observed that Know-
Coder gets an average F1 improvement of 1%. By

8769

12

http://arxiv.org/abs/1508.01006
http://arxiv.org/abs/1508.01006
http://knowlm.zjukg.cn/
http://knowlm.zjukg.cn/

Class Name

Class Method

Results

w.o. Class Method

| w. Class Method

Average Ratings | If the extracted span | I am looking for a unrated | I am looking for a unrated
is a number, add | disney movie about a teddy | disney movie about a teddy
“star” after the num- | bear starring julie pinson | bear starring julie pinson
ber if “star” follows | with a four star ratings av- | with a four star ratings av-
the number in the | erage. erage.
sentence.
Facility Delete the content af- | It lies just 12 miles from | It lies just 12 miles from
ter the word “as” if | Baghdad and will be a key | Baghdad and will be a key
“as” in the extracted | forward base for U.S. troops | forward base for U.S. troops
span. as they prepare for a push on | as they prepare for a push on
the capital. the capital.

Organization Delete the content af- | Megawati and Putin are ex- | Megawati and Putin are ex-
ter the word “such as” | pected to sign agreements | pected to sign agreements
if “such as” in the | to give Russian companies | to give Russian companies
span. a toehold in Indonesia’s oil | a toehold in Indonesia’s oil

and gas industry, long dom- | and gas industry, long dom-
inated by American and | inated by American and
British giants such as Exxon | British giants such as Exxon
Mobil and BP. Mobil and BP.
Table 9: Cases of class methods.
Model ‘ACEOS Bro. Twi. Movie. Rest. Ncbi. Ave
KnowCoder-7B | 85.0 779 90.6 81.3 82.8 83.5
+ Class Methods| 1 0.9 T1.1 1709 1712 10.7 11.0

Table 10: Results on IE tasks with Class Methods, where Ave is the average F1 across five datasets.

100+

80 -

60

F1

40 -

204
—— Unaligned_F1
| —— Aligned_F1

40 60 80
Type Index

0 20

Figure 4: F1 scores of KnowCoder on each type before
and after alignment for NER task.

defining some class-specific extraction rules, class
methods help KnowCoder to extract more precise
results.

D Analyses on Prompts

To validate the influence of different prompts on the
results, Table 11 reports the performance of NER
on ACEOQS using prompts with two styles, i.e., Code
and IE styles. It can be observed that results are
similar (with a gap of 0.7% of F1), which verifies

the robustness of KnowCoder to different prompts.

The code-style prompt is slightly better than the IE
style, suggesting that code-style prompts can better
stimulate the code generation capabilities of LLMs
compared to the text-style prompt and thus benefit
the IE tasks.

E Analyses on Negative Sampling

To demonstrate how the negative class sampling
and fully negative sample construction contribute
to the results, we conduct experiments of removing
the negative classes (denoted as w.o. NC) and fully
negative samples (denoted as w.o. FNS), respec-
tively. The macro average of F1 on seven zero-shot
NER datasets is reported in Table 12. It can be
seen that the performance of KnowCoder decreases
without negative sampling, which proves the effec-
tiveness of the negative class sampling and fully
negative sample construction.

F KnowCoder Benchmark

Benchmark Construction. Considering the sig-
nificant expenses associated with assessing all test
sets for NER and RE tasks, we developed a sam-
pling method to establish the KnowCoder Bench-

8770

13

No. ‘ Style ‘ Template ‘ F1
1 | Code | Some Classes are defined above. Please instantiate the Objects corresponding | 82.4
to the above Classes in the sentence.
2 IE Some Entity Types are given above. Please find all the Entities in the above | 81.6
Types in the sentence.
Table 11: Performance of prompts with different styles on the NER task.
Model ‘ 7B w.o. NC w.o0. FNS Base Seed | NER RE
zero-shot F1 | 57.8 504474 557121 1] 8.0 725
2| 849 71.7
Table 12: Detailed Analysis of the Negative Sampling. 42 | 853 71.6

mark to balance evaluation expenses and precision.
Our primary principle is ensuring the sampled sub-
set retains the same distribution. Specifically, we
randomly sampled a portion of samples from each
type in the dataset with a scaling factor s. For NER
and RE tasks, we set s to 14 and 4, respectively.
Assuming the original number of samples of the
type in a dataset is x, the sampled number in the
benchmark is:
k=x/s],s > 1. (1)
Note that we adopted the same sampling method
for the empty samples in datasets. Moreover, a
sample may be sampled multiple times because
there may be more than one type of instance. Thus,
we remove duplicate samples during the sampling
process. Due to the smaller number and size of
EAE and ED datasets, we used the complete dataset
for evaluation.

Statistics of the Benchmark. Table 13 summa-
rizes the information on the benchmarks under the
supervised setting for two tasks: NER and RE.

Task ‘ #Sample #Type #Source

NER 8287 92 18
RE 5009 64 8

Table 13: Statistics of the benchmark build on NER and
RE tasks under the supervised setting.

Benchmark Significance. The results reported
in this paper are produced in the sampled bench-
mark with 42 as the base seed. To systematically
assess how the generated benchmarks affect the

Table 14: Results of NER and RE tasks on benchmarks
with different random seeds.

reproducibility and consistency of the model’s ef-
fectiveness, we employ multiple rounds of experi-
ments on benchmarks with distinct random seeds,
i.e., 1, 2, and 42. Table 14 summarizes the aver-
age performance on NER and RE tasks. It can
be observed that the performance variations of
KnowCoder across different benchmarks are mi-
nor (85.1 + 0.2 for NER and 71.9 + 0.5 for RE).
The results demonstrate that KnowCoder’s results
reported in this paper are both consistent and repro-
ducible.

G Metrics

For NER, an entity is considered correct if the en-
tity boundary and type are correctly predicted. For
RE, a relation is considered correct if its triplet
matches a golden annotation, including relation
type, subject entity, and object entity. For ED, an
event trigger is correct if its event type and trig-
ger match a golden annotation. For the EAE task,
given an event type, an argument is correct if the
argument and its role type match a golden annota-
tion.

H Training Data Generation

The training data used in the schema understanding
phase consists of two kinds of codes, i.e., schema
definition codes and instance codes. In this sec-
tion, we will give more details of the instance code
generation process.

The instance code is generated based on the
KELM corpus. The processing procedure mainly
includes four steps: entity typing, entity code gen-

8771

14

eration, relation code generation, and event code
generation. The origin data of the KELM corpus
does not annotate the types of entities. We obtain
the mappings from entity names to entity types
based on WikiData. Specifically, we find the cor-
responding WikiData ID for each entity in KELM
and identify its types through the “InstanceOf”
relations. For those entities without types, we filter
them from training data. Then, we generate the en-
tity code based on the typed KELM corpus. Finally,
we clean the data by removing samples with the
entity type “Wikimedia Disambiguation Page” and
removing contents in brackets for entities and en-
tity types. Based on the typed entities, we generate
the relation code. Since KELM does not contain
event codes, we consider relations to be events if
they have sub-properties. We treat their relation
types as event types, the sub-properties as corre-
sponding role types, and the annotated mentions
as arguments. Furthermore, we delete samples if
the event role is one of “of 7, “follows”, “followed
by country”.

» o« » o«

, “point in time”,
I Data Statistics

Statistics of the Constructed Schema Library.
The schema library is constructed on KELM (Agar-
wal et al., 2021), UniversalNER (Zhou et al., 2023),
InstructIE (Zhang et al., 2023) and LSEE (Chen
et al., 2017). The detailed analysis of each task
schema is shown in Table 16. Here, “#Type” de-
notes the total number of types, “#Type w/ desc.”
indicates the count of types with descriptions, and
“#Type w/o desc.” signifies the count of types with-
out descriptions.

Statistics of the Training Data. The training
data consists of three parts: schema understanding
data, schema following data, and specific domain
IE data. The schema understanding training data in-
cludes schema definition codes and instance codes.
The schema definition codes are built based on the
schema library, with statistical results shown in
Table 16. Schema instance codes are constructed
based on KELM (Agarwal et al., 2021), with sta-
tistical results provided in Table 15. The schema
following training data is constructed on Universal-
NER (Zhou et al., 2023), InstructlE (Zhang et al.,
2023) and LSEE (Chen et al., 2017). The statistics
of schema following training data are presented in
Table 15.

Additionally, for specific domain Information
Extraction (IE), we conduct experiments utilizing

33 datasets, comprising 23 datasets for the NER
task, 8 datasets for the RE task, and 2 datasets
for the ED and EAE tasks. Specifically, under
the supervised setting, we employ 18 datasets
for the NER task, including ACEO04 (Mitchell
et al., 2005), ACE 2005 (Walker and Consortium,
2005), AnatEM (openbiocorpora, 2015), Broad
Twitter (Derczynski et al., 2016), bc2gm (Koca-
man and Talby, 2020), bc5cdr (Li et al., 2016),
CoNLLO3 (Sang and Meulder, 2003), DIANN (Pan
et al., 2017a), FabNER(Kumar and Starly, 2021),
FindVehicle (Guan, 2022), GENIA (Kim et al.,
2003), MIT Movie (Liu et al., 2019) MIT Restau-
rant (Liu et al., 2019) MultiNERD (Tedeschi
and Navigli, 2022), ncbi-disease (Dogan et al.,
2014), Ontonotes5 (Weischedel et al., 2013),
WikiANN (Pan et al., 2017b), and WNUT17 (Der-
czynski et al., 2017). For the RE task, we
utilize 8 datasets under the supervised setting,
including ACE 2005 (Walker and Consortium,
2005), ADE corpus (Gurulingappa et al., 2012),
CoNLLO04 (Roth and tau Yih, 2004), GIDS (Jat
et al., 2018), kbp37 (Zhang and Wang, 2015),
NYT (Riedel et al., 2010), SciERC (Luan et al.,
2018), and semeval RE (Hendrickx et al., 2010).
For the ED and EAE tasks, ACEOQ5 (Walker and
Consortium, 2005) and CASIE (Lu et al., 2021) are
employed.

Under the zero-shot setting, we take 7 datasets
for the NER task, following Wang et al. (2023b);
Zhou et al. (2023), which include 5 CrossNER sub-
sets (Al literature, music, politics, science) (Liu
et al., 2020), MIT-Movie (Liu et al., 2019) and MIT-
Restaurant (Liu et al., 2019). For the RE task, we
adopt GIDS (Jat et al., 2018) under the zero-shot
setting. For the ED and EAE tasks, CASIE (Lu
et al., 2021) is adopted under the zero-shot setting,
following (Sainz et al., 2023).

The detailed statistic of each dataset is shown
in Table 17. Here, “#Type” indicates the number
of types, while “#Train”, “#Dev”, and “#Test” de-
note the number of sentences in the training, devel-
opment, and test datasets, respectively. Figure 5
shows the overview of the datasets on specific do-
main [E by task and size. Note that the statistics
for each dataset in the figure encompass the total
number of train, dev, and test datasets.

J Details of Result Post-processing

After the output codes are generated, we obtain
the extraction results based on some regular ex-

8772

15

Phase Task Data Name ‘ #Types #Instance #Tokens Disksize Hierarchy
NER KELM 19,009 2,019,990 0.26B 1.15GB v
Schema Understanding | RE KELM 810 1,191,199 0.13B 0.54GB (4
EE KELM 499 296,403 0.03B 0.11GB X
NER UniversalNER | 12,072 127,839 0.19B 0.96GB v
Schema Followin RE InstructlE 131 327,984 0.62B 2.61GB v
wing ED LSEE 20 415,353 0.26B 1.03GB X
EAE LSEE 20 211,635 0.10B 0.50GB X

Table 15: Statistics of schema understanding instance codes and schema following instruction tuning codes.

Task #Type #Type w/ desc. #Type w/o desc.
NER 29,177 19,856 9,321

RE 876 840 36

EE 519 515 4

Table 16: Statistics of the constructed schema library.

Num160k
140k
120k

- 100k

- 80k

- 60k

- 40k

Figure 5: Overview of the datasets on specific domain
IE.

20k

800

pressions. To ensure the prediction results are
more standardized and credible, two extra post-
processing operations are added.

Superclass Induction. For the NER task, dur-
ing the schema understanding phase, we have
learned 29,177 entity schemas, while the test
dataset only contains 391 schemas. For specific
categories, our model may provide more detailed
answers which are not in the dataset schema. For
example, when it comes to the entity “Harvard
University”, our model tends to classify it as a
“University”, while the ground truth labels it as
an “Organization”. In such cases, we employ an
upper-level recursive method to address this issue.
Specifically, for the predicted entity, we perform
Superclass Induction based on its position in the

8773

16

Task Dataset | #Type | #Train #Dev #Test
ACE04 7 6,202 745 812
ACEQ5 7 7,299 971 1,060
AnatEM 1 5,861 2,118 3,830
bc2gm 1 12,500 2,500 5,000
beScdr 2 4,560 4,581 4,797
Broad Twitter 3 5,334 2,001 2,000
CoNLLO03 4 14,041 3,250 3,453
DIANN 1 3,900 975 1,334
FabNER 12 9,435 2,182 2,064
FindVehicle 21 21,565 20,777 20,777
GENIA 5 15,023 1,669 1,854
NER MIT Movie 12 9,774 2,442 2,442
MIT Restaurant 8 7,659 1,520 1,520
MultiNERD 16 134,144 10,000 10,000
ncbi-disease 1 5,432 923 940
Ontonotes 5 18 107,032 14,110 10,838
WikiANN 3 20,000 10,000 10,000
WNUT17 6 3,394 1,008 1,287
CrossNER_AI 13 100 350 431
CrossNER_literature 11 100 400 416
CrossNER_music 12 100 380 465
CrossNER_politics 8 199 540 650
CrossNER_science 16 200 450 543
ACE05 6 10,051 2,420 2,050
ADE corpus 1 3,417 427 428
CoNLL04 5 922 231 288
RE GIDS 4 8,526 1,417 4,307
kbp37 18 15917 1,724 3,405
NYT 24 56,196 5,000 5,000
SciERC 7 1,861 275 551
semeval RE 10 6,507 1,493 2,717
EE ACE05 33 19,216 901 676
CASIE 5 11,189 1,778 3,208

Table 17: Statistics of the specific domain IE.

relationship tree in Wikidata. If the entity type of
its upper-level concept matches the entity type in
the ground truth, we consider the entity prediction
to be correct.

Type and Text Filtering. For NER, RE, and EE
tasks, if the model predicts a type that is not de-
fined in the dataset schema and cannot be derived
through superclass induction, or if an argument
appears in the EAE task that is not present in the
schema, we filter out such cases when calculating
metrics. Additionally, if the model predicts text
that does not appear in the sentence, we also filter
it out.

K Implementation Details

Schema Understanding Phase. The model is
trained using AdamW (Loshchilov and Hutter,
2018) optimizer with 31 =0.9, 2 =0.95, ¢ =10"5 .
We set the peak learning rate to 5 x 1075, and use a
cosine learning rate schedule with warmup ratio of
0.1, and decay final learning rate down to 10% of
the peak learning rate. To mitigate overfitting, we
incorporated a weight decay of 0.1 and a gradient
clipping of 1.0. We configure the context length to
2048 and the global batch size to 1M tokens, with
the maximum training step capped at 4500.

Schema Following Phase. We apply the
LoRA (Hu et al.,, 2021) method to all non-
embedding linear layers for schema following.
During this phase, we configure the LoRA rank
and alpha parameters to 32 and 64, respectively,
and set a dropout rate of 0.1 to prevent overfitting.
We still use the AdamW optimizer along with a
cosine learning rate scheduler as in the schema
understanding phase. The model undergoes 510K
training samples, with a learning rate of 3 x 1074,
a global batch size of 256, and a warmup ratio of
0.03.

Refinement Phase. In the refinement phase, we
employ a parameter configuration that is largely
identical to the one used during the schema fol-
lowing phase. However, given the richer and more
varied task-type data available during the refine-
ment stage, we opt for a greater number of training
iterations. Specifically, we conduct training over
three epochs, cumulatively training on 1.9M sam-
ples.

8774
17

L Cases of KnowCoder Training Data

Here, we outline the cases that we have picked out from the KnowCoder-Dataset.

L.1

Instance Code in Schema Understanding Phase

NER Task

® N O L R WD =

Extract the entities from the following sentence.
sentence = "Lalita Yauhleuskaya competed at the 2008 Summer Olympics.”

from Entities import Human
results = [

Human("”Lalita Yauhleuskaya")
]

RE Task

© ® N L AW =

N - o

Extract the relations from the following sentence.
sentence = "Gzim Istrefi plays for Carlstad United BK."

from Entities import Human, AssociationFootballClub
from Relations import MemberOfSportsTeam

results = [
MemberOfSportsTeam(
Human("Gzim Istrefi”),
AssociationFootballClub(”Carlstad United BK")

(S

A

Extract the events from the following sentence.

sentence = "Jamsilsaenae station is adjacent to Sports Complex station which is on the Seoul
Subway Line 2. The Sports Complex station is in the direction of Inner Ring Road and is
located near Gangnam station.”

from Entites import Entity
from Events import AdjacentStation

results = [
AdjacentStation(
connecting_line=[Entity(”Seoul Subway Line 2")1],
towards=[Entity("”Gangnam station")],
direction=[Entity("Inner Ring Road")]

8775
18

L.2 Instruction-tuning Code in Schema Following Phase

NER Task

class Entity:

nnn

1

2

3 The base class for all entities.

4 nnn

5 def __init__(self, name: str):

6 self.name = name

7

3 | class Person(Entity):

i win

10 Description: being that has certain capacities or attributes constituting personhood.

11 Examples: patients, Donald Trump, children, women, user, patient, Trump, President
Trump, Barack Obama, people

12 nnn

13 pass

15 | class Nationality(SocialGroup):

nn

17 Description: A legal identification of a person in international law, establishing the
person as a subject, a national, of a sovereign state.
18 Examples: American, British, Americans, German, French, English, Japanese, Russian,

Australian, Indian

nnn

20 pass

22 | class TvShow(Entity):

24 Description:

25 Examples: Game of Thrones, The Walking Dead, American Idol, Modern Family, Saturday
Night Live, Doctor Who, House, The Tonight Show, Mad Men, Arrested Development

nnn

27 pass

nnn

30 [This is an object-oriented programming task: some Entity Classes are defined above. Please
instantiate all the corresponding Entity Objects in the following sentence.
32 | sentence = ‘‘I enjoyed the series ‘Professional Master Chef’ on television and I was struck
by something the judges said when commenting about two of the semi-finalists. They had
been highly impressed with the dishes the chefs had presented and Michel Roux Junior
remarked that, despite their very obvious skill, neither chef exhibited any arrogance
or conceit. Monica Galetti replied that they didn’t need to, because their work spoke
for them. ’’

results = [

1
2 TvShow("Professional Master Chef"),
3 Person("Michel Roux Junior"),

4 Person("Monica Galetti")

511

8776
19

RE Task

class Entity:

nn

1

2

3 The base class for all entities.

. Wi

5 def __init__(self, name: str):

6 self.name = name

7

8 | class Relation:

0 "

10 The base class for all relations.
. N

12 def __init__(self, head_entity: Entity, tail_entity: Entity):
13 self.head_entity = head_entity
14 self.tail_entity = tail_entity

16 | class PlaceOfBirth(Relation):

nnn

18 Description: Most specific known (e.g. city instead of country, or hospital instead of
city) birth location of a person, animal or fictional character.
19 Examples: (Australian, London), (Muhammad, Mecca), (Augustus, Rome), (Tiberius, Rome),

(Mozart, Salzburg), (Charles II, London), (Sima Zhao, China), (Frederick the Great,
Berlin), (Julius Caesar, Rome), (Queen Myeongui, Goryeo)

.)

21 def __init__(self, head_entity: Entity, tail_entity: Entity):

22 super().__init__(head_entity=head_entity, tail_entity=tail_entity)

23

24 | class Population(Relation):

25 nnn

26 Description: Number of people inhabiting the place; number of people of subject.

27 Examples: (civil parish, 201), (Sao Pedro, 201), (Machame Kusini, 13,572), (Sao Joao,
201), (unincorporated community, 15), (unincorporated community, 94),
(unincorporated community, 25), (Mardekheh-ye Kuchek, 197), (Pain Halu Sara, 701),
(Marenj, 1,055)

o W

29 def __init__(self, head_entity: Entity, tail_entity: Entity):

30 super().__init__(head_entity=head_entity, tail_entity=tail_entity)

31

32 | class LocatedIn(Relation):

- Wi

34 Description:

35 Examples: (National Register of Historic Places, United States), (Ontario, Canada), (Sao
Paulo, Brazil), (Victoria, Australia), (census-designated place, United States),
(New South Wales, Australia), (California, United States), (Andes, Peru), (FAA,
United States), (Norwegian, Norway)

- W

37 def __init__(self, head_entity: Entity, tail_entity: Entity):

38 super().__init__(head_entity=head_entity, tail_entity=tail_entity)

39

40

4

nnn

This is an object-oriented programming task: some Relation Classes and related Entity
Classes are defined above. Please instantiate all the corresponding Relation Objects in
the following sentence.

sentence = ‘‘Kurush is a mountain village located in the Dokuzparinsky District, in southern
Dagestan. Situated at 2480-2560 m above sea level depending on the source , it is the
highest continuously inhabited settlement of the Greater Caucasus and of Europe as well
as the southernmost settlement in Russia. As of 2015, Kurush had a population of 813."’

4

@

results = [
LocatedIn(Entity("Kurush"), Entity("Dokuzparinsky District”)),
LocatedIn(Entity("Dokuzparinsky District”), Entity("”Dagestan")),
Population(Entity("Kurush”), Entity("813"))

L N

8777
20

class Event:

nnn

1

2

3 The base class for all events.

. Wi

5 def __init__(self, trigger: str, arg_names, *args):
6 self.trigger = trigger

7 self.arguments = {}

8 for arg_name, arg_values in zip(arg_names, args):
9 self.arguments[arg_name] = arg_values

11 | class GroupMembership(Event):

nn

13 Description: Organization, club or musical group to which the subject belongs.

14 Examples: singer, music, musician, play, concert, performance, singing, sang, sung, sing,

- W

16 def __init__(self, trigger: str, *args):

17 arg_names = ["start”, "role”, "end”, "group”, "member"]

18 super().__init__(trigger=trigger, arg_names=arg_names, *args)

19

20 | class OlympicMedalHonor (Event):

3 W

22 Description: The honor associated with winning an Olympic medal.

23 Examples: medal, gold, winner, win, silver, competition, bronze, victory, player,
compete,

- Wi

25 def __init__(self, trigger: str, *args):

26 arg_names = ["event”, "country”, "medalist”, "medal”, "olympics"]

27 super().__init__(trigger=trigger, arg_names=arg_names, *args)

29 | class Education(Event):

nnn

31 Description: Educational institution attended by subject.

32 Examples: school, professor, coach, graduate, student, study, master, education, pupil,
lecturer,

33 o

34 def __init__(self, trigger: str, *args):

35 arg_names = [

36 "start_date”,

37 "degree”,

38 "end_date",

39 "institution”,

40 "student”,

41 "specialization”,

42 "major_field_of_study”,

43 1

44 super().__init__(trigger=trigger, arg_names=arg_names, *args)

46 | class Marriage(Event):

nnn

48 Description: The subject has the object as their spouse (husband, wife, partner, etc.).

49 Examples: wife, married, husband, marriage, wedding, marry, couple, spouse, mistress,
divorce,

50 e

51 def __init__(self, trigger: str, *args):

52 arg_names = ["spouse”, "location_of_ceremony”, "type_of_union”, "to"”, "from"]

53 super().__init__(trigger=trigger, arg_names=arg_names, *args)

nnn

56 | This is an object-oriented programming task: some Event Classes are defined above. Please
instantiate all the corresponding Event Objects in the following sentence.

nnn

58 | sentence = "Thomas Lincoln on June 12, 1806 married Nancy Hanks in the Richard Berry home."

I |results = [
2 Marriage("married”)

8778

EAE Task

class Entity:

nnn

1

2

3 The base class for all entities.
. win

5 def __init__(self, name: str):

6 self.name = name

7

8 | class Event:

0 "

10 The base class for all events.
. i

12 def __init__(self, trigger: str):
13 self.trigger = trigger

15 | class Education(Event):

nn

17 Description: Educational institution attended by subject.

18 o

19 def __init__(

20 self,

21 trigger: str, # Examples: school, professor, coach, graduate, student, study, master,
education, pupil, lecturer,

22 start_date: List[Entity],

23 degree: List[Entity],

24 end_date: List[Entity],

25 institution: List[Entity],

26 student: List[Entity],

27 specialization: List[Entity],

28 major_field_of_study: List[Entity],

29):

30 super().__init__(trigger=trigger)

31 self.start_date = start_date

32 self.degree = degree

33 self.end_date = end_date

34 self.institution = institution

35 self.student = student

36 self.specialization = specialization

37 self.major_field_of_study = major_field_of_study

nnn

40 [This is an object-oriented programming task: some Event Classes are defined above. Please
instantiate all the corresponding Event Objects in the following sentence. It is
important to note that the triggers of the events are confirmed as follows: "graduate”
is the trigger of event type "Education”.

sentence = "Albert J. Herberger (born c. 1933) is a Vice Admiral of the United States Navy,
and the first United States Merchant Marine Academy graduate to attain the rank.”

41
4

[S)

results = [

1
2 Education(

3 trigger="graduate”,

4 institution=[Entity("United States Merchant Marine Academy”)],
5 student=[Entity("Albert J. Herberger")]

6)

7|1

8779

