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Abstract

Despite known differences between reading
and listening in the brain, recent work has
shown that text-based language models predict
both text-evoked and speech-evoked brain ac-
tivity to an impressive degree. This poses the
question of what types of information language
models truly predict in the brain. We inves-
tigate this question via a direct approach, in
which we systematically remove specific low-
level stimulus features (textual, speech, and
visual) from language model representations
to assess their impact on alignment with fMRI
brain recordings during reading and listening.
Comparing these findings with speech-based
language models reveals starkly different ef-
fects of low-level features on brain alignment.
While text-based models show reduced align-
ment in early sensory regions post-removal,
they retain significant predictive power in late
language regions. In contrast, speech-based
models maintain strong alignment in early au-
ditory regions even after feature removal but
lose all predictive power in late language re-
gions. These results suggest that speech-based
models provide insights into additional infor-
mation processed by early auditory regions, but
caution is needed when using them to model
processing in late language regions. We make
our code publicly available. '

1 Introduction

An explosion of recent work that investigates the
alignment between the human brain and language
models shows that text-based language models (e.g.
GPT#*, BERT, etc.) predict both text- and speech-
evoked brain activity to an impressive degree (text:
(Toneva and Wehbe, 2019; Schrimpf et al., 2021;
Goldstein et al., 2022; Aw and Toneva, 2023; Oota
etal., 2022; Lamarre et al., 2022; Chen et al., 2024);
speech: (Jain and Huth, 2018; Caucheteux and

"https://github.com/subbareddy248/
speech-11m-brain

King, 2022; Antonello et al., 2021; Vaidya et al.,
2022; Millet et al., 2022; Tuckute et al., 2023;
Oota et al., 2024, 2023a,b; Chen et al., 2024)).
This observation holds across late language regions,
which are thought to process both text- and speech-
evoked language (Deniz et al., 2019), but also more
surprisingly across early sensory cortices, which
are shown to be modality-specific (Deniz et al.,
2019; Chen et al., 2024). Since text-based lan-
guage models are trained on written text (Kenton
and Toutanova, 2019; Radford et al.; Chung et al.,
2024), their impressive performance at predicting
the activity in (also referred to as alignment with)
early auditory cortices is puzzling. This raises
the question of what types of information underlie
the brain alignment of language models observed
across brain regions.

In this work, we investigate this question via a
direct approach (see Fig. 1 for a schematic). For
a number of low-level textual, speech, and visual
features, we analyze how the alignment between
brain recordings and language model representa-
tions is affected by the elimination of information
related to these features. We refer to this approach
as direct, because it estimates the direct effect of a
specific feature on brain alignment. This approach
is in contrast to an indirect approach, which first es-
timates the brain alignment of a model and then in-
dependently examines the model’s performance on
a natural language processing task (e.g. approaches
presented by Schrimpf et al. (2021); Goldstein et al.
(2022)). In contrast, our approach can directly esti-
mate the impact of a specific feature on the align-
ment between the model and the brain recordings
by observing the difference in alignment before
and after the specific feature is computationally
removed from the model representations.

We further contrast our findings with speech-
based language models, which would be expected
to predict speech-evoked brain activity better, pro-
vided they model language processing in the brain
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Figure 1: A direct approach to test the effect of low-level stimulus features on the alignment between different types
of language models and brain recordings (reading vs. listening).

well. For this purpose, we present a systematic
study of the brain alignment across two popular
fMRI datasets of naturalistic stories (1-reading, 1-
listening) and different natural language processing
models (text vs. speech). We focus on three pop-
ular text-based language models (BERT (Kenton
and Toutanova, 2019), GPT2 (Radford et al.), and
FLAN-TS5 (Chung et al., 2024)) and two speech-
based models (Wav2vec2.0 (Baevski et al., 2020)
and Whisper (Radford et al., 2023))—which have
been studied extensively in the NLP-brain align-
ment literature (Toneva and Wehbe, 2019; Aw and
Toneva, 2023; Merlin and Toneva, 2022; Oota et al.,
2022, 2024; Millet et al., 2022; Vaidya et al., 2022).
The fMRI recordings are openly available (Deniz
et al., 2019) and correspond to 6 participants read-
ing and listening to the same naturalistic stories.
This dataset is unique in presenting the same natu-
ralistic stimuli under two sensory modalities. En-
suring the same stimuli across sensory modalities
is crucial, as differences in stimuli could other-
wise account for any observed differences in brain
recordings across modalities. We test how elim-
inating a comprehensive set of low-level textual
(number of letters, number of words, word length,
etc.), speech (number of phonemes, Fbank, MFCC,
Mel, articulation, phonological features, etc.), and
visual features (motion energy) from model repre-
sentations affects alignment with brain responses.

Our direct approach leads to three important con-
clusions: (1) The surprising alignment of models
with sensory regions corresponding to the incon-
gruent modality (i.e. text models with auditory
regions and speech models with visual regions)
is entirely due to low-level stimulus features that
are correlated between text and speech (e.g. num-
ber of letters and number of phonemes); (2) Mod-
els align differently with their corresponding sen-
sory regions, and this difference is not explained
by low-level stimulus features. Text models ex-

hibit comparable alignment with visual and audi-
tory regions, entirely explained by low-level textual
features. In contrast, speech models display sig-
nificantly greater alignment with auditory regions
than visual regions, and this difference cannot be
entirely accounted for by the comprehensive set
of low-level stimulus features studied. This un-
derscores the capacity of speech-based language
models to capture additional features crucial for
early auditory cortex, suggesting their potential in
enhancing our understanding of this brain region;
(3) Although both text- and speech-based models
exhibit considerable alignment with late language
regions, the influence of low-level stimulus features
on text model alignment is minimal, whereas for
speech-based models, the alignment is entirely ex-
plained by these low-level features. This disparity
raises questions about the utility of speech-based
models in modeling late language processing, con-
trasting with the reassuring findings for text models.
Our work demonstrates the importance of carefully
considering the reasons behind the observed align-
ment between models and human brain recordings.
We make all code available so that others can repro-
duce and build on our methodology and findings.

2 Related Work

Our work is most closely related to that of Toneva
et al. (2022a), who propose the direct residual ap-
proach to study the supra-word meaning of lan-
guage by removing the contribution of individual
words to brain alignment. More recent work uses
the same residual approach to investigate the ef-
fect of syntactic and semantic properties on brain
alignment across layers of a text-based language
model (Oota et al., 2024). We complement these
works by studying the impact of a wide range of
low-level features on brain alignment, and by ex-
amining this effect on alignment with both text and
speech models.
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Other direct approaches have also been proposed
in the literature. Most notably, work by Ramakr-
ishnan and Deniz (2021) studies the impact of re-
moving information related to word embeddings
directly from brain responses on a downstream
task. Conceptually, the results obtained from this
approach and ours should be similar because the
feature is completely removed from either the brain
alignment input, target, or both, and thus cannot
further impact the observed alignment. However,
in practice, brain recordings are noisier than model
representations, making it more challenging to es-
timate the removal regression model, especially
with a limited sample size. Therefore, in our work,
we opt to remove features from the model repre-
sentations rather than from the brain recordings.
Methods based on variance partitioning (Lescroart
et al., 2015; Deniz et al., 2019) offer another direct
approach. Our approach is complementary and eas-
ily allows relating the feature effect to an estimated
noise ceiling, given by cross-subject prediction.

Our work also relates to a growing literature that
investigates the alignment between human brains
and language models. A number of studies have
used text-based language models to predict both
text-evoked and speech-evoked brain activity to an
impressive degree (Wehbe et al., 2014; Jain and
Huth, 2018; Toneva and Wehbe, 2019; Schwartz
et al., 2019; Caucheteux and King, 2022; Jat et al.,
2019; Abdou et al., 2021; Toneva et al., 2022b;
Antonello et al., 2021; Oota et al., 2022; Merlin
and Toneva, 2022; Aw and Toneva, 2023; Oota
et al., 2024; Lamarre et al., 2022). Similarly, the
recent advancements in Transformer-based mod-
els for speech (Chung et al., 2020; Baevski et al.,
2020; Hsu et al., 2021) have motivated neuro-
science researchers to test their brain alignment
with speech-evoked brain activity (Millet et al.,
2022; Vaidya et al., 2022; Tuckute et al., 2023;
Oota et al., 2023a,b; Chen et al., 2024). Our ap-
proach is complementary and can be used to further
understand what types of information underlie the
brain alignment of language models, particularly
across different brain regions.

3 Datasets and Models

3.1 Brain Datasets

We analyzed two fMRI datasets which were
recorded while the same 6 participants listened
to and read the same narrative stories from the
Moth Radio Hour, with 3737 training and 291 test-

ing samples (TRs: Time Repetition) each, cho-
sen for the unique auditory and visual presentation
of the same stimulus. These publicly available
datasets, provided by Deniz et al. (2019), were ex-
amined using the Glasser Atlas’ multi-modal par-
cellation of the cerebral cortex, targeting 180 ROIs
per hemisphere (Glasser et al., 2016). This includes
two early sensory processing regions (early visual
and early auditory) and seven language-relevant
regions, encompassing broader language regions:
angular gyrus, lateral temporal cortex, inferior
frontal gyrus and middle frontal gyrus, based on
functional localizers of the language network (Fe-
dorenko et al., 2010; Fedorenko and Thompson-
Schill, 2014; Milton et al., 2021; Desai et al., 2023).
More details about the dataset and ROI selectivity
are reported in the Appendix (see Section A and
Table 3).

Estimating dataset cross-subject prediction ac-
curacy. To account for the intrinsic noise in biolog-
ical measurements, we adapt a previously proposed
method to estimate the noise ceiling value (i.e.
cross-subject prediction accuracy) for a model’s
performance for the reading and listening fMRI
datasets (Schrimpf et al., 2021). By subsampling
fMRI datasets from 6 participants, we generate
all possible combinations of s participants (s €
[2,6]) for both reading and listening tasks, and use
a voxel-wise encoding model (see Sec. 4) to predict
one participant’s response using others. Note that
the estimated cross-subject prediction accuracy is
based on the assumption of a perfect model, which
might differ from real-world scenarios, yet offers
valuable insights into a model’s performance. We
present the average cross-subject prediction accu-
racy across voxels for the reading-listening fMRI
dataset in Appendix Fig. 7, which shows no sig-
nificant differences between modalities. However,
clear differences in prediction accuracy can be ob-
served on the region level in Fig. 2: early visual
regions are better predicted during reading (Red)
and early auditory regions during listening (Blue).

3.2 Language Models

To investigate the reasons for brain alignment of
language models during reading and listening, we
extract activations from five popular pretrained
Transformer models. Three of these models are
“text-based" and two are “speech-based". Below
we present more details for each model.

Text-based language models. To extract repre-
sentations of the text stimulus, we use three pop-
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Figure 2: Contrast of estimated cross-subject prediction accuracy for reading and listening for a representative
subject (subject-8). Blue and Red voxels depict higher cross-subject prediction accuracy estimates during listening
and reading, respectively. Voxels that have similar cross-subject prediction accuracy during reading and listening
appear white, and are distributed across language regions. Here, middle frontal gyrus (MFG), inferior frontal
gyrus (IFG), inferior frontal gyrus orbital (IFGOrb), angular gyrus (AG), and lateral temporal cortex (LTC) are
late language regions, EVC denotes early visual cortex and AC denotes auditory cortex. Cross-subject prediction
accuracy for other participants are reported in Appendix Figs. 9 and 10.

Model Name Pretraining Type Layers
BERT-base-uncased Text Encoder (Bidirectional) 12
GPT2-small Text Decoder (Unidirectional) 12
FLAN-T5-base Text Encoder-Decoder 24
Wav2Vec2.0-base Speech Encoder 12
Whisper-small Speech-to-Text Encoder-Decoder 24

Table 1: Pretrained Transformer-based language models

ular pretrained Transformer text-based language
models from Huggingface (Wolf et al., 2020): (1)
BERT (Kenton and Toutanova, 2019), (2) GPT-
2 (Radford et al.) and (3) FLAN-TS (Chung et al.,
2024). We report details of each model in Table 1.

Extracting text representations. We follow previ-
ous work to extract the hidden-state representations
from each layer of these language models, given
a fixed-length input length (Toneva and Wehbe,
2019). To extract the stimulus features from these
pretrained models, we constrained the tokenizer to
use a maximum context of 20 words. Given the
constrained context length, each word is succes-
sively input to the network with at most C' previous
tokens. For instance, given a story of M words
and considering the context length of 20, while the
third word’s vector is computed by presenting (w1,
w2, W3) as input to the network, the last word’s
vector wy is computed by presenting the network
with (Wps—20, ..., war). The pretrained Trans-
former model outputs token representations at dif-

ferent layers. We use the #tokens x 768 dimension
vector obtained from each hidden layer to obtain
word-level representations from each pretrained
Transformer language model. To align the stim-
ulus presentation rate with the slower fMRI data
acquisition rate (TR = 2.0045 sec), where multiple
words correspond to a single TR, we downsam-
ple the stimulus features to match fMRI recording
times using a 3-lobed Lanczos filter, thus creating
chunk-embeddings for each TR.

Speech-based language models. Similarly to
text-based language models, we use two popu-
lar pretrained Transformer speech-based models
from Huggingface: (1) Wav2Vec2.0 (Baevski et al.,
2020) and (2) Whisper (Radford et al., 2023). The
details of each model are reported in Table 1 and
Appendix Table 2.

Extracting speech representations. The input
audio story is first segmented into clips correspond-
ing to 2.0045 seconds to match the fMRI image
acquisition rate. Each audio clip is input to the
speech-based models one by one to obtain stimu-
lus representations per clip. The representations
are obtained from the activations of the pretrained
speech model in intermediate layers. Overall, each
layer of the examined speech-based models outputs
a 768 dimensional vector at each TR.
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To investigate whether speech models incorpo-
rate linguistic information beyond 2 seconds, we
extract representations for longer timewindows (16,
32, and 64 secs) with a stride of 100 msecs and
considered the last token as representation in each
context window. Similarly to text-based language
models, the pretrained speech-based models out-
put token representations at different layers. Fi-
nally, we align these representations with the fMRI
data by downsampling the stimulus features with
a 3-lobed Lanczos filter, thus producing chunk-
embeddings for each TR.

3.3 Interpretable Stimulus Features

To better understand the contribution of different
stimulus features to the brain alignment of language
models, we extract a range of low-level textual,
speech, and visual features that have been shown
in previous work to relate to brain activity during
listening and reading.

Low-level textual features. We analyze low-level
textual features per TR, including the (1) Number of
Letters, (2) Number of Words, and (3) Word Length
STD. These low-level textual features, which are
already downsampled and aligned with each TR,
have also been used in Deniz et al. (2019).
Low-level speech features. We consider the fol-
lowing low-level speech features: (1) Number of
Phonemes in each TR. (2) MonoPhones, the small-
est speech units like /p/, /c/, /a/, differentiate words,
represented by a 39-dimensional feature vector
at each TR. (3) DiPhones represent the adjacent
pair of phones (e.g., [da], [al], [If]) in an utter-
ance. For each TR, we obtained a one-hot code
encoding the presence or absence of all possible
diphones (858). (4) FBank splits the raw audio
into sub-components via bandpass filtering, yield-
ing a 26-dimensional vector for each frequency
sub-band. (5) Mel Spectrogram transforms audio
signals into an 80-dimensional vector by apply-
ing Fourier transformation and mapping frequen-
cies to the mel scale. (7) MFCC features capture
Mel-frequency spectral coefficients through Dis-
crete Cosine Transform (DCT) of logarithmic filter
bank outputs. (8) PowSpec, detailed in Gong et al.
(2023), quantify the time-varying power spectrum
of audio signals across 448 frequency bands be-
tween 25 Hz and 15 kHz for every 2 sec segment.
(9) Phonological features identify 108 phonologi-
cal aspects (18 descriptors like vocalic, consonan-
tal, back) across 6 statistical functions (mean, std,
skewness, kurtosis, max, min). (10) Articulation:

we use phoneme articulations as mid-level speech
features, mapping hand-labeled phonemes to 22 ar-
ticulatory characteristics. We extract the low-level
speech features filter banks (FBank), Mel Spectro-
gram, and MFCC from audio files using S3PRL
toolkit?, and phonological features using the Dis-
Voice library?. We also use the articulation and
power spectrum (PowSpec) feature vectors pro-
vided in Deniz et al. (2019).

Low-level visual features. As low-level visual
features, we consider the Motion energy features
derived from word frame sequences in reading ex-
periments using a spatiotemporal Gabor pyramid.
These features capture low-level visual characteris-
tics with 39 parameters, as detailed in Deniz et al.
(2019).

4 Methodology

Our direct approach to investigate the reasons
for brain alignment of language models involves
three main steps (see Fig. 1): (1) removal of in-
terpretable low-level stimulus features from the
language model representations; (2) estimating the
brain alignment of the language model representa-
tions before and after removal of a particular fea-
ture; (3) a significance test to conclude whether the
difference in estimated brain alignment before and
after is significant.
Removal of low-level features from language
model representations. To remove low-level fea-
tures from language model representations, we rely
on a simple method proposed previously by Toneva
et al. (2022a), in which the linear contribution of
the feature to the language model activations is
removed via ridge regression. In our setting, we re-
move the linear contribution of a low-level feature
by training a ridge regression, in which the low-
level feature vector is considered as input and the
neural word/speech representations are the target.
We compute the residuals by subtracting the pre-
dicted feature representations from the actual fea-
tures resulting in the (linear) removal of low-level
feature vector from pretrained features. Because
the brain prediction method is also a linear function
(see next paragraph), this linear removal limits the
contribution of low-level features to the eventual
brain alignment.

Specifically, given an input feature vector L;
with dimension N X d for low-level feature ¢, and
target neural model representations W € RN*D|

Zhttps://github.com/s3prl/s3prl
3https://github.com/jcvasquezc/DisVoice
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where N denotes the number of TRs, and d and D
denote the dimensionality of low-level and neural
model representations, respectively, the ridge re-
gression objective function is f(L;) = néinHW -

L;6;||% + A||6:]|% where 6; denotes the learned
weight coefficient for embedding dimension D for
the input feature i, ||.||% denotes the Frobenius
norm, and A > 0 is a tunable hyper-parameter
representing the regularization weight for each
feature dimension. Using the learned weight co-
efficients, we compute the residuals as follows:
TR alignment. To account for the slowness of the
hemodynamic response, we model hemodynamic
response function using a finite response filter (FIR)
per voxel and for each subject separately with 6
temporal delays corresponding to 12 secs.

Voxel-wise encoding model. We estimate the brain
alignment of a language model before and after
the removal of a stimulus property via training
standard voxel-wise encoding models (Deniz et al.,
2019; Toneva and Wehbe, 2019). Specifically, for
each voxel and participant, we train fMRI encoding
model using bootstrap ridge regression (Tikhonov,
1963) to predict the fMRI recording associated with
this voxel as a function of the stimulus represen-
tations obtained from both text- and speech-based
models (before and after the removal of stimulus
features). In particular, we use layerwise pretrained
representations from these models as well as resid-
uals by removing each basic low-level feature and
using them in a voxelwise encoding model to pre-
dict brain responses. If the removal of a particular
stimulus property from the language model repre-
sentation leads to a significant drop in brain align-
ment, then we conclude that this stimulus property
is important for the brain alignment of the language
model. Before the bootsrap ridge regression, we
first z-scored each feature channel separately for
training and testing. This was done to match the
features to the fMRI responses, which were also
z-scored for training and testing. Formally, at the
time step (t), we encode the stimuli as X; € RN D
and brain region voxels Y; € RV*V where N is
the number of training examples, D denotes the
dimension of the concatenation of delayed 6 TRs,
and V denotes the number of voxels. To find the
optimal regularization parameter for each feature
space, we use a range of regularization parameters
that is explored using cross-validation. The main
goal of each fMRI encoding model is to predict

brain responses associated with each brain voxel
given a stimulus.

Normalized alignment. The final measure of a
model’s performance is obtained by calculating
Pearson’s correlation between the model’s predic-
tions and neural recordings. This correlation is then
divided by the estimated cross-subject prediction
accuracy and averaged across voxels, regions, and
participants, resulting in a standardized measure of
performance referred to as normalized alignment.
During normalized alignment, we select the voxels
whose cross-subject prediction accuracy is > 0.05.
Statistical Significance. To determine if normal-
ized predictivity scores are significantly higher than
chance, we use block permutation tests. We employ
the standard implementation of a block permutation
test for fMRI data, which is to split the fMRI data
into blocks of 10 contiguous TRs and permute the
order of these blocks, while maintaining the origi-
nal order of the TRs within each block. By permut-
ing predictions 5000 times, we create an empirical
distribution for chance performance, from which
we estimate the p-value of the actual performance.
To estimate the statistical significance of perfor-
mance differences, such as between the model’s
predictions and chance or residual predictions and
chance, we utilized the Wilcoxon signed-rank test,
applying it to the mean normalized predictivity for
the participants. In all cases, we denote signifi-
cant differences with an asterisk *, indicating cases
where p< 0.05.

Implementation details for reproducibility. All
experiments were conducted on a machine with 1
NVIDIA GEFORCE-GTX GPU with 16GB GPU
RAM. We used bootstrap ridge-regression with the
following parameters: MSE loss function, and L2-
decay () varied from 10! to 103; the best \ was
chosen by tuning on validation data.

5 Results

We investigate the alignment of text- and speech-
based language models during reading and listen-
ing, across early sensory processing regions (early
visual and early auditory) as well as late language
regions. We further use our direct approach to
study how different low-level stimulus features im-
pact this alignment. Unless otherwise specified, the
results presented in the main paper reflect an aver-
age across model type, feature type, model layers,
voxels, and participants, normalized by the cross-
subject prediction accuracy. Error bars indicate
the standard error of the mean across participants.
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5.1 Brain Alignment of Text-Based Language
Models

In late language regions, we find that text-based lan-
guage models: (1) have a very high brain alignment
both during reading and listening (Fig. 3a), (2) re-
tain most of their alignment (significantly above
chance level) even after removal of low-level fea-
tures both during reading (Fig. 4a) and listening
(Fig. 5a), and (3) have slightly better alignment
during reading vs. listening, however this differ-
ence largely vanishes after the removal of low-level
textual features (Figs. 4a & 5a). These results indi-
cate that, irrespective of the stimulus modality, the
alignment of text-based language models with late
language regions is not due to low-level features.
Turning to the early sensory regions, we find
that the alignment in the early visual regions dur-
ing reading is almost as high as it is in late language
regions (Fig. 3a). This alignment is however largely
explained by low-level textual features (Fig. 4a).
The remaining alignment is low, but still signifi-
cant. The alignment in the early auditory regions
during listening is also very high, and this is al-
most exclusively due to low-level textual features
(Fig. 5a). Overall, these results show that low-level
textual features are the primary factor underlying
the alignment of text-based models with early sen-
sory regions, regardless of the stimulus modality.
Impact of individual low-level features. The most
impactful low-level textual feature for text-based
models is "Number of Letters" (see Fig. 14 in the
Appendix). Removing this feature from BERT

leads to a significant drop (80-100%) in early visual
regions during reading, but only a slight drop (0O-
20%) in late language regions. We also found that
removing the low-level speech feature "DiPhones"
from BERT significantly decreases alignment (20-
40%) even in late language regions (see Fig. 15 in
the Appendix), presumably because short words
contribute significantly to alignment provided by
diphones (Gong et al., 2023) and BERT representa-
tions may contain brain-relevant information about

short words.
brain

5.2 Brain Alignment of Speech-Based
Language Models

In late language regions, we find that speech-based
language models (1) have high brain alignment
both during reading and listening, but not nearly as
high as their text-based counterparts (Fig. 3), (2)
lose their entire alignment (down to chance) after
removal of low-level features both during reading
(Fig. 4b) and listening (Fig. 5b), (3) have slightly
better alignment during reading vs. listening, how-
ever this difference largely vanishes after the re-
moval of low-level features (Figs. 4b & 5b). We
further verify that the same results hold even when
the input window to the speech-based language
models is extended beyond 2sec to 16, 32, and
64sec (see Appendix Fig. 18). These results sug-
gest that the alignment of speech-based language
models with late language regions is not due to
brain-relevant semantics.

Turning to the early sensory regions, we find
that the alignment in the early visual regions dur-
ing reading is even higher than it is in late language
regions (Fig. 3b). This alignment is partially ex-
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Figure 5: Listening condition in the Early Auditory and Late Language Regions: (a) For Text-based Models:
Average normalized brain alignment was computed across participants before and after removal of low-level stimulus
features, across layers and voxels. (b) For Speech-based Models: Similar alignment analysis was conducted for
speech models before and after removal of low-level stimulus features, across layers and voxels. Red dashed line:
chance performance, and * indicates that the residuals prediction performance is significantly better than chance.

plained by low-level textual features (Fig. 4b). The
remaining alignment is significant and consider-
able. The alignment in the early auditory regions
during listening is extremely high, and this is only
partially due to low-level textual or speech features.
Significant unexplained alignment remains after
the removal of a comprehensive set of low-level
features. These results suggest that there is addi-
tional information beyond the low-level features
considered in this study that is processed in the
early sensory regions (Fig. 5b), and captured by
speech-based language models.

if any, brain-relevant information in these regions
beyond low-level speech features.

Additionally, we observe that the "Phonologi-
cal" features correlate with other low-level features
(ranging from 0.62 to 0.7 Pearson correlation, see
Appendix section K; Fig. 20), but not as much as
these features correlate among themselves. This
suggests that while there is some shared variance
between phonological features and number of let-
ters, phonemes, and words, the phonological fea-
tures are likely also capturing unique variance that
isn’t completely explained by these other features.
Thus, phonological features may capture additional
information over the other low-level features.

Impact of individual low-level features. The most
impactful low-level feature for speech-based lan-
guage models is "Phonological". During listening,
removing this feature from Wav2Vec2.0 leads to
a substantial drop (80-100%) in performance in
late language regions (Fig. 6; see also Appendix
Fig. 17 for comprehensive layer-wise results). This
indicates that speech-based models capture little,
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6 Discussion and Conclusion

Using a direct approach, we evaluated what types
of information language models truly predict in
brain responses. This is achieved by removing
information related to specific low-level stimulus



Percentage of decrease: Brain Alignment

Figure 6: Percentage of decrease in alignment during listening for each voxel after the removal of Phonological
features from Wav2Vec?2.0, projected onto the flattened cortical surface of a representative subject (subject-8). White
indicates voxels where Phonological features do not explain any shared information within Wav2Vec2.0, and purple
indicates voxels where they explain all the information predicted by Wav2Vec2.0.

features (textual, speech, and visual) and observing
how this perturbation affects the alignment with
fMRI brain recordings acquired while participants
read versus listened to the same naturalistic stories.

Our direct approach leads to three key conclu-
sions: (1) The unexpected alignment of models
with sensory regions associated with the incongru-
ent modality (i.e. text models with auditory re-
gions and speech models with visual regions) is
entirely due to low-level stimulus features that are
correlated between text and speech (e.g. number
of letters and number of phonemes); (2) Models
exhibit varied alignment with the respective sen-
sory regions, and this variance cannot be ascribed
to low-level stimulus features alone. Text models
exhibit comparable alignment with visual and au-
ditory regions, entirely driven by low-level textual
features. In contrast, speech models display sig-
nificantly greater alignment with auditory regions
than visual regions, and this difference cannot be
entirely accounted for by the comprehensive set
of low-level stimulus features studied. This un-
derscores the capability of speech-based language
models to capture additional features crucial for
the early auditory cortex, hinting at their poten-
tial to enhance our understanding of this brain re-
gion; (3) While both text- and speech-based models
show substantial alignment with late language re-

gions, the impact of low-level stimulus features
on text model alignment is marginal, whereas for
speech-based models, alignment is entirely driven
by these low-level features. Since these regions are
purported to represent semantic information, this
finding implies that contemporary speech-based
models lack brain-relevant semantics. Furthermore,
these results imply that observed similarities be-
tween speech-based models and brain recordings
in the past (Vaidya et al., 2022; Millet et al., 2022)
are largely due to low-level information, which is
important to take into account when interpreting
the similarity between language representations in
speech-based models and the brain. This disparity
raises questions about the utility of speech models
in modeling late language processing, contrasting
with the reassuring findings for text-based models
for the same regions.

Our findings also clearly show that despite the
growing popularity of text-based and speech-based
language models in modeling language in the brain,
we are still far from a computational model of the
complete information processing steps during ei-
ther listening or reading. In the future, leveraging
the alignment strengths of text-based models in late
language regions and speech-based models in early
auditory regions may lead to improved end-to-end
models of listening in the brain.
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7 Limitations

One limitation of our approach is that the removal
method we use only removes linear contributions
to language model representations. While this is
sufficient to remove the effect on the brain align-
ment, which is also modeled as a linear function, it
is possible that it does not remove all information
related to the specific features from the model. An-
other possible limitation for the interpretation of
the differences between the brain alignment of text-
vs speech-based models is that the models we are
using have several differences beside the stimulus
modality, such as the amount of their training data
and objective functions. To alleviate this concern,
we have tested multiple models of each type, with
different objective functions and trained on differ-
ent amounts of data, and showed that the results
we observe generalize within the text- and speech-
based model types despite these differences. Still,
it is possible that some of the differences in brain
alignment we observe are due to confounding dif-
ferences between model types, and there is value in
investigating these questions in the future with mod-
els that are controlled for architecture, objective,
and training data amounts. Lastly, our work uses
brain recordings that are obtained from English-
speaking participants and experimental stimuli that
are in English, and therefore we use models that
are mostly trained on English text and speech. It
is possible that the findings would differ in other
languages, and this is important to study in the
future.

The alignment of text-based models with the
late language regions is not explained by low-level
stimulus features alone. However, these regions
also process high-level semantic information (e.g.,
discourse-level or emotion-related) (Binder and De-
sai, 2011; Wehbe et al., 2014; Bookheimer, 2002).
Future work can investigate the contribution of
such features to this alignment. In addition, while
impressive, the current level of alignment does not
reach the estimated cross-subject prediction accu-
racy. Inducing brain-relevant bias can be one way
to enhance the alignment of these models with the
human brain (Schwartz et al., 2019). Overall, fur-
ther research is necessary to improve both text- and
speech-based language models.

8 Ethics Statement

All the text-based and speech-based language mod-
els used in this work are publicly available on Hug-

gingface and free for research use.

The fMRI dataset we use is a well known public
dataset # that has been previously used in many
publications in both ML and neuroscience venues
(ML: (Jain and Huth, 2018; Jat et al., 2019; An-
tonello et al., 2021; Deniz et al., 2019; Chen et al.,
2024), Neuroscience: (Huth et al., 2022; Deniz
et al., 2019). The dataset consists of 11 stories,
6 participants, and all participants listened to and
read all the stories. The speech stimuli consisted of
10- to 15 min stories taken from The Moth Radio
Hour and used previously (Huth et al., 2016).

The datasets are licensed under Creative Com-
mons CCO 1.0 Public Domain Dedication. No an-
ticipated risks are associated with using the data
from these provided links.
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Appendix for: Speech
language models lack
important brain-relevant
semantics

A Naturalistic Reading-Listeing fMRI
Dataset

We use the publicly available naturalistic story read-
ing and listening fMRI dataset provided by (Deniz
et al., 2019). The dataset consists of 11 stories,
6 participants, and all participants listened to and
read all the stories. The speech stimuli consisted of
10- to 15 min stories taken from The Moth Radio
Hour and used previously (Huth et al., 2016). The
10 selected stories cover a wide range of topics and
are highly engaging. The model validation dataset
consisted of one 10 min story. All stimuli were
played at 44.1 kHz using the pygame library in
Python. The audio of each story was down-sampled
to 11.5 kHz and the Penn Phonetics Lab Forced
Aligner was used to automatically align the audio
to the transcript. Finally the aligned transcripts
were converted into separate word and phoneme
representations using Praat’s TextGrid object. The
word representation of each story is a list of pairs
(W, t), where W is a word and t is the onset time in
seconds.

The same stories from listening sessions were
used for reading sessions. Praat’s word representa-
tion for each story (W, t) was used for generating
the reading stimuli. The words of each story were
presented one-by-one at the center of the screen
using a rapid serial visual presentation (RSVP) pro-
cedure. During reading, each word was presented
for a duration precisely equal to the duration of that
word in the spoken story. RSVP reading is differ-
ent from natural reading because during RSVP the
reader has no control over which word to read at
each point in time. Therefore, to make listening
and reading more comparable, the authors matched
the timing of the words presented during RSVP to
the rate at which the words occurred during listen-
ing. This implies that the downsampling procedure
remains the same for both reading and listening
conditions

The total number of words in each story as fol-
lows: Storyl: 2174; Story2: 1469; Story3: 1964;

Story4: 1893; Story5: 2209; Story6: 2786; Story7:
3218; Story8: 2675; Story9: 1868; Story10: 1641;
Story11: 1839 (test dataset)

B Estimated Cross-Subject Prediction
Accuracy

We present the average estimated cross-subject pre-
diction accuracy across voxels for the naturalistic
reading-listening fMRI dataset in Fig. 7. We ob-
serve that the average estimated cross-subject pre-
diction accuracy across voxels for the two modali-
ties is not significantly different. However, as de-
picted in Figs. 9 and 10, there are clear regional
differences across all the participants: Early vi-
sual regions have higher cross-subject prediction
accuracy during the reading condition (Red vox-
els), while many of the early auditory regions have
a higher cross-subject prediction accuracy during
the listening condition (Blue voxels).

C Whole Brain Analysis: Text vs. Speech
model alignment during reading vs.
listening

In Fig. 8, we report the whole brain alignment of
each model normalized by the cross-subject pre-
diction accuracy for the naturalistic reading and
listening dataset. We show the average normalized
brain alignment across subjects, layers, and voxels.
We perform the Wilcoxon signed-rank test to test
whether the differences between text and speech-
based language models are statistically significant.
We found that all text-based models are statistically
significantly better at predicting brain responses
than all speech-based models in both modalities.

D Dissecting Brain Alignment

Our major goal of the current study is to identify
the specific types of information these language
models capture in brain responses. To achieve this,
we remove information related to specific low-level
stimulus features (textual, speech, and visual) in the
language model representations, and observe how
this perturbation affects the alignment with fMRI
brain recordings acquired while participants read
versus listened to the same naturalistic stories. In
subsections 5.1 and 5.2 (see in the main paper), all
our results presented are averaged within types of
models and types of low-level stimulus feature cat-
egories. Here, we report the residual performance
results of individual low-level stimulus features for
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Figure 7: The estimated cross-subject prediction accuracy was computed across all participants for the Subset-Moth-
Radio-Hour naturalistic reading-listening fMRI dataset. The average cross-subject prediction accuracy is shown
across predicted voxels where each voxel ceiling value is > 0.05.
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Figure 8: Average normalized brain alignment was computed over the average of subjects for each model (3
text-based and 2 speech-based language models), across layers, for two modalities: reading (left) and listening

(right).

both text- and speech-based language models, as
shown in Figs. 11 and 12.

D.1 Why do text-based language models
predict speech-evoked brain activity in
early auditory cortices?

In Fig. 11, we report the normalized brain align-
ment results during listening in the early auditory
cortex for both text- and speech-based language
models, along with their residual performance after
eliminating low-level stimulus features.

Removal of low-level textual features We make
the following observations from Fig. 11 (a) & (b):
(1) Removal of number of letters feature results in
a larger performance drop (more than 30% of the
original performance) for both text- and speech-

based language models. (2) Similarly removal of
number of words feature also affect more than 25%
drop indicate that low-level textual features are
captured in both text and speech-based language
models.

Removal of low-level speech features We make
the following observations from Fig. 11 (¢) & (d):
(1) Removal of phonological features results in a
larger performance drop (more than 50% of the
original performance) for speech-based language
models than text-based models (30% drop of the
original performance). (2) Additionally, the re-
moval of low-level speech features such as Mel
spectrogram, MFCC and DiPhones leads to ma-
jor performance drop (more than 40%) for speech-
based language models. (3) In contrast, the removal
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(a) Subject-03

Figure 9: Contrast of estimated cross-subject prediction accuracy for the remaining participants for the reading vs
listening condition. BLUE-AC (Auditory Cortex) voxels have a higher cross-subject prediction accuracy in listening,
and Red-VC (Visual Cortex) voxels have a higher cross-subject prediction accuracy in reading. Voxels that appear in
white have similar cross-subject prediction accuracy across conditions, and are distributed across language regions.
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Figure 10: Contrast of estimated cross-subject prediction accuracy for the remaining participants for the reading vs
listening condition. BLUE-AC (Auditory Cortex) voxels have a higher cross-subject prediction accuracy in listening,
and Red-VC (Visual Cortex) voxels have a higher cross-subject prediction accuracy in reading. Voxels that appear in
white have similar cross-subject prediction accuracy across conditions, and are distributed across language regions.

of remaining low-level speech features, includ-
ing FBANK, PowSpec and Articulation, has less
shared information with speech-based language
models and results in a minor performance drop (i.e.
less than 20%). These findings indicate that speech-
based language models outperform text-based lan-
guage models because they better leverage low-
level speech features such as MFCC, Mel spec-

trogram, and Phonological. Overall, phonological
features are the largest contributors for for both
text and speech-based language models. Specif-
ically, the presence of correlated information in
phonological features related to low-level textual
(e.g., number of letters) and speech (e.g., number
of phonemes) features explains a large portion of
the brain alignment for both types of models.
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Figure 11: Brain Listening: (a) & (b) Removal of Low-level textual features, Average normalized brain alignment
was computed over the average of participants for text and speech-based models, across layers for each low-level
textual property. (c¢) & (d) Removal of low-level speech features: Average normalized brain alignment was
computed across participants for text and speech-based models, across layers for each low-level speech property.

D.2  Why do both types of models exhibit
similar degree of brain alignment in early
visual cortices?

In Fig. 12, we report the normalized brain align-
ment results during reading in the early visual cor-
tex for both text- and speech-based language mod-
els, along with their residual performance after
eliminating low-level stimulus features.

Removal of low-level textual features We make
the following observations from Fig. 12 (a) & (b):
(1) Similar to the listening condition in the early
auditory regions, the removal of number of letters
feature from both types of models leads to a sig-
nificant drop in brain alignment in the early visual
region. (2) Furthermore, the removal of number
of words feature also leads to a drop of more than

20% in the early visual region indicate that low-
level textual features are captured in both text and
speech-based language models. This indicates that
the performance of both types of models in early vi-
sual cortices is largely due to the number of letters
feature followed by the number of words.

Removal of low-level speech features We make
the following observations from Fig. 12 (c) & (d):
(1) In the early visual region, removal of phono-
logical features results in a larger performance
drop (more than 35% of the original performance)
for speech-based language models than text-based
models (20% drop of the original performance).
(2) However, the removal of remaining low-level
speech features has less shared information with
text-based language models and results in a minor

8519



Text Models
Text Models - Number of Letters
Text Models - Number of Words

B Speech Models
B Speech Models - Number of Letters
Speech Models - Number of Words

Reading Reading

0.8 0.8
< 1=
(O] Q
: : :

506 I 506
< I <
£ L £
© ©

&5 04 &5 04
D ?
N I 1 == N
= - =

g 0.2 g 0.2
(@] o
zZ zZ

0 0

Early Visual Late Language

ROls
(a) Removal of Low-level Textual Features

Early Visual Late Language

ROls

(b) Removal of Low-level Textual Features

0.8

Text Models

Text Models -
Text Models -
Text Models -
Text Models -

Number of Phonemes
FBANK
Mel Spectrogram

MFCC  Reading

Text Models -
Text Models -
Text Models -
Text Models -

PowSpec
Phonological
Articulation
DiPhones

B Speech Models
B Speech Models -
B Speech Models -
B Speech Models -
Speech Models -

Number of Phonemes
FBANK
Mel Spectrogram

MFCC

Reading

Speech Models -
Speech Models -
Speech Models -
Speech Models -

PowSpec
Phonological
Articulation
DiPhones

0.8

0.6

0.4

0.2

Normalized Brain Alignment

Early Visual Late Language

ROls

(c) Removal of Low-level Speech Features

Normalized Brain Alignment

Early Visual

Late Language
ROIls

(d) Removal of Low-level Speech Features

Figure 12: Brain Reading: (a) & (b) Removal low-level textual features, Average normalized brain alignment was
computed over the average of participants for text and speech-based models, across layers for each low-level textual
property. (c¢) & (d) Removal of low-level speech features: Average normalized brain alignment was computed
across participants for text and speech-based models, across layers for each low-level speech property.

performance drop (i.e. less than 10%). (3) In the
visual word form area, the removal of all low-level
speech features has no affect on brain alignment
for text-based language models, while the removal
of phonological features from speech-based mod-
els results in alignment dropping to zero. Overall,
phonological features are the largest contributors
for speech-based language models, both in early
visual and visual word form areas.

Are there any differences between text- and
speech-based models in late language regions?

Removal of low-level textual features In both
reading and listening conditions, we make the fol-
lowing observations from Fig. 11 (a) & (b) and
Fig. 12 (a) & (b): (1) Text-based models explain a
large amount of variance in late regions, even after

removing low-level textual features. (2) In contrast,
residual performance of speech-based models goes
down to approximately 10-15%, after removing
number of letters and words.

Removal of low-level speech features In both
reading and listening conditions, we make the fol-
lowing observations from Fig. 11 (c¢) & (d) and
Fig. 12 (c) & (d): (1) Removing DiPhones fea-
tures from Text-based language models results in
major drop (more than 25%) compared to other
low-level speech features. (2) Conversely, removal
of phonological features results in a larger perfor-
mance drop (more than 80% of the original per-
formance) for speech-based language models than
text-based models (10% drop of the original perfor-
mance).
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Figure 13: Probing the information (basic linguistic and speech features) represented across layers in neural language
(BERT and GPT2) and speech-based models (Wav2Vec2.0 and Whisper).

Overall, the alignment of speech-based models
with late language regions is almost entirely due to
low-level stimulus features, and not brain-relevant
semantics.

E Layer-wise probing analysis between
language models and low-level stimulus
features

To investigate how much of the information in the
low-level stimulus features can be captured by text-
and speech-based language models, we learn a
ridge regression model using model representations
as input features to predict the low-level features
(textual, speech and visual) as target. Fig. 13 shows
that text-based language model (BERT and GPT-2)
can accurately predict low-level textual features in
the early layers and have decreasing trend towards
later layers. For the low-level speech features, text-
based models have zero to negative R2-score val-
ues showing that text-based models do not have
any speech-level information.

Complementary to text-based language models,
speech-based models (Wav2Vec2.0) can accurately
predict low-level speech features in the higher lay-

ers and have lower R2-score values in the early
layers. Conversely, in the Whisper model, which is
an encoder-decoder architecture, the encoder lay-
ers can accurately predict low-level speech features
and decoder layers have higher R?-score values for
the low-level textual features.

F Feature-level analysis

As shown in Fig. 12, we observe that "Number of
Letters" had the highest impact during reading for
the text-based language models. Fig. 14 displays
the percentage decrease in brain alignment for read-
ing (BERT with Number of Letters). Removing
"Number of Letters" leads to a significant drop (80-
100%) in the early visual regions, but only a slight
drop (0-20%) in the late language regions during
reading. Fig. 15 displays the percentage decrease in
alignment when the low-level speech feature "Di-
Phones" is removed from BERT representations
during reading. Since many common short words
are composed of diphones (Gong et al., 2023),
removing this feature from BERT significantly de-
creases alignment (20-40%) even in late language
regions.
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Figure 14: Reading: Percentage decrease in alignment for each voxel after removing number of letters feature
from BERT representations. Percentage decrease scores for each voxel in one subject (subject-8) are projected
onto the subject’s flattened cortical surface. Voxels appear White if number of letters feature do not explain any
shared information of BERT, and orange if all the information predicted BERT is similar to the information captured
using number of letters feature. Voxels appear in light orange indicates that parts of late language explained (0-20%
drop) by number of letters feature and BERT model has more information shared with late language regions beyond
number of letters feature.

Figure 15: Brain Reading: Percentage decrease in brain alignment for each voxel by comparing the results after
removing DiPhone features from BERT with the results before using BERT. Percentage decrease scores for each
voxel in one subject (subject-8) are projected onto the subject’s flattened cortical surface. Voxels appear White if
DiPhone features do not explain any shared information of BERT, and orange if all the information predicted BERT
is similar to the information captured using DiPhone features. Voxels appear in light orange indicates that parts of
late language explained (20-40% drop) by DiPhone features and BERT model has more information shared with
late language regions beyond DiPhone features.

G Al and Late Language regions:
Speech-language model alignment
during listening

moval of low-level textual and speech features lead
to major performance drop in Wav2Vec2.0 than
Whisper model. This implies that the maximum ex-
plainable variance of Wav2Vec2.0 is due to lower-

We now show the results per speech model in
the Fig. 16. In the context of brain listening,
specifically for the Al region, we observe that
the Wav2Vec2.0 model has better normalized brain
alignment than the Whisper model. However, re-

level features than the Whisper model in A1 region.

Similar to the Al region, we observed that
both Wav2Vec2.0 and Whisper exhibit similar nor-
malized brain alignment in late language regions.
Moreover, the removal of low-level textual and
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Figure 16: Brain Listening in Al and Late Language regions: Average normalized brain alignment was computed
over the average of participants for speech-based models, across layers and across low-level features.

speech features results in a significant performance
decline in both models.

H Layer-wise Normalized Brain
Alignment

We now plot the layer-wise normalized brain align-
ment for the Wav2Vec2.0 model in brain listening,
both before and after removal of one important
low-level speech property: phonological features,
as shown in Fig. 17. Observation from Fig. 17 indi-
cates a consistent drop in performance across lay-
ers, after removal of Phonological features, specif-

ically in Al and Late language regions. The key
finding here is that our results that low level fea-
tures impact the ability to predict both A1 and late
language regions hold across individual layers.

I Al Region: Low-level stimulus features
and brain alignment

We now plot the average normalized brain align-
ment for low-level stimulus features (textual,
speech and visual) during both reading and listen-
ing in the early sensory areas (early visual and A1),
as shown in Figure. Additionally, we report the
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Figure 17: Layer-wise average normalized brain alignment was computed over the average of participants for
speech-based model: Wav2vec2.0 for an imporant low-level speech property: phonological features.

individual low-level stimulus features, such as the
number of letters, PowSpec, Phonological features
and motion energy features, specifically in early
sensory processing regions. It appears that both
text-based and speech-based language models meet
the baselines in early sensory processing regions,
particularly early visual areas in reading and A1l
areas during listening. Among low-level stimulus
features, motion energy features have better nor-
malized brain alignment during reading in the early
visual area and Phonological features have better
brain alignment during listening in the A1 region.

J Low-level stimulus features:
Normalized brain alignment

We now plot the average normalized brain align-
ment for classical models, such as low-level stim-
ulus features (textual, speech, and visual) during
both reading and listening in the early sensory ar-
eas (early visual and Al), as shown in Fig. 19.
Additionally, we report results for the individual
low-level stimulus features as baseline models, in-
cluding the number of letters, PowSpec, phonolog-
ical features, and motion energy features, particu-
larly in early sensory processing regions. Both text-
based and speech-based language models meet the
baselines and show improvement in early sensory
processing regions, particularly early visual areas
in reading and A1 areas during listening. Among
low-level stimulus features, motion energy features

have better normalized brain alignment during read-
ing in the early visual area and phonological fea-
tures have better brain alignment during listening
in the A1 region.

Opverall, in the context of classic model compari-
son, language model representations predict better
than baseline models and the variance explained by
these models is significant.

K Impact of the phonological feature.
L Functionality of brain ROIs

We use a multi-modal parcellation of the human
cerebral cortex (Glasser Atlas; 180 regions of in-
terest (ROIs) in each hemisphere) (Glasser et al.,
2016). This includes two early sensory process-
ing regions and seven language-relevant ROIs in
the human brain with the following subdivisions:
(1) early visual (V1, V2); (2) early auditory re-
gion (Al, PBelt, MBelt, LBelt, RI, A4); and (3)
late language regions, encompassing broader lan-
guage regions: angular gyrus (AG: PFm, PGs,
PGi, TPOJ2, TPOJ3), lateral temporal cortex (LTC:
STSda, STSva, STGa, TEla, TE2a, TGv, TGd, AS,
STSdp, STSvp, PSL, STV, TPOJ1), inferior frontal
gyrus (IFG: 44, 45, 1IFJa, IFSp) and middle frontal
gyrus (MFG: 55b) (Baker et al., 2018; Milton et al.,
2021; Desai et al., 2023). In Table 3, we report the
comprehensive description of early sensory brain
regions and language-relevant ROIs in the human
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Figure 18: Brain Listening: (a) Average normalized brain alignment was computed over the average of participants
for speech-based models, (b) Average of normalized brain alignment of speech models for different windows across
layers and removal of phonological features

brain with the following subdivisions: (1) early vi- M Speech-based Language Models

sual; (2) visual word form area; (3) early auditory

region; and (4) late language regions. Speech-based models are often referred to as lan-
guage models, because the general definition of a
“language model” involves predicting the next to-
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ken or sequence of tokens, given context. Even in
the paper which introduces the Wav2vec2.0 model
we use (Baevski et al., 2020), the authors state
that the model is "pretrained by masking specific
time steps in the latent feature space, similar to the
masked language modeling approach in BERT".
Although the Wav2vec2.0 model does not gener-
ate text in the way traditional text-based language
models do, it plays a crucial role in processing and
understanding spoken language, making it a type
of speech language model. Additionally, in another

work that introduces another popular speech model
HuBERT, the authors explicitly state that the "Hu-
BERT model is compelled to learn both acoustic
and language models from continuous inputs" (Hsu
et al., 2021). Whether these speech models cap-
ture the same meaning of language as traditional
text-based language models is not known. Cogni-
tive neuroscientists are starting to study the overall
alignment of such speech models with the human
brain, across the whole cortex and not just in early
auditory areas, so our work is extremely timely
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Model Name Pretraining Type Input Layers Training data size Loss type
BERT-base-uncased Text Encoder (Bidirectional) Words 12 3.3B words Masked language model (MLM)
GPT2-Small Text Decoder (Unidirectional) Words 12 8M web pages Causal language model (CLM)
FLAN-T5-base Text Encoder-Decoder Words 24 750GB corpus of tex MLM, CLM
Wav2Vec2.0-base Speech Encoder Waveform 12 250K hours of raw speech Masked contrastive loss
‘Whisper-small Speech Encoder-Decoder Log Mel spectrogram 24 680K hours of speech (raw speech+speech tasks) Masked dynamic loss

Table 2: Pretrained Transformer-based language models
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Figure 20: Correlation matrix illustrating the relationships between low-level features: NumLetters, NumPhonemes,
NumWords, and Phonological.

in showing that the observed alignment in non-

sensory regions is largely due to low-level features.
The details of three text-based and two speech-

based language models are reported in Table 2.
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Early visual

The early visual region is the earliest cortical region for visual
processing. It processes basic visual features, such as edges, orien-
tations, and spatial frequencies. Lesions in V1 can lead to blindness
in the corresponding visual field. V2 processes more complex pat-
terns than V1.

Early auditory

The early auditory region is the earliest cortical region for speech
processing. This region is specialized for processing elementary
speech sounds, as well as other temporally complex acoustical
signals, such as music.

Late Language

Late language regions contribute to various linguistic processes.
Regions 44 and 45 (Broca’s region) are vital for speech production
and grammar comprehension (Friederici, 2011). The IFJ, PG, and
TPOJ clusters are involved in semantic processing, syntactic inter-
pretation, and discourse comprehension (Deniz et al., 2019; Toneva
et al., 2022a). STGa and STS play roles in phonological processing
and auditory-linguistic integration (Vaidya et al., 2022; Millet et al.,
2022; Gong et al., 2023). TA2 is implicated in auditory processing,
especially in the context of language.

Table 3: Detailed functional description of various brain regions.

8528




