
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8309–8332
August 11-16, 2024 ©2024 Association for Computational Linguistics

BizBench: A Quantitative Reasoning Benchmark for Business and Finance

Rik Koncel-Kedziorski†, Michael Krumdick†

Viet Lai, Varshini Reddy, Charles Lovering, Chris Tanner
Kensho Technologies

michael.krumdick@kensho.com

Abstract

Answering questions within business and fi-
nance requires reasoning, precision, and a wide-
breadth of technical knowledge. Together,
these requirements make this domain difficult
for large language models (LLMs). We intro-
duce BizBench, a benchmark for evaluating
models’ ability to reason about realistic finan-
cial problems. BizBench comprises eight quan-
titative reasoning tasks, focusing on question-
answering (QA) over financial data via pro-
gram synthesis. We include three financially-
themed code-generation tasks from newly col-
lected and augmented QA data. Additionally,
we isolate the reasoning capabilities required
for financial QA: reading comprehension of
financial text and tables for extracting interme-
diate values, and understanding financial con-
cepts and formulas needed to calculate complex
solutions. Collectively, these tasks evaluate a
model’s financial background knowledge, abil-
ity to parse financial documents, and capacity
to solve problems with code. We conduct an in-
depth evaluation of open-source and commer-
cial LLMs, comparing and contrasting the be-
havior of code-focused and language-focused
models. We demonstrate that the current bottle-
neck in performance is due to LLMs’ limited
business and financial understanding, highlight-
ing the value of a challenging benchmark for
quantitative reasoning within this domain.

1 Introduction

Large language models (LLMs) show strong perfor-
mance on question-answering (QA) and code gen-
eration tasks (Austin et al., 2021; OpenAI, 2023).
Nonetheless, it remains particularly difficult for
models to reason about quantities and numbers
(Hendrycks et al., 2021c). This poses issues for
using LLMs for real-world problems in business

†Equal contribution.

DOMAIN KNOWLEDGE

FinKnow FormulaEval

QUANTITY EXTRACTION

SEC-NumTAT-QA
Extract

ConvFinQA
Extract

FinCode

CodeTAT-QA

CodeFinQA

PROGRAM
SYNTHESIS

Figure 1: Overview of BizBench’s eight tasks. Each
level of the pyramid corresponds to a task category, with
higher levels requiring increasingly complex capabili-
ties.

and finance, as these fields can require transparent
and precise reasoning capabilities.

To facilitate the development of better models
for business and finance, we introduce a new bench-
mark for evaluating financial quantitative reason-
ing, with a focus on question-answering over struc-
tured and unstructured financial data.

Financial questions often require multi-step rea-
soning (Chen et al., 2021b). Professional work-
flows necessitate a transparent reasoning process to
promote user trust, but how LLMs reason remains
opaque. While chain-of-thought (CoT) prompt-
ing, where reasoning steps are generated as part
of model output, improves performance on rea-
soning tasks (Suzgun et al., 2023; Kojima et al.,
2022), the answers generated from CoT are of-
ten not a direct product of the generated reason-
ing (Wei et al., 2022; Wang et al., 2023; Lanham
et al., 2023).Unlike generating CoT, generating
executable code (program synthesis) ties model
outputs to specific opereations, functions or in-
structions (Madaan et al., 2022; Chen et al., 2023).

8309

Task Test Train Novel CG FK DC DSTask
Program Synthesis
FinCode 121 16 ✓ ✓ ✓
CodeFinQA 844 4,669 ✓ ✓ ✓
CodeTAT-QA 392 2,864 ✓ ✓ ✓

Quantity Extraction
ConvFinQA (E) 916 - ✓ ✓
TAT-QA (E) 248 - ✓ ✓
SEC-Num 2,000 6,845 ✓ ✓ ✓

Domain Knowledge
FinKnow 877 - ✓
FormulaEval 50 - ✓ ✓ ✓

Table 1: Characteristics of BizBench tasks including
test data size, novel supervised-finetuning data size, the
inclusion of novel task and novel data, and if the task
involves code generation (CG), financial knowledge
(FK), document context (DC), and data structures (DS).

In BizBench, we frame multi-step QA as a pro-
gram synthesis task. This formulation provides
increased transparency because the exact rationale
for a model’s answer can be audited.

BizBench consists of three interrelated types of
tasks for assessing transparent and accurate finan-
cial reasoning: program synthesis, quantity extrac-
tion, and domain knowledge. Figure 1 shows an
overview of BizBench.

Program Synthesis. We introduce a novel QA
task, FinCode, built from professional exams. We
also create two code-generation tasks CodeTAT-
QA and CodeFinQA by reformulating the existing
financial QA datasets TAT-QA (Zhu et al., 2021)
and FinQA (Chen et al., 2021b). Both of these
tasks require leveraging raw text and tables.

Quantity Extraction. We introduce SEC-Num,
a numerical span-identification task over corporate
earnings reports filed with the U.S. Securities and
Exchange Commission (SEC). Additionally, we
study span-based QA subsets of ConvFinQA (Chen
et al., 2022) and TAT-QA (Zhu et al., 2021).

Financial Domain Knowledge. We introduce
two tasks: FormulaEval, a novel code-completion
task which tests a model’s knowledge of finan-
cial formulas, and FinKnow, which tests non-
quantitative subsets of business and finance exams.

BizBench complements existing benchmarks for
business and financial NLP (Xie et al., 2023; Shah
et al., 2022). Existing benchmark tasks include sen-
timent analysis, named entity prediction, and stock
price prediction. BizBench focuses on a model’s
capacity to leverage numeric information in struc-
tured and unstructured financial data to answer
quantitative financial questions.

Our evaluations of open-source and commercial

pre-trained language models – in both few-shot
and fine-tuned setups – provide a detailed view
of the state-of-the-art NLP for quantitative finan-
cial reasoning. Model size, instruction-tuning, and
code-specific pretraining all meaningfully impact
performance, but significant improvement is still
needed for even the best models to be useful in
high-stakes, real-world workflows.

The major contributions of this work include:

• A new benchmark of eight tasks for evaluating
quantitative reasoning in finance and business.

• Novel data for studying the problems of
program synthesis, quantity extraction, and
knowledge of the financial domain.

• Detailed evaluation of a variety of LLMs,
showing how model size, data, code-tuning,
and alignment impact task performance.

• Error analysis showing that top-performing
models fall short mainly due to gaps in their
financial knowledge.

Along with releasing the dataset at https://
huggingface.co/datasets/kensho/bizbench,
we’ve established a leaderboard on a held-
out, curated subset of the evaluation data at
https://benchmarks.kensho.com/, open to
public submission. Through the leaderboard, we
hope to encourage progress towards developing
solutions to these challenging problems while
mitigating the potential for data contamination.

2 Reasoning in Business and Finance

Business and finance professionals are frequently
required to reason about quantities. They often
search for specific quantities within large sets of dis-
tractors (e.g., searching for the revenue of a particu-
lar division for a specific quarter, and doing so from
a report that contains a comprehensive detailing of
financial metrics across many divisions). They also
rely on financial domain knowledge across banking,
accounting, and finance to manipulate these quan-
tities in useful ways. For example, computing an
EBITDA margin requires first identifying a series
of relevant quantities (net income, interest expense,
taxes, depreciation, amortization, and revenue) and
then applying a specific formula to these quantities
(taking the sum of the first five quantities and com-
puting their percentage of revenue). Since large
sums of money are often at stake, financial profes-
sionals need to communicate transparent rationales
for their decisions.

8310

https://huggingface.co/datasets/kensho/bizbench
https://huggingface.co/datasets/kensho/bizbench
https://benchmarks.kensho.com/

Researchers have developed tasks to measure
some aspects of quantitative financial reasoning ca-
pabilities of AI systems. FinQA consists of 8,281
questions written by financial professionals, paired
with context and tables from earnings reports of
the largest companies listed on American stock ex-
changes (Chen et al., 2021b). Answering FinQA
questions often requires multiple reasoning steps,
including extracting quantities, performing mathe-
matical operations with them, and reasoning about
time periods such as fiscal quarters and years. Ad-
ditionally, these questions test the financial knowl-
edge of currency and scale (e.g. percentage, mil-
lions, billions). Similar to FinQA, TAT-QA consists
of questions, answers, and relevant context of text
and tables (Zhu et al., 2021). The 16,552 ques-
tions in TAT-QA cover a range of skills including
span-extraction, comparison, and arithmetic.

Program synthesis improves transparency of
model outputs, allowing for auditing of reasoning
steps — which in turn increases trust and usability.
Since large sums of money are often at stake, finan-
cial professionals need to communicate transparent
rationales for their decisions. Generating programs
allows QA models to avoid arithmetic calculations,
which is challenging for smaller models.

3 Task Details

The main focus of BizBench is evaluating a model’s
financial understanding through program synthesis.
We additionally provide tasks in two domains we
view to be the building blocks in this regard: quan-
tity extraction and financial domain knowledge. In
order to answer a complex program synthesis ques-
tion, the model must be able to understand and
extract relevant values within a question or context.
It must also have some knowledge of the necessary
formulas and other information required to then
compute the answer. Additional skills and features
of each task are shown in Table 1.

3.1 Program Synthesis

Program synthesis requires a model to generate
logically sound code that can be executed to answer
some question. Each example contains a natural
language question, optionally text or structured
data source, and a Python program that produces
a numeric answer to the question. We measure
accuracy by comparing this numeric output with a
ground truth reference value. Answers within 1%
of the reference are considered to be correct.

Question: An investment project costing $500 today will
generate profiles of $500 in year five and year ten. If the
discount rate is 10%, what is the project’s NPV? Answer to
the nearest dollar.

Python Program Solution

1 initial_investment = 500
2 discount_rate = 0.1
3 pv = lambda year , cash_flow:

cash_flow / ((1 + discount_rate) ** year)
4 npv = (pv(5, 500) + pv(10, 500)) -

initial_investment
5 round(npv)

Figure 2: Example from FinCode. In this dataset, an-
swering questions requires financial background knowl-
edge and the ability to synthesize code.

Questions for these tasks are written by financial
professionals. The associated reference code is
written either by human annotators or converted
from human-generated equations (see Figure 3) for
a sample semantically-rich Python program.

Indicator FinCode CodeFinQA CodeTAT-QA
Context - 131.3 -
Table - 64.8 147.0
Question 14.4 5.4 6.7
Avg. Total Numerals 14.4 201.6 153.7
Addition 0.81 0.25 0.13
Subtraction 1.04 0.49 2.43
Multiplication 1.40 0.62 0.41
Division 0.73 0.73 0.43
Percentage 0.21 0.62 0.39
Exponent 0.13 0.00 0.00
Avg. Total Operators 4.32 2.71 3.79
Lines of code 7.0 3.8 3.0
Parenthesis 4.6 0.3 1.6

Table 2: Complexity of program synthesis in BizBench
including the average count of numerals within each
part of the input; the average count of mathematical op-
erators used in the solution; and the solution complexity
in terms of average lines of code and parentheses;.

We highlight some important features of these
tasks: First, the questions are written by financial
professionals using real-world data and financial
knowledge. As such, they are closer to the kinds of
questions that business and financial professionals
answer as part of their workflows. They present dif-
ferent challenges from questions found in existing
numerical reasoning datasets because they involve
resolving complex quantity references, avoiding
abundant distractor quantities, and using implicit
financial background knowledge. These tasks are
different from existing code generation tasks in
that they require grounding generated code in real-
world text or data structure context that also require
financial background knowledge.

8311

Secondly, the code we provide with these tasks is
semantically-rich, by which we mean that the rela-
tionship between the code, the question it answers,
and the context it uses is intuitive. This is accom-
plished through the use of a simple procedural style
and descriptive variable names. Semantically-rich
code explains the model’s final answer, allowing
model answers to be audited. Although we do not
enforce the generation of semantically rich code,
we find that in practice providing the model with
semantically rich examples is sufficient to elicit
this behavior.

Further details of the data collection process for
the following tasks can be found in Appendix A.

FinCode consists of 137 questions, programs,
and answers taken from Certified Financial Analyst
(CFA) and Certified Public Accountant (CPA) prac-
tice exams. Each question is annotated with Python
code that references quantities from the question
text and applies mathematical operations to com-
pute the requested numeric answer. The financial
background knowledge required to answer these
questions is requisite for professionals earning cer-
tification. In total, 46 of the 137 examples were
written from scratch by financial professionals, and
the remaining 91 were generated by an LLM and
then verified by financial professionals.

Figure 2 shows a typical example from this
dataset. The question statement discusses a po-
tential investment project. Answering this ques-
tion requires understanding domain-specific terms
– such as “discount rate” and “NPV” (net present
value) – and how the concepts fit together into a
formula for determining the answer. The code to
answer this question is complex, requiring multi-
ple steps of financial arithmetic. See Table 2 for
an analysis of the complexity of FinCode and the
other BizBench datasets.

CodeFinQA is a subset of FinQA for which
we provide code solutions to the questions. This
dataset of 5,513 question/context/code triples can
be used for finetuning or dynamic prompting. For
the CodeFinQA task, models are given the same
input as FinQA: text, table, and the question. The
output is Python code which is executed to produce
an answer. A sample is shown in Figure 3.

CodeTAT-QA is a subset of QA pairs from the
TAT-QA dataset that can be answered using infor-
mation in the provided table. We adapt this dataset
for QA over structured financial data, a common
task in business and finance workflows. We believe
QA models can benefit from learning how to access

Context: “... Q4 2022 revenue totaled 28.9B, compare to the
same period last year of 27.8B. We saw stronger sales in our
leasing division with a 14% increase ...”
Question: What was the percent change in revenue from 2021
to 2022?”

Original FinQA derivation

1 divide(subtract (28.9 , 27.8), 27.8)

Our Python Program

1 revenue_2022 = 28.9
2 revenue_2021 = 27.8
3 change = revenue_2022 - revenue_2021
4 percent_change = change / revenue_2021
5 answer = percent_change * 100

Figure 3: CodeFinQA example. Comparison of our
added code solution and the original FinQA equation.
Our Python program is executable with named variables
for easier verification (lines 1-2), quantity composition
(lines 3-4), and with the expected scale or unit (line 5).

Question: What was the change in Foreign revenue in 2019
from 2018?

Balance Sheet
Revenue, in millions 2019 2018 2017

Domestic 204.2 140.3 56.0
Foreign 11.8 19.9 14.2
Income before income taxes 216.0 160.2 70.2

Dataframe Access
1 df = DataFrame(data=balance_sheet_table)

2 foreign_2019 = df["Foreign"]["2019"]

3 foreign_2018 = df["Foreign"]["2018"]

4 answer = foreign_2019 - foreign_2018

Figure 4: Example from CodeTAT-QA. The task re-
quires accessing and manipulating data via a dataframe,
simulating QA scenarios where data comes from struc-
tured sources.

these data sources programmatically.
Each question is augmented not only with a pro-

gram, but also with a structured table representation
that the model can utilize to compute its solution.
Information from the table can be accessed through
the dataframe by specifying the row and column
labels, as shown in Figure 4.

3.2 Quantity Extraction

Quantity extraction tasks require models to identify
numbers in text and tables from natural language
descriptions. Although this task can sometimes
require minimal financial background knowledge
(e.g. reading a number directly from a table), it is
a necessary sub-task for many complex tasks that
do. It is also a valuable task in its own right, as
many business and finance workflows can benefit

8312

from high precision automated quantity extraction.
BizBench includes three quantity extraction tasks:
a new dataset of SEC filings and labeled quantities
(SEC-Num), and extraction-only subsets of TAT-
QA and ConvFinQA.

SEC-Num is a novel dataset for quantity ex-
traction from SEC filings. Recently, the SEC im-
plemented a machine-readable labeling scheme
for structuring data within human-readable doc-
uments.1 Under these rules, filers are required to
annotate quantities within reports with natural lan-
guage descriptions of each quantity reported. We
treat these descriptions as labels and define the
SEC-Num task as follows: given a document snip-
pet and a target label as input, the expected output
is the quantity span from the snippet corresponding
to the label. This open-vocabulary task general-
izes Loukas et al. (2022), who focus on the most
frequent labels and develop a classification task.
A snippet of the original SEC filing is shown in
Table 14 in the Appendix.

The data processing pipeline for SEC-Num be-
gins with 202 10-K and 10-Q filings from the SEC
EDGAR data portal. From these, we split each
document into pages, each of which may contain
multiple paragraphs and tables with a large num-
ber of quantities. For each unambiguous quantity
label, we create a datapoint (x, y) where x is a snip-
pet/label pair and y is the corresponding number
from the snippet for the given label. The resulting
dataset has 8,845 datapoints, which we split into
6,845 train and 2,000 test datapoints. Full statistics
of this data are available in Table 1.

TAT-QA Extract (E) and ConvFinQA Extract
(E) are subsets of questions from TAT-QA and Con-
vFinQA respectively, which can be answered using
a numeric span from the context text or tables. See
Table 1 for our dataset statistics.

3.3 Domain Knowledge
These tasks test the financial domain knowledge
of an AI system. Here, models must demonstrate
internal understanding of business and financial
terms, practices, and formulae.

FinKnow contains 877 multiple choice ques-
tions and answers collected from CFA practice ex-
ams and the business ethics, microeconomics, and
professional accounting exams from the MMLU
dataset (Hendrycks et al., 2021b). The CFA exam
questions have three potential choices, while the

1https://www.sec.gov/structureddata/
osd-inline-xbrl.html

FormulaEval
1def real_rate_of_return(nominal_rate: float ,

inflation_rate: float) -> float:
2 """
3 Computes the "real" rate of return , the rate
4 that takes the corresponding rate of
5 inflation into account.
6
7 Parameters
8 ----------
9 nominal_rate: float

10 inflation_rate: float
11 Returns
12 -------
13 The "real" rate of return: float
14 """

return ((1 + nominal_rate) /
(1 + inflation_rate)) - 1

Figure 5: Truncated example from FormulaEval. The
model is prompted with the function signature and doc-
string and generates the code highlighted in cyan.

questions from the MMLU dataset have four. We
exclude incomplete questions and questions that
require numeric extraction or numerical reasoning.
In total, this dataset contains 418 CFA, 86 business
ethics, 224 microeconomics and 149 professional
accounting question-answer pairs. We evaluate the
models in a zero-shot setup. For each question,
we compute the log probability of each potential
answer and select the highest as the model’s choice.

FormulaEval is a novel code-completion task
designed to determine whether formulae for differ-
ent business, economic, and financial measures are
memorized and accessible without external knowl-
edge sources. Using these formulae is required for
the program synthesis tasks and is an important
part of many business and financial workflow.

There are two main types of functions within
this task: standalone functions and class functions.
The standalone functions represent common finan-
cial formulas, such as computing the simple in-
terest rate accrual on a loan. Many formulae in-
volve reasoning about the structured relationships
between a common set of items, such as computing
EBITDA or Net Income from a balance sheet. To
evaluate these types of formulae, we implement
shared classes that represent financial documents
(Balance Sheet, Income Statement, Statement of
Cash Flows) with attributes representing items that
you might find within these documents.

The model is given a function stub including a
docstring and type hints. For the functions that are
part of a class, the model is also given the class def-
inition. The model is then tasked with completing
the implementation of the function. An example of
task input and expected output is shown in Figure

8313

https://www.sec.gov/structureddata/osd-inline-xbrl.html
https://www.sec.gov/structureddata/osd-inline-xbrl.html

Model Size
Domain Knowledge Quantity Extraction Program Synthesis

Avg.FinKnow FormulaEval ConvFinQA (E) TAT-QA (E) SEC-Num FinCode CodeFinQA CodeTAT-QA
0-shot 0-shot 3-shot 3-shot 3-shot 8-shot 3-shot 3-shot

Falcon 7B 40.9 14.0 66.5 62.9 27.3 3.3 2.0 7.4 28.0
Falcon 40B 43.9 6.0 82.8 80.6 52.3 8.3 18.4 38.5 41.3
MPT 7B 39.7 48.0 71.7 62.1 31.7 6.6 6.6 30.4 37.1
MPT 30B 42.4 60.0 85.5 81.5 56.4 6.6 31.0 64.8 53.5
StarCoder 16B 37.9 18.0 79.7 75.0 57.8 9.9 31.2 70.2 47.5
Llama 2 7B 41.7 52.0 86.1 83.1 56.2 7.4 21.9 37.0 48.2
Llama 2 13B 42.1 52.0 88.2 88.7 61.4 6.6 33.4 65.1 54.7
Llama 2 70B 44.9 80.0 92.8 94.4 74.7 24.0 57.3 79.1 68.4
CodeLlama 7B 36.5 52.0 82.4 77.4 53.1 10.7 34.0 70.9 52.1
CodeLlama 13B 37.3 56.0 87.0 81.5 61.3 9.9 39.1 82.1 56.8
CodeLlama 34B 40.0 70.0 88.1 83.9 67.0 17.4 52.4 81.4 62.5
Mistral 7B 44.4 66.0 91.5 87.9 65.1 15.7 48.8 75.0 61.8
Mixtral 8x7B 47.1 94.0 92.8 91.1 73.1 19.0 58.5 83.9 69.9
GPT 3* 175B 47.9 82.0 91.6 91.9 77.4 26.5 61.5 84.7 72.3
GPT 3.5* - 60.3 76.0 92.4 84.2 76.0 36.1 67.5 87.6 72.5
GPT 4* - 80.1 100.0 94.0 90.3 79.3 63.6 78.8 90.6 84.6

Table 3: Performance of state-of-the-art models on BizBench in zero-shot and few-shot in-context learning settings.
The best performance for each task is in bold. The second-best performance is underlined. Closed-source models
are represented by asterisks (*), whereas all other models are open-source.

5. In total, we collected 50 functions: 14 of which
are standalone functions and 36 functions coming
from four class implementations.

Evaluation is done by synthesized unit testing.
Greedy model-generated and gold function imple-
mentations are compared by checking their outputs
on 100 randomly sampled inputs. If their outputs
match on all the inputs, we consider the model-
generated function implementation to be correct.
We report the overall accuracy on this task.

4 Few-Shot Experiments

We benchmark state-of-the-art open-source and
proprietary models on the BizBench dataset us-
ing the EleutherAI LM Evaluation harness (Gao
et al., 2022), establishing how performance ranges
across model sizes and pretraining strategies. For
large models, we provide zero- and few-shot results.
We evaluate Falcon (Penedo et al., 2023), MPT
(MosaicML, 2023), StarCoder (Li et al., 2023),
Llama-2 and CodeLlama (Touvron et al., 2023),
Mistral/Mixtral (Jiang et al., 2023, 2024), and
OpenAI’s GPT(s) (Brown et al., 2020; OpenAI,
2023). Table 3 shows the models and their sizes.

We were unable to benchmark pre-existing fi-
nancial LLMs due to three factors: The models we
hoped to benchmark were either proprietary (e.g.,
BloombergGPT (Wu et al., 2023)), designed for
languages other than English (e.g. BBT-Fin-T5 (Lu
et al., 2023b) and XuanYuan 2.0 (Zhang and Yang,
2023)) or did not include code in their financial tun-
ing and thus led to very poor results (e.g. FinMA
(Xie et al., 2023), FinGPT (Yang et al., 2023), and

Fin-LLaMA (William Todt, 2023)). BizBench re-
quires models to be adept in both finance and cod-
ing. We discuss this limitation further in Section 7.

Model size and alignment impact performance:
generally, larger models perform better, and models
using RLHF and instruction tuning, such as GPT
variants, perform best of all. There are notable out-
liers: Mistral 7B outperforms larger models–MPT,
Falcon, and Llama 2–across a range of settings.

4.1 Few-Shot Error Analysis

We analyze how models err on program synthesis
to better understand where they can improve. We
categorize model errors into four categories: ex-
tracting the wrong number from context, using the
wrong formula, or code syntax errors. Also, some
questions are ambiguous about the desired answer
format (e.g. decimal vs percentage). Our use of
strict matching metrics causes some trivial errors.2

Upper Limits of Performance. GPT-4 is the
best performing model on seven of the eight tasks
benchmarked here. For the most difficult task – Fin-
Code – GPT-4 achieves 27.5% absolute improve-
ment over the next best model. Despite this, GPT-4
still fails to answer over 36% of the questions. We
further analyzed these errors to better characterize
the current limits in performance.

Of the 44 errors GPT-4 made, there were zero ex-
traction or syntax errors. We deemed 4 errors to be
due to potentially ambiguous questions. Of the for-
mulaic errors, one error was the result of answering
in the wrong units (trillions of dollars rather than

2Appendix B shows examples of these error types.

8314

billions of dollars) and two were more basic math
mistakes (Error counting number of months, and
an error with order of operations). The remaining
37 errors all came from limits in GPT-4’s business
and financial knowledge. Examples of these errors
can be found in Appendix B. This suggests that im-
proving LLMs business and financial background
knowledge is key to improving performance.

Comparing Code and Language Models.
Llama-2 and CodeLlama models allow us to mea-
sure the benefits of further code training. This addi-
tional training results in improvements on our finan-
cial program synthesis benchmarks (by an absolute
16.4% and 8.6% for 7B and 13B respectively) albeit
at the trade-off of slightly worse quantity extraction
and domain knowledge performance.

To further understand these differences in per-
formance, we categorize CodeFinQA errors found
in 50 incorrect outputs from CodeLlama-34B, as
well as 25 from each of CodeLlama-7B and Llama-
2-7B.3 The largest category of errors are numer-
ical extraction errors, followed by incorrect for-
mula errors. We find no clear difference in the
error type distribution arising from parameters
(CodeLlama-34B vs. CodeLlama-7B) or code pre-
training (CodeLlama-7B vs. Llama-2-7B). Qualita-
tively, there are problems with scaling, e.g., confus-
ing millions with billions or ratios with percentages.
The models struggle with the semantics of gains
and losses, particularly the sign of financial values.
For example, the following all indicate a loss: “loss
of $100”, “-$100”, “($100)”.

Models pretrained on language-only versus
code solve different sets of questions. Llama-2-
70B correctly answers 33% of the questions that
CodeLlama-34B fails on; and CodeLlama-34B cor-
rectly answers 25% of those Llama-2-70B fails on.
An oracle mixture of these models would achieve
an accuracy of 68% on the CodeFinQA task.

To analyze the generated code complexity, we
measure output length in lines and the number of
parentheses for Llama-2-70B on FinCode com-
pared to the values for the gold data shown in
Table 2. While the average gold answer con-
tains 7 lines of code, Llama-2-70B outputs contain
6.2, with incorrect responses at 6.4 and correct re-
sponses at 5.8 lines. Llama-2-70B may only answer
questions where simpler code suffices. However,
looking at the number of parentheses we find that
Llama-2-70B outputs contain on average 4.0 com-

3Full error counts can be found in Table 5 in the Appendix

102 103 104
0

20

40

60

80

100

Training data size
(log scale)

Ac
cu
ra
cy

(%
)

CodeFinQA

102 103 104

Training data size
(log scale)

CodeTAT-QA

102 103 104
0

20

40

60

80

100

Training data size
(log scale)

Ac
cu
ra
cy

(%
)

SEC-Num

LLaMa-2-7B+SFT
LLama-2-70B
LLama-2-13B
LLama-2-7B

Figure 6: Performance of different finetuned Llama-2-
7B models using increasing amounts of training data.
Few-shot performance of various Llama 2 models is
shown for comparison.

pared to 4.6 in the gold. Incorrect outputs have
an average of 3.9 and correct outputs 4.2. Llama-
2-70B may write more structured code when it
understands the question better. Further analysis is
needed to confirm this hypothesis.

5 Supervised Finetuning

We finetune Llama-2-7B in a number of settings
to evaluate how the availability of both in-domain
and multi-task training data impacts performance.
Specifically, we investigate how different amounts
of training data examples impact performance
across CodeFinQA, CodeTAT-QA, and SEC-Num.
To test this, we downsample the training data
from 100 to 5,000 samples. Figure 6 shows the
relationship between accuracy and training data
size for finetuned Llama-2-7B models across these
sizes compared to the few-shot results of the pre-
trained models. Next, we evaluate Llama-2-7B
with multi-task training across these same datasets,
CodeFinQA, CodeTAT-QA, and SEC-Num.

Analysis. Llama-2-7B requires fewer than 500
samples to outperform the Llama-2-13B on all
three datasets. To outperform Llama-2-70B, Llama-

8315

Source tasks Target task
→ ⋆ → ▲ → ■

No SFT 21.9 37.0 56.2

Single 62.4 86.5 85.7

▲ ■ 21.2 77.3 84.7
⋆ ■ 65.4 49.0 87.3
⋆ ▲ 65.1 81.9 69.9
⋆ ▲ ■ 66.6 78.3 86.1

Table 4: Performance of LLaMa 2 7B model fine-
tuned on different combinations of CodeFinQA(⋆),
CodeTAT-QA(▲), and SEC-Num(■) in comparison
with no supervised-finetuning (row 1) and supervised
finetuning on the same task (row 2).

2-7B needs to be finetuned on only 3,000 samples
for CodeFinQA, 1,000 samples for CodeTAT-QA,
and only 500 samples for SEC-Num. Notably,
when Llama-2-7B is finetuned with the full training
datasets, it demonstrates a substantial improvement
– achieving a 9%, 7%, and 13% higher accuracy on
CodeFinQA, CodeTAT-QA, and SEC-Num com-
pared to Llama-2-70B – while incurring only a
fraction of the inference cost.

We study how knowledge is transferred across
these three tasks. Table 4 shows a comparison be-
tween pretraining, supervised finetuning and mul-
titask learning. In zero-shot transfer learning set-
ting (e.g. training on SEC-Num and CodeFinQA
and evaluating on CodeTAT-QA), the performance
on CodeTAT-QA and SEC-Num improved with
additional training data from other tasks, while
performance on CodeFinQA slightly decreased.
When the training data of the test task is included,
data from other tasks has varying impact. Com-
pared to SFT, the performance on CodeFinQA and
SEC-Num increased consistently across all train-
ing mixes, while the performance on CodeTAT-QA
decreased consistently.

6 Related Work

BizBench focuses on code generation and financial
information extraction, complementing other finan-
cial NLP benchmark datasets which tend to focus
on non-quantitative tasks (Malo et al., 2014; Sinha
and Khandait, 2021), or quantitative trading tasks
(Soun et al., 2022; Han et al., 2023).

Financial NLP. Non-quantitative tasks like sen-
timent detection (Malo et al., 2014), named entity
recognition (Salinas Alvarado et al., 2015), clas-
sification (Sinha and Khandait, 2021), question
answering (Maia et al., 2018), and boundary de-
tection tasks (Au et al., 2021) are included in the

financial benchmarks FLARE, introduced within
PIXIU (Xie et al., 2023), and FLUE (Shah et al.,
2022). Lu et al. (2023a) additionally include entity
extraction, event extraction, and natural language
to SQL task for Chinese. Recently, stock move-
ment prediction (Soun et al., 2022) and pair trading
(Han et al., 2023) were introduced as prediction
tasks. BizBench complements these benchmarks
by specifically focusing on quantitative reasoning
via program synthesis, providing the first tasks of
this kind within financial NLP.

Code generation. The APPS and HumanEval
benchmarks test a model’s ability to write code
from arbitrary natural language specifications
(Hendrycks et al., 2021a; Chen et al., 2021a).
Austin et al. (2021) introduce MBPP, a collection of
simple programming questions, as well as a Python
version of the MathQA dataset introduced in Amini
et al. (2019). We take inspiration from this ap-
proach to augmenting existing data when creating
CodeTAT-QA and CodeFinQA. Like in our work,
Lai et al. (2022) constructs a dataset of code solu-
tions to data science problems which involve using
libraries like numpy and pandas. Our coding tasks
also involve reading comprehension, quantity ma-
nipulation, and financial knowledge.

Quantity extraction. Previous work explores
extracting numbers, metric scales and semantic de-
scriptions in financial (Loukas et al., 2022) and sci-
entific documents (Harper et al., 2021; Elazar et al.,
2019). Many financial QA datasets require pre-
cise quantity extraction such as HybridQA (Chen
et al., 2020), TAT-QA (Zhu et al., 2021), Multi-
HierTT (Zhao et al., 2022), FinQA (Chen et al.,
2021b), and ConvFinQA (Chen et al., 2022). Our
BizBench benchmark includes three datasets ded-
icated to testing numerical extraction capabilities,
with our novel SEC-Num dataset encompassing
values, scales, currency, dates, times, and periods.

7 Conclusion

Numerical reasoning is critically important for busi-
ness and finance, as well as other domains, because
small errors can incur large costs. To address this,
we introduce BizBench, a benchmark for business
and finance that measures models’ abilities across
three categories of relevant tasks: domain knowl-
edge, quantity extraction, and program synthesis.
The benchmark includes eight tasks, five of which
provide novel data or meaningful extensions of ex-
isting datasets. We focus on program synthesis, as

8316

success on these challenging tasks requires strong
capabilities in both domain knowledge and quantity
extraction. Additionally, we evaluate many state-
of-the-art models, illustrating that models need im-
provement to meet the demands required for rea-
soning in real-world, high-stakes domains.

Acknowledgement

We thank our colleagues at Kensho and S&P Global
for providing annotations and insightful discus-
sions on the nature of reasoning within business
and finance as well as feedback on drafts of this
work.

Limitations

This work presents new and reformulated data for
evaluating the financial reasoning capabilities of
LLMs. As mentioned in Section 3.1, portions of
FinCode, CodeFinQA, and CodeTAT-QA were gen-
erated by LLMs, namely WizardCoder (Luo et al.,
2023) and a GPT-3 variant, text-davinci-003.
We assumed that the code is correct if it produced
an answer that is identical or approximately identi-
cal to our gold truth answer. This approach could
provide false positives (Python code that generated
correct answers via an incorrect solution) and false
negatives (Python code that had correct solutions
by generated output that did not match our crite-
rion). We have not manually reviewed all the data
used to train these models, nor have we manually in-
spected all the model outputs included in BizBench.
Therefore, we cannot make claims about the pres-
ence or absence of toxic, biased, or personal infor-
mation in this data.

For tasks that involve providing context data
to models, such data primarily consists of public
records filed in accordance with strict government
regulations. However, even under these regulations,
biases may exist within the data. FinKnow and Fin-
Code questions come from Internet sources and
may contain bias. FormulaEval was created with
assistance of financial professionals, and despite
these professionals’ expertise, the data could con-
tain errors.

While BizBench aims to be comprehensive, it
does not span the entire domains of business and fi-
nance. Moreover, BizBench only contains English
text, limiting its applicability to finance problems
in other languages. Various financial topics, docu-
ments, and problems – especially those concerning
private markets – are not addressed by this bench-

mark. By evaluating the model’s financial knowl-
edge via it’s ability to generate code, we constrain
the set of models that can be fairly evaluated with
our benchmark. Additionally, many financial pro-
fessionals do not possess coding skills, implying
that this may only be an artificial constraint.

Annotations included in BizBench were done by
individuals with financial knowledge known to the
authors. They volunteered to annotate and received
no payment for their annotations. All annotators
were made aware of the intended use of their data
and consented to this use.

We assume that framing QA as program synthe-
sis allows for easier auditing of model reasoning
processes. This assumption is supported by the au-
thors’ experiences but may not hold in all settings.

References
Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik

Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2357–2367, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Willy Au, Abderrahim Ait-Azzi, and Juyeon Kang.
2021. Finsbd-2021: the 3rd shared task on struc-
ture boundary detection in unstructured text in the
financial domain. In Companion Proceedings of the
Web Conference 2021, pages 276–279.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-
shot learners. Advances in Neural Information
Processing Systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen

8317

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://arxiv.org/pdf/2108.07732.pdf
https://papers.nips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://papers.nips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. arXiv.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020. Hy-
bridQA: A dataset of multi-hop question answering
over tabular and textual data. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1026–1036, Online. Association for
Computational Linguistics.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, and
William Yang Wang. 2021b. FinQA: A dataset of nu-
merical reasoning over financial data. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 3697–3711, On-
line and Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.

Zhiyu Chen, Shiyang Li, Charese Smiley, Zhiqiang
Ma, Sameena Shah, and William Yang Wang. 2022.
ConvFinQA: Exploring the chain of numerical rea-
soning in conversational finance question answer-
ing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 6279–6292, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Yanai Elazar, Abhijit Mahabal, Deepak Ramachandran,
Tania Bedrax-Weiss, and Dan Roth. 2019. How large
are lions? inducing distributions over quantitative at-
tributes. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 3973–3983, Florence, Italy. Association for
Computational Linguistics.

Leo Gao, Jonathan Tow, Stella Biderman, Charles
Lovering, Jason Phang, Anish Thite, Fazz, Niklas
Muennighoff, Thomas Wang, sdtblck, tttyuntian, re-
searcher2, Zdeněk Kasner, Khalid Almubarak, Jef-
frey Hsu, Pawan Sasanka Ammanamanchi, Dirk
Groeneveld, Eric Tang, Charles Foster, kkawamu1,
xagi-dev, uyhcire, Andy Zou, Ben Wang, Jordan
Clive, igor0, Kevin Wang, Nicholas Kross, Fabrizio
Milo, and silentv0x. 2022. EleutherAI/lm-evaluation-
harness: v0.3.0.

Weiguang Han, Boyi Zhang, Qianqian Xie, Min Peng,
Yanzhao Lai, and Jimin Huang. 2023. Select and
trade: Towards unified pair trading with hierar-
chical reinforcement learning. In Proceedings of

the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’23, page
4123–4134, New York, NY, USA. Association for
Computing Machinery.

Corey Harper, Jessica Cox, Curt Kohler, Antony Scerri,
Ron Daniel Jr., and Paul Groth. 2021. SemEval-2021
task 8: MeasEval – extracting counts and measure-
ments and their related contexts. In Proceedings
of the 15th International Workshop on Semantic
Evaluation (SemEval-2021), pages 306–316, Online.
Association for Computational Linguistics.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021a. Measuring coding challenge com-
petence with apps. Advances in Neural Information
Processing Systems.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021b. Measuring massive multitask language
understanding. Proceedings of the International
Conference on Learning Representations (ICLR).

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021c. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
Neural Information Processing Systems, 35:22199–
22213.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation. ArXiv, abs/2211.11501.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan,
Benoit Steiner, Carson Denison, Danny Hernan-
dez, Dustin Li, Esin Durmus, Evan Hubinger, Jack-
son Kernion, et al. 2023. Measuring faithful-
ness in chain-of-thought reasoning. arXiv preprint
arXiv:2307.13702.

8318

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2022.emnlp-main.421
https://doi.org/10.18653/v1/2022.emnlp-main.421
https://doi.org/10.18653/v1/2022.emnlp-main.421
https://doi.org/10.18653/v1/P19-1388
https://doi.org/10.18653/v1/P19-1388
https://doi.org/10.18653/v1/P19-1388
https://doi.org/10.5281/zenodo.7413426
https://doi.org/10.5281/zenodo.7413426
https://doi.org/10.1145/3580305.3599951
https://doi.org/10.1145/3580305.3599951
https://doi.org/10.1145/3580305.3599951
https://doi.org/10.18653/v1/2021.semeval-1.38
https://doi.org/10.18653/v1/2021.semeval-1.38
https://doi.org/10.18653/v1/2021.semeval-1.38
https://arxiv.org/pdf/2103.03874.pdf
https://arxiv.org/pdf/2103.03874.pdf
https://arxiv.org/pdf/2310.06825.pdf
https://arxiv.org/pdf/2310.06825.pdf
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
https://arxiv.org/pdf/2211.11501.pdf
https://arxiv.org/pdf/2211.11501.pdf
https://arxiv.org/pdf/2211.11501.pdf
https://arxiv.org/pdf/2307.13702.pdf
https://arxiv.org/pdf/2307.13702.pdf

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. StarCoder: may the source be with you!
Transactions on Machine Learning Research.

Lefteris Loukas, Manos Fergadiotis, Ilias Chalkidis,
Eirini Spyropoulou, Prodromos Malakasiotis, Ion
Androutsopoulos, and Georgios Paliouras. 2022.
FiNER: Financial numeric entity recognition for
XBRL tagging. In Proceedings of the 60th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4419–
4431, Dublin, Ireland. Association for Computational
Linguistics.

Dakuan Lu, Jiaqing Liang, Yipei Xu, Qi He, Yipeng
Geng, Mengkun Han, Ying Xin, Hengkui Wu, and
Yanghua Xiao. 2023a. Bbt-fin: Comprehensive con-
struction of chinese financial domain pre-trained
language model, corpus and benchmark. ArXiv,
abs/2302.09432.

Dakuan Lu, Jiaqing Liang, Yipei Xu, Qianyu He,
Yipeng Geng, Mengkun Han, Yingsi Xin, Hengkui
Wu, and Yanghua Xiao. 2023b. Bbt-fin: Compre-
hensive construction of chinese financial domain pre-
trained language model, corpus and benchmark.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 1384–1403,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Macedo Maia, Siegfried Handschuh, André Freitas,
Brian Davis, Ross McDermott, Manel Zarrouk, and
Alexandra Balahur. 2018. Www’18 open challenge:
financial opinion mining and question answering. In
Companion proceedings of the the web conference
2018, pages 1941–1942.

Pekka Malo, Ankur Sinha, Pekka Korhonen, Jyrki Wal-
lenius, and Pyry Takala. 2014. Good debt or bad debt:
Detecting semantic orientations in economic texts.
Journal of the Association for Information Science
and Technology, 65(4):782–796.

MosaicML. 2023. MPT-30B: Raising the bar for open-
source foundation models.

OpenAI. 2023. GPT-4 technical report.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset
for ccon llm: outperforming curated corpora with

web data, and web data only. arXiv preprint
arXiv:2306.01116.

Julio Cesar Salinas Alvarado, Karin Verspoor, and Tim-
othy Baldwin. 2015. Domain adaption of named
entity recognition to support credit risk assess-
ment. In Proceedings of the Australasian Language
Technology Association Workshop 2015, pages 84–
90, Parramatta, Australia.

Raj Shah, Kunal Chawla, Dheeraj Eidnani, Agam Shah,
Wendi Du, Sudheer Chava, Natraj Raman, Charese
Smiley, Jiaao Chen, and Diyi Yang. 2022. When
FLUE meets FLANG: Benchmarks and large pre-
trained language model for financial domain. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
2322–2335, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Ankur Sinha and Tanmay Khandait. 2021. Impact of
news on the commodity market: Dataset and results.
In Advances in Information and Communication:
Proceedings of the 2021 Future of Information
and Communication Conference (FICC), Volume 2,
pages 589–601. Springer.

Yejun Soun, Jaemin Yoo, Minyong Cho, Jihyeong Jeon,
and U Kang. 2022. Accurate stock movement predic-
tion with self-supervised learning from sparse noisy
tweets. In 2022 IEEE International Conference on
Big Data (Big Data), pages 1691–1700. IEEE.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-
bench tasks and whether chain-of-thought can
solve them. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 13003–
13051, Toronto, Canada. Association for Computa-
tional Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. ArXiv.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen,
You Wu, Luke Zettlemoyer, and Huan Sun. 2023.
Towards understanding chain-of-thought prompting:
An empirical study of what matters. In Proceedings
of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 2717–2739, Toronto, Canada. Associ-
ation for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–
24837.

8319

https://arxiv.org/pdf/2305.06161.pdf
https://doi.org/10.18653/v1/2022.acl-long.303
https://doi.org/10.18653/v1/2022.acl-long.303
https://api.semanticscholar.org/CorpusID:257038067
https://api.semanticscholar.org/CorpusID:257038067
https://api.semanticscholar.org/CorpusID:257038067
https://doi.org/10.48550/arXiv.2302.09432
https://doi.org/10.48550/arXiv.2302.09432
https://doi.org/10.48550/arXiv.2302.09432
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://www.mosaicml.com/blog/mpt-30b
https://www.mosaicml.com/blog/mpt-30b
http://arxiv.org/abs/2303.08774
https://arxiv.org/pdf/2306.01116.pdf
https://arxiv.org/pdf/2306.01116.pdf
https://arxiv.org/pdf/2306.01116.pdf
https://aclanthology.org/U15-1010
https://aclanthology.org/U15-1010
https://aclanthology.org/U15-1010
https://doi.org/10.18653/v1/2022.emnlp-main.148
https://doi.org/10.18653/v1/2022.emnlp-main.148
https://doi.org/10.18653/v1/2022.emnlp-main.148
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://doi.org/10.18653/v1/2023.acl-long.153
https://doi.org/10.18653/v1/2023.acl-long.153

Pedram Babaei William Todt, Ramtin Babaei. 2023.
Fin-llama: Efficient finetuning of quantized
llms for finance. https://github.com/Bavest/
fin-llama.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
BloombergGPT: A large language model for finance.
arXiv preprint arXiv:2303.17564.

Qianqian Xie, Weiguang Han, Xiao Zhang, Yanzhao
Lai, Min Peng, Alejandro Lopez-Lira, and Jimin
Huang. 2023. PIXIU: A large language model, in-
struction data and evaluation benchmark for finance.
arXiv preprint arXiv:2306.05443.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan
Wang. 2023. Fingpt: Open-source financial large lan-
guage models. FinLLM Symposium at IJCAI 2023.

Xuanyu Zhang and Qing Yang. 2023. Xuanyuan
2.0: A large chinese financial chat model with hun-
dreds of billions parameters. In Proceedings of the
32nd ACM International Conference on Information
and Knowledge Management, CIKM ’23, page
4435–4439, New York, NY, USA. Association for
Computing Machinery.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang.
2022. MultiHiertt: Numerical reasoning over multi
hierarchical tabular and textual data. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 6588–6600, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang,
Chao Wang, Shuo Zhang, Jiancheng Lv, Fuli
Feng, and Tat-Seng Chua. 2021. TAT-QA:
A question answering benchmark on a hybrid
of tabular and textual content in finance. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 3277–3287, Online. Association for Computa-
tional Linguistics.

8320

https://github.com/Bavest/fin-llama
https://github.com/Bavest/fin-llama
https://arxiv.org/pdf/2303.17564.pdf
https://arxiv.org/pdf/2306.05443.pdf
https://arxiv.org/pdf/2306.05443.pdf
https://doi.org/10.1145/3583780.3615285
https://doi.org/10.1145/3583780.3615285
https://doi.org/10.1145/3583780.3615285
https://doi.org/10.18653/v1/2022.acl-long.454
https://doi.org/10.18653/v1/2022.acl-long.454
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254

A Data Collection

A.1 FinCode

This code was annotated by a combination of hu-
man and LLMs. For the first phase of data collec-
tion, we manually annotated a small set of exam-
ples. These examples were concatenated together
to create a few-shot prompt that was provided to
a GPT-3 variant, text-davinci-003, which gen-
erated candidate programs for the remaining ques-
tions. Programs were manually verified before be-
ing added to the dataset. This process was addition-
ally used to identify the most challenging problems
for further investigation. These problems were sent
to financial professionals to solve by hand. These
financial professionals were all full-time members
of the finance or accounting staff at a fortune 500
company. After we manually converted these so-
lutions into Python code, we repeated our initial
bootstrapping process with the new set of exam-
ples. In total, we were able to collect 137 question
and program pairs. Of these, 46 were written from
scratch by financial professionals, and 91 were gen-
erated by an LLM and then verified by financial
professionals.

A.2 CodeFinQA

To produce code solutions for these questions, we
convert the FinQA equations into Python programs
using a deterministic process. This process defines
variables with dummy names (i.e., a, b, c) for num-
bers in the provided equation, and reformulates the
operations from the equation into valid Python code
over these variables. We then use a code-generation
model – WizardCoder 15B (Luo et al., 2023) – to
rewrite the programs to enhance readability. The
prompt consists of input and output examples. Each
input questions is paired with deterministic code,
and the outputs are logical, human-written code
with appropriate variable naming conventions.

This prompt is used to seed a bootstrapping pro-
cess for data annotation. First, we find the deter-
ministic programs which are most similar to our
seed datapoints and rewrite them using the seeds
as prompts. We verify that the rewritten program
executes to produce the correct answer for its ques-
tion. Subsequently, we find the most similar seed or
previously rewritten datapoints for the remaining
program until convergence. This processed pro-
duced a dataset of 5,513 question, context, code
triples.

A.3 CodeTAT-QA
To create the code for CodeTAT-QA, we first con-
vert the tables from text list format to Pandas
DataFrames with named columns and rows. During
this process, we flatten table hierarchy by attaching
sub-table headers to corresponding row labels and
normalize number representations, mirroring the
action of contemporary document processing mod-
els. Information from the table can be accessed
through the dataframe by specifying the row and
column labels, as shown in Figure 4.

To produce programs for each datapoint, we start
with a deterministic process to convert the arith-
metic derivation provided in TAT-QA into valid
Python code which accesses cells in the table us-
ing their row and column names. If this process
identifies the values from the derivation in the ta-
ble and verifies the provided answer, we pass the
deterministically-generated program to a bootstrap-
ping process similar to what was used to create
CodeFinQA. Some derivations cannot be converted
to programs which execute to the gold answer, and
many questions from TAT-QA can not be treated as
functions over DataFrames alone. This technique
was able to produce code for 3,256 of the 16,000
questions of the TAT-QA dataset.

B Error analysis

The full counts from our error categorization are
shown in Table 5. We note that many outputs con-
tain multiple error types.

We show two common error types i.e. incorrect
data extraction and question misinterpretation in
Figure 9 and Figure 10.

We additionally show two errors of GPT-4 on
FinCode in Figure 7 and Figure 8.

C Hyperparameters

To finetune experiments for CodeFinQA, CodeTAT-
QA, and SEC-Num, we use Adam optimizer with
an initial learning rate of 2e-6. The training process
takes 3 epochs with a batch size of 32. The maxi-
mum token length is set to 2048. The model is fine-
tuned on 8 x Nvidia A100-80GB GPUs. For both
finetuned and pretrained models we use greedy de-
coding whenever applicable.

D Task Examples

Examples of input and expected output for each
Bizbench task is shown in the following tables and
figures:

8321

Model Samples Extraction Formula Generation Ambiguous Question
CodeLlama-34B 50 29 23 2 4
Llama-2-7B 25 16 13 2 1
CodeLlama-7B 25 17 13 2 2

Table 5: Errors by category for different models.

Question: Michael Poole is an equity analyst at Dave Asso-
ciates, a financial services firm. Poole is estimating the firm’s
cost of equity using the dividend discount model approach. He
has learnt that the Gordon’s growth model is particularly use-
ful in deriving the required rate of return when this approach
is used. The company has paid a dividend of $2.5 per share
in the previous year. The current market price per share is
$25. The company’s retention rate and return on equity is
40% and 10%, respectively. What is the cost of equity using
the dividend discount model? Answer as a percentage to two
decimal places.

GPT-4 Error Case
1 dividend = 2.5
2 price_per_share = 25
3 retention_rate = 0.4
4 return_on_equity = 0.1
5 growth_rate = retention_rate * return_on_equity

cost_of_equity = (dividend / price_per_share) *
(1 + growth_rate)

round(cost_of_equity * 100, 2)

next_dividend_per_share =
(dividend * (1 + growth_rate))

cost_of_equity =
(next_dividend_per_share / price_per_share) +

growth_rate
round (100.0 * cost_of_equity , 2)

Figure 7: GPT-4 Error Sample from FinCode. The
model generated code is shown in pink with the ground
truth shown in cyan. GPT-4 improperly uses the cur-
rent dividend value rather than the following one. It
additionally incorrectly combines the two ratios with
multiplication rather than addition.

• FinKnow: See Table 6

• FormulaEval: See Table 7

• ConvFinQA Extract: See Table 8 and Chen
et al. (2022)

• TAT-QA Extract: See Table 9 and Zhu et al.
(2021)

• SEC-Num: See Table 10

• FinCode: See Table 11

• CodeFinQA: See Table 12

• CodeTAT-QA: See Table 13

Question: Pine Co. purchased land for $450000 as a factory
site. An existing building on the site was razed before con-
struction began. Additional information is as follows: Cost of
razing old building $60000 Title insurance and legal fees to
purchase land $30000 Architect’s fees $9 5000 New building
construction cost $1850000 What amount should Pine capi-
talize as the cost of the completed factory building? Answer
to the nearest dollar.

GPT-4 Error Case
1 land_cost = 450000
2 razing_cost = 60000
3 title_insurance_and_legal_fees = 30000
4 architect_fees = 95000
5 construction_cost = 1850000

total_cost = razing_cost + architect_fees +
construction_cost

round(total_cost)

total_cost = architect_fees + construction_cost
round(total_cost)

Figure 8: GPT-4 Error Sample from FinCode. The
model generated code is shown in pink with the ground
truth shown in cyan. The generated code incorrectly
includes the razing costs into the capitalized cost for the
building.

Question: What portion of total company used area is
company owned?

Table input:
Sq. ft. in thousands	United States	Other countries	Total
:—	:—	:—	:—
Owned	4530	2417	6947
Leased	1037	1341	2378
Total	5567	3758	9325

1 # Incorrect program
2 owned_area = 4530
3 total_area = 9325
4 percent_owned = owned_area / total_area

1 # Golden program
2 company_owned_area = 6947
3 total_company_used_area = 9325
4 answer = company_owned_area /

total_company_used_area

Figure 9: An example of extraction error in CodeFinQA
task. Model-generated incorrect code is highlighted
in pink and the golden code is highlighted in cyan.
In this incorrect solution, the model extracted the
owned area in the US (owned_area = 4530) while
it should have extracted the total owned area (com-
pany_owned_area=6947).

8322

C
FA

E
co

no
m

ic
s

Question As a firm increases the quantity of its product produced, the distance between its ATC
and AVC curve:

Choices
A. starts increasing.
B. starts decreasing.
C. remains constant.

Answer B

M
ic

ro
ec

on
om

ic
s

Question Which of the following is a characteristic of monopolistic competition?

Choices

A. P > MC.
B. Efficiency.
C. Mostly price competition.
D. P =MR.

Answer A

E
th

ic
s

Question The Theory of posits that 3 three levels of moral reasoning exist which an indi-
vidual can engage in to assess ethical issues, dependant on their cognitive capacity.

Choices

A. Egoism
B. Cognitive moral development
C. Power distance
D. Uncertainty avoidance

Answer B

Fi
na

nc
e

Question If a company engages in share repurchases, leverage will increase:

Choices
A. only if the repurchase is financed with debt.
B. only if the repurchase is financed with excess cash.
C. whether the repurchase is financed with debt or with excess cash.

Answer C

Table 6: Examples from FinKnow across different topics.

8323

Context:

1 @dataclass
2 class IncomeStatement:
3 """
4 Representation of a Income Statement. All attributes are listed in
5 dollars.
6 """
7
8 # Sales
9 revenue: float

10 cost_of_goods_sold: float
11 administrative_expenses: float
12 depreciation: float
13 amortization: float
14 # Income from non -core operations
15 other_investment_income: float
16 # Total tax burden in dollars
17 taxes: float
18 # Total interest expense in dollars
19 interest: float
20 shares_outstanding: float
21 current_share_price: float
22
23 def gross_profit(self):
24 return self.revenue - self.cost_of_goods_sold
25
26 def operating_expenses(self):
27 return self.administrative_expenses + self.depreciation + self.amortization
28
29 def operating_income(self):
30 return self.gross_profit () - self.operating_expenses ()
31
32 def ebit(self):
33 return self.operating_income () + self.other_investment_income
34
35 def ebitda(self):
36 return self.ebit() + self.amortization + self.depreciation
37
38 def pretax_income(self):
39 return self.ebit() - self.interest
40
41 def net_income(self):
42 return self.pretax_income () - self.taxes
43
44 def market_capitalization(self):
45 return self.shares_outstanding * self.current_share_price
46
47 def earnings_per_share(self):

Output:

48 return self.net_income () / self.shares_outstanding

Table 7: Example from FormulaEval. The model is given the class definition, docstrings, and some functions
(L1-L47) to generate the missing return statement (L48).

8324

Context:

DEVON ENERGY CORPORATION AND SUBSIDIARIES
NOTES TO CONSOLIDATED FINANCIAL STATEMENTS – (Continued)

Proved Undeveloped Reserves
The following table presents the changes in Devon’s total proved undeveloped reserves during 2013 (in MMBoe).

:—	:—	:—	:—	:—
1		U.S.	Canada	Total
2	proved undeveloped reserves as of december 31 2012	407	433	840
3	extensions and discoveries	57	38	95
4	revisions due to prices	1	-10 (10)	-9 (9)
5	revisions other than price	-91 (91)	13	-78 (78)
6	conversion to proved developed reserves	-116 (116)	-31 (31)	-147 (147)
7	proved undeveloped reserves as of december 31 2013	258	443	701

At December 31, 2013, Devon had 701 MMBoe of proved undeveloped reserves. This represents a 17 percent decrease as
compared to 2012 and represents 24 percent of total proved reserves. Drilling and development activities increased Devon’s
proved undeveloped reserves 95 MMBoe and resulted in the conversion of 147 MMBoe, or 18 percent, of the 2012 proved
undeveloped reserves to proved developed reserves. Costs incurred related to the development and conversion of Devon’s
proved undeveloped reserves were $1.9 billion for 2013. Additionally, revisions other than price decreased Devon’s proved
undeveloped reserves 78 MMBoe primarily due to evaluations of certain U.S. onshore dry-gas areas, which Devon does not
expect to develop in the next five years. The largest revisions relate to the dry-gas areas in the Cana-Woodford Shale in western
Oklahoma, Carthage in east Texas and the Barnett Shale in north Texas.

A significant amount of Devon’s proved undeveloped reserves at the end of 2013 related to its Jackfish operations. At December
31, 2013 and 2012, Devon’s Jackfish proved undeveloped reserves were 441 MMBoe and 429 MMBoe, respectively. Development
schedules for the Jackfish reserves are primarily controlled by the need to keep the processing plants at their 35,000 barrel daily
facility capacity. Processing plant capacity is controlled by factors such as total steam processing capacity, steam-oil ratios and
air quality discharge permits. As a result, these reserves are classified as proved undeveloped for more than five years. Currently,
the development schedule for these reserves extends though the year 2031.

Price Revisions

2013 – Reserves increased 94 MMBoe primarily due to higher gas prices. Of this increase, 43 MMBoe related to the Barnett
Shale and 19 MMBoe related to the Rocky Mountain area.

2012 – Reserves decreased 171 MMBoe primarily due to lower gas prices. Of this decrease, 100 MMBoe related to the Barnett
Shale and 25 MMBoe related to the Rocky Mountain area.

2011 – Reserves decreased 21 MMBoe due to lower gas prices and higher oil prices. The higher oil prices increased Devon’s
Canadian royalty burden, which reduced Devon’s oil reserves.

Revisions Other Than Price

Total revisions other than price for 2013, 2012 and 2011 primarily related to Devon’s evaluation of certain dry gas regions, with
the largest revisions being made in the Cana-Woodford Shale, Barnett Shale and Carthage area.

Question:

What is the balance of proved undeveloped reserves in 2012 in US?

Answer: 407

Table 8: Example from ConvFinQA. The titles were bolded for readability of the text. We do not use any additional
tokens to mark the title during prompting the models.

8325

Table:
-	2019%	2018%	2017%
Rate of inflation	2.9	2.9	3.0
Rate of increase in salaries	2.7	2.7	2.6
Discount rate	2.3	2.5	2.6

Question:

How much is the 2019 rate of inflation?

Answer: 2.9

Question:

How much is the 2018 rate of inflation?

Answer: 2.9

Question:

What is the 2019 average rate of inflation?

Answer: 2.9

Question:

What is the 2019 average rate of increase in salaries?

Answer: 2.7

Question:

What is the difference between 2019 average rate of inflation and 2019 average rate of increase in salaries

Answer: 0.2

Table 9: Example from TAT-QA Extract. Each table can have multiple associated question-answer pairs.

8326

Context:
Contractual Obligations
The following table summarizes scheduled maturities of the Company’s contractual obligations for which cash flows are fixed
and determinable as of June 30, 2022:

—	—	—	—	—	—	—	—
				Payments Due in Fiscal			
(In millions)	Total	2023	2024	2025	2026	2027	Thereafter
Debt service (1)	$8,151	$429	$170	$665	$161	$661	$6,065
Unconditional purchase obligations (2)	4,742	2,852	705	637	132	133	283
Gross unrecognized tax benefits and interest – current (3)	2	2	—	—	—	—	—
Transition Tax payable(4)	215	27	42	65	81	—	—
Total contractual obligations(5)	$13,110	$3,310	$917	$1,367	$374	$794	$6,348

(1) Includes long-term and current debt and the related projected interest costs. Refer to Note 7 – Leases for information
regarding future minimum lease payments relating to the Company’s finance leases. Interest costs on long-term and current
debt in fiscal 2023, 2024, 2025, 2026, 2027 and thereafter are projected to be $174 million, $170 million, $165 million, $161
million, $161 million and $1,765 million, respectively. Projected interest costs on variable rate instruments were calculated
using market rates at June 30, 2022.

(2) Unconditional purchase obligations primarily include: royalty payments pursuant to license agreements, inventory com-
mitments, information technology contract commitments, capital expenditure commitments, advertising commitments and
third-party distribution commitments. Future royalty and advertising commitments were estimated based on planned future sales
for the term that was in effect at June 30, 2022, without consideration for potential renewal periods.

(3) Refer to Note 9 – Income Taxes for information regarding unrecognized tax benefits. As of June 30, 2022, the noncurrent
portion of the Company’s unrecognized tax benefits, including related accrued interest and penalties, was $73 million. At this
time, the settlement period for the noncurrent portion of the unrecognized tax benefits, including related accrued interest and
penalties, cannot be determined and therefore was not included.

(4) The Transition Tax may be paid over an eight-year period and this amount represents the remaining liability as of June 30,
2022.

(5) Refer to Note 7 – Leases for information regarding future minimum lease payments relating to the Company’s operating
leases.

Label:

Projected interest costs on long-term and current debt Due in fiscal 2026

Answer: 161

Table 10: Example from SEC-Num. The titles were bolded to enhance the readability of the text. We do not use
any additional tokens to mark the title during prompting the models.

8327

Question:

Mill Co. reported pretax income of $152500 for the year ended December 31. During the year-end audit the external auditors
discovered the following errors: Ending inventory $30000 Overstated Depreciation expense $64000 What amount should Mill
report as the correct pretax income for the year ended December 31? Answer to the closest dollar.

Program:

1 reported_income = 152500
2 ending_inventory = 30000
3 depreciation_expense = 64000
4 pretax_income = reported_income - ending_inventory - depreciation_expense
5 round(pretax_income)

Answer: 58500

Question:

Suppose that the market price of Company X is $45 per share and that of Company Y is $30. If X offers three-fourths a share of
common stock for each share of Y, the ratio of exchange of market prices would be: Answer to three decimal places.

Program:

1 price_x = 45
2 price_y = 30
3 exchange_ratio = 3.0 / 4.0
4 ratio_of_exchange_market_prices = price_x / price_y * exchange_ratio
5 round(ratio_of_exchange_market_prices , 3)

Answer: 1.125

Question:

A bond is currently priced at 89.187 per 100 par value. If yields increase by 10bp, the value of bond falls to 88.215. However, if
yields decrease by the same amount the value of the bond rises to 90.237. What will the approximate modified duration for the
bond be? Answer to two decimal places.

Program:

1 price_1 = 89.187
2 price_2_rise = 90.237
3 price_2_fall = 88.215
4 yield_rise = 0.001
5 yield_fall = -0.001
6 modified_duration = (price_2_rise - price_2_fall) / (2 * price_1 * yield_rise)
7 round(modified_duration , 2)

Answer: 11.34

Table 11: Examples from FinCode. The model needs to generate the code highlighted in cyan.

8328

Context:

NOTES TO CONSOLIDATED FINANCIAL STATEMENTS (continued)
ACE Limited and Subsidiaries

The following table shows changes in the Company’s restricted stock for the years ended December 31, 2007, 2006, and 2005:

TABLE
	Number of Restricted Stock	Weighted Average Grant Date Fair Value
Unvested restricted stock December 31 2005	3488668	$41.26
Granted	1632504	$56.05
Vested and issued	(1181249)	$40.20
Forfeited	(360734)	$44.04
Unvested restricted stock December 31 2006	3579189	$48.07
Granted	1818716	$56.45
Vested and issued	(1345412)	$44.48
Forfeited	(230786)	$51.57
Unvested restricted stock December 31 2007	3821707	$53.12
Granted	1836532	$59.84
Vested and issued	(1403826)	$50.96
Forfeited	(371183)	$53.75
Unvested restricted stock December 31 2008	3883230	$57.01
END TABLE

Under the provisions of FAS 123R, the recognition of deferred compensation, a contra-equity account representing the amount of
unrecognized restricted stock expense that is reduced as expense is recognized, at the date restricted stock is granted is no longer
permitted. Therefore, upon adoption of FAS 123R, the amount of deferred compensation that had been reflected in unearned
stock grant compensation was reclassified to additional paid-in capital in the company 2019s consolidated balance sheet.

Restricted stock units
The Company’s 2004 LTIP also provides for grants of other awards, including restricted stock units. The Company generally
grants restricted stock units with a 4-year vesting period, based on a graded vesting schedule. Each restricted stock unit represents
the Company’s obligation to deliver to the holder one share of Ordinary Shares upon vesting. During 2007, the Company awarded
108,870 restricted stock units to officers of the Company and its subsidiaries with a weighted-average grant date fair value of
$56.29. During 2006, 83,370 restricted stock units, with a weighted-average grant date fair value of $56.36, were awarded to
officers of the Company and its subsidiaries. During 2005, 80,550 restricted stock units, with a weighted-average grant date fair
value of $44.59, were awarded to officers of the Company and its subsidiaries.

The Company also grants restricted stock units with a 1-year vesting period to non-management directors. Delivery of Ordinary
Shares on account of these restricted stock units to non-management directors is deferred until six months after the date of
the non-management directors’ termination from the Board. During 2007, 29,676 restricted stock units were awarded to
non-management directors. These units will vest in May 2008. During 2006, 23,092 restricted stock units were awarded to
non-management directors. These units vested in May 2007. During 2005, 26,186 restricted stock units were awarded to
non-management directors. These units vested in May 2006.

ESPP
The ESPP gives participating employees the right to purchase Ordinary Shares through payroll deductions during consecutive
“Subscription Periods.” Annual purchases by participants are limited to the number of whole shares that can be purchased by
an amount equal to ten percent of the participant’s compensation or $25,000, whichever is less. The ESPP has two six-month
Subscription Periods, the first of which runs between January 1 and June 30 and the second of which runs between July 1 and
December 31 of each year.

Question:

What is the net change in the number of unvested restricted stocks in 2007?

Program:

1 unvested_restricted_stocks_2006 = 3579189
2 unvested_restricted_stocks_2007 = 3821707
3 unvested_restricted_stocks_2008 = 3883230
4 change_in_unvested_restricted_stocks = unvested_restricted_stocks_2007 -

unvested_restricted_stocks_2006
5 answer = change_in_unvested_restricted_stocks

Answer: 242518

Table 12: Examples from CodeFinQA. The titles were made bold to enhance the readability of the text. We do not
use any additional tokens to mark the title during prompting the models. The model only needs to generate the code
highlighted in cyan.

8329

Table:
(in millions)	March 29, 2019	March 30, 2018
Net investment hedges – Foreign exchange forward contracts sold	116	-
Balance sheet contracts – Foreign exchange forward contracts purchased	963	697
Balance sheet contracts – Foreign exchange forward contracts sold	122	151

Question:

What is the change between Foreign exchange forward contracts purchased for March 29, 2019 and March 30, 2018?

Program:

1 table = {
2 "Net investment hedges -- Foreign exchange forward contracts sold": {
3 "March 29, 2019": 116,
4 "March 30, 2018": "-",
5 },
6 "Balance sheet contracts -- Foreign exchange forward contracts purchased": {
7 "March 29, 2019": 963,
8 "March 30, 2018": 697,
9 },

10 "Balance sheet contracts -- Foreign exchange forward contracts sold": {
11 "March 29, 2019": 122,
12 "March 30, 2018": 151,
13 },
14 }
15 df = pandas.DataFrame(data=table)

16 march_29_2019_foreign_exchange_balance_sheet_contract = \
17 df["Balance sheet contracts -- Foreign exchange forward contracts purchased"]["March 29, 2019"]
18 march_30_2018_foreign_exchange_balance_sheet_contract = \
19 df["Balance sheet contracts -- Foreign exchange forward contracts purchased"]["March 30, 2018"]
20 answer = march_29_2019_foreign_exchange_balance_sheet_contract - \
21 march_30_2018_foreign_exchange_balance_sheet_contract

Answer: 266

Table:
	2019	2018	2017
Domestic	204.2	140.3	56.0
Foreign	11.8	19.9	14.2
Income before income taxes	216.0	160.2	70.2

Question:

What was the change in Foreign in 2019 from 2018?

Program:

1 table = {
2 "Domestic": {
3 "2019": 204.2 ,
4 "2018": 140.3 ,
5 "2017": 56.0
6 },
7 "Foreign": {
8 "2019": 11.8,
9 "2018": 19.9,

10 "2017": 14.2
11 },
12 "Income before income taxes": {
13 "2019": 216.0 ,
14 "2018": 160.2 ,
15 "2017": 70.2
16 }
17 }
18 df = pandas.DataFrame(data=table)

19 foreign_2019 = df["Foreign"]["2019"]
20 foreign_2018 = df["Foreign"]["2018"]
21 answer = foreign_2019 - foreign_2018

Answer: -8.1

Table 13: Examples from CodeTAT-QA dataset. The model only needs to generate the code highlighted in cyan.
8330

Text

Contractual Obligations
The following table summarizes scheduled maturities of the Company’s contractual obligations for which cash flows are fixed
and determinable as of June 30, 2022:
—	—	—	—	—	—	—	—
				Payments Due in Fiscal			
(In millions)	Total	2023	2024	2025	2026	2027	Thereafter
Debt service (1)	$8,151	$429	$170	$665	$161	$661	$6,065
Unconditional purchase obligations (2)	4,742	2,852	705	637	132	133	283
Gross unrecognized tax benefits and interest – current (3)	2	2	—	—	—	—	—
Transition Tax payable(4)	215	27	42	65	81	—	—
Total contractual obligations(5)	$13,110	$3,310	$917	$1,367	$374	$794	$6,348

(1) Includes long-term and current debt and the related projected interest costs. Refer to Note 7 – Leases for information
regarding future minimum lease payments relating to the Company’s finance leases. Interest costs on long-term and current debt
in fiscal 2023, 2024, 2025, 2026, 2027 and thereafter are projected to be $174 million, $170 million, $165 million, $161 million,
$161 million and $1,765 million, respectively. Projected interest costs on variable rate instruments were calculated using market
rates at June 30, 2022.

(2) Unconditional purchase obligations primarily include: royalty payments pursuant to license agreements, inventory com-
mitments, information technology contract commitments, capital expenditure commitments, advertising commitments and
third-party distribution commitments. Future royalty and advertising commitments were estimated based on planned future sales
for the term that was in effect at June 30, 2022, without consideration for potential renewal periods.

(3) Refer to Note 9 – Income Taxes for information regarding unrecognized tax benefits. As of June 30, 2022, the noncurrent
portion of the Company’s unrecognized tax benefits, including related accrued interest and penalties, was $73 million. At this
time, the settlement period for the noncurrent portion of the unrecognized tax benefits, including related accrued interest and
penalties, cannot be determined and therefore was not included.
...

Table Preview

SEC-annotated value-label pairs
{"value": "161", "label": "Projected interest costs on long-term and current debt Due in fiscal 2026"}
{"value": "65", "label": "Transition Tax payable, Payments Due in Fiscal 2025"}
{"value": "283", "label": "Unconditional purchase obligations, Payments Due in Fiscal Thereafter"}
{"value": "170", "label": "Projected interest costs on long-term and current debt Due in fiscal 2024"}
{"value": "215", "label": "Transition Tax payable"}
{"value": "637", "label": "Unconditional purchase obligations, Payments Due in Fiscal 2025"}
{"value": "42", "label": "Transition Tax payable, Payments Due in Fiscal 2024"}
{"value": "429", "label": "Debt service, Payments Due in Fiscal 2023"}
{"value": "81", "label": "Transition Tax payable, Payments Due in Fiscal 2026"}
{"value": "4,742", "label": "Unconditional purchase obligations"}
{"value": "132", "label": "Unconditional purchase obligations, Payments Due in Fiscal 2026"}
{"value": "27", "label": "Transition Tax payable, Payments Due in Fiscal 2023"}
{"value": "665", "label": "Debt service, Payments Due in Fiscal 2025"}
{"value": "161", "label": "Debt service, Payments Due in Fiscal 2026"}
{"value": "133", "label": "Unconditional purchase obligations, Payments Due in Fiscal 2027"}

Table 14: Original annotation from SEC filings for the ticker symbol EL (2022/06/30). Pairs with identical label are
discarded. We present a preview of the table in markdown format for better readability.

8331

Question: What are the total proceeds from the issuance of
employee options during February 2004, in millions?

Context input:
In February 2004 , the company issued to eligible employees
1032717 options with an exercise price of $11.19 per share,
the fair market value of the class a common stock on the date
of grant ...
... the fair value of ATC Mexico plan options granted during
2002 were $3611 per share as determined by using the Black-
Scholes option pricing model. As described in note 11, all
outstanding options were exercised in march 2004.

1 # Incorrect program
2 proceeds_from_issuance_of_employee_options = 3611
3 answer = proceeds_from_issuance_of_employee_options

/ 1000000

1 # Golden program
2 options_issued = 1032717
3 exercise_price = 11.19
4 proceeds = options_issued * exercise_price
5 answer = proceeds / 1000000

Figure 10: An example where the model misunderstands
the question and generates an incorrect solution with
incorrect values. Model-generated incorrect code is
highlighted in pink and the golden code is highlighted
in cyan. The model, however, was able to detect the
answer must be in millions.

8332

