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Abstract of computational time and resources. In this sense,

With the advent of foundation models, prompt
tuning has positioned itself as an important
technique for directing model behaviors and
eliciting desired responses. Prompt tuning re-
gards selecting appropriate keywords included
into the input, thereby adapting to the down-
stream task without adjusting or fine-tuning
the model parameters. There is a wide range of
work in prompt tuning, from approaches that di-
rectly harness the backpropagated gradient sig-
nals from the model, to those employing black-
box optimization such as reinforcement learn-
ing (RL) methods. Our primary focus is on
RLPrompt, which aims to find optimal prompt
tokens leveraging soft Q-learning. While the
results show promise, we have observed that
the prompts frequently appear unnatural, which
impedes their interpretability. We address this
limitation by using sparse Tsallis entropy reg-
ularization, a principled approach to filtering
out unlikely tokens from consideration. We
extensively evaluate our approach across vari-
ous tasks, including few-shot text classification,
unsupervised text style transfer, and textual in-
version from images. The results indicate a
notable improvement over baselines, highlight-
ing the efficacy of our approach in addressing
the challenges of prompt tuning. Moreover,
we show that the prompts discovered using our
method are more natural and interpretable com-
pared to those from other baselines (Deng et al.,
2022) 1.

1 Introduction

While the use of large-scale language models
(LMs) and vision-language models (VLMs), pre-
trained on a massive amount of data, is becoming a
dominant paradigm in machine learning (Rombach
et al., 2022; Touvron et al., 2023; Radford et al.,
2021), fine-tuning the model parameters for adap-
tation to downstream tasks requires a vast amount

'Code available at https: //github.com/Youseob/PIN

prompt tuning has emerged as a promising low-cost
solution (Brown et al., 2020; Lester et al., 2021),
discovering input prompts that effectively guide
the pre-trained models to generate the desired out-
puts, while keeping the model parameters frozen.
Prompt tuning is generally categorized into two ap-
proaches, soft and hard prompting methods, based
on their representation of prompts.

Soft prompt methods (Lester et al., 2021; Li and
Liang, 2021) primarily focus on learning continu-
ous embedding vectors at the token level, which
are called as soft prompts. They usually perform
the gradient descent to optimize these continuous
embedding vectors (Wu et al., 2023; Zhu et al.,
2023). However, the prompts learned through soft
tuning are opaque to human interpretation and are
not compatible with other pre-trained models that
do not share the same embedding spaces. More-
over, computing internal gradients for models is
highly resource-intensive, especially as the num-
ber of model parameters increases, or even infea-
sible in cases where models are accessible only
through APIs (OpenAl, 2023). These limitations
necessitate an alternative approach: discovery of
the prompts composed of human-readable discrete
tokens, referred to as hard prompts (Prasad et al.,
2023; Shin et al., 2020; Deng et al., 2022).

Hard prompts offer numerous advantages over
soft prompts: they are transferable from one pre-
trained model to another since they are agnostic to
the embedding. Moreover, they confer composi-
tional control by facilitating manual merging and
modification (Wen et al., 2023). Despite the bene-
fits, they require large-scale discrete optimization
in principle. Approaches for finding optimal hard
prompts often employ backpropagated gradients
from models as with soft prompt methods, while
circumventing the discrete optimization by, roughly
speaking, mapping the soft prompt to the similar
discrete tokens in the embedding space (Wen et al.,
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2023; Shin et al., 2020). However, particularly
when the model is black-box, reinforcement learn-
ing (RL) serves as a powerful alternative tool for
optimization, as exemplified by RLPrompt (Deng
et al., 2022) that uses soft Q-learning (Haarnoja
etal., 2017).

One of the key ideas behind RLPrompt is an
efficient parameterization leveraging a frozen pre-
trained LM. However, as we show later in the paper,
this is accompanied by detrimental approximation
error, leading to undesirable results. In this paper,
we address this limitation in a principled manner.
Our approach leverages sparse Tsallis entropy reg-
ularization for RL (Lee et al., 2018) to ignore very
unlikely tokens from consideration. We demon-
strate the effectiveness of our algorithm across var-
ious tasks, including few-shot text classification,
unsupervised text style transfer, and textual inver-
sion from images, comparing it against various
baselines. Most importantly, unlike hard prompts
learned by baselines which are often referred to as
the ‘secret language’ of models due to their opacity
for human interpretation, our learned prompts are
more natural and straightforward. Our contribu-
tions are outlined as follows:

* We first identify the problem associated with the
parameterization employed in RLPrompt that
potentially leads to suboptimal and unnatural
prompts.

* We propose a principled solution to the problem
using sparse Tsallis entropy (Lee et al., 2018),
referred to as PIN (Prompts made INterpretable).

* We show extensive experimental results that
demonstrate the effectiveness of our algorithm
across various downstream tasks.

2 Related Works

Prompting in Language Models Pioneering
work by Brown et al. (2020) highlighted the ef-
ficacy of using prompts for task adaptation in pre-
trained language models, a technique now com-
monly referred to as instruction tuning. This
approach has become standard in enhancing the
ability of large models to execute complex, task-
specific instructions. Despite its success, the auto-
mated generation of effective text prompts, particu-
larly hard prompts, remains a challenge. The work
by Lester et al. (2021) to simplify prefix tuning
led to the establishment of standard soft prompt
tuning, which optimizes continuous embeddings
that are appended to embeddings of input tokens.

However, Khashabi et al. (2022) pinpointed a lim-
itation of this approach: the resulting embedding
sequences often lack clear semantic interpretation.
To address these limitations, our work focuses on
the hard prompts optimization within a selected
set of tokens, thereby generating task-specific and
interpretable tokens.

Discrete Optimization for Hard Prompts Au-
toPrompt (Shin et al., 2020) is an initial framework
for discrete prompt optimization in transformer-
based language models, inspiring a range of diverse
methods. These include a gradient-free phrase
editing method (Prasad et al., 2023), a reinforce-
ment learning-based approach (Deng et al., 2022),
and an embedding optimization approach based
on Langevin dynamics (Shi et al., 2023). In our
work, we first benchmark gradient-based methods
like AutoPrompt (Shin et al., 2020) and PEZ (Wen
et al., 2023) for hard prompt tuning. AutoPrompt
employs the HotFlip algorithm (Ebrahimi et al.,
2018) to greedily identifies optimal tokens for each
position based on model gradients, while PEZ per-
forms gradient re-projection during its continuous
optimization within the embedding space. How-
ever, both methods require substantial computa-
tional cost in calculating gradients and are unsuit-
able for black-box models. On the other hand, RL-
Prompt (Deng et al., 2022) employs a gradient-free
RL-based method, serving as our primary baseline.
RLPrompt introduces an efficiently parameterized
network that maps continuous embedding vectors
to adaptive vectors within the same space. Despite
its simplicity, RLPrompt struggles with accurately
representing Q-values across all tokens, potentially
leading to sub-optimal prompts as we discuss in
Section 4.1.

3 Preliminaries

Hard Prompt Tuning with RL.  Hard prompt tun-
ing is the process of discovering an optimal prompt
within the token space V, to efficiently tackle spe-
cific downstream tasks. Assuming a fixed-length
prompt of L tokens, this optimization can be for-
mally defined as RL problem:

max R(y(z,x)). (1)
zeVlL
Here, the objective is to find a discrete prompt
z from the solution space of length-L token se-
quences VX, which maximizes a task-specific re-
ward function R when concatenated with input x.
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This reward function measures the appropriateness
of the model output y(z, x), i.e., the output from
LMs or VLMs when prompted with z for input
x. For example, in a few-shot text classification
task utilizing masked LMs as task model, the re-
ward function can be defined as a binary signal
that indicate the correctness of model output based
on available few-shot data, where model output
refers to the predicted class for the [MASK] token
position?.

Eq. (1) can be approached using a bandit algo-
rithm, which aims to identify a length-L token se-
quence z that maximizes the reward R without
gradient information. However, to cope with the
exponentially large action space O(|V|¥) for the
bandit algorithm, we can treat the optimization as
a sequential decision-making process, as in RL-
Prompt (Deng et al., 2022). More concretely, at
each time step ¢, the algorithm chooses the token z;
based on the tokens zy.;—1 chosen at previous time
steps, denoted as policy 7(z¢|z0.—1). The calcula-
tion of reward R is delayed until the completion of
the entire prompt sequence z to obtain the model
output. Thus, we optimize the policy 7 with the
reformulation of Eq. (1), given by

mﬁx EZN tL;01 m(2t|20:t-1) [R(y(z, CC))] '

Soft Q-Learning (SQL) and RLPrompt RL-
Prompt (Deng et al., 2022) employs SQL (Haarnoja
et al., 2017), an RL algorithm that incorporates
entropy regularization. It aims to maximize the
expected cumulative reward with the bonus given
by the entropy of the action distribution in order
to balance the trade-off between exploitation and
exploration. More formally, at each time step t,
RLPrompt trains the policy with the objective:

mT?X Ezww(z|zojt_1) [Q(z(]:t-la Z) -« IOg 7T(z|ZO:t-l)]7

2
where () is the action-value function capturing
long-term reward effects as follows:

Q(z():t—l ) Z) éEzHl;L_]Nﬂ' [R(y(ZO:t-l y @y Zt+1:L-1,5 x)]

and « is the regularization coefficient.
Eq. (2) yields an analytical solution for the opti-
mal policy, expressed as

7 (2|20:4—1) = softmax <
o

Q(20:¢-1, 2) > .

’The task of textual inversion from images requires a slight
deviation from the standard formulation. Instead of the re-
ward based on the model output, it is defined as the similarity
between the embedding of a target image and the text prompt.

However, since the action-value function () is not
readily available, it is estimated by a neural network
parameterized by 6, referred to as (Q-network.

One of the main contributions of RLPrompt is
the introduction of an efficient parameterization for
the Q-network. This involves integrating a frozen
and pre-trained language model (LM), referred to
as the policy LM, into the lower layers of the Q-
network. Besides, a trainable multi-layer percep-
tron (MLP) layer is augmented at the upper level
for the adaptation to the downstream task. Thus,
the trainable parameter 6 of the (Q-network is only
the parameters of the MLP layer.

Formally, given the prefix of prompt 2.t—1, the
encoding vector e; € £ obtained from the policy
LM is passed through MLP layer g to compute an
adapted embedding é; € £, where £ denote the real
vector space of embeddings. Subsequently, this
adapted embedding é; is multiplied with the LM-
head matrix of policy LM, WM ¢ RIVIxdim(€) o
get the next prompt token probabilities.

ér = o(er) = Yo(LM(20:4-1))
Qo(z04-1,7) = WMe,
QG(ZO:t—la Zt))

7o (2t|20:4—1) := softmax <
[0

where WM is kept fixed. Thus, this particular
parameterization makes WMé, collectively repre-
sent the scaled Q-values for all tokens. In other
words, for token z € V and its index ¢, its action
value is calculated by wiTzd)g(et) = Qo(20:4—1, 2),
where w; denotes the i-th row vector of WM,

To optimize the parameter €, the objective is to
minimize the temporal difference error,

By [(Qo(20:6-1, 2t) — Q20115 20)) 7). (3)

Here, the target value Q is the bootstrapped esti-
mate of the action value, given by:

Q(20:t-1, 2t)
~ )yalogy oy exp(Q“’(Z(;”’z)) ift<L-—1
| R(y(z,x)) ift=1L-1

where vy € (0, 1] denotes the discount factor.

Sparse Tsallis Entropy Regularized Q-Learning
Given a policy m(-|zo.¢—1) that represents a proba-
bility distribution on z, the Tsallis entropy (Amari
and Ohara, 2011) with entropic index q is defined as
Sq(m) = kq%l(l — >, m(z|20:4~1)), where k is

8254



a positive scalar value. It generalizes various types
of entropy via the entropic index g. Specifically,
as ¢ — 1, it becomes Shannon entropy, S1(m) =
E.[—log m(z|z0:t—1)], which is employed by SQL
for regularizing policy. This results in an optimal
policy that is softmax function over Q-values, a
feature known to promote exploration within the
decision-making. However, as mentioned earlier,
an intrinsic characteristic of a softmax policy is its
distribution of nonzero probability mass across all
actions. On the other hand, ¢ = 2 yields sparse
Tsallis entropy, Sa(m) = Ex[3(1 — m(2[20:0-1))],
which is the focus of this paper. Employing sparse
Tsallis entropy as regularization (Lee et al., 2018)
leads to an sparse optimal policy that concentrates
probability mass on a subset set of actions.

Analogous to Eq. (2), the analytical formula of
the optimal policy with the sparse Tsallis entropy
regularization with the regularization coefficient «
is given by

7 (2]20:-1) 4)

e (Q(ZO:ch) . <Q(Zo:t1a ')) 70)’

[0 (6

where 7 is the thresholding function that sets the
action probabilities to zero when their a-scaled
action values fall below 7(Q(z0:t—1, -)/«) and en-
sures the sum of these probabilities equals 1:
Q(20:t—1,2) -1

. (Q(ZO:t—h ')) _ 24250001/ o
o 15Q 0.1,/

where the set Sg(z,,_,,)/a> referred to as the sup-

porting set, consists of z(,,) € V that satisfy

SQ(ZO:t—L')/Oé =

Zm |1 +n
{2 2 5
with z(,,) indicating the action with the m-th
largest value of Q(zo.;—1, z). Thus, the supporting
s€t SQ(z0._1,-)/a CODSists of top-K, tokens with
the highest action values, and the coefficient a con-
trols the cardinality Ko = |Sg(z,_,,)/al- Con-
sequently, the sparse policy from Eq. (4) assigns
non-zero probabilities for only K -actions, where
smaller o makes the policy sparser.

For training Qy(20.t—1, 2), we minimize the tem-
poral difference error using the target value Q:

~

Q(20:—1, 2t) )
| ya sparsemax <%> ift<L—-1
R(y(z,x)) ift=L—-1

Q(ZO:t—l) Z(n)) " Q(ZO:t—la Z(m))

where the sparsemax operator is defined as

Q(%H)

o
(252 = (252

2 )

Sparsemax <

T

2€5Q(20.4,.) /o

which limits the target value estimation to top-K,,
actions.

4 Method

4.1 Overdetermined Linear Systems

While the @-network utilized by RLPrompt pro-
vides efficient parameterization, it also possesses
a fundamental limitation. Training the (Q-network
is essentially solving for an extremely overdeter-
mined linear system, where approximation error is
inevitable. In order to observe this, we fiXx zg.t—1
and rewrite Eq. (3) as the weighted least-squares
problem

nrgn HWLM'QP - 61‘|3r(-|zo;t_1)’ ©)

where ¥ = 1)p(LM(z0:t—1)) is the optimization
variable, and ¢ = Q(zm,l, -) is the right-hand-
side vector. The coefficient matrix, which is the
LM-head matrix from the policy LM, WM ¢
RIVIXdim(&) hag many more rows than columns
since it is common that |V| > dim(€) (e.g.,
|V| = 50272 and dim(&) = 768 for OPT-125M),
corresponding to many more constraints than vari-
ables resulting in inevitable approximation error.
Together with the probabilities of tokens as
weights in the least-squares formulation, the is-
sue of approximation error becomes more critical.
Tokens with high probabilities, as estimated by T,
receive larger weights in the least-squares, leading
to smaller approximation errors for them. On the
other hand, the vast number of low-probability to-
kens are assigned with smaller weights, resulting
in relatively larger approximation errors. Conse-
quently, the estimated action value could become
unreasonably high for these low-probability tokens,
promoting the RL algorithm to excessively try out
these improbable tokens. This results in an RL ap-
proach that is overly biased towards exploration,
specifically favoring the selection of insignificant
low-probability tokens. The detrimental impact of
this unfortunate behavior is clearly observed by the
unnatural prompts chosen by RLPrompt.
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4.2 PIN (Prompts made INterpretable)

One of the straightforward solutions to mitigate
the challenge of the overdetermined linear system
is to drop the constraints that are less important.
To achieve this, we introduce the ignorable token
set comprised of tokens deemed improbable from
a general language model. The key concept is to
sidestep evaluating the action values of these to-
kens, as they may adversely impact the value esti-
mations of high-probability tokens. The construc-
tion of the ignorable token set entails utilizing the
logit of the predictive probability of tokens derived
from the policy LM with the original embedding,
and choosing those that score below the k-th largest
logit. Formally, given the prompt prefix zo.;—1, the
ignorable token set is defined by
Loy =1{2z€V] wiTzet < wiT(k)et},

where e, is the embedding vector of zy.;—; obtained
from the policy LM, wy; is the i-th row vector of its
LM-head matrix, and i) is the index of the token
with k-th largest logit.

Deciding the number of k is important for learn-
ing effective hard prompts, as demonstrated by our
experimental results. If we set k aggressively (i.e.,
small) to avoid constraint violation, we may end
up ignoring strong candidate tokens. On the other
hand, if we set k£ conservatively (i.e., large), we suf-
fer from the original challenge of approximation
error. Therefore, we empirically chose £ = 10000
to ensure a sufficiently diverse set of tokens, disre-
garding about 80% of the vocabulary tokens. Nev-
ertheless, we observed that the ignorable token set
dose not work well alone because k is significantly
larger than dim(&), which is 768, even in case of
OPT-125M.

Now, the remaining challenge is to address the
approximation error still existent due to more con-
straints than variables for training the ()-network.
If we adopt SQL as the baseline RL method, we
will end up with the same undesirable behavior due
to the dense probability over the tokens. We thus in-
stead employ the sparse Tsallis entropy regularized
Q-learning described in the previous section, which
yields a sparse policy that naturally suppresses the
probability of choosing many unimportant tokens
with errors in the action value estimation.

Our algorithm, PIN (Prompts made INter-
pretable), is presented in Algorithm 1. We remark
that the algorithm employs operator F7 that sys-
tematically filters out the action values of ignorable

Algorithm 1 PIN (Prompts made [Nterpretable)

Require : Replay buffer D, parameters 6 for i) network,
parameters 0’ for target 1)’ network, and target network update
rate p.
Set parameters of target 1)’ network 6’ equal to 9: ' « 0
for iter = 1,2, ... do
fort=0,...,L —1do
Sample z; ~ o (+|z0:t—1) in Eq. (4) with
Fz[Qo(z0:-1,-)]-
end for
Observe R(y(z,x)) from task model.
Add {zo,...20—1, R(y(z,x))} to D.
Sample sequence {zo, ...z.—1, R(y(z, x))} from D
fort=0,1,.....,L —1do
Estimate the target value Q in Eq. (5) with
Fz[Qor (20:¢, )] )
Update 6 by minimizing (Qa (20:t—1, 2t) — @)>.
end for
Update target network with 6" < p6’ + (1 — p)0
end for

tokens. More formally,

Q(ZO:t—h z) if z g'é Tepr s

—00 ifz€Z,, ,

FrlQ(z0:4-1,)I(2) = {
This filter operation is used for computing the pol-
icy as well as for the training target of ()-network.

S Experiments

5.1 Few-Shot Text Classification

The goal of these tasks is to find the optimal prompt
that assigns input text x to the class label, given
a few examples in the context. We employ the
same experimental setting in Schick and Schiitze
(2021); Deng et al. (2022), which addresses the
classification tasks via prompting the task LM and
mapping the predicted token to the class label.

Experiment Setup We employ RoBERTa-
large (Liu et al., 2020) as the task LM and OPT-
125M as our policy LM. We experiment with an
extensive range of few-shot text classification task
to assess the effectiveness of our approach. The
datasets encompass various domains, including
sentiment classification, such as SST-2 (Socher
et al., 2013), Yelp Polarity (Zhang et al., 2015),
MR (Pang and Lee, 2005), CR (Hu and Liu, 2004),
and subjectivity classification like Subj (Pang and
Lee, 2004). Furthermore, we also extend to
topic classification, such as AG’s News and Ya-
hoo (Zhang et al., 2015).

Baselines We compare our algorithm against var-
ious baselines, including heuristic methods such
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Few-Shot Text Classification Dataset

Method Avg.
SST-2 Yelp P. MR CR AG’s News  Yahoo Subj
Manual Prompt 82.8 83.0 80.9 79.6 76.9 18.1 51.5 67.5
Instructions 89.0 84.4 85.2 80.8 54.8 21.4 50.4 66.6
In-Context Demonstration 85.9 89.6 80.6 85.5 74.9 36.7 73.0 77.3
Soft Prompt Tuning 73.8 88.6 74.1 75.9 82.6 59.7 73.0 75.4
GrIPS 87.1 88.2 86.1 80.0 65.4 22.5 74.8 72.0
AutoPrompt 75.0 79.8 62.0 57.5 65.7 35.5 78.9 64.9
PEZT 70.0(1.2) 85.9(0.5) 67.9(0.4) 70.1(0.8) 43.7(0.4) 27.0(0.7) 53.1(0.8) 59.7
RLPrompt' 91.5002 94.70.1) 87.102 89.50.1) 77.5(0.8) 48.6(0.1) 82204 81.6
PIN (ours) 92.00.1) 95.0004) 87.2(03) 883002  82.6(0.1) 49.50.3) 85.1(04) 82.8

Table 1: Comparison between PIN and baselines on various few-shot text classification datasets. { denotes our
reproduced results, and we refer to the results from Deng et al. (2022) for other methods. Bold and underline
indicate the best and the second best accuracy for each dataset, respectively. The accuracy on the test dataset is
reported as the average score over 5 few-shot train datasets with the standard error.

as: (1) Manual Prompt, (2) Instructions, and (3) In-
Context Demonstration. Furthermore, we consider
soft/hard prompt tuning algorithms, comprising
(4) Soft Prompt Tuning (Li and Liang, 2021) that
performs gradient descent directly on continuous
embedding vectors, (5) GrIPS (Prasad et al., 2023)
that is a gradient-free and edit-based search method,
(6) AutoPrompt (Shin et al., 2020) that modifies
discrete prompts using the gradient information
from LM, (7) PEZ (Wen et al., 2023) that involves
gradient descent on continuous embedding vectors,
then projection onto human-readable tokens, and
(8) RLPrompt (Deng et al., 2022), the on-policy
soft Q-learning, that obviates the need for gradient
signal of task LM in the optimization process.

Results The results are summarized in Table 1.
To ensure a fair comparison with RLPrompt, we
use the same reward function and policy LM (.e.,
OPT-125M). As shown in Table 1, our approach
demonstrates competitive or superior performance
compared to RLPrompt across all datasets. A no-
table aspect of our PIN method is its efficiency: it
achieves these strong results while necessitating
fewer trials than required by RLPrompt. This is
demonstrated in the learning curves, depicted in
Figure 4 in Appendix. Furthermore, when com-
pared to various soft/hard prompt algorithms, PIN
shows robust performance across the datasets. This
is especially important given that our algorithm re-
lies on a weaker feedback and reward, as opposed
to the direct back-propagated gradients used in Soft
Prompt Tuning, AutoPrompt, and PEZ. However,
PIN underperforms relative to Soft Prompt Tuning
on Yahoo dataset. The number of classes on Yahoo
dataset is 10, which is relatively larger compared
to other datasets. Since the reward feedback does

not directly reveal the ground-truth label, it poses
a harder challenge than using the back-propagated
gradient feedback. This is also the reason why
RLPrompt did not perform well.

The examples of learned prompts from baselines
and PIN are in Table 4 in Appendix. Our prompts
not only exhibit effectiveness in the task perfor-
mance but also provide the benefit of enhanced
interpretability.

5.2 Unsupervised Text Style Transfer

The text style transfer task (Jin et al., 2022) aims
to rephrase an input text & to match a desired style.
For example, in the sentiment transfer task, the
goal is to alter a negative sentence ‘“The movie
was disappointing” into its positive counterpart,
e.g., “The movie was awesome”. We focus on
unsupervised text style transfer task, where there
are no input-output pair examples for training.

Experiment Setup We employ OPT-125M
as our policy LM and OPT-125M/350M/
1.3B (Zhang et al., 2022) as the task LM. We con-
duct the experiments on Yelp (Shen et al., 2017)
that is a widely-used dataset for the sentiment
transfer task, focusing on negative-to-positive and
positive-to-negative sentiment transfer. For the rest
of the settings, we adhere to the experiment setup
outlined in Deng et al. (2022).

Baselines The output is evaluated by a combined
metric that measures content preservation as well
as style alignment, which is given as the scalar
reward feedback. Assuming that the metric is not
differentiable, prompt tuning methods that directly
rely on gradients are not applicable. Therefore,
we only compare our method against RLPrompt
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Figure 1: Training curves on textual inversion from images task. For each dataset, training was conducted on 10
target images across 3 random seeds. The solid curves show the average CLIP Score across target images, with the

shaded areas representing the standard error.

in this experiment. Further details regarding our
experimental setup and the reward function used in
this task can be found in Appendix C.

Results The results are summarized in Table 2,
where evaluations are conducted on three specific
aspects, including content, style, and fluency of
output text and two comprehensive metrics like J
and GM on test dataset. For details on the eval-
uation metrics, refer to Appendix C.3 and Deng
et al. (2022). Our experiments, conducted with
various sizes of task models under the same policy
LM, consistently demonstrate the superiority of our
algorithm, as evidenced by the overall metrics, J
and GM. Furthermore, because the reward function
primarily focuses on the content and style, our PIN
algorithm has notably enhanced performance in
relation to these metrics.

However, the fluency of the generated text drops
in PIN. This occurs because the reward function
does not account for the generated text fluency, in-
stead it is defined as the sum of content preservation
and the target style intensity of the generated text.
Thus, there is no guarantee that the fluency will
be improved by optimizing the reward, and it may
even be possible to achieve higher rewards at the
expense of fluency score. We also remark that there
is a trade-off, making the generated text aligned
closer with the desired style leads to diminished
fluency in the generated texts.

5.3 Textual Inversion From Images

Hard prompts are also useful in the vision-language
domains (Wen et al., 2023). A salient task in these
domain is textual inversion, which entails identify-
ing the caption that describe target images using

#Param‘Method Content  Style Fluency J GM
125M PIN 55.6 (3.2) 95.4(0.3) 89.4(0.9) 46.2 (2.3) 77.6 (1.1)
RLPrompt 53.5 (3.4) 93.7 (0.4) 85.2(2.5) 41.4(2.1) 74.8 (1.1)
350M PIN 58.9 (2.7) 94.2 (0.8) 83.4(5.7) 46.8 (4.3) 76.0 (2.7)
RLPrompt 52.1(1.3) 93.9(0.3) 85.3(1.7) 41.0(0.7) 74.6 (0.5)
138 PIN 69.1(2.7) 95.7 (0.5) 84.9 (1.6) 56.0 (3.3) 82.4(1.6)
' RLPrompt 67.6 (2.4) 91.6 (1.1) 89.2(0.9) 54.1(2.4) 81.9 (1.0)

Table 2: Comparison between PIN and RLPrompt on
different sizes of OPT model. The reported scores are
the average values with the standard error of 4 different
runs for each transfer task. We assess the output text
from the task LM using various metrics.

VLMs, such as CLIP (Radford et al., 2021). The
caption can then serve as a prompt for generating
similar images via text-guided diffusion models.
To learn the prompt, we make use of the CLIP
Score (Hessel et al., 2021) as the reward that mea-
sures the similarity between the target image and
the prompt.

Experiment Setup We set OpenCLIP-
ViT/H (Cherti et al., 2023) as the task model and
OPT-350M as our policy LM. We use a range of
image datasets for textual inversion, including MS
COCO (Lin et al., 2014), LAION (Schuhmann,
2021), and Lexica.art (Gustavosta, 2022). For each
dataset, we randomly select 10 target images to
learn the prompt, and calculate the average CLIP
Score of the target image and the generated prompt
over 3 seeds. For the rest of the settings, we adhere
to the experimental setup outlined in Wen et al.
(2023).

Baselines For the evaluation of training effi-
ciency, we compare the training curves against a
range of RL-based algorithms. These baselines
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Figure 2: Generated images from Stable Diffusion-v2 (Rombach et al., 2022), using the learned hard prompts
(bottom) for the target image (left). We also showcase more qualitative examples in Appendix E.

include: (1) RLPrompt, (2) RLPrompt-fluency, a
variant of RLPrompt with a filtering method akin
to our own, (3) RLPrompt-RB, which incorporates
the replay buffer, (4) RLPrompt-RB-fluency, which
incorporates both filtering and the replay buffer, (5)
PIN-no-fluency, which trains Q-network with the
sparse Tsallis entropy regularization but without
filtering. Further details about these baselines can
be found in Appendix D.3.

Results The training curves, as depicted in Fig-
ure 1, illustrate that PIN is most effective in discov-
ering high-quality prompts with fewer interactions,
particularly compared to RLPrompt. This effi-
ciency is primarily due to addressing the overdeter-
mined issue discussed in Section 4.1. Furthermore,
when compared with RLPrompt-fluency, which
employs the same filtering operator to eliminate
unlikely tokens, PIN clearly demonstrates better
performance. This can be explained as follows: To
ensure that RLPrompt-fluency works properly, we
had to filter out tokens aggressively due to the dense
nature of the softmax distribution. This resulted in
excluding tokens that are potentially important for
task performance. In contrast, the sparse Tsallis
entropy regularization employed by PIN enabled
to handle a larger token search space.

On the other hand, we note that RLPrompt-RB
and RLPrompt-RB-fluency struggle to learn the
prompt. At first glance, it is a surprising contra-
diction to the common practice in deep RL that
the replay buffer generally improves performance.
However, this is a very natural result: replay buffers
help when training non-linear function approxima-
tors such as deep neural networks that can poten-
tially overfit. Since the @Q-network is designed
to resolve an exceedingly overdetermined linear
system, the replay buffer offers minimal benefit.

Instead, the weights in the least squares formula-
tion over tokens in Eq. (6) correspond to the mixed
distribution of previous policies during training,
including poor ones. Thus, the problem with the
overdetermined linear system for training the -
network is compounded by the fact that some effort
will be put on reducing the approximation error
for tokens that are now found to be unimportant,
in sacrifice of accurate estimation for important
tokens. We suspect that this is why the original
implementation of RLPrompt, although based on
SQL that employs replay buffer, does not include
the replay buffer. RLPrompt-RB-fluency falls short
in discovering effective prompts due to their limited
search space as mentioned earlier. In contrast, PIN
and PIN-no-fluency do not suffer from the afore-
mentioned problem related to replay buffers. We
provide some qualitive examples of the generated
images and learn prompts in Figure 2.

‘ Relevance ‘

PIN PEZ | PIN PEZ

Interpretability
Dataset

MS COCO | 3.290.17)  2.53024) | 2290.16)  1.70(0.18)
LAION | 446(0.18) 3.33(023) | 3.60(020) 2.10(0.21)
Lexicaart | 430012 290034) | 3.400.18) 2.10(0.27)

Table 3: Human-like evaluation on PIN and PEZ by us-
ing the GPT-4V API. The reported numbers are average
over 10 target images with the standard error for each
dataset. We omitted the RLPrompt results because all
the scores were 1.

Human-like Evaluation For evaluating the in-
terpretability of the learned hard prompts and their
relevance to the target images, we adopt Human-
like ChatGPT evaluation method inspired by Gao
et al. (2023). We request GPT-4V to assign a score
ranging from 1 (worst) to 5 (best), assessing the
relevance between the target image and the hard
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prompt, as well as the prompt’s interpretability for
human understanding. We provide the template for
this in Figure 7 in Appendix. To provide a compara-
tive baseline, we conduct the same evaluation with
prompts learned by PEZ. The results, presented
in Table 3, suggest that the prompts learned by
PIN are more interpretable to humans and more
accurately capture the content of the target images.

5.4 Analysis on Hyperparameters

Length L of Prompts To further evaluate the
effectiveness of our algorithm relative to PIN-no-
fluency, we conducted experiments with varying
lengths of prompts. The results, as illustrated in
Figure 3(a), reveal that the performance gap be-
tween our method and PIN-no-fluency widens with
increasing prompt length up to L = 2°. There
are two primary reasons for this observed trend.
Firstly, our algorithm reduces the search action
space to a set of familiar tokens. As prompt length
increases, the search space expands exponentially;
thus, our approach to narrowing the action space
results in enhanced performance compared to PIN-
no-fluency. Secondly, PIN-no-fluency attempts to
estimate the ground- truth Q-value across all to-
kens at every state. With increasing prompt length,
the state space also expands, which can lead to
inaccuracies in Q-value estimation at each state.
Our method, by contrast, mitigates this challenge,
leading to more reliable and effective prompt op-
timization, particularly in scenarios with longer
prompts.

For prompts of length L = 25, PIN achieves the
highest Clip Score. However, for L = 26,27, the
score drops. We remark that longer prompts pose
the challenge of combinatorial search space of hard
prompts for RL-based methods, and we believe that
we need more information-rich feedback other than
just reward signals for making the methods more
effective. This would be nontrivial for our setting
where the LM is assumed to be a black-box model,
but it is a promising direction for future work.

k For Determining 7 An important determinant
of the performance of our algorithm is the number
of tokens ignored at each state. We conduct an
analysis focusing on the hyperparameter k, which
represents the number of tokens considered for Q-
values estimation. The findings are presented in
Figure 3(b), where the last datapoint, indicating
50k is the same with PIN-no-fluency. A smaller
action space (|Z| ~ V), can exclude tokens that
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(a) Analysis on prompt length (b) Analysis on top-k

Figure 3: (a) Comparison with PIN-no-fluency at vary-
ing prompt length, and (b) Analysis on the effect of k.

are crucial for discovering optimal prompts. Such
an exclusion risks limiting our algorithm’s abil-
ity to identify the most effective prompts as po-
tentially valuable tokens could be filtered out pre-
maturely. Conversely, an excessively large action
space (|Z] < V) from fewer ignored tokens, dimin-
ished the impact of our filtering technique. In such
cases, the benefit of reducing search space is lost,
as the algorithm still needs to evaluate a vast num-
ber of tokens. Our empirical investigations across
various tasks indicate that maintaining the number
of tokens that are not to be ignored within the range
of 10000 to 20000 yields the most favorable results,
particularly when the coefficient o = 1.

6 Limitations

PIN can discover prompts that are more inter-
pretable compared to baselines. However, we ac-
knowledge a couple of inherent limitations. Firstly,
the algorithm exhibits a relatively higher time con-
sumption for training when compared to gradient-
based methods. Secondly, despite its advanced ca-
pabilities in discovering interpretable prompts, our
algorithm does not guarantee the consistent discov-
ery of grammatically perfect sentences. We would
leave discovering grammatically perfect prompts
as future work.

7 Conclusion

In this paper, we firstly discuss the overdetermined
issue encounterd in the efficiently parameterized
network. To address this issue, we propose PIN al-
gorithm, which uses sparse Tsallis entropy regular-
ization to systematically exclude ignorable tokens
from constraints. Prompts learned by PIN exhibit
better performance in various tasks. Future work
could explore alternative strategies for identifying
ignorable tokens to improve interpretability further,
like leveraging task-specific domain knowledge.
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A Hyperparameter Settings

We employ 2 MLP layers with 2048 hidden states
for the implementation of ). During the learn-
ing of our PIN method, we sample a batch of 256
sequences from the replay buffer to update the pa-
rameters of Q-network. We use an Adam optimizer
with learning rate 5e-5. Note that we maintain con-
sistency with PIN and other RL algorithms in all
shared hyperparameters, such as the learning rate,
except for the reward scale, which varies across
tasks. Our experiments mainly follow the setting
in Deng et al. (2022).

B Few-Shot Text Classification

The classification process begin with integrating
the input text x that needs to be classified and
the prompt z into a templated format: ‘[x] [z]
[MASK]’. Subsequently, the classification decision
relies on selecting the predefined tokens, each rep-
resenting a specific class, that has the highest prob-
ability of filling the [MASK] position.

B.1 Experiment Setup

We use OPT-125m (dim(&) = 768, |V| = 50272)
as our backbone of policy-LM, and prompt length
L is 5 over all experiments. During training, the
prompt is learned from a training dataset containing
a few pairs of input text  and their corresponding
labels c. Additionally, a validation dataset is used
to assess the prompts during training. The accuracy
of the predicted labels is evaluated on a test dataset
using the prompt that demonstrated the best perfor-
mance on the validation dataset. For each dataset,
we sample 5 distinct sets for training and valida-
tion, each includes 16 examples per class. We run 3
experiments with a different random seed for each
set and we report the average accuracy. For our
PIN algorithm, the reward scale (1/«) is 1 and k is
10000 (|Z| is 40272).

B.2 Rewards

The objective of the text classification task is to
accurately assign input text  to its corresponding
ground truth label c. we employ a piecewise re-
ward function designed to incentivize the correct
classification of each example. We use a piecewise
reward function designed to enhance prompts to
classify each example correctly as used in Deng
et al. (2022). For a given prompt z and a training
example (x, c), we compute the reward in a manner
akin to hinge loss. This is achieved by measuring

the gap between the probability of the correct la-
bel and the highest probability among the other
classes. we denote Py p(c|z, x) as the probability
of label ¢, we can write the gap as Gap,(c) :=
Pim(clz, ) — maxez. Pvm(c'|z, ). This gap is
positive when the prediction is correct and negative
otherwise. We define a binary indicator for correct
predictions as Correct := 1[Gap,(c) > 0]. For
correct predictions, we amplify the positive reward
by a larger factor to emphasize its desirability. The
reward function is thus formulated as follows:

R(CC, C) — /\%fCOrrect)\gorrectGapz(c)
and \; = 180, Ay = 200.

B.3 Baselines

We retrained PEZ (Wen et al., 2023) and RL-
Prompt (Deng et al., 2022) using the official repos-
itories**. For PEZ, we used 5 prompt tokens and
conducted training with a batch size 16 with the
few-shot train dataset. For a fair evaluation, we
utilized the same policy LM for training RLPrompt
as was used in our method. For RLPrompt, we
followed standard setting (Deng et al., 2022) by set-
ting the reward scale (1/«) to 5 and using top-256
sampling from the prompt policy during training.
Note that top-256 sampling is performed based on
estimated Q-values over tokens. The performance
results of the other methods are presented based on
the reported in Deng et al. (2022).

B.4 Learning Curve

Figure 4 shows the reward for the learned prompt
on the validation dataset during training. It demon-
strates that our algorithm outperforms RLPrompt
across all datasets and requires fewer interactions
with task model.

C Unsupervised Text Style Transfer

C.1 Experiment Setup

We use OPT-125m (dim(&) = 768, |V| = 50272)
as our backbone of policy-LM, and prompt length
is 5 over all experiments. The reward scale (1/«)
is 2 and |Z| is 40271. Our experiments follow the
suggested setting of text style transfer task in (Deng
et al., 2022). Dataset Statistics Yelp (Shen et al.,
2017) contains 266K positive and 177K negative
reviews for training, 38K and 25K for validation,

3https://github.com/YuxinWenRick/hard-prompts-made-

easy
“https://github.com/mingkaid/rl-prompt
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Figure 4: Training curve between PIN (ours) and RLPrompt. For each of the 5 few-shot training sets, 3 experiments
were conducted. The graph depicts the average reward over the validation sets with standard error shading.

and 76K and 50K for testing, respectively. We
perform evaluation on a separate dataset consisting
of 500 reviews for each sentiment, with reference
outputs collected by Li et al. (2018).

C.2 Reward

Given input text x, the goal of this task is to gener-
ate output y that not only preserves the information
from « but also aligns with the desired style, de-
noted by s. To quantify the success in achieving
these objectives, we define the task reward as a
simple sum of content preservation and target style
intensity, described formally below:

R(x,y,s) = Content(x,y) + Style(y, s)
We implement our content preservation reward us-

ing its CTC metric (Deng et al., 2021), which
measures the bi-directional information alignment

between input  and output y. For the style re-
ward, we compute the target style probability under
a BERT-base-uncased classifier learned from the
training data.

C.3 Baselines

For RLPrompt, we set the reward scale (1/«) to
80 and using top-50 sampling based on Q-values
from learned Q-network as the suggestion in the
origin paper. We evaluated performance using five
different evaluation metrics. ‘Content’ is the de-
gree of content preservation between input text and
output text based on Deng et al. (2021). ‘Style’ is
measured by fine-tuned style classifiers, and ‘flu-
ency’ is assessed by a grammatical acceptability
classifier (Krishna et al., 2020). Additionally, we
calculate a joint sentence-level score (J) across test
dataset, following Krishna et al. (2020), and the
geometric mean (GM) of the three aspects score.
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Figure 5: Training curve between our PIN method and RLPrompt over various task models (e.g. OPT-125M /
350M / 1.3B). For each dataset, specifically for sentiment style transfer including negative-to-positive (0 to 1) and
positive-to-negative (1 to 0), 4 experiments were conducted with different seeds. The graph depicts the average

reward on the validation set with standard error shading.

C.4 Learning Curve

Figure 5 shows the average reward for the learned
prompt on the validation dataset during training. It
demonstrates that our algorithm outperforms RL-
Prompt across all dataset and task models, with
the exception of the positive-to-negative case on
OPT-125M task LM.

D Textual Inversion from Images

D.1 Experiment Setup

We use OPT-350m (dim(€) = 1024, |V| = 50272)
as our backbone of policy-LM, and prompt length
is 8 over all experiments. The reward scale (1/a)
is 1 and |Z| is 30271 (k = 20000). PIN-no-fluency
use the same reward scale (1/«). For image gener-
ation, Stable Diffusionv2 (Rombach et al., 2022) is
utilized. In the configuration of Stable Diffusion-
v2, we set the guidance scale to 9 and the number
of inference steps to 25.

D.2 Reward

We use the Clip Score as a reward. Formally, given
an image encoder function f : X — &' for a
target image € A& and a text encoder function
g : Z — & for prompt z € Z, where £ denotes
the shared embedding space in VLMs, we define
reward function as the cosine similarity between
two vectors f(x) and g(z).

D.3 Baselines

RLPrompt and RLPrompt-fluency For RL-
Prompt and RLprompt-fluency, we set the reward
scale () as 80. This variant of RLPrompt incorpo-
rates an additional sampling strategy during data

collection. Similar to our algorithm, RLPrompt-
fluency selects from the top-k tokens that exhibit
high logits in W™e;. Deng et al. (2022) also in-
vestigated this technique in the paper. In our ex-
periments, we investigated various settings for &,
specifically & € {256, 1024, 10000, 20000}. The
performance outcomes for each value k are de-
picted in Figure 6(b). We observed that a rel-
atively small value of k (e.g. 256) restricts the
search space, thereby hindering the discovery of
optimal hard prompts. Our finding was that the
most proper hyperparameter was k£ = 10000. Be-
yond this point, we show a performance degra-
dation, likely attributable to issues arising from
Section 4.1. It is noteworthy that while our algo-
rithm uses £ = 20000 in this task, the use of this
value in RLPrompt-fluency did not yield the best
results. This discrepancy suggests that our algo-
rithm is more proficient in estimating Q-values and
exploring a larger token space. We set k = 10000
over datasets for Figure 1 in this algorithm.

RLPrompt-RB RLPrompt-RB, in our experi-
ments, predominantly exhibited failure in training.
We conducted experiments on various settings for
the value of reward-scale (i.e. 1/a). The results
are depicted in Figure 6(a). We set reward-scale as
20 over datasets for this algorithm in Figure 1.

RLPrompt-RB-fluency RLPrompt-RB-fluency
incorporates a selective sampling strategy during
data collection, as described in RLPromopt-fluency.
Specifically, this variant samples only from the
top-k tokens, subsequently storing them in
the replay buffer D. In our experiments, we
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and, (c) Analysis on fluent top-k in RLPrompt-RB-fluency.

Given the target image, the caption representing this
image is determined using textual inversion from
the CLIP model. Please perform the following two
tasks and provide the only rate without detailed
explanation:

Tasks:

(1) Rate the Relevance of the caption to the target
image on a scale from 1 (worst) to 5 (best).

(2) Evaluate the caption’s Interpretability as a
human-readable description on a scale from 1 (worst)
to 5 (best).

Image: {Target Image}
Caption: {Prompt}

Figure 7: The template for human-like evaluation to
score relevance and interpretability of the hard prompts.
We utilized GPT-4V APIs.

explored a range of settings for k, specifically
k € {256,1024,10000,20000}. The impacts
of these different k£ values on performance are
presented in Figure 6(c). Our observations revealed
that a smaller value of k, such as 256, yields
the best results. Conversely, as the number of &
increases, we noted a trend towards instability in
the training process. This phenomenon is discussed
in Section 4.1. Thus, we set hyperparameter, k as
256 over datasets for this algorithm in Figure 1.
The reward scale (1/«) is 20.

D.4 Human-like Evaluation

We select prompts that achieve the highest Clip
Score during the training in both PEZ and PIN
algorithms. These selected prompts are then eval-
vated in GPT-4V using the template provided in
Figure 7.

E Qualitative Examples

We provide the learned hard prompts by PIN and
baselines for few-shot text classification task in
Table 4. In textual inversion from images tasks,
to visually demonstrate the impact of learned hard
prompts, we have generated images based on them
using a CLIP-based model. Figures 8, 9, and 10
showcase these images.

F Ethics Statement

We are aware of the potential for misuse, partic-
ularly in scenarios where the algorithm could be
manipulated to favor the generation of biased or
toxic content by aligning rewards with the toxicity
level of the output.
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Dataset
Instruction

Manual prompt

SST-2

In this task, you are given sentences from movie reviews. The task is to classify a sentence as “great” if the sentiment
of the sentence is positive or as “terrible" if the sentiment of the sentence is negative.

[x] It was [MASK].

RLPrompt  [x] o overall downright just downright [MASK].
PEZ [x] positive positive!)<s> [MASK].
PIN  [x] This language delivery feels consistently [MASK].
Dataset  Yelp P.
Instruction  In this task, you are given Yelp reviews. The task is to classify a review as “great" if the overall sentiment of

Manual prompt

the review is positive or as “terrible" if the overall sentiment of the review is negative.
[«] It was [MASK].

RLPrompt  [«] thoroughly... Absolutely downright Absolutely [MASK].
PEZ [z] He collection murderous big Faculty [MASK].
PIN  [«] Overall absolutely utter complete absolutely [MASK].
Dataset MR
Instruction  In this task, you are given sentences from movie reviews. The task is to classify a sentence as “great" if the sentiment

Manual prompt

of the sentence is positive or as “terrible" if the sentiment of the sentence is negative.
[2] It was [MASK].

RLPrompt  [x] y overall downright just generally [MASK]
PEZ [x] <s>positive positive pharmac restores [MASK].
PIN  [«] Total grade absolutely utterly totally [MASK].
Dataset CR
Instruction  In this task, you are given sentences from customer reviews. The task is to classify a sentence as “great"
if the sentiment of the sentence is positive or as “terrible” if the sentiment of the sentence is negative.
Manual prompt  [x] It was [MASK].
RLPrompt [x] e pretty downright just downright [MASK].
PEZ [x] <s>immigrant positive and<s> [MASK].
PIN [«] Y word its feeling completely [MASK].
Dataset  AG’s News
Instruction  In this task, you are given a news article. Your task is to classify the article to one out of the four topics “World", “Sports",

Manual prompt

“Business", “Tech" if the article"s main topic is relevant to the world, sports, business, and technology, correspondingly.
If you are not sure about the topic, choose the closest option.
[MASK] News: [x]

RLPrompt [MASK]... Mum about V [x]
PEZ [z] Sportsbusiness technology VERY<s> Politics Sports [MASK].
PIN [MASK] news Ed Sherman Staff Interview [x]
Dataset ~ Yahoo
Instruction ~ You are given a passage. Using the information present in the passage, you need to classify it into one of the 10 topics:

Manual prompt

0 - Culture, 1 - Science, 2 - Health, 3 - Education, 4 - Computers, 5 - Sports, 6 - Business, 7 - Music, 8 - Family, 9 - Politics.
Topic [MASK]: [x].

RLPrompt  [x] ever people nowadays why some [MASK]
PEZ [x] grow neurological the cricket Swift [MASK]
PIN  [«] to under On Most About [MASK]
Dataset  Subj
Instruction  In this task, you are given sentences from reviews. The task is to classify a sentence as “subjective”

Manual prompt
RLPrompt
PEZ

PIN

if the opinion of the sentence is subjective or as “objective" if the opinion of the sentence is objective.
[x] It was [MASK].

[2] quickly ultimately already four immediately [MASK]

[x] <s> organizationally crimson contexts [MASK].

[x] Daniel is however already is [MASK]

Table 4: Hard prompts that learned by RLPrompt, PEZ, PIN, and Manual instructions following natural instruc-
tions (Mishra et al., 2022).
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Figure 8: Generated images using learned hard prompts (bottom) through Stable Diffusion-v2 (Rombach et al.,
2022) for a given target image (left).
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Figure 9: Generated images using learned hard prompts (bottom) through Stable Diffusion-v2 (Rombach et al.,
2022) for a given target image (left).
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Figure 10: Generated images using learned hard prompts (bottom) through Stable Diffusion-v2 (Rombach et al.,
2022) for a given target image (left).
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