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Abstract

While the neural transducer is popular for on-
line speech recognition, simultaneous speech
translation (SST) requires both streaming and
re-ordering capabilities. This paper presents
the LS-Transducer-SST, a label-synchronous
neural transducer for SST, which naturally
possesses these two properties. The LS-
Transducer-SST dynamically decides when
to emit translation tokens based on an Auto-
regressive Integrate-and-Fire (AIF) mechanism.
A latency-controllable AIF is also proposed,
which can control the quality-latency trade-
off either only during decoding, or it can be
used in both decoding and training. The LS-
Transducer-SST can naturally utilise monolin-
gual text-only data via its prediction network
which helps alleviate the key issue of data spar-
sity for E2E SST. During decoding, a chunk-
based incremental joint decoding technique is
designed to refine and expand the search space.
Experiments on the Fisher-CallHome Spanish
(Es-En) and MuST-C En-De data show that
the LS-Transducer-SST gives a better quality-
latency trade-off than existing popular methods.
For example, the LS-Transducer-SST gives a
3.1/2.9 point BLEU increase (Es-En/En-De)
relative to CAAT at a similar latency and a
1.4 s reduction in average lagging latency with
similar BLEU scores relative to Wait-k.

1 Introduction

Simultaneous speech translation (SST) generates
translations from input speech in a streaming fash-
ion. Conventional cascaded SST performs stream-
ing automatic speech recognition (ASR) followed
by text-based simultaneous machine translation
(Figen et al., 2007). Recently, end-to-end (E2E)
SST has become popular and has advantages, in-
cluding lower latency (Ren et al., 2020; Ma et al.,
2020c). However, E2E SST is challenging since
it requires taking into account word re-ordering
between source and target languages during the

streaming process (Chang and Lee, 2022). Neural
transducers, the dominant model for low-latency
ASR, find this difficult due to their monotonic na-
ture. Furthermore, E2E training results in severe
data sparsity (Bentivogli et al., 2021).

Current SST methods are normally based on the
Transformer (Vaswani et al., 2017) attention-based
encoder-decoder (AED) structure, which isn’t nat-
urally able to deal with streaming, as noted by Xue
et al. (2022). A popular approach to adapt the
AED to SST is the Wait-k policy (Ma et al., 2020c¢),
which is a fixed read-write policy that uses a fixed
number of wait duration steps before translation.
However, it can be too aggressive or conservative
in different cases (Zheng et al., 2020). Alternative
methods involve a flexible policy which lets the
model decide how much input to read before gener-
ating the next translation token (Polék et al., 2023),
such as monotonic multi-head attention (MMA)
(Ma et al., 2020b) and Continuous Integrate-and-
Fire (CIF) (Dong and Xu, 2020) based SST system.
However, these flexible policies normally rely on a
latency loss to adjust the quality-latency trade-off
at training, unlike the fixed Wait-k policy that can
control latency at decoding only.

To better address the challenges of E2E SST, this
paper adapts the label-synchronous neural trans-
ducer (Deng and Woodland, 2023) developed for
ASR to SST and denotes the resulting technique
the LS-Transducer-SST. In the LS-Transducer-SST,
an Auto-regressive Integrate-and-Fire (AIF) mech-
anism uses accumulated frame-level weights to
dynamically determine when to emit translation
tokens, based on which a label-level target-side en-
coder representation is extracted auto-regressively
using an attention mechanism. Therefore, the LS-
Transducer-SST is naturally equipped with both
streaming and re-ordering capabilities. In addition,
the prediction network of the LS-Transducer-SST
works as a standard language model (LM) as its
output is directly combined with the extracted en-
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coder representation at the label level. As a bene-
fit, the E2E SST data sparsity issue can be allevi-
ated because the prediction network can effectively
utilise monolingual text-only data, which is nor-
mally easy to collect, for tasks such as pre-training
or text-based adaptation. While the standard AIF
theoretically ensures low-latency output for the
LS-Transducer-SST, to better control the quality-
latency trade-off, a latency-controllable AIF is pro-
posed, which controls the latency by adjusting the
decision threshold of the accumulated frame-level
weights. Furthermore, the latency-controllable AIF
allows the quality-latency trade-off to be controlled
not only during training but also during decoding,
enabling the LS-Transducer-SST to combine the ad-
vantages of typical fixed and flexible SST policies.
This paper focuses on low/medium-latency scenar-
ios to keep the low-latency advantage of E2E SST.
During decoding, to improve translation quality, a
chunk-based incremental joint decoding is further
proposed to refine and expand the search space.
The proposed LS-Transducer-SST was evaluated
on Fisher-CallHome Spanish (Es-En) and MuST-
C En-De corpora and gave an improved quality-
latency trade-off compared to existing popular SST
methods. The main contributions are summarised
below:

e LS-Transducer-SST, naturally equipped with
streaming and reordering abilities, is proposed
for SST and can help alleviate its data sparsity.

* A latency-controllable AIF is proposed to con-
trol the latency during decoding effectively.

* A chunk-based incremental joint decoding is
proposed to expand the search space.

» Extensive experiments were conducted. Our
code bridges the ESPnet and Fairseq toolkits
and will facilitate future research'.

2 Related Work

2.1 Label-synchronous Neural Transducer

The standard neural transducer (Graves, 2012) is
a frame-synchronous model, which operates on a
frame-by-frame basis and uses blank tokens to aug-
ment the output sequence. However, blank token
prediction is inconsistent with the LM task, which
means the prediction network doesn’t operate as a
standard LM and cannot effectively utilise text data
(Chen et al., 2022). The label-synchronous neu-

!The code is available at: https://github.com/D-Keqi/
LS-Transducer-SST

ral transducer (Deng and Woodland, 2023) intro-
duces an Auto-regressive Integrate-and-Fire (AIF)
mechanism, which extracts label-level encoder rep-
resentations that are directly combined with the
prediction network at the label level. Therefore,
the operation becomes label-synchronous and the
prediction network is consistent with the LM task.
To be more specific, AIF learns frame-level
weights (a1,---,ar) for each encoder output
frame E = (eq,---,er). To generate the i-th
output unit, the weight ¢ is accumulated from left
to right until it exceeds ¢, and then the time step of
this located boundary is denoted as 7;+1. Hence,
AIF estimates a monotonic alignment for streaming
ASR. With this located boundary, the label-level
representation h?if is extracted using dot-product
attention with Elsz as the keys and values:

h?if = softmax(q; - El:TiT) -Ev1, (D

where the query g; can be the prediction network
intermediate output. Suppose hfred is the output
of the prediction network which normally has the
same structure as a Transformer LM, the joint net-
work combines h?if and hfred at the label level and
computes the predicted logits I; as follows:

l; = FC(h#'") + FC(RP™) 2

where FC denotes a fully-connected network that
maps the dimension to the vocabulary size. Since
the 1; has the same length as the target sequence,
the cross-entropy loss can be used as the training
objective. In addition, a connectionist temporal
classification (CTC) loss is also computed by the
encoder to improve model training.

In ASR decoding, streaming joint decoding is
used that also considers an online CTC prefix score,
which is modified to be strictly synchronised with
the AIF alignment.

2.2 E2E Simultaneous Speech Translation

For E2E simultaneous speech translation (SST),
the fixed Wait-k (Ma et al., 2020c) policy is still
the most popular approach (Chang and Lee, 2022).
While adopting this fixed policy, there are several
studies that try to improve the “pre-decision” pro-
cess, including using CTC (Ren et al., 2020; Zeng
et al., 2021) and the Continuous Integrate-and-Fire
(CIF) mechanism (Dong et al., 2022).

However, a flexible policy in which decisions to
emit translation tokens is made on the fly, is de-
sirable for simultaneous translation (Zheng et al.,
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Figure 1: Illustration of the proposed LS-Transducer-
SST. Linear denotes a linear classifier. Target-side CTC
uses translations in the training objective computation.

2020). A typical flexible policy is monotonic multi-
head attention (MMA) (Ma et al., 2020b), however,
Chang and Lee (2022) noted its complex training
techniques and proposed a flexible method CIF-IL,
in which CIF is used directly to estimate when to
output a translation token instead of being used as
a pre-decision module. Given that CIF is a mono-
tonic method with limited re-ordering capabilities,
a Transformer decoder is built on top of the CIF out-
put, in which infinite lookback (IL) cross-attention
attends to the previous CIF output. However, CIF
suffers from mismatched testing and training.

Xue et al. (2022) directly explored using a stan-
dard neural transducer for the SST task. However,
the standard neural transducer suffers from lim-
ited re-ordering capabilities due to its monotonic
alignment (Liu et al., 2021). To address this, the
CAAT technique (Liu et al., 2021) augments it
with cross-attention to remove the strong mono-
tonic constraint, but leads to the exacerbated issue
of using large memory during training. Similarly,
(Tang et al., 2023) combined the Transducer and
AED (TAED) by using the AED decoder as the
prediction network for the Transducer. However,
during training, the number of forward computa-
tions for the AED decoder needs to increase in pro-
portion to the length of input speech. CAAT and
TAED, to keep the streaming property while han-
dling re-ordering, complicate the training due to the
frame-synchronous nature, which is an important
difference from our label-synchronous approach.

Recently, several papers (Liu et al., 2020; Papi
et al., 2023a,b) used offline-trained AED models
for SST inference. Local Agreement (LA) (Liu
et al., 2020) generates two consecutive hypotheses
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Figure 2: Illustration of latency-controllable AIF. ¢ de-
notes the time step. « is the frame-level weight. The
black solid line shows when the tokens are emitted un-
der standard AIF; the red dotted line illustrates the case
when the AIF decision threshold is increased by 1.

and takes agreeing prefixes as the stable hypothesis.
Papi et al. (2023a) noted that this strategy affects
latency and proposed to use encoder-decoder atten-
tion (EDATT) to decide when to emit translations.

However, here we focus on low and medium-
latency scenarios. Since the offline-trained models
have a more serious mismatch when decoding with
low and medium latency, here we focus on training
models in a streaming manner.

3 Proposed Method: LS-Transducer-SST

The LS-Transducer-SST, as shown in Fig. 1, has
four key components: encoder, AIF, prediction
network, and joint network. The encoder and
AIF extract label-level target-side representations
(R ... h3l) from the source-language speech
in a streaming fashion, while AIF controls the time
steps at which the representations are emitted.

In addition, the prediction network is an auto-
regressive structure, e.g. Transformer LM structure,
which generates representations (hY™? ... hP™®)
based on previous translation tokens. Since the rep-
resentations obtained from AIF and the prediction
network have the same length, the joint network
can directly add the logits obtained from them us-
ing linear fully-connected layers, and the prediction
network performs as an explicit LM.

Hence, the output of the LS-Transducer-SST is
a 2-dimensional matrix R (V is the vocabulary
size), which can use a cross-entropy loss computed
with target translations for training and resolve the
issue of expensive training for the standard neural
transducer, whose output is a 3-dimensional tensor.

3.1 Latency-controllable AIF

In the LS-Transducer-SST, AIF computes frame-
level weights (aq, - - -, ar) for each encoder out-
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Figure 3: Illustration of the proposed chunk-based incremental joint decoding. (a) an illustration of the chunk-based
mask; (b) an example of the chunk-based incremental pruning according to the accumulated AIF weights 3 «, in
which the chunk size is 7, the beam size is 2 within a chunk, the decision threshold of the i-th output 3 is i.

put frame E = (eq, - - -, er) to dynamically decide
how much input to read before emitting the next
translation token giving a flexible policy. Follow-
ing (Deng and Woodland, 2023), the last element
et,q of each frame e; was used as the raw scalar
attention value to compute «;. To mitigate overly
sharp weights, this paper proposes a smoothing
process to compute the weights using a smoothing
factor ¢ as follows:

a; = (1 —6) x sigmoid(etq) + 6 3)
where d is the dimension size of e;. To decide
when to emit the i-th translation token, o is ac-
cumulated from left to right until it exceeds the
decision threshold 7, as shown in the black solid
line of Fig. 2. Suppose this time step is T;+1, Eq.1;
is used to extract h?f. Note if the decision thresh-
old has not been reached until all the speech has
been read, T; = T, i.e. the entire E is used to ex-
tract the h?if. To help AIF learn this cross-lingual
speech-text alignment, a target-side CTC branch
is computed which can encourage the Transformer
encoder to re-order the output according to the
target translation sequence (Chuang et al., 2021;
Deng et al., 2022). Furthermore, a quantity loss
Laua = | 2?21 a; — L| is computed to ensure that
the accumulated AIF weight ZiT:1 «; approaches
the target translation token length L.

After obtaining the output time step 7}, in con-
trast to (Deng and Woodland, 2023) that uses sim-
ple dot-product attention to generate representa-
tions for the ASR task, preliminary experiments
showed that multi-head attention is more effective
for the SST task, so h?if is computed as:

h?if = Multihead—attention(qi, El:Ti , El:Ti) @

where Eq1.7; is used as the keys and values, and
the query q; is the prediction network intermediate
output at the i-th step as shown in Fig. 1.

The AIF mechanism provides a natural approach
to control the latency by adjusting the decision
threshold. In the standard AIF, the decision thresh-
old of the i-th translation token is i. By adding a
hyper-parameter € into the decision threshold, i.e.
1+ €, the quality-latency trade-off can be controlled,
which is called the latency-controllable AIF. As
shown in Fig. 2, the red dotted line represents the
case of € = 1, in which more input speech will be
read before deciding to output the ¢-th translation
token, thus the translation quality improves at the
cost of increased latency.

The latency-controllable AIF has many advan-
tages over conventional E2E SST systems. First,
it only uses one hyper-parameter € to achieve fine-
grained latency control and can meet any latency
requirements, because € is not limited to integer
values. Compared to the fixed Wait-k policy (Ma
et al., 2020c) that normally needs to set two hyper-
parameter values, including the pre-decision ratio
and k, the latency-controllable AIF is easier to tune.
Second, in contrast to a typical flexible policy? that
uses a latency loss to control the quality-latency
trade-off during training (Ma et al., 2020c; Chang
and Lee, 2022), the latency-controllable AIF can
control the latency at decoding time while only
requiring a single trained model.

3.2 Chunk-based Incremental Joint Decoding

For the ASR task, the label-synchronous neural
transducer (Deng and Woodland, 2023) is decoded
based on beam search. However, for the SST task,

2We note some flexible policies applied to offline-trained
models (Papi et al., 2023a,b) can control latency in decoding.
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beam search re-ranks the top hypotheses while read-
ing the input speech, making it hard to process the
translation results and evaluate the latency. Hence,
this paper proposes chunk-based incremental joint
decoding, which prunes the hypotheses to the same
prefix within a chunk. The chunk-based stream-
ing Transformer is reviewed in this section before
describing chunk-based incremental pruning.

3.2.1 Chunk-based Streaming Transformer

This paper uses the Chunk-based (Li et al., 2020)
Transformer encoder to achieve streaming, which
uses a chunk mask to limit the range of query-key
dot products for each frame within the Transformer
self-attention. As shown in Fig.3, the chunk mask
allows the query to be computed only with the keys
from the current and previous (history) chunks.

3.2.2 Incremental Pruning within Chunk

Since the emitted translation tokens inside a chunk
actually all correspond to the same chunk speech
duration, in order to expand the search space with-
out adding extra latency, beam search can be used
within a chunk while selecting only the highest-
scoring hypothesis after outputting the last token
of this chunk. However, it is not always feasible to
know whether a token is the last one in a chunk, i.e.,
to know in advance if the speech input required for
the next token will exceed the range of this chunk.

In the LS-Transducer-SST, the AIF mechanism
uses frame-level weights « to decide whether to
output a translation token or not, so comparing the
accumulation of frame-level weights up to the cur-
rent chunk with the decision threshold of the next
translation output token, it can be confirmed if a
token is the last one in a chunk. As shown in the ex-
ample in Fig. 3, the accumulated weights ZEI oy
up to the first chunk is 2.3, so in the standard AIF

case, when outputting the second token y]@) (j can
bee.g. 1,---,4in Fig. 3), it is known that the de-
cision threshold for the next token (i.e. 3) cannot
be reached within this chunk. Hence, pruning is
required when emitting the 2nd translation token,
i.e. only the highest-scoring hypothesis is kept. A

similar situation occurs with the 5th token in Fig. 3.

3.3 Training

During training, as mentioned in Sec. 3, the LS-
Transducer-SST uses the cross-entropy (CE) loss
Lcw as the training objective since the joint net-
work output is a 2-dimensional matrix. In addition,
a target-side CTC branch and the AIF quantity loss

Lqua are also computed. Hence, the final training
objective of the LS-Transducer-SST is as follows:

L= BECTC + (1 - B)£CE + ')/Equa -L (5

where L is the target translation token length as
Lqua is a sentence-level loss. 3 is the target-side
CTC weight and 7 is the weight of the Lgya.
Since the LS-Transducer-SST prediction net-
work works as a standard LM, it can be initialised
by a pre-trained target-language LM before SST
training. If an unseen domain is encountered during
decoding, target-language target-domain text can
be used to fine-tune the prediction network, giving
flexible domain adaptation. Since monolingual text
is normally easy to collect, the LS-Transducer-SST
can help alleviate data sparsity issues in E2E SST.

3.4 Summary

In summary, this paper enhances the re-ordering
capability of the label-synchronous neural trans-
ducer by introducing a target-side CTC branch,
enabling AIF to decide when to emit translation to-
kens in SST tasks. A chunk-based incremental joint
decoding is proposed to meet SST requirements,
which prunes hypotheses within a chunk while
expanding the search space. To flexibly control
the quality-latency trade-off, a latency-controllable
AITF is proposed that can be used at the decoding
stage. With these contributions, the LS-Transducer-
SST becomes a natural SST method combining
the advantages of typical fixed and flexible SST
policies.

4 Experimental Setup
4.1 Dataset

SST models were trained on the Fisher-CallHome
Spanish (FCS) (Post et al., 2013) and MuST-C v1.0
(Di Gangi et al., 2019) English-German (En-De)
datasets. The dev/test sets of Europarl-ST (Iranzo-
Sanchez et al., 2020) Spanish-English (Es-En) were
used as cross-domain test sets for the FCS corpus.
The monolingual source-domain text-only data for
FSC was the training set English translations and
Fisher (Cieri et al., 2004) transcriptions. For the
MuST-C En-De, the training set German transla-
tions and German text from TED2020 (Reimers
and Gurevych, 2020) were used. The English text
from Europarl-ST was used as the target-domain
text. More data details are listed in Appendix A.
SST Experiments were implemented based on
the ESPnet-ST (Inaguma et al., 2020) toolkit. To
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SST Models on FCS Corpus | test |evltest| AL(s)| Latency
ESPnet(Inaguma et al., 2020) |50.9| 19.4 Offline
Fast-MD(Inaguma et al., 2021)(54.4| 21.3 Offline
B-AED (Deng et al., 2022) 47.7| 153 |3.434 High
Wait-5 w/ 360 ms pre-decision [48.9| 19.9 |2.129 High
Wait-4 w/ 360 ms pre-decision |48.1| 20.2 |2.073 High
Wait-3 w/ 360 ms pre-decision |46.8| 19.1 |1.710 Medium
“Wait-3 w/ 280 ms pre-decision |42.0| 17.0 |1.388 Medium
1.254 Medium

Wait-1 w/ 280 ms pre-decision |35.2| 15.4
1.166 Medium

Wait-3 w/ 200 ms pre-decision |28.7| 13.1

Wait-1 w/ 200 ms pre-decision [25.2| 12.5 |{0.987 Low
CIF-IL with A\jq: = 0.0 33.1| 13.6 | 1.103 Medium
CIF-IL with A\jq¢ = 0.5 30.3| 12.6 [{0.942 Low
CAAT 447\ 17.7 10.965 Low
Standard Neural Transducer [37.9| 12.0 | 1.443 Medium
Proposed LS-Transducer-SST [46.3| 20.1 |0.759 Low
with € = 1 in AIF 47.8| 20.8 |0.912 Low
with € = 2 in AIF 49.7| 20.9 |1.089 Medium
with € = 5 in AIF 51.4| 21.2 |1.578 Medium

Table 1: BLEU (1) results on the Fisher-CallHome Span-
ish (Es-En). Case-insensitive BLEU was reported on
Fisher-test (4 references), and CallHome-evltest (single
reference). AL (]) was tested on the CallHome-evltest.
The latency is divided into low, medium, and high re-
gions with thresholds 1, 2, and 4s (Ansari et al., 2020).
This paper focuses on low and medium-latency scenar-
io0s.

evaluate the latency, SimulEval (Ma et al., 2020a)
was used to measure the speech version of the
word-level Average Lagging (AL) (Ma et al., 2018,
2020c). Detokenized BLEU (Papineni et al., 2002)
results are reported to evaluate translation quality.

4.2 SST Model Descriptions

SST models built in this paper have a streaming
wav2vec2.0 (Baevski et al., 2020) encoder®, which
was fine-tuned with a chunk-based mask of 64
chunk size, resulting in 640 ms average latency.
The encoder was first pre-trained for ASR before
SST training (Inaguma et al., 2020). More training
and decoding details can be found in Appendix B.

The proposed LS-Transducer-SST was built
with a 6-layer unidirectional Transformer-encoder-
based prediction network. The prediction network
was initialised by a pre-trained source-domain LM
and then fixed during SST training. Four differ-
ent baseline models were implemented. First, the
widely-used Wait-k fixed policy model was built,
which followed the Transformer AED structure
that contained a 6-layer Transformer decoder. The
quality-latency trade-off of the Wait-k was adjusted
by varying k and the fixed pre-decision step size.

3Note: Section 5.5 has a different setup to aid comparisons.

Second, the flexible policy method CIF-IL (see
Sec. 2.2) which can performs well in low-latency
scenarios (Chang and Lee, 2022) was built with a 6-
layer Transformer decoder. The latency loss from
(Chang and Lee, 2022) was used to control latency
during training with a weight denoted \;y;. Third,
the CAAT (Liu et al., 2021) was built, the predic-
tion network had the same structure as that of LS-
Transducer-SST, and the joint network consisted
of 6-layer Transformer decoder with self-attention
modules removed. Note that knowledge distilla-
tion used in (Liu et al., 2021) was not employed
in the Main Experiments in this paper in order to
compare fairly with other specifically built models.
The decision step size d was set to 32.* Finally,
a standard neural transducer was built with the
same prediction network as the CAAT.

4.3 LM and Text Adaptation

The source-domain Transformer LM was trained
on the monolingual source-domain text-only data
for 50 epochs and further fine-tuned on the cross-
domain text for 15 epochs as a target-domain LM.
If a density ratio (McDermott et al., 2019) was used
for domain adaptation, the weights for the source-
domain and target-domain LMs were 0.3. When
conducting text-only domain adaptation for the LS-
Transducer-SST, the prediction network was fine-
tuned on the cross-domain text for 25 epochs.

S Experimental Results

The LS-Transducer-SST was compared to fixed
and flexible policy models. To maintain the low-
latency advantage of E2E SST, we focus on the low
and medium latency scenarios, i.e. AL < 1 s and
1s < AL < 2 s following (Ansari et al., 2020).

5.1 Main Experiments

Table 1 gives the SST results on Fisher-CallHome
Spanish (FSC) data, on which our models yield
good results compared to recent work. For the
popular Wait-k model, a large pre-decision step
(e.g., 280 ms or 360 ms in Table 1) is important to
achieve promising translation quality, which makes
it suitable for medium or high-latency scenarios
while performing poorly when low-latency. In con-
trast, the flexible policy CIF-IL outperformed the
Wait-k model in low-latency scenarios. In addition,
the standard neural transducer didn’t work well
on the SST task due its monotonic constraint and

*Appendix B explains the reasons to set d to a fixed value.
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SST Models COMMON HE |AL(s)|Latency SST Models FCS FCS=-Europarl
Wait-k (Yan et al., 2023) 18.6 -] 6.8 — evltest AL(s) | test | dev | AL(s)
TBCA (Yan et al., 2023) 23.5 - | 2.3 | High Wait-5 with 360 ms | 19.9 2.129 | 94 | 10.6 | 4.603
MoSST(Dong et al., 2022) 20.0 - |2.742| High +Density Ratio - - 10.8 | 12.3 | 4.565
Wait-5 with 360 ms 22.5 21.9|12.629| High LS-Transducer-SST | 20.1 0.759 | 10.4 | 11.7 | 0.915
Wait-3 with 360 ms 223  21.12.127| High +Adapt Pred. Net. - - | 12.5]13.8 | 0.863
Wait-3with280 ms | 21.0  18.9/1.638|Medium ++Shallow Fusion | - - | 12.8]14.3] 0931
Wait-1 with 280 ms 20.6 17.8]1.280 [Medium
‘Wait-3 with200ms | 17.0  12.8/1.014Medium  Table 3: Cross-domain BLEU (1) results on Europarl-
Wait-2 with 200 ms 165 11.8/0.881| Low ST Es-En dev/test sets for SST models trained on Fisher-
Wait-1 with 200 ms 16.3  11.2/0.757| Low CallHome Spanish (FCS). Pred. Net. denotes prediction
CIF-IL with A\jq: = 0.0 19.3 18.2|1.354 |[Medium network. AL (]) was tested on the Europarl-ST test set.
CIF-IL with X\;q: = 0.3 18.5 17.210.962| Low
CAAT 20.4 18.9/1.078 |[Medium
LS-Transducer-SST 20.8  19.3/0.715| Low give a competitive translation quality with 1.188 s
with e = 1 in AIF 214 20.0/0.853| Low AL latency, resulting in a 1.44 s AL reduction.
with ¢ = 3in AIF 23.3 21.31.188 Medium Quality-latency trade-off curves corresponding
with ¢ = 5 in AIF 238 2231635 Medium , Tuples | and 2 are shown in Appendix C. Results

Table 2: Case-sensitive BLEU (1) results on MuST-C
En-De. AL ({) was tested on the tst-:COMMON set.
This paper focuses on low and medium-latency regions.

limited re-ordering ability. It tends to accumulate
more information before emitting translations, re-
sulting in medium latency. However, CAAT, which
augments the standard neural transducer with cross
attention to remove the monotonic constraint, yield-
ing good BLEU results in low-latency scenarios,
outperforming the Wait-k and CIF-IL.

While these existing methods showed good re-
sults, the proposed LS-Transducer-SST gave a sig-
nificantly better quality-latency trade-off with the
latency-controllable AIF°. Compared to CAAT, for
similar latency (i.e. AL =~ 0.9s), the LS-Transducer-
SST obtained a 3.1 BLEU gain. Compared to the
best BLEU results for Wait-k in Table 1, the LS-
Transducer-SST gave competitive BLEU results at
0.759 s AL latency (1.37 s AL reduction).

The results on the MuST-C En-De are shown in
Table 2 and the conclusions were consistent with
that of FSC corpus: 1. the Wait-k model worked
well in medium or high-latency regimes while the
CIF-IL surpassed it for low-latency case; 2. CAAT
greatly outperformed the Wait-k and CIF-IL when
AL is around 1 s; 3. the proposed LS-Transducer-
SST yielded an improved quality-latency trade-off
compared with these existing methods. When the
latency was around 1 s AL, the LS-Transducer-
SST outperformed CAAT with a 2.9 BLEU gain.
Compared to the Wait-5 policy with 320 ms pre-
decision step size, the LS-Transducer-SST could

5Note unless specifically stated, the latency-controllable
AIF refers to being used during both training and decoding.

with additional metrics are given in Appendix E.
A visual example in Appendix I.1 illustrates the
re-ordering capability of the LS-Transducer-SST.

5.2 Cross-domain Experiments

The Europarl-ST dev/test sets were used to evaluate
the cross-domain performance of the SST models
trained on FSC data. As shown in Table 3, the
LS-Transducer-SST performed robustly regarding
the latency and translation quality in cross-domain
scenarios. From the source domain (i.e. FCS) to the
cross-domain, the AL result of LS-Transducer-SST
only increased slightly (from 0.759s to 0.915s),
whereas the latency of Wait-k more than doubled
(from 2.129s to 4.603s), since in cross domain, the
number of byte pair encoding (BPE) (Gage, 1994)
units for target translations tends to be relatively
longer than for the source domain as the BPE model
is trained on source-domain text®. For example, on
the evltest set of FSC, each BPE unit corresponds
to an average of 207 ms speech, whereas on the
test set of Europarl-ST, this value is 148 ms. This
shows the robust advantage of the LS-Transducer-
SST as a flexible policy, as the fixed Wait-k policy
tends to be affected by the data distribution. A case
study is shown in Appendix 1.2.

The LS-Transducer-SST exceeded the BLEU
score of Wait-k in cross-domain scenarios, show-
ing its robust generalisation. Moreover, since the
LS-Transducer-SST prediction network operates
as an explicit LM and can directly use target-
language target-domain text for fine-tuning, the
cross-domain BLEU results of the LS-Transducer

®Note the modelling unit is BPE, whose output time step
needs to be mapped to the word level to measure latency.
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Figure 4: Quality-latency trade-off of LS-Transducer-
SST on MuST-C En-De tst-COMMON set. The 5 dots
for the latency-controllable AIF are € € {0, 1, 3,5, 7}.

were further improved with an adapted prediction
network. Even when Wait-k used the density ra-
tio method (McDermott et al., 2019) to subtract a
source-domain LM score and add a target-domain
LM score during decoding for domain adaptation,
there was still a 1.7 BLEU gap with LS-Transducer-
SST, which is more flexible as it does not rely on
an additional external LM. In addition, shallow fu-
sion (Chorowski et al., 2015) can also be used to
further improve the LS-Transducer-SST with the
target-domain LM (see Table 3).

5.3 Analysis of Latency-controllable AIF

Fig. 4 shows the quality-latency trade-off curves of
the LS-Transducer-SST, in which test-time latency-
controllable AIF means using the standard AIF (i.e.
€ = 0) during training and adjusting € only dur-
ing decoding. In general, the latency-controllable
AIF can flexibly and efficiently control the quality-
latency trade-off. While the latency-controllable
AIF with consistent training and decoding per-
formed slightly better than the test-time-only one,
adjusting € only in the decoding stage achieves
similar results, which is important in real-world
deployment as only one model needs to be main-
tained. Hence, as a flexible policy, the proposed LS-
Transducer-SST possesses the advantage of control-
ling the latency during decoding, which is normally
seen in fixed policies like Wait-k.

5.4 Ablation Studies

The LS-Transducer-SST can effectively utilise
monolingual text data by initialising its prediction
network with a pre-trained LM. Ablation studies
were conducted to evaluate the effectiveness of this
initialisation. As shown in Table 4, the prediction
network initialisation was highly effective for the

MuST-C En-De
SST Models COMMON HE AL(s)
CAAT 204 18.9 | 1.078
w/ pre-trained pred. net. 18.1 16.5 | 1.068
LS-Transducer-SST 20.8 19.3 | 0.715
w/o pre-trained pred. net. 19.3 18.3 | 0.704

Table 4: BLEU (1) results for CAAT and LS-Transducer-
SST on MuST-C En-De with or without prediction net-
work (abbreviated as pred. net.) pre-training.

LS-Transducer-SST and was essential to surpass
existing methods like CAAT. The monolingual text-
only data is normally easier to collect, which can
help alleviate E2E SST data sparsity. However,
pre-training the prediction network did not help
for CAAT. This is because the CAAT inherits the
frame-synchronous property from the standard neu-
ral transducer, in which the prediction network is
inconsistent with the LM task (Chen et al., 2022).
Ablation studies on chunk-based decoding and
multi-head attention for AIF are in Appendix D.

5.5 Comparisons to Recent Work

To enable further comparisons, the TAED results
from (Tang et al., 2023), the CAAT results from
(Liu et al., 2021) and (Papi et al., 2023a), and the
EDATT, LA, and Wait-k results from (Papi et al.,
2023a) were compared to the LS-Transducer-SST
in the low/medium-latency scenarios that is our fo-
cus. To allow a fair comparison, in contrast to the
Main Experiments, a streaming Conformer (Gu-
lati et al., 2020) encoder was employed in the LS-
Transducer-SST, and sequence-level knowledge
distillation (KD) (Kim and Rush, 2016) used’. De-
tailed training settings are given in Appendix G.
As shown in Fig. 5, CAAT shows good results
in the low-latency region, while TAED performs
well around 1.4 s. In general, CAAT and TAED
inherit the neural transducer low-latency advan-
tage, which also motivates our work. However,
the translation quality does not always improve
with higher latency for CAAT and TAED. As la-
tency continues to increase, the mismatch with the
offline case reduces, and strategies that use offline-
trained models for SST inference, like EDATT, be-
gin to surpass other published results. However,
LS-Transducer-SST (solid blue line in Fig. 5) still
outperforms other models in both low and medium-
latency regions (up to an AL of about 1.7 s). Fig. 5
also shows that a wav2vec2.0 encoder gives fur-

"Note only Section 5.5 uses the Conformer and KD
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Figure 5: Quality-latency trade-off curves on MuST-C
En-De tst-=COMMON set. Solid lines are comparable
with technique results from the literature. Dotted line in-
dicates the use of wav2vec2.0. All results use sequence-
level KD in training.

ther performance benefits. Online training is es-
pecially useful in lower latency operation and the
LS-Transducer-SST is able to effectively adjust
the quality-latency trade-off. Numerical values for
Fig 5, along with the additional LAAL metric, are
given in Appendix H.

6 Conclusions

This paper proposes the LS-Transducer-SST, which
naturally possesses streaming and re-ordering capa-
bilities. By introducing the target-side CTC branch,
the re-ordering capability of the label-synchronous
neural transducer is enhanced and thus the AIF
mechanism can be used for SST. Therefore, the LS-
Transducer-SST is a flexible policy method that dy-
namically decides when to emit translation tokens
using the AIF. A latency-controllable AIF is further
proposed to effectively control the latency at decod-
ing or training, enabling the LS-Transducer-SST to
combine the advantages of typical fixed and flexible
SST policies. In addition, the LS-Transducer-SST
provides a natural way to utilise monolingual text-
only data, which helps alleviate the E2E SST data
sparsity issue. During decoding, a chunk-based
incremental joint decoding is further proposed to
refine and expand the search space. With the focus
on low and medium-latency scenarios, experiments
showed that the LS-Transducer-SST gives a better
quality-latency trade-off than existing methods.

Limitations

This paper focuses on low-latency and medium-
latency scenarios to maintain the low-latency ad-
vantages of E2E SST models, although some high-
latency results are also shown. To explore solu-
tions for high-latency SST, a comparison against
cascaded SST systems is worthwhile. However, in
real-world deployment, the cascade SST system
normally has more available training data than the
E2E SST system, such as machine translation and
ASR data. The appropriate experimental setup to
simulate this real deployment scenario and reason-
ably compare different SST systems is not straight-
forward, which is regarded as future work.

Sequence-level knowledge distillation (KD),
which uses a neural machine translation model to
generate pseudo target text given source text paired
with source speech and augments the original data
with it (Kim and Rush, 2016), was not used in the
Main Experiments (it is used in Section 5.5 to allow
a close comparison with results from the literature).
The reasons are as follows: firstly, this technique
requires the source text, i.e. the ASR transcripts,
which are not necessarily always available. Sec-
ondly, we use the ESPnet-ST toolkit, in which this
KD is not the default setting and in general we have
followed the standard ESPnet-ST recipes. Thirdly,
this method will double the data size, requiring
twice the computational resources. This paper im-
plements four different SST methods to compare
with the LS-Transducer-SST, along with adjusting
the quality-latency trade-off, making the experi-
ments computationally expensive. Sequence-level
KD can be regarded as translation data augmenta-
tion and would not be expected to affect the com-
parison between different methods. To verify this,
we selected some key experiments and give the
results after using KD in Appendix F.

Section 5.5 makes further comparisons with re-
cent work from the literature. We have aimed to
make it as close a comparison as possible with the
literature and hence a Conformer encoder trained
on the source speech was used in place of the
wav2vec2.0 encoder used in the Main Experiments
and also all comparisons use sentence-level KD.
However, there are many details which may not be
strictly comparable across different papers. For ex-
ample, the teacher model involved in the sentence-
level KD will in general be different between differ-
ent papers and hence yield different pseudo target
text. Also, some recent papers have not yet released
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their code. Furthermore, even when papers do pro-
vide code, others may not always be able to fully
reproduce the original results (e.g. the two CAAT
results in Fig. 5). We believe that the comparing to
prior published work while attempting to control
the precise experimental conditions in Section 5.5
and Appendix H is the best solution for comparing
to the recent papers cited.

The LS-Transducer-SST has so far been evalu-
ated on two European language pairs in this paper,
each in a single translation direction (i.e. Es-En and
En-De), and while we believe that the technique
can be applied to other languages (including non-
European languages) and translation directions, the
performance has not been verified and is left as
future work.

Ethics Statement

E2E SST systems suffer from data sparsity issues
because speech-translation parallel data is expen-
sive to collect. For under-resourced languages or
domains, this issue will be more severe. This can
result in a poor user experience for minorities, mak-
ing minority views to be under-represented or mis-
understood. The LS-Transducer-SST proposed in
this paper could be beneficial to this concern as it
provides a natural approach to utilise monolingual
text-only data, which is normally easy to collect,
for pre-training and text-based domain adaptation.
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Fisher-CallHome Spanish (FSC) (Es-En)
Domain Spontaneous Conversation
Train set Fisher-train
-Duration 171.6 hours
-English words 1441K
Intra-domain test sets | Fisher-dev /-dev2 /-test | CallHome-devtest / -evltest
-Duration 4.6 /4.7/4.5 hours 3.8 /1.8 hours
-English words (avg) 40K /39K / 39K 38K/ 19K
MuST-C v1.0 En-De
Domain TED Talk
Train set train
-Duration 400.0 hours
-German words 3880K
Test sets tst-COMMON tst-HE
-Duration 4.1 hours 1.2 hours
-German words 44K 10K
Europarl-ST Es-En
Domain European Parliament
Cross-domain test sets dev test
-Duration 5.4 hours 5.1 hours
-English words 53K 51K

Table 5: Statistics of datasets used in this paper

A Statistics

The training and test statistics are shown in Table 5.
The data was pre-processed following standard
ESPnet-ST recipes, in which speed perturbation
was employed with factors 0.9 and 1.1. Following
the ESPnet-ST recipes, raw source speech was used
as input, and 500 and 4000 BPE (Gage, 1994) were
used as the modelling units for FCS and MuST-C
En-De, respectively. Model training was performed
on 4 NVIDIA A100 GPUs each with 80GB GPU
memory. For the Fisher-CallHome Spanish corpus,
each epoch of training took about 26 minutes. For
the MuST-C En-De corpus, each training epoch
consumed about 80 minutes.

B Hyper-parameters and Inference

For the wav2vec2.0 encoder provided by Fairseq
(Ott et al., 2019), "xIsr_53_56k" was used for FCS
data and “wav2vec_vox_new" was used for MuST-
C data. SST training was for 35 and 20 epochs
for FCS and MuST-C En-De, respectively. The
hyper-parameters of the models we built are as fol-
lows, with other hyper-parameters following stan-
dard ESPnet-ST recipes.

LS-Transducer-SST The LS-Transducer-SST
had a 6-layer unidirectional Transformer-encoder-
based prediction network (1024 attention dimen-

sion, 2048 feed-forward dimension, and 8 heads),
resulting in 372.09 M parameters. The 3rd sub-
layer output of the prediction network was used as
the query of the AIF mechanism. ¢ in Eq. 3 was set
to 0.05. B and y in Eq. 5 were respectively set to
0.6 and 0.05. The beam size within a chunk was 10
during the chunk-based incremental joint decoding.

Wait-k The Wait-k model (404.66 M parame-
ters) had a 6-layer Transformer decoder (1024 at-
tention dimension, 2048 feed-forward dimension,
and 8 heads). The decoding process is similar
to the chunk-based incremental decoding of the
LS-Transducer-SST. By counting the fixed pre-
decision step size and the waiting steps k, it is
easy to know whether a token is the last one of a
chunk, i.e., whether incremental pruning is needed.

CIF-IL The CIF-IL model (393.63 M parame-
ters) had a 6-layer Transformer decoder (1024 at-
tention dimension, 2048 feed-forward dimension,
and 8 heads). As explained in Section.2.2, the CIF-
IL used CIF to estimate when to emit translation to-
kens and the 6-layer Transformer decoder was built
on top of the CIF output. The decoding process
was similar to the incremental decoding of the LS-
Transducer-SST because AIF is an improved ver-
sion of CIF, and they both use frame-level weights
to decide when to emit.
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MuST-C En-De
SST Models COMMON HE AL(s)
LS-Transducer-SST 20.8 19.3| 0.715
w/ tail beam search 18.5 17.410.761
w/ greedy search 17.8 16.8] 0.760

Table 6: BLEU (1) results for LS-Transducer-SST with
different decoding methods. Tail beam search means to
use beam search only after reading all the input speech.
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Figure 6: Quality-latency trade-off curves on Fisher-
CallHome Spanish CallHome-evltest set, corresponding
to Table 1.
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Figure 7: Quality-latency trade-off curves on MuST-C
En-De tst-COMMON set, corresponding to Table 2.

CAAT (Liu et al., 2021) chose block-based
streaming Transformer encoder and relied on d
to adjust the quality-latency trade-off. However,
tuning d is not very suitable for the chunk-based
Transformer encoder used in this paper, and prelim-
inary experiments showed that further increasing
d did not improve performance, which was also
reported in (Papi et al., 2022a). Therefore, this
paper only sets d to a fixed value of 32. The at-
tention dimension, feed-forward dimension, and
attention heads of the prediction network and the
joint network were set to 1024, 2048, and 8. The
total parameters are 418.32 M. During decoding,
within each chunk, beam search was used while
chunk-based incremental pruning was performed at
the last token, which is easy to decide as the CAAT
is still a frame-synchronous model.

Standard Neural Transducer Decoding was
based on beam search with chunk-based incremen-
tal pruning. Since the speech is decoded on a per-
frame basis, it’s easy to know whether a token is the
last one of a chunk. The parameters are 369.04 M.

MuST-C En-De
SST Models COMMON HE AL(s)
LS-Transducer-SST 20.8 19.3/0.715
w/ dot-product attention|  20.4 18.8/0.710

Table 7: BLEU (7) for LS-Transducer-SST with multi-
head attention or dot-product attention for the AIF.

C Visualisation: Main Experiments

The quality-latency trade-off curves in Fig. 6 and
Fig. 7 respectively correspond to the results from
Table 1 and Table 2 of the Main Experiments.

D Further Ablation Studies

The results of further ablation studies for the Main
Experiments are included in this section to evaluate
the effectiveness of the chunk-based incremental
joint decoding and the usage of multi-head atten-
tion for AIF.

The results in Table 6 show that using beam
search after reading the whole speech (i.e. tail
beam search) is better than greedy decoding, and
using beam search within each chunk (i.e., chunk-
based incremental decoding) performs the best,
which it is because it more fully utilises the beam
search to widen the search space.

The results in Table 7 show that the multi-head
attention works better than the simple dot-product
attention for the AIF, which is consistent with the
success of the Transformer (Vaswani et al., 2017).

E Expanded Results: Main Experiments

In addition to the AL metric, in this section, the
results from Table 1 and Table 2 in the main exper-
iment are additionally measured using the Length-
Adaptive Average Lagging (LAAL) (Papi et al.,
2022b) metric. As shown in Table 8 and Table 9,
consistent with the findings of (Papi et al., 2022b),
the Wait-k model tends to have similar AL and
LAAL values, indicating a tendency to generate
less compared to other models. Overall, the experi-
mental conclusions are consistent for both metrics.
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SST Models Fisher-test CallHome-evltest | LAAL(s) AL(s) | Latency
Wait-5 with 360 ms 48.9 19.9 2.193  2.129| High
Wait-1 with 200 ms 25.2 12.5 1.072 0987 | Low
CIF-IL with A\j; = 0.0 33.1 13.6 1.244  1.103 | Medium
CIF-IL with )\;;; = 0.5 30.3 12.6 1.083 0.942| Low
CAAT 44.7 17.7 1.103  0.965| Low
Standard Neural Transducer 379 12.0 1.470 1.443 | Medium
LS-Transducer-SST with ¢ = 1 47.8 20.8 1.180 0.912| Low
LS-Transducer-SST with e = 5 51.4 21.2 1.743  1.578 | Medium

Table 8: Case-sensitive BLEU (1) results on the Fisher-CallHome Spanish. LAAL (]) and AL ({) was tested on the
CallHome-evltest. Note that the wav2vec2.0 encoder was used following the main experiment setup.

SST Models COMMON HE |LAAL(s) AL(s) | Latency
Wait-5 with 360 ms 22.5 219| 2.663 2.629| High
Wait-1 with 200 ms 16.3 11.2] 0.852 0.757| Low
CIF-IL with )\;q; = 0.0 19.3 18.2| 1.433 1.354 | Medium
CIF-IL with A\;,; = 0.3 18.5 172 1.081 0.962| Low
CAAT 20.4 189| 1.144 1.078 | Medium
LS-Transducer-SST with e = 1 21.4 20.0| 1.093 0.853| Low
LS-Transducer-SST with e = 5 23.8 22.3| 1.785 1.635 | Medium

Table 9: Case-sensitive BLEU (1) results on MuST-C En-De. LAAL (|) and AL ({) was tested on the tst-COMMON
set. Note that the wav2vec2.0 encoder was used following the main experiment setup.

SST Models Fisher-test CallHome-evltest | AL_CA(s) AL(s) | Latency
CAAT 44.7 17.7 1.691 0.965| Low
LS-Transducer-SST with e = 1 47.8 20.8 1.435 0912 | Low

Table 10: Case-sensitive BLEU (1) results on the Fisher-CallHome Spanish. AL_CA () and AL ({) was tested on
the CallHome-evltest. Note that the wav2vec2.0 encoder was used following the main experiment setup.

SST Models COMMON HE | AL_CA(s) AL(s) | Latency
CAAT 20.4 18.9 1.897 1.078 | Medium
LS-Transducer-SST with e = 3 23.3 21.3 1.882 1.188 | Medium

Table 11: Case-sensitive BLEU (71) results on MuST-C En-De. LAAL (]) and AL () was tested on the tst-
COMMON set. Note that the wav2vec2.0 encoder was used following the main experiment setup.

Furthermore, a computation-aware (CA) met-
ric (i.e. AL_CA) was also considered with A100
GPU. As shown in Table 10 and Table 11, the in-
crease from AL to AL_CA values is smaller for
LS-Transducer-SST than for CAAT, indicating that
LS-Transducer-SST decodes faster.

F Results with Knowledge Distillation

Sequence-level knowledge distillation (KD) (Kim
and Rush, 2016) was not used in the main experi-
ment because this is not the default setting of the
ESPnet-ST toolkit we used and would double the
computational cost. In this section, we select some
key data and show the results of using the KD.

As shown in Table 12, the sequence-level KD
was effective in improving translation quality at
the cost of increased training computation. The
experimental conclusions were consistent with and

without this KD, i.e., CAAT exceeded Wait-k and
CIF-IL when AL was around 1 s, while the pro-
posed LS-Transducer-SST gave both lower AL la-
tency and higher BLEU scores than other systems.

G Training Setting for Section 5.5

A chunk-based streaming Conformer (Gulati et al.,
2020) encoder was built and used only in Sec-
tion 5.5. 80-dimensional filter bank was com-
puted as the input feature which was computed
every 10 ms with a 25 ms window. The speech
features were down-sampled by a factor of 4 via
two causal convolution layers before being fed into
a 12-layer chunk-based streaming Conformer en-
coder, in which the chunk size was 32. There-
fore, the average latency from the chunk-based
encoder was 640 ms, which was the same as the
main experiment. The attention dimension, feed-
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SST Models Sentence-level KD | COMMON HE | AL(s) | Latency
Wait-3 with 280 ms X 21.0 18.9| 1.638 | Medium
Wait-3 with 280 ms v 23.8 20.4 | 1.608 | Medium
CIF-IL with X\;;; = 0.0 X 19.3 18.2 | 1.354 | Medium
CIF-IL with Ay = 0.0 v 218 19.6| 1.060 | Medium
CAAT X 20.4 18.9 | 1.078 | Medium
CAAT v 23.9  225]1.017 | Medium
LS-Transducer-SST with e = 1 X 21.4 20.010.853 | Low

LS-Transducer-SST with e = 1 v 24.6 22.510.921 | Low

Table 12: Case-sensitive BLEU (1) results on MuST-C En-De. AL (]) was tested on the tst-COMMON set. Note

that the wav2vec2.0 encoder was used.

forward dimension and attention heads were set to
512, 2048, and 8. ¢§ in Eq. 3 was set to 0.05 as
in the main experiment but the resulting o was
multiplied by 2, considering that here the frame
stride of the encoder output was twice that of the
main experiment. € was set to {—2,—1,0,1,3}
for the latency-controllable AIF. Sequence-level
knowledge distillation (Kim and Rush, 2016) was
built using the code provided by Liu et al. (2021).

H Numerical Values for Table 5

Numerical values for Fig. 5 are shown in Table 13.
In addition, to AL values shown in Fig. 5, the table
also includes the Length-Adaptive Average Lag-
ging (LAAL) (Papi et al., 2022b) metric.

I Visual Case Study

I.1 MuST-C En-De

A visual example from the MuST-C En-De tst-
COMMON set is given in Fig. 8 to show the
re-ordering capability of the LS-Transducer-SST,
where the LS-Transducer-SST successfully output
“hat nicht nur" that corresponds to the English tran-
scripts “doesn’t just have". Note the chunk size of
the streaming Transformer encoder is 64, which
means a range of 1.28 s.

I.2 Cross-domain Europarl-ST Es-En

A visual case study is given to compare the LS-
Transducer-SST and the Wait-k in the cross-domain
Europarl-ST Es-En test set. As shown in Fig. 9, the
Wait-k model has read the whole speech input from
the first BPE unit, because 18 x 5 x 0.02 =1.8 s
(0.02 s is the frame stride), which is greater than the
1.27 s length of the speech. This is a simple exam-
ple without re-ordering, where the LS-Transducer-
SST always outputs each translation token after
reading the corresponding source-language speech.

SST Models BLEU|AL(s) LAAL(s)
Wait-k 19.6 |1.430 1.530
from (Papi et al., 2023a)| 23.5 [2.000 2.100
LA 19.5 [1.270 1.410
from (Papi et al., 2023a)| 23.1 [1.690 1.790
CAAT 20.3 [0.880 1.020
from (Papi et al., 2023a)| 20.8 [1.320 1.400
20.5 |1.740 1.780
CAAT 20.5 [0.508 —
from (Liu et al., 2021) | 214 |0.814 —
21.8 [1.115 —
222 (1443 —
22.4 11.801 —
EDATT 16.8 [0.880 1.080
from (Papi et al., 2023a)| 19.1 [1.040 1.200
21.6 [1.340 1.460
24.0 |1.740 1.830
TAED 21.6 [1.263 1.411
from (Tang et al., 2023) | 22.6 |1.354 1.530
23.5 |1.370 1.544
23.5 |1.903 2.024
LS-Transducer-SST 21.8 10.778 1.037
(fair comparison with 22.2 10927 1.157
other techniques above) | 23.1 |1.082 1.288
23.7 [1.256 1.437
242 [1.687 1.840
LS-Transducer-SST 23.6 |0.751 1.025
with wav2vec2.0 24.6 10.922 1.159
(unfair comparison with | 25.6 |1.294 1.492
other techniques above) | 26.1 |1.686 1.841

Table 13: Case-sensitive BLEU (7) results on MuST-C
En-De. AL (]) was tested on the tst-COMMON set.
Numeric values corresponding to Fig. 5.5.

Another example in Fig. 10 from the Europarl-ST
Es-En test set contains a re-ordering case (“prob-
lema real" to “real problem"). The LS-Transducer-
SST decided to output the English word “real” until
reading the corresponding source speech.
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Figure 8: An example (377.95s-379.97s segment of “ted_01381” from MuST-C En-De tst-COMMON set) of
LS-Transducer-SST and Wait-k (Wait-1 with 200 ms). The ground-truth transcript of this utterance is “boston
doesn’t just have a call center", while the ground-truth translation is “Boston hat nicht nur ein Call-Center .". The
red arrows denote the time steps of the BPE units predicted by the LS-Transducer-SST. The blue arrows represent
the time steps for the Wait-k model.

Wait-k BPE predictions: (no__,and__, 1,0, __, times__, no__)

LS-Transducer-SST BPE predictions: no__ one__ thousand__ times__ no__
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Figure 9: An example (65.65s-64.38s segment of “en.20110704.25.1-169-000” from Europarl-ST Es-En test set) of

LS-Transducer-SST and Wait-k (Wait-5 with 360 ms). The ground-truth transcript of this utterance is “no y mil
veces no", while the ground-truth translation is “no a thousand times no".
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Figure 10: An example (85.72s-86.93s segment of “en.20100120.5.3-063” from Europarl-ST Es-En test set) of
LS-Transducer-SST and Wait-k (Wait-5 with 360 ms). The ground-truth transcript of this utterance is “es un
problema real", while the ground-truth translation is “it is a real problem".
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