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Abstract

Language Models (LMs) acquire parametric
knowledge from their training process, embed-
ding it within their weights. The increasing
scalability of LMs, however, poses significant
challenges for understanding a model’s inner
workings and further for updating or correcting
this embedded knowledge without the signif-
icant cost of retraining. This underscores the
importance of unveiling exactly what knowl-
edge is stored and its association with specific
model components. Instance Attribution (IA)
and Neuron Attribution (NA) offer insights into
this training-acquired knowledge, though they
have not been compared systematically. Our
study introduces a novel evaluation framework
to quantify and compare the knowledge re-
vealed by IA and NA. To align the results of the
methods we introduce the attribution method
NA-Instances to apply NA for retrieving influ-
ential training instances, and IA-Neurons to dis-
cover important neurons of influential instances
discovered by IA. We further propose a compre-
hensive list of faithfulness tests to evaluate the
comprehensiveness and sufficiency of the ex-
planations provided by both methods. Through
extensive experiments and analysis, we demon-
strate that NA generally reveals more diverse
and comprehensive information regarding the
LM’s parametric knowledge compared to IA.
Nevertheless, IA provides unique and valuable
insights into the LM’s parametric knowledge,
which are not revealed by NA. Our findings
further suggest the potential of a synergistic
approach of combining the diverse findings of
IA and NA for a more holistic understanding
of an LM’s parametric knowledge.

1 Introduction

Language Models encode the knowledge acquired
during training as numeric values within the mod-
els’ weights, transforming raw information from
the training dataset into structured, internal repre-
sentations. This embedding of knowledge, while
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Figure 1: Proposed evaluation framework comparing
Instance and Neuron Attribution methods by examin-
ing most influential training instances xtrain

i and most
important neurons nm, nt, np, . . .. Tests for Sufficiency
(activation of key neurons) and Completeness (suppres-
sion of the activation of key neurons) – bottom left,
alongside fine-tuning with influential training instances
– bottom right, assess the attribution methods’ fidelity to
the model’s mechanisms.

fundamental to an LM’s functionality, renders the
model’s inner workings opaque. To unravel the
internal mechanisms of an LM and investigate the
parametric knowledge encoded in an LM’s weights,
the development of eXplainable AI (XAI) methods
is paramount.

Research in this domain has explored LM’s para-
metric knowledge with various attribution methods
(Bejan et al., 2023; Fan et al., 2023). Commonly
used among these are Instance Attribution (IA, Koh
and Liang (2017); Charpiat et al. (2019); Garima
et al. (2020)) and Neuron Attribution (NA, Dai
et al. (2022); Meng et al. (2022)). IA identifies
training instances that influence the model’s para-
metric knowledge leveraged for its prediction on
a test instance. However, despite their utility, IA
methods have been criticized for their sensitivity
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to the choice of hyperparameters and for produc-
ing highly homogenous results (Pezeshkpour et al.,
2021). On the other hand, NA locates specific
neurons that hold the most important parametric
knowledge for prediction on a test instance. While
NA has proven valuable in locating and editing the
structured knowledge within a model (Dai et al.,
2022; Meng et al., 2022), the granular nature of
the neuron analysis presents challenges in the inter-
pretation of the outcomes, necessitating manually
defined human concepts for interpretation (Sajjad
et al., 2022).

While IA and NA present different views on the
parametric knowledge employed in an LM’s pre-
diction, no existing work has contrasted the two
techniques to determine if they offer similar or
complementary insights that could lead to a more
comprehensive understanding of an LM’s inner
workings. This paper seeks to bridge this gap by
establishing a unified evaluation framework, illus-
trated in Figure 1, that allows for the comparison of
these disparate attribution methods, particularly fo-
cusing on their application for autoregressive LMs.

Aligning the Results of Attribution Methods.
To allow for comparing the results obtained with
NA to those obtained with IA, we first introduce a
novel attribution method NA-Instances (bottom left,
‘Attribution Results’, Figure 1; §3.4) that retrieves
the training instances sharing the most similar neu-
ron activations for each test instance. NA-Instances
allows one to interpret the granular NA results and
to compare its results to IA. On the other hand, to
align the results of IA with NA, we introduce IA-
Neurons (bottom right, ‘Attribution Results’, Fig-
ure 1; §3.3), which finds the neurons of the most
important training instances discovered by IA that
have the highest activation.

Unified Evaluation Framework for Attribu-
tion Methods. With the aligned results from IA
and NA, we introduce two evaluation schemes. In-
terpretation of the attribution results is important,
but it is also crucial to check whether the given
explanation fully represents the model’s underly-
ing behavior (Ross et al., 2017). Therefore, firstly,
faithfulness tests are designed to assess whether
the neurons discovered by each method are both
sufficient and comprehensive in representing the
parametric knowledge used by the model for a
prediction (bottom left, Figure 1;§3.3). Note that
previous work has only performed the comprehen-
siveness test for NA (Dai et al., 2022), while such
evaluations have not been extended to IA. We find

that most neurons can be removed without a sig-
nificant number of changed predictions compared
to the original model, revealing that much of the
model’s knowledge is not stored in neurons located
in the Multilayer Perceptron Layers (MLP). Sec-
ondly, we conduct fine-tuning with a varying num-
ber of influential training instances discovered by
the two IA methods (bottom right, Figure 1;§3.4)
to assess how sufficient the training instances are
in representing the parametric knowledge used by
the model for a prediction. We find that IA and NA-
Instances perform on par in both finding sufficient
and comprehensive neurons and sufficient influen-
tial training instances. In addition to this, results
show that influential training instances obtained by
IA methods do not yield a better-fine-tuned model
than randomly selected training instances.

Characterising Differences between Attribu-
tion Methods. We conclude with an extensive
analysis (§6) of the characteristics of the attribu-
tion methods focusing on their diversity and utility.
By comparing the group of selected instances and
neurons (§6.1), we first observe that the instances
discovered by NA-Instances and IA have a very
small overlap. In contrast, the group of neurons
from IA-Neurons highly overlaps with the group
of neurons from NA, where the latter discovers a
large group of neurons in addition to the overlap-
ping ones. Furthermore, from the analysis (§6.2)
and results from §5.3, we find that the more di-
verse the group of influential training instances,
the better the performance of the model fine-tuned
with the group. Finally, results from §6.3 show
that NA-Instances performs better at discovering
dataset artifacts than IA methods. Overall, our find-
ings call for future work incorporating both IA and
NA methods for a better understanding of LM’s
parametric knowledge.

2 Related Work

To understand how models encode and utilise para-
metric knowledge, researchers have employed a
variety of approaches (Xiong et al., 2024). Among
these, Instance Attribution and Neuron Attribution
have emerged as two principal methodologies.

Instance Attribution (IA). IA identifies the
training instances most influential to a model’s
prediction for a given test instance. IA’s primary
strength is that it provides a human interpretable
explanation of the model’s encoded parametric
knowledge. Koh and Liang (2017) first introduced
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the Influence Function (IF), a method to calculate
the impact of each training instance on a model’s
prediction, utilizing gradients and Hessian-vector
products. Additional methods in this domain in-
clude Input Similarity (Charpiat et al., 2019), and
TracIn (Garima et al., 2020), which explore similar
concepts from different perspectives. Charpiat et al.
(2019) defined the notion of similarity of inputs
from the neuron network perspective and applied
the method to retrieve the training instances close
to the test instance. Further, TracIn proposed to
track an individual loss of a test instance by look-
ing at the moment when a certain training instance
is introduced. We note that most IA methods are
developed upon image datasets and models, rather
than NLP-specific downstream tasks. This calls for
the development of IA methods specialized in NLP
tasks, especially in the era of LMs. From an NLP
perspective, Pezeshkpour et al. (2022) combined IA
methods with feature attribution methods to iden-
tify the part of the training instance that influences
test prediction. Notably, Han et al. (2020) applied
IF across various NLP tasks, revealing its potential
to detect and correct training data-induced biases.

Neuron Attribution (NA). Dai et al. (2022)
first coined the term “knowledge neuron” referring
to the medium where the knowledge lies within
the model. Their work illustrated that the factual
knowledge encoded within a model’s parameters
could be altered by manipulating these specific neu-
rons. Following this, Meng et al. (2022) refined the
process of locating knowledge within LMs through
causal tracing, demonstrating that feed-forward lay-
ers in the model’s mid-blocks play a crucial role
in encoding factual knowledge. On the contrary,
Hase et al. (2023) claimed that the knowledge neu-
rons discovered by the causal tracing method often
do not match the actual model weights that can
modify the particular knowledge. This ongoing
debate highlights the lack of consensus regarding
the utility of NA.

Evaluation of Attribution Methods. Several
works have assessed the utility across attribution
methods of the same group. Notably, a recent inves-
tigation into Instance Attribution (Gu et al., 2023)
examines three distinct methods, evaluating them
with four metrics – sufficiency, completeness, sta-
bility and plausibility. Regarding NA, Fan et al.
(2023) introduced an evaluation framework and
compared six different NA methods. They assessed
the NA methods with two compatibility metrics
which are inspired by voting theory. One is called

AvgOverlap and the other is called NeuronVote.
They return one method’s compatibility score with
respect to other methods using a ranked list of im-
portant neurons. Despite these advancements, there
remains a gap in the literature regarding a direct
comparison between IA and NA methods, which
are both used to reveal the parametric knowledge
used by an LM. This paper aims to bridge this re-
search gap by presenting a unified framework that
allows for a comprehensive comparative analysis
of the two methods.

3 An Evaluation Framework for
Attribution Methods

We next describe the proposed unified evaluation
framework for attribution methods. To allow for
the comparison of the two attribution methods IA
and NA, we first propose to align their results to
common views over the LM’s parametric knowl-
edge (§3.2). Then, we describe the tests employed
in the evaluation framework to assess whether the
uncovered methods reflect the reasons employed
by the models in their predictions (§3.3, §3.4).

3.1 Preliminaries

Consider a test dataset XTest = [x1, x2, . . . , xn],
consisting of n test instances and a train dataset
XTrain = [xtrain1 , xtrain2 , . . . , xtrainm ] consisting
of m training instances. Consider also an LM f
used to make a prediction on an instance: f(x) =
ŷ. Furthermore, we introduce an attribution
method A ∈ {IA,NA, IA − Neurons,NA −
Instances}. For each test instance xi, and a
model making a prediction f(xi), A computes in-
fluence scores of the training instances Sf(xi) =
[straini,1 , straini,2 , . . . , straini,m ] designating the extent of
influence of the corresponding training instance on
the learned parametric knowledge of an LM em-
ployed in its prediction on xi. A also returns r most
important neurons Nf(xi) = [n1

i , n
2
i , . . . , n

r
i ] and

their corresponding attribution scores NSf(xi) =
[ns1i , ns

2
i , . . . , ns

r
i ] which are regarded as impor-

tant for the model’s prediction on xi.

3.2 Aligning the Results of Attribution
Methods.

First, to compare the results of IA to the list of
most important neurons discovered by NA, we in-
troduce IA-Neurons. IA-Neurons first produces
a list of scores for the influence of the train-
ing instances Sf(xi) and takes r most influential
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of them: [xtraina , xtrainb , . . . , xtrainr ]. Then, for
each instance in the list, the NA method collects
the most important neuron, arriving at the list of
top-1 important neurons of the r most influential
training instances for a prediction: S ◦ N f(xi) =
[n1

xtrain
a

, n1
xtrain
b

, ..., n1
xtrain
r

].
Second, to compare the NA results to the in-

fluence scores of the training instances, we intro-
duce NA-Instances. To design NA-Instances, we
propose Discounted Cumulative Neuron Similarity
(DCNS) based on the Discounted Cumulative Gain
evaluation measure (Järvelin and Kekäläinen, 2002)
used for the evaluation of ranked results in Informa-
tion Retrieval. It takes both the rank of the retrieved
item and its relevance score into account. Inspired
by this, we utilise DCG to score training instances
based on their neuron activation similarity with a
given test instance. Thus, for a neuron that is im-
portant for the test instance prediction, we consider
both the importance rank and the attribution score
of the neuron from a training instance prediction.
Equation 1 shows the scoring function that takes the
test instance xi’s important neuron list Nf(xi) =
[n1

i , n
2
i , . . . , n

r
i ], the train instance xt’s important

neuron list Nf(xt) = [n1
t , n

2
t , . . . , n

r
t ] and its at-

tribution scores NSf(xt) = [ns1t , ns
2
t , ..., ns

r
t ]. It

calculates the influence score gtraini,t of training in-
stance xt for the prediction of test instance xi.

gtraini,t =
∑

m=[1,r];nm
t ∈Nf(xi)

2ns
m
t − 1

log2(m+ 1)
(1)

Similar to the DCG metric, we penalize the at-
tribution score of the common important neuron
with its rank on the list of important neurons for the
training instance. In summary, a particular training
instance is influential for a test instance, when the
important neurons of the test instance are highly
ranked for the training instance.

3.3 Neuron Attribution Faithfulness Tests
We employ two faithfulness tests to assess which
Neuron Attribution method returns a list of most
important neurons Nf(xi) for an LM’s prediction
on a test instance xi that is more faithful to the
parametric knowledge employed by the LM in its
prediction. Sufficiency and Comprehensiveness
are two representative evaluation metrics of faith-
fulness. To evaluate Sufficiency, we only leave
the selected r most important neurons Nf(xi) as
activated, setting the activation of the remaining
neurons Nf(xi) to zero. If the original prediction

of the model f is preserved, we claim that the neu-
rons in Nf(xi) are sufficient to reveal the parametric
knowledge employed by f in its original predic-
tion:

f(xi; zero(Nf(xi))) = ŷi; f(xi) = ŷi
′

If ŷi = ŷi
′, Nf(xi) is sufficient.

(2)

We also employ a Comprehensiveness measure
to estimate whether the explanation is complete and
includes all parametric knowledge that is necessary
to understand the model’s inner workings. Contrary
to Sufficiency, the most important neurons Nf(xi)

are discarded by setting their activation to zero; we
then verify whether the prediction changes:

f(xi; zero(Nf(xi))) = ŷi; f(xi) = ŷi
′

If ŷi ̸= ŷi
′, Nf(xi) is comprehensive.

(3)

For the final Sufficiency and Comprehensiveness
measures, we count the number of instances in the
test set XTest where Eq. 2 and Eq. 3, correspond-
ingly, hold.

3.4 Fine-tuning with Influential Training
Instances

To evaluate the effectiveness of an attribution
method in discovering the training instances that
affect the learned parametric knowledge by the
model, we conduct IA Faithfulness tests. To do so,
we fine-tune a model f only with the most influen-
tial training instances Si and estimate the number
of preserved predictions on the test set XTest.

4 Experimental Setup

4.1 Datasets
In exploring natural language understanding, our
research is directed towards tasks that necessi-
tate complex reasoning and engage deeply with
a model’s acquired task knowledge. Our experi-
ments involve Natural Language Inference (NLI),
Fact-Checking (FC) and Question Answering (QA).
We focus on selecting both diverse and complex
tasks, thus, providing a robust platform for assess-
ing the efficacy of IA and NA methods. One of the
selected datasets – MNLI, is also commonly em-
ployed for evaluating attribution methods in related
work. For NLI, the Multi-Genre Natural Language
Inference (MNLI) is used (Williams et al., 2018).
Due to the computational cost, we sampled 10K
training instances from the training dataset (393K
in total) following Pezeshkpour et al. (2021)’s work
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on the empirical comparison of IA methods. Next,
we choose AVeriTeC (Schlichtkrull et al., 2023), a
highly curated FC dataset. It reflects the character-
istics of real-world claims, thus requiring the model
to go through more complex reasoning. Finally,
to investigate the attribution methods’ explanation
on a QA task, we work with COmmonSense QA
(CoS-QA) (Talmor et al., 2019), a multiple-choice
Question Answering dataset built upon an external
knowledge graph (Speer et al., 2018).1

4.2 Models

We select three open-sourced different autoregres-
sive language models including OPT-125m (Zhang
et al., 2022), BLOOM-560m (Yong et al., 2023)
and Pythia-410m (Biderman et al., 2023). To see
the impact of model size on the attribution expla-
nations, all models are in different sizes. OPT is
trained with a de-duplicated version of the Pile
dataset (Gao et al., 2020). For Pythia, we choose
the version that is trained with the original Pile
dataset, containing duplicated files. BLOOM is
oriented to the scientific domain employing mul-
tilingual scientific pretraining datasets. The mod-
els’ performances on the tasks are available in Ap-
pendix A. To fine-tune the LMs, we use a Sequence
Classification Head on the last token’s hidden rep-
resentation and train the models with cross-entropy
loss. We provide further details about fine-tuning
in Appendix A.

4.3 Attribution Methods

For IA methods, we consider two representative
IA methods, IF (Koh and Liang, 2017) and Gra-
dient Similarity (GS) method (Charpiat et al.,
2019). Given a model f and test instance xi,
IF (Equation 4) computes the importance score
of training instance xtraina : straini,a by upweight-
ing xtraina with the Hessian of the loss function,
dϵi
df = −H−1

f ∇fL(xtraina , ŷa, f). We refer to Koh
and Liang (2017) for more details. GS (Equation
5) takes the dot product of the gradients of xi and
xtrainm . They are defined as follows:

straini,a = ∇L(xi, ŷi, f)T · dϵi
df

(4)

straini,a = ∇fL(xi) · ∇fL(xtraina ) (5)

1Although it is common to provide the external knowledge
source to the model for the CoS-QA, we focus on training
with the question-answer pairs only as we aim to investigate a
model’s parametric knowledge.

Method Model AVeriTeC MNLI CoS-QA

Full 2768 10000 8767

NA-Instances
OPT-125m

427 795 325
IF 221 588 2017
GS 209 569 1897

NA-Instances
Pythia-410m

407 785 74
IF 108 102 700
GS 106 102 700

NA-Instances
BLOOM-560m

246 1776 324
IF 43 30 263
GS 43 30 263

Table 1: Number of unique instances from the collection
of top-10 most influential training instances for each test
instance in the corresponding dataset.

Due to the heavy computational cost, the MLP
classification layer weight is used to attain the gra-
dients instead of the entire model weights. Prior
work showed that the attribution results from the
entire weight and the MLP classification layer show
a high correlation (Pezeshkpour et al., 2021).

For NA, we adapt the application of integrated
gradients (Sundararajan et al., 2017) for discov-
ering important neurons (Dai et al., 2022). The
neuron attribution score nsli of lth neuron on f(xi)
is:

nsli =
wl

m

m∑

k=1

∂Px(
k
mwl)

∂wl
(6)

where wl is the neuron activation value of the lth

neuron from the MLP layer. Equation 6 leverages
Riemann approximation by scaling the neuron’s
activation value from 0 to its original value. For
implementation, we modify the open source repos-
itory.2

4.4 Attribution Method Tests

For neuron attribution, we employ faithfulness tests
covering both the sufficiency and comprehensive-
ness of the neurons to represent the model’s para-
metric knowledge. For Sufficiency, we take the
r = 1 neuron with the highest attribution score.
For Comprehensiveness, r = 100 neurons are se-
lected. To verify the utility of the neurons selected
by the attribution methods, we also choose the same
number of neurons randomly and present the result
as a Random baseline.
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Sufficiency ↑ Comprehensiveness ↓
AVeriTeC MNLI CoS-QA AVeriTeC MNLI CoS-QA

Random

OPT-125m

87.00 88.77 81.93 99.93 99.77 99.34
NA 88.00 88.80 81.90 67.80 94.99 100.0
IF-Neuron 87.00 88.11 81.90 98.60 99.76 100.0
GD-Neuron 86.40 88.10 81.90 96.20 99.67 100.0

Random

Pythia-410m

77.80 86.23 65.30 99.93 99.90 99.65
NA 77.60 86.21 65.27 99.84 99.82 99.84
IF-Neuron 77.80 87.73 65.27 100.0 99.91 99.75
GD-Neuron 77.60 87.74 65.27 100.0 99.95 99.75

Random

BLOOM-560m

69.80 82.31 75.92 99.80 99.89 99.48
NA 70.60 82.42 76.00 68.80 94.69 99.67
IF-Neuron 70.00 81.02 76.17 95.20 99.95 99.75
GD-Neuron 70.00 81.01 75.92 88.80 98.85 99.92

Table 2: Faithfulness tests (Sufficiency/Comprehensiveness; §3.3), percentage of preserved predictions by keep-
ing/suppressing important neurons for the prediction of each test instance. For Sufficiency, we choose to keep the
r = 1 important neuron activated. For Comprehensiveness, we suppress the r = 100 most important neurons. The
results are averaged over three runs with different seeds.

5 Results

5.1 Number of Unique Influential Instances

Table 1 showcases the number of unique instances
in the collection of the 10 most influential training
instances for each test instance. Generally, we
observe that IF and GS usually identify a smaller
set of unique instances compared to NA-Instances
– e.g., 30 vs 1776 unique instances discovered by
IF/GS vs. NA-Instances correspondingly for MNLI
and BLOOM-560m. An exception is the CoS-QA
dataset, where we hypothesise that the majority
of training instances in the CoS-QA dataset have
fewer common neurons with the test instances as
the test dataset of CoS-QA has fewer concepts in
common with the training dataset. Empirically,
we find that although most of the concepts3 in the
test dataset were covered in the training dataset,
the concepts from the test dataset only represent a
small proportion of all concepts within the training
dataset. There were 2099 unique concepts in the
training dataset and only 725 concepts were used
in the test dataset. This finding obtained from NA-
Instances is in line with Huang et al. (2023)’s work,
which claims that each neuron corresponds to a
concept in an instance.

Further, we observe that increasing the model
size correlates with a decrease in the number of
unique training influential instances. This trend
underscores the tendency towards homogeneity in
the results produced by IA methods. Moreover,
it highlights the potential advantage of the combi-
nation of IA and NA methods to retrieve a more

2https://github.com/EleutherAI/knowledge-neurons
3The CoS-QA dataset provides concept annotations for

each instance.

diverse set of influential training instances. We fur-
ther investigate the heterogeneity of the group of
influential training instances in §6.

5.2 Neuron Attribution Faithfulness Tests

We evaluate the sufficiency and comprehensiveness
of the neurons to represent the model’s parametric
knowledge. Table 2 presents the number of the test
instances for which the predictions are changed af-
ter keeping (Sufficiency) or suppressing (Compre-
hensiveness) the activation on the selected neurons.
We find that NA performs slightly better than other
attribution methods for AVeriTeC and MNLI. Fur-
thermore, there are marginal differences between
the Random baseline and IF-Neuron/GD-Neuron
with less than 1.0 on both Sufficiency and Com-
prehensiveness. This implies that the explanations
from IF-Neuron/GD-Neuron are not sufficient nor
comprehensive enough to reveal the complete para-
metric knowledge used in the model’s prediction.

Notably, although we suppress the activation
of all neurons within the MLP layer except one,
the model can still recover the original prediction.
We ascribe this phenomenon to the attention lay-
ers within the Transformer blocks. This finding
aligns with Wiegreffe and Pinter (2019)’s argu-
ment, that attention weights pose a meaningful
impact on the model’s prediction and are impor-
tant for understanding a model’s inner workings.
For a more holistic understanding of a model’s
parametric knowledge, we thus suggest that future
work also studies attention-based neuron attribu-
tion methods.
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Figure 2: Performances with first n% training instances from each attribution method. For -most methods, top n%
training instances are selected. For -least methods, n% of negatively influential training instances from the bottom
of the list are selected.

5.3 Fine-tuning with Influential Training
Instances

The models’ performances from fine-tuning with
different numbers of influential training instances
are presented in Figure 2. We also provide the per-
formances on the different datasets and models in
Appendix B, Figure 6. From the figure, we find that
the accuracies achieved with the first n% training
instances are meaningful enough to show the differ-
ent impact on the performance between n% most in-
fluential training instances and n% least influential
training instances. The biggest gap in the accuracy
achieved between training with the most and least
influential ones is from the NA-Instances method
– an accuracy gap of 0.6 for the AVeriTeC dataset.
However, given that selecting the same proportion
of training instances at random outperforms the
attribution methods, we conclude that the influ-
ential training instances selected by IA methods
(IF, GS) do not provide any benefit for explaining
the performance of the final model. Unexpectedly,
the training instances selected by NA-Instances-
least achieve better performance in general than the
randomly selected ones on the MNLI dataset. Al-
though NA-Instances-least shows a different trend
on the AVeriTeC and MNLI datasets, it outperforms
other least influential groups. Since the group is
composed of training instances that have minimal
neuron overlapping with the test instances, we at-
tribute this high performance to the instances in
the set selected by NA-Instances-least being more
diverse (as seen in general for instances discovered
by NA-Instances in Table 1) leading to encompass-

Figure 3: % of training instances at the intersection of
the first n% influential instances discovered by a two of
the attribution methods ∈ {IF, NA-Instances, and GS}.

ing a more diverse set of the model’s parametric
knowledge.

6 Analysis

Next, we investigate what are the characteristics of
the group of influential training instances and the
group of most important neurons.

6.1 Overlap of the Attribution Results
Here we look at the overlap of influential instances
as well as the overlap of the important neurons
discovered by the corresponding attribution meth-
ods. First, we investigate the overlap between the
first n influential training instances discovered by
IF, NA-Instances, and GS, which are then used in
the evaluation framework for fine-tuning with in-
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AVeriTeC MNLI
Cosine Similarity Loss Vocabulary Input Length Cosine Similarity Loss Vocabulary Input Length

Coefficient -1 -0.1719 -0.0018 0.036 -0.3741 -0.3563 -0.00005 0.024

Random 0.300 0.2 6977 163.1 0.49 0.30 6950 47.14
GS-most 0.268 0.3 7692 197.5 0.61 0.47 6427 45.98
IF-most 0.266 0.3 7720 198.8 0.64 0.38 6355 45.97
NA-Instances-most 0.388 0.2 6776.0 153.4 0.56 0.52 6881 45.46
GS-least 0.278 1.1 8199 213.5 0.62 0.78 6729 48.46
IF-least 0.279 1.1 8197 211.3 0.62 0.77 6838 48.42
NA-Instances-least 0.245 0.2 7978 204.1 0.45 0.16 6901 46.52

Table 3: Diversity analysis on influential training instances discovered for the MNLI and AVeriTeC datasets with the
OPT-125m model. Four metrics (Cosine Similarity/Loss/Vocabulary/Input Length; §6.2) measure the diversity of
the first n% training instances from each attribution method.

Figure 4: % of the important neurons discovered by
NA and IF-Neurons on the union of the top-n important
neurons.

fluential training instances (§3.4). Figure 3 shows
that for IF and GS, the overlap percentage is high
– greater than 80%. This also explains their simi-
lar performance on the fine-tuning with influential
training instances test (§5.3). Furthermore, com-
pared to the instance attribution methods IF and
GS, NA-Instances discovers very different influen-
tial instances. For the first 10% of most influential
instances discovered by each method, we find that
NA-Instances and IF or GS have fewer than 20% in-
stances that are discovered by both methods, which
amounts to roughly under 2 influential instances.

Second, we present the proportion of overlap-
ping top-n important neurons selected by NA and
IF-Neurons in Figure 4. Results on the overlap of
neurons discovered by NA and GS-Neurons show
similar trends and can be found in Appendix C,
Figure 5. Similar to the diversity of top-n influ-
ential training instances, the proportion of unique
important neurons found by NA is again higher
than those found by IF-Neurons. In addition, we
find that most of the neurons found by IF-Neurons

are included in the set of NA. The analytic results
from both perspectives underscore the potential of
NA methods to reveal the source of the parametric
knowledge.

6.2 Diversity Analysis on the Group of
Influential Training Instances

From the evaluation results in §5.3, we hypothesize
that greater diversity of the influential training in-
stances found by an attribution method yields better
performance, which we verify here. The hetero-
geneity of different groups of influential training
instances can be measured at the lexical and para-
metric levels. To estimate lexical diversity, we
compute the number of unique tokens (Vocabulary
in Table 3) from the group of influential training
instances and the average length of the training
instances (Input Length in Table 3) as model in-
put. The cosine similarity between the influential
instances with the hidden representations from the
last Transformer block (Cosine Similarity in Ta-
ble 3) and the average loss (Loss in Table 3) are
reported to show the parametric diversity of the
selected influential training instances.

Table 3 presents the result of this analysis on
the AVeriTeC dataset and the MNLI dataset with
the OPT-125m model, following the previous sec-
tion. We find that the Random and NA-Instances-
least methods that show a performance of 0.55
accuracy from Figure 2 contain more than 6900
unique tokens while other methods with less than
0.40 accuracy have 6600 tokens on average. From
the parametric diversity metrics, the methods with
lower performance collect training instances with
a similar distribution of hidden representations and
bigger losses. Furthermore, the least influential
training instances discovered by IA methods have
higher losses compared to the ones discovered by
NA methods. However, we observe that the loss

8180



OPT-125m Pythia-410m BLOOM-560m
top-1 top-10 top-1 top-10 top-1 top-10

Random 0.162 0.162 0.162 0.161 0.163 0.162
NA-Instances 0.167 0.161 0.196 0.231 0.166 0.161
IF 0.159 0.137 0.182 0.182 0.111 0.131
GS 0.144 0.214 0.213 0.171 0.130 0.137

Table 4: Dataset artifact detection analysis (§6.3) pre-
senting the lexical overlap between the premise and the
hypothesis from the top-1 and top-10 training instances
from the MNLI dataset found to be most influential
for the parametric knowledge employed by the model
in its prediction in the test instances mispredicted as
entailment from the HANS dataset.

is not an indicator for the most or least influen-
tial training instances affecting the model’s test set
performance from the NA-Instances perspective.

To verify our findings statistically, we implement
a simple linear regression model (Pedregosa et al.,
2011) that verifies the association between the di-
versity metrics and the accuracy. Negative coeffi-
cients w.r.t. the model’s performance show both Co-
sine Similarity of -0.3741 (MNLI), -1 (AVeriTeC),
and Loss of -0.3563 (MNLI), -0.1719 (AVeriTeC).
These results support our hypothesis on the rela-
tionship between the diversity of selected training
instances and their effectiveness in reaching a high
performance with the fine-tuned model.

6.3 Dataset Artifact Detection

For a more human-interpretable analysis of the ben-
efits of each IA method, we conduct a dataset arti-
fact detection analysis with the NLI dataset HANS
(McCoy et al., 2019), containing instances repre-
senting heuristics that NLI models are likely to
learn. We take the test instances designed to con-
tain lexical overlap heuristics between the premise
and hypothesis to see what types of training in-
stances are found as influential for a model’s pre-
diction on the said test instances. We run each
instance attribution method on the MNLI training
dataset and report the results in Table 4. We find
that our proposed approach NA-Instances gener-
ally discovers more training instances which have a
higher lexical overlap rendering the method to per-
form better in finding artifacts learned by a model
from its training dataset.

7 Conclusion

In this paper, we propose a unified evaluation
framework for comparing and contrasting two dif-
ferent attribution methods, IA and NA. To do so, we

first introduce new attribution methods that align
the neurons discovered by IA and NA. We assess
the sufficiency and comprehensiveness of the ex-
planations for both methods with different faithful-
ness tests and conduct extensive analyses of their
explanations to further investigate the distinct char-
acteristics that yield different results.

Through the proposed evaluation framework, we
confirm that IA and NA result in different explana-
tions about the knowledge responsible for the test
prediction. This implies the potential advantage
of combining IA and NA to unveil a comprehen-
sive view of the LM’s parametric knowledge. In
addition, the experimental results on the attribu-
tion methods’ faithfulness suggest that the neurons
are not sufficient nor comprehensive enough to
fully explain the parametric knowledge used for
the test prediction. To complement this drawback
of the current attribution methods, we hypothesize
that this is due to the importance of the attention
weights for encoding knowledge, leaving this ex-
ploration for future work.
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Limitations

Our paper presents an investigation of the knowl-
edge encoded by instance and neuron attribution
methods. We perform our experiments using two
instance attribution methods, one neuron attribu-
tion method, three natural language understanding
datasets for three different tasks, and three lan-
guage models. While we aimed to make a repre-
sentative selection, future work should investigate
other natural language processing tasks not focused
on language understanding, as well as more differ-
ent language models, including very large ones,
which we could not study due to computational
restrictions. It is also worth noting that the bench-
mark datasets we used consist of English text only,
and we did not study domain adaptation or cross-
lingual transfer scenarios.

One of our core findings was that selecting (in
the case of sufficiency) or occluding (for compre-
hensiveness) knowledge neurons in the MLP layer
(see §5.2) only tells half the story – models still per-
form astonishingly well given only the one most
important neuron. This means that, to truly un-
derstand the parametric knowledge of LLMs, the
interplay between the neurons in the MLP layer
and the neurons in the attention heads should be
studied.

Lastly, we found that merely using attribution
methods to identify instances to train on might not
be a good strategy (see §5.3). This is due to the
lack of diversity in the resulting training set (see
§6.2). This naturally begs the question of what the
purpose of instance and neuron attribution meth-
ods then is. §6.3 suggests that the answer could be
to identify dataset artifacts. However, these phe-
nomena could still be studied in more depth for
different downstream tasks.

Acknowledgements

This research was co-funded by the Euro-
pean Union (ERC, ExplainYourself, 101077481),
by the Pioneer Centre for AI, DNRF grant number
P1, as well as by The Villum Synergy Programme.
Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect
those of the European Union or the European Re-
search Council. Neither the European Union nor
the granting authority can be held responsible for
them. We thank the anonymous reviewers for their
helpful suggestions.

References
Irina Bejan, Artem Sokolov, and Katja Filippova. 2023.

Make every example count: On the stability and util-
ity of self-influence for learning from noisy NLP
datasets. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 10107–10121, Singapore. Association for
Computational Linguistics.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling.

Guillaume Charpiat, Nicolas Girard, Loris Felardos, and
Yuliya Tarabalka. 2019. Input similarity from the
neural network perspective. In Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–
8502, Dublin, Ireland. Association for Computational
Linguistics.

Yimin Fan, Fahim Dalvi, Nadir Durrani, and Hassan
Sajjad. 2023. Evaluating neuron interpretation meth-
ods of NLP models. In Thirty-seventh Conference on
Neural Information Processing Systems.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.

Garima, Frederick Liu, Satyen Kale, and Mukund Sun-
dararajan. 2020. Estimating training data influence
by tracing gradient descent. In Proceedings of the
34th International Conference on Neural Information
Processing Systems, NIPS’20, Red Hook, NY, USA.
Curran Associates Inc.

Peijian Gu, Yaozong Shen, Lijie Wang, Quan Wang,
Hua Wu, and Zhendong Mao. 2023. IAEval: A
comprehensive evaluation of instance attribution on
natural language understanding. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 11966–11977, Singapore. Association
for Computational Linguistics.

Xiaochuang Han, Byron C. Wallace, and Yulia Tsvetkov.
2020. Explaining black box predictions and unveil-
ing data artifacts through influence functions. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5553–
5563, Online. Association for Computational Lin-
guistics.

8182

https://doi.org/10.18653/v1/2023.emnlp-main.625
https://doi.org/10.18653/v1/2023.emnlp-main.625
https://doi.org/10.18653/v1/2023.emnlp-main.625
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
https://proceedings.neurips.cc/paper_files/paper/2019/file/c61f571dbd2fb949d3fe5ae1608dd48b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c61f571dbd2fb949d3fe5ae1608dd48b-Paper.pdf
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://openreview.net/forum?id=YiwMpyMdPX
https://openreview.net/forum?id=YiwMpyMdPX
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://doi.org/10.18653/v1/2023.findings-emnlp.801
https://doi.org/10.18653/v1/2023.findings-emnlp.801
https://doi.org/10.18653/v1/2023.findings-emnlp.801
https://doi.org/10.18653/v1/2020.acl-main.492
https://doi.org/10.18653/v1/2020.acl-main.492


Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2023. Does localization inform editing?
surprising differences in causality-based localization
vs. knowledge editing in language models. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Jing Huang, Atticus Geiger, Karel D’Oosterlinck,
Zhengxuan Wu, and Christopher Potts. 2023. Rig-
orously assessing natural language explanations of
neurons. In Proceedings of the 6th BlackboxNLP
Workshop: Analyzing and Interpreting Neural Net-
works for NLP, pages 317–331, Singapore. Associa-
tion for Computational Linguistics.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumu-
lated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20(4):422–446.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1885–1894.
PMLR.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428–3448, Florence,
Italy. Association for Computational Linguistics.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in GPT. In Advances in Neural Information
Processing Systems.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Pouya Pezeshkpour, Sarthak Jain, Sameer Singh, and
Byron Wallace. 2022. Combining feature and in-
stance attribution to detect artifacts. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1934–1946, Dublin, Ireland. Association
for Computational Linguistics.

Pouya Pezeshkpour, Sarthak Jain, Byron Wallace, and
Sameer Singh. 2021. An empirical comparison of in-
stance attribution methods for NLP. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 967–975, On-
line. Association for Computational Linguistics.

Andrew Slavin Ross, Michael C. Hughes, and Finale
Doshi-Velez. 2017. Right for the right reasons: train-
ing differentiable models by constraining their ex-
planations. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence, IJCAI’17,
page 2662–2670. AAAI Press.

Hassan Sajjad, Nadir Durrani, and Fahim Dalvi. 2022.
Neuron-level interpretation of deep NLP models: A
survey. Transactions of the Association for Compu-
tational Linguistics, 10:1285–1303.

Michael Sejr Schlichtkrull, Zhijiang Guo, and Andreas
Vlachos. 2023. AVeritec: A dataset for real-world
claim verification with evidence from the web. In
Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2018.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not
not explanation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 11–20, Hong Kong, China. Association for
Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Haoyi Xiong, Xuhong Li, Xiaofei Zhang, Jiamin Chen,
Xinhao Sun, Yuchen Li, Zeyi Sun, and Mengnan
Du. 2024. Towards explainable artificial intelligence
(xai): A data mining perspective.

Zheng Xin Yong, Hailey Schoelkopf, Niklas Muen-
nighoff, Alham Fikri Aji, David Ifeoluwa Adelani,
Khalid Almubarak, M Saiful Bari, Lintang Sutawika,
Jungo Kasai, Ahmed Baruwa, Genta Winata, Stella
Biderman, Edward Raff, Dragomir Radev, and Vas-
silina Nikoulina. 2023. BLOOM+1: Adding lan-
guage support to BLOOM for zero-shot prompting.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 11682–11703, Toronto, Canada.
Association for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel

8183

https://openreview.net/forum?id=EldbUlZtbd
https://openreview.net/forum?id=EldbUlZtbd
https://openreview.net/forum?id=EldbUlZtbd
https://doi.org/10.18653/v1/2023.blackboxnlp-1.24
https://doi.org/10.18653/v1/2023.blackboxnlp-1.24
https://doi.org/10.18653/v1/2023.blackboxnlp-1.24
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://proceedings.mlr.press/v70/koh17a.html
https://proceedings.mlr.press/v70/koh17a.html
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://doi.org/10.18653/v1/2022.findings-acl.153
https://doi.org/10.18653/v1/2022.findings-acl.153
https://doi.org/10.18653/v1/2021.naacl-main.75
https://doi.org/10.18653/v1/2021.naacl-main.75
https://doi.org/10.1162/tacl_a_00519
https://doi.org/10.1162/tacl_a_00519
https://openreview.net/forum?id=fKzSz0oyaI
https://openreview.net/forum?id=fKzSz0oyaI
http://arxiv.org/abs/1612.03975
http://arxiv.org/abs/1612.03975
http://arxiv.org/abs/1703.01365
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
http://arxiv.org/abs/2401.04374
http://arxiv.org/abs/2401.04374
https://doi.org/10.18653/v1/2023.acl-long.653
https://doi.org/10.18653/v1/2023.acl-long.653


Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

A Implementation Details

To adapt the autoregressive LM to the targeted tasks
we stack an MLP classification layer with the size
of the LM’s hidden representation on top of the last
token’s hidden representation. For AVeriTeC and
MNLI, this outputs the probabilities over the labels.
For AVeriTeC, we construct an input sequence with
a claim and an evidence. With evidence documents
that are a pair of question and answer, we concate-
nate all the pairs. Each LM with MLP classifica-
tion layer is fine-tuned to predict the label given
an input out of {Supported, Reputed, Conflicting
Evidence/Cherrypicking, Not Enough Evidence}.
For the MNLI dataset, a premise and hypothesis are
provided as input. The model is trained to predict
the label out of {neutral, contradiction, entailment}.
For the sequences longer than the maximum length
of the sequence, we remove tokens from the evi-
dence text.

For the CoS-QA dataset, an input consists of a
question and one candidate answer. We forward all
possible sequences from one question at the same
time to have the model learn the relative difference
in the relationship between each candidate’s answer
and the question. Thus, the model encodes five se-
quences at the same time and produces five scores.
Since we encode each candidate answer individ-
ually, the MLP classification layer for CoS-QA
outputs a score for each sequence. Then, the model
is trained to maximize the score of the sequence
that has the correct answer using the listwise loss.

To select the best checkpoint, we train the model
for five epochs and report the accuracy on the test
dataset from the model checkpoint that shows the
best accuracy on the dev dataset. The learning rate
is set to 1e − 5 and the maximum length of the
sequence is set to 512 tokens for AVeriTeC and
MNLI. For the CoS-QA dataset, a maximum of
128 tokens is used. The performances on each
dataset can be found in Table . For the OPT-125m
model, we use a batch size of 8 for AVeriTeC and
MNLI, and a batch size of 1 for CoS-QA. For the
BLOOM-560m and Pythia-410m models, we use
a batch size of 4 for AVeriTeC and MNLI and a
batch size of 1 for CoS-QA. The training details
are also applied to the fine-tuning of the models for
the Instance Attribution Faithfulness Tests.

We use one Titan RTX GPU to fine-tune each

Dev Acc Test Acc

AVeriTeC
OPT-125m 0.75 0.72

Pythia-410m 0.69 0.70
BLOOM-560m 0.72 0.72

MNLI
OPT-125m 0.70 0.70

Pythia-410m 0.63 0.63
BLOOM-560m 0.72 0.72

CoS-QA
OPT-125m 0.49 0.53

Pythia-410m 0.42 0.44
BLOOM-560m 0.51 0.53

HANS
OPT-125m - 0.51

Pythia-410m - 0.50
BLOOM-560m - 0.50

Table 5: The performance on each dataset from three
different models.

Figure 5: % of the important neurons discovered by NA
and GS-Neurons on the union of the top-n important
neurons.

model and one A100 GPU to obtain the attribution
results.

B Fine-tuning with Influential Training
Instances

Figure 6 presents the models’ performances from
§5.3. By conducting the evaluation on the suf-
ficiency of the influential training instances, we
confirm that various language models show similar
trends with the same dataset. For the AVeriTeC,
the group of randomly selected training instances
(Random) outperforms other groups. On the
other hand, the training instances selected by NA-
Instances/least consistently show better perfor-
mances than any other groups in general for the
MNLI. With the CoS-QA, we observe that the train-
ing instances from -most methods perform better
than the group of instances from -least methods.
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C Overlap among the Group of
Important Neurons

Figure 5 shows the proportion overlapping top-n
important neurons selected by NA and GS-Neurons.
We refer §6.1 for details and analysis.

8185



Figure 6: Performances with first n% training instances from each attribution method. For -most methods, top n%
training instances are selected. For -least methods, n% of negatively influential training instances from the bottom
of the list are selected.
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