
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7864–7875
August 11-16, 2024 ©2024 Association for Computational Linguistics

Synthesizing Text-to-SQL Data from Weak and Strong LLMs

Jiaxi Yang1,2,∗‡, Binyuan Hui3,∗, Min Yang1†, Jian Yang 3, Junyang Lin3, Chang Zhou3†

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
2 University of Chinese Academy of Sciences

3 Alibaba Group
{jx.yang, min.yang}@siat.ac.cn
binyuan.hby@alibaba-inc.com

https://github.com/Yangjiaxi/Sense

Abstract

The capability gap between open-source and
closed-source large language models (LLMs)
remains challenging in text-to-SQL tasks. In
this paper, we introduce a synthetic data ap-
proach that amalgamates strong data generated
by larger, more potent models (strong models)
with weak data produced by smaller, less well-
aligned models (weak models). Our approach
contributes to the improvement of domain gen-
eralization in text-to-SQL models and inves-
tigates the potential of weak data supervision
through preference learning. Moreover, we uti-
lize the synthetic data approach for instruction
tuning on open-source LLMs, yielding SENSE,
a specialized text-to-SQL model. The effec-
tiveness of SENSE is substantiated by achiev-
ing state-of-the-art results on the SPIDER and
BIRD benchmarks, thereby mitigating the per-
formance disparity between open-source mod-
els and the methods derived from closed-source
models.

1 Introduction

The ability to convert a natural language question
into a structured query language (SQL), i.e., text-to-
SQL (Zhong et al., 2017; Yu et al., 2018; Li et al.,
2023c; Qin et al., 2022), can assist non-experts in
interacting with databases using natural language,
democratizing data access and analysis. In recent
studies (Gao et al., 2023; Zhang et al., 2023), no-
table accomplishments have been observed in pow-
erful closed-source LLMs, exemplified by GPT-
4, employing a range of prompting methods (Wei
et al., 2022). However, the adoption of closed-
source LLMs introduces concerns pertaining to
issues of openness, privacy, and substantial costs.

Recently, the proliferation of numerous open-
source LLMs (Touvron et al., 2023; Roziere et al.,
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Figure 1: Overview of SENSE: Integrating human-
annotated data with synthetic data from strong models
for domain diversity, and weak models for preference
learning, aligning with executors for enhanced text-to-
SQL performance.

2023; Bai et al., 2023) has attracted considerable at-
tention as these models demonstrate comparable ca-
pabilities to their closed-source counterparts across
a broad spectrum of natural language processing
(NLP) tasks. This motivates us to undertake a thor-
ough evaluation of prominent open-source LLMs
in the text-to-SQL task, aiming to gauge their via-
bility as alternatives. However, following an assess-
ment utilizing a standardized prompt, we observed
that open-source models still exhibit a substan-
tial performance gap compared to closed-source
models. In particular, the popular open-source
model CodeLLaMA-13B-Instruct demonstrates a
30% lower execution accuracy than GPT-4 on the
BIRD (Li et al., 2023c) benchmark.

Developing specialized text-to-SQL models built
upon open-source LLMs that attains performance
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levels comparable to close-source models holds
critical importance in contexts marked by sensi-
tivity to policy, privacy, and resource limitations.
To this end, we focus on supervised fine-tuning
(SFT) to enhance the text-to-SQL capabilities of
open-source base models. However, enhancing the
text-to-SQL ability of open-source models through
SFT remains an open challenge. A significant bar-
rier to this progress is the high cost of achieving
text-to-SQL data, which relies on manual expert
annotation. The generation of high-quality text-to-
SQL fine-tuning data should consider two primary
perspectives. First, the inclusion of diverse data
aims to facilitate cross-domain generalization, al-
lowing the model to be successfully applied to new
domains or databases. Second, alignment with ex-
ecutors becomes crucial to better enable the model
to learn SQL from execution feedback, particularly
from errors, mirroring how humans often learn
from their mistakes.

In response to the data scarcity challenge, nu-
merous endeavors (Wang et al., 2023; Xu et al.,
2024; Wei et al., 2023) have sought to generate
synthetic data utilizing larger and more powerful
LLMs (strong models), such as GPT-4, creating
what is denoted as strong data. Although strong
data inherently contributes to the enhancement of
data diversity (Xu et al., 2024), a critical factor
for the domain generalization of models, its ap-
plication in the text-to-SQL task remains unex-
plored. Additionally, the generation of valuable
erroneous text-to-SQL data poses a separate chal-
lenge. Strong models often exhibit significant ef-
forts toward correct alignment and safety, mak-
ing it difficult to elicit erroneous samples. Conse-
quently, we redirect our focus towards smaller, less
well-aligned open-source models (weak models).
Weak models produce valuable weak SQL samples,
which can subsequently be validated and subjected
to error induction with the assistance of executors.
Preference learning (Rafailov et al., 2023) is em-
ployed to instruct language models to learn from
both correct and incorrect samples, constituting
what we refer to as weak data.

To verify the effectiveness of our SENSE, we
conduct SFT on a popular open-source base model,
i.e., CodeLLaMA (Roziere et al., 2023), and ob-
tain a new specialized model named SENSE. We
comprehensively evaluate SENSE’s performance
on the text-to-SQL tasks, achieving state-of-the-art
(SOTA) results on both the standard benchmark
Spider (Yu et al., 2018) and the challenging bench-

mark BIRD (Li et al., 2023c), narrowing the gap
between open-source and closed-source models.
Additionally, we evaluate SENSE on three robust-
ness datasets: SYN (Gan et al., 2021a), REAL-
ISTIC (Deng et al., 2021), and DK (Gan et al.,
2021b), demonstrating its advantages in robustness.
Moreover, we conduct an in-depth experimental
analysis offers insights into the influence of syn-
thetic data on model performance. In summary, our
contributions are threefold:

• We first evaluate both open-source and closed-
source LLMs on text-to-SQL benchmarks us-
ing a standardized prompt. We observe that
the text-to-SQL capabilities of open-source
models were significantly inferior. It moti-
vated us to train our specialized model SENSE

through SFT on an open-source LLM.

• We propose a synthetic data approach that
uses strong models to generate strong data
to enhance data diversity and employs weak
models to generate weak data combined with
an executor to learn from feedback.

• Extensive experiments shows the effective-
ness of SENSE, achieving SOTA performance,
even competing with methods based on GPT-
4. We believe that making these data and mod-
els publicly available can contribute to the
advancement of the text-to-SQL community.

2 Preliminaries

Notation Definition The objective of the text-
to-SQL task is to convert a natural language (NL)
question Q into the corresponding SQL query Y ,
grounded in the database schema S = ⟨T , C,V⟩,
which includes table names T , column names C,
database values V . In more challenging tasks
such as BIRD (Li et al., 2023c), understanding NL
questions or database values may require external
knowledge, represented as K. The current popular
text-to-SQL task employs a cross-domain setting
to evaluate a model’s ability to generalize to new
domains, ensuring there is no overlap between the
domains of the training, development, and test sets.

Prompt Construction Achieving consistent re-
sults in text-to-SQL tasks with LLMs requires
a standardized prompt structure to allow fair
model comparisons. Following the guidelines
from (Chang and Fosler-Lussier, 2023) and illus-
trated in Fig 2, our prompt comprises four elements:
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Dataset #Examples #Databases #Examples/#Databases Avg(#Tokens) Avg(#JOIN)

Spider 7000 140 50.0 37.3 0.54
Bird 9428 69 136.6 64.0 1.02

Synthetic 8216 503 16.3 60.3 1.13

Table 1: Statistical information of the strong data in supervised fine-tuning stage. For synthetic data, similar
databases has been merged based on semantic similarity.

Prompt template for text-to-SQL tasks.

CREATE TABLE "list" (
"LastName" TEXT,
"FirstName" TEXT,
"Grade" INTEGER,
"Classroom" INTEGER,
PRIMARY KEY(LastName, FirstName)

);
/* 3 example rows:
SELECT * FROM list LIMIT 3;
LastName FirstName Grade Classroom
CAR MAUDE 2 101
KRISTENSEN STORMY 6 112
VANDERWOUDE SHERWOOD 3 107
*/
(...other tables omitted...)
-- External Knowledge: ...
-- Using valid SQLite and understanding

External Knowledge, answer the following
questions for the tables provided above.

Question: How many students are there?

SELECT count(*) FROM list;

Figure 2: Unified prompt (Chang and Fosler-Lussier,
2023) template for text-to-SQL tasks.

database schema, task instructions, optional ex-
ternal knowledge, and the natural language ques-
tion. We employ the CreateTable method for de-
tailing database schemas and SelectRow to show-
case table contents, ensuring SQL keywords and
schema are presented uniformly. Task instructions
are clear: “– Using valid SQLite, answer the follow-
ing questions for the tables provided above.” Ex-
ternal knowledge, if necessary, precedes the ques-
tion. This standardized prompt, denoted as X , is
designed to serve as the input to the LLM.

3 Methodology

Overall, our approach is divided into two distinct
phases. Initially, we enhance the base model’s
text-to-SQL capabilities through Supervised Fine-
tuning (SFT), with a primary focus on the diversity
and quality of data. We refer to this portion of
data as strong data. Subsequently, we employ
Preference Learning to inspire the model to learn

from incorrect SQLs, which we denote them as
weak data, necessitating the use of weaker lan-
guage models for error generation. The details of
these two processes are described below.

3.1 Strong Data: Supervised Fine-tuning
Supervised Fine-tuning (SFT) will significantly en-
hance the model’s performance in generating ap-
propriate responses, including text-to-SQL. The
currently popular cross-domain datasets, primarily
Spider and BIRD, incur high annotation costs due
to the need for human experts. To mitigate this
and further expand the scale, we turn to the power-
ful language model GPT-4 for assistance, utilizing
prompts to synthesize target data. Given that cross-
domain generalization is a central challenge for
text-to-SQL, we designed hints to encourage diver-
sity by prompting GPT-4 to generate sufficiently
diverse datasets, as shown in Figure 3. As illus-
trated in Table 1, the ratio of examples per domain
in our synthetic dataset is markedly lower than that
observed in Spider and Bird, signifying a higher do-
main diversity. Additionally, the synthetic data fea-
tures a higher average number of JOIN operations
in SQL queries, indicating a greater complexity
and depth in the constructed SQLs. These include
mechanisms for controlling question difficulty, pro-
moting domain diversity, and explicitly excluding
over-represented domains, thereby guiding GPT-4
to generate data points that are not only diverse but
also tailored to various levels of complexity.

Given a stong data set Ds of input prompt x and
target response y generated, the supervised fine-
tuning could be formulated as the log likelihood
loss:

E(x,y)∼Ds

[
T∑

t=1

log pθ
(
yt | y1:t−1,x

)
]
, (1)

where θ is the parameters of language model, and
pθ(y | x) =

∏T
t=1 pθ (yt | y<t,x) is the condi-

tional probability distribution of target SQL se-
quence y given prompt x. T is the sequence length
of y, and t is the auto-aggressive decoding step.
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Prompt for Synthesizing Strong Data
Your task is to generate one additional data point at the {the_level} difficulty level, in alignment with the format of
the two provided data points.
1. Domain: Avoid domains that have been over-represented in our repository. Do not opt for themes like Education/U-
niversities, Healthcare/Medical, Travel/Airlines, or Entertainment/Media.
2. Schema: Post your domain selection, craft an associated set of tables. These should feature logical columns, appro-
priate data types, and clear relationships.
3. Question Difficulty - {the_level}:

- Easy: Simple queries focusing on a single table.
- Medium: More comprehensive queries involving joins or aggregate functions across multiple tables.
- Hard: Complex queries demanding deep comprehension, with answers that use multiple advanced features.

4. Answer: Formulate the SQL query that accurately addresses your question and is syntactically correct.
Additional Guidelines:

- Venture into diverse topics or areas for your questions.
- Ensure the SQL engages multiple tables and utilizes advanced constructs, especially for higher difficulty levels.

Ensure your submission only contains the Domain, Schema, Question, and Answer. Refrain from adding unrelated
content or remarks.
(...examples and generations goes here...)

Figure 3: Prompt for synthesizing strong data. The placeholder the_level is filled on-the-fly by program,
controlling the desired hardness level of the generated data point. For limited token consideration, we randomly
draw two examples from Spider training set as few-shot demonstrations.

3.2 Weak Data: Preference Learning

The second phase involves a more nuanced ap-
proach for weak data. Here, we introduce the
model to incorrect SQL queries intentionally gener-
ated by weaker LLMs. Through Preference Learn-
ing (Rafailov et al., 2023), the model is encouraged
to discern between correct and incorrect SQL, ef-
fectively learning from its mistakes. This process
not only refines the model’s understanding of SQL
syntax but also enhances its resilience to common
errors that might occur in real-world scenarios.

Given a natural language description x, we gen-
erate an output y′ using weaker models (smaller
in size and less well-aligned). We then execute
y′ using an SQL executor E, and if the execution
result matches the ground truth y, we consider it
a positive sample yw. Conversely, if the result is
inconsistent, we label it as a negative sample yl.

{
yw = y′, if E(y′) = E(y)
yl = y′, if E(y′) ̸= E(y).

(2)

We construct a dataset Dw with both positive and
negative examples and optimize the model using
the recently popular preference learning method, di-
rect preference optimization (DPO, Rafailov et al.,
2023). DPO fine-tunes the model directly based
on preference data, bypassing the reward model-
ing stage and aiming to maximize the following
objective function:

E
(x,yw,yl)∼Dw

log σ
(
β log pθ(yw|x)

pref(yw|x) − β log pθ(yl|x)
pref(yl|x)

)
(3)

where pθ represents the probability distribution of
the target model’s predictions, pref denotes the
probability distribution from a reference model,
and β is a parameter that regulates the extent of
the target model’s divergence from the reference
model. By training on the preference dataset, we
can align LLM with executor preferences.

Leveraging the described methodology, we con-
ducted two phases of training using CodeLLaMA-
7B and CodeLLaMA-13B, successfully yielding
SENSE-7B and SENSE-13B as final models.

4 Experiments

4.1 Evaluation Benchmarks

We evaluated the effectiveness of SENSE using pop-
ular text-to-SQL benchmarks across five datasets.

General Benchmark Spider (Yu et al., 2018)
comprises 7,000 Text-SQL pairs in its training set
and 1,034 pairs in its development set, across 200
different databases and 138 domains.

Challenge Benchmark BIRD (Li et al., 2023c)
is a new benchmark of large real-world databases,
containing 95 large databases with high-quality
Text-SQL pairs, totaling 33.4GB of data across 37
fields. Unlike Spider, BIRD focuses on massive
and real database contents, the external knowledge
reasoning between natural language questions and
database content.

Robust Benchmarks SYN (Gan et al., 2021a)
replaces simple string-matched problem tags or pat-
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Model / Method
Spider Bird

Dev-EX Dev-TS Test Dev Test

Prompting Methods w/ Closed-Source LLMs

PaLM-2 (Anil et al., 2023) - - - 27.4 33.1
Claude-2 (Anthropic, 2023) - - - 42.7 49.0
ChatGPT (OpenAI, 2022) 72.3 - - 36.6 40.1
GPT-4 (Achiam et al., 2023) 72.9 64.9 - 49.2 54.9
Few-shot SQL-PaLM (Sun et al., 2023) 82.7 77.3 - - -
DIN-SQL + GPT-4 (Pourreza and Rafiei, 2023) 82.8 74.2 85.3 50.7 55.9
ACT-SQL + GPT-4 (Zhang et al., 2023) 82.9 74.5 - - -
DAIL-SQL + GPT-4 (Gao et al., 2023) 83.5 76.2 86.6 54.8 57.4

Fine-tuning Models

T5-3B + PICARD (Scholak et al., 2021) 79.3 69.4 75.1 - -
RASAT + PICARD (Qi et al., 2022) 80.5 70.3 75.5 - -
RESDSQL-3B + NatSQL (Li et al., 2023a) 84.1 73.5 79.9 - -
Fine-tuned SQL-PaLM (Sun et al., 2023) 82.8 78.2 - - -

Open-Source LLMs

LLaMA2-7B (Touvron et al., 2023) 28.0 23.8 - 7.1 -
LLaMA2-7B-Chat (Touvron et al., 2023) 36.9 34.9 - 11.3 -
Qwen-1.8B (Bai et al., 2023) 54.8 48.6 - 13.2 -
LLaMA2-13B-Chat (Touvron et al., 2023) 49.6 45.5 - 14.2 -
LLaMA2-13B (Touvron et al., 2023) 47.4 39.4 - 15.3 -
StarCoder-3B (Li et al., 2023d) 52.7 47.0 - 15.3 -
StarCoder-7B (Li et al., 2023d) 60.7 55.1 - 17.2 -
DeepSeek-Coder-1.3B (Guo et al., 2024) 59.3 53.2 - 22.0 -
♣CodeLLaMA-7B (Roziere et al., 2023) 61.1 52.3 - 22.5 -
♡CodeLLaMA-13B (Roziere et al., 2023) 61.7 53.5 - 22.9 -
CodeLLaMA-7B-Instruct (Roziere et al., 2023) 63.4 54.2 - 23.0 -
DeepSeek-Coder-1.3B-Instruct (Guo et al., 2024) 53.2 48.7 - 24.1 -
StarCoder-15B (Li et al., 2023d) 63.9 57.9 - 24.4 -
CodeLLaMA-13B-Instruct (Roziere et al., 2023) 62.3 52.5 - 24.7 -
Qwen-7B (Bai et al., 2023) 63.6 54.5 - 26.1 -

Ours
♣SENSE-7B 83.2 81.7 83.5 51.8 59.3
♡SENSE-13B 84.1 83.5 86.6 55.5 63.4

Table 2: Performance comparison on Spider and Bird benchmarks. To show the relationship of our final presented
models and base models, we denote them by ♣ and ♡. Specifically, SENSE-7B is based on CodeLLaMA-7B and
SENSE-13B is based on CodeLLaMA-13B.

tern names with their synonyms. DK (Gan et al.,
2021b) requires the text-to-SQL parser to have do-
main knowledge reasoning capabilities. REALIS-
TIC (Deng et al., 2021) replaces mentioned schema
items in questions to make them closer to real-
world scenarios.

4.2 Evaluation Metrics

For Spider and its robustness benchmarks, we fol-
low Spider’s official evaluation protocol *, using
EX (Yu et al., 2018) and TS (Zhong et al., 2020)
metrics†. EX measures if the SQL output exactly
matches the execution result of provided golden
SQL. TS is a more reliable metric that confirms if

*https://yale-lily.github.io/spider
†TS is not reported for DK due to incompatibility.

a SQL query passes all EX checks on various tests
created through database augmentation. For BIRD,
we adopt its official evaluation scripts‡, focusing
on EX accuracy evaluation.

4.3 Compared Methods
We compared a variety of baseline methods, which
can be categorized into three categories.

Prompting Methods ACT-SQL (Zhang et al.,
2023) introduced a method for automatically gen-
erating Chain of Thought (CoT) (Wei et al., 2022)
examples. DIN-SQL (Pourreza and Rafiei, 2023)
uses prompts to break down the complex text-to-
SQL task into smaller subtasks for enhanced per-
formance. DAIL-SQL (Gao et al., 2023) made

‡https://bird-bench.github.io
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Model / Method
SYN REALISTIC DK

Average
EX TS EX TS EX

RESDSQL-3B+NatSQL 76.9 66.8 81.9 70.1 66.0 72.3
Few-shot SQL-PaLM 74.6 67.4 77.6 72.4 66.5 71.7
Fine-tuned SQL-PaLM 70.9 66.4 77.4 73.2 67.5 71.1

SENSE-7B 72.6 64.9 82.7 75.6 77.9 74.7
SENSE-13B 77.6 70.2 84.1 76.6 80.2 77.7

Table 3: Evaluation of SENSE and various previously proposed methods on Spider-based robustness benchmarks:
Spider-SYN, REALISTIC and Spider-DK. TS is not reported for DK due to incompatibility.

Model / Method Easy Medium Hard Extra Hard All

DIN-SQL + GPT-4 91.1 79.8 64.9 43.4 74.2
ACT-SQL + GPT-4 91.1 79.4 67.2 44.0 74.5
DAIL-SQL + GPT-4 90.3 81.8 66.1 50.6 76.2
Few-shot SQL-PaLM 93.5 84.8 62.6 48.2 77.3
Fine-tuned SQL-PaLM 93.5 85.2 68.4 47.0 78.2

SENSE-13B 95.2 88.6 75.9 60.3 83.5

Table 4: Test Suite accuracy on Spider Dev, categorized by SQL hardness levels.

improvements in question representation, example
selection, and sample sequence organization.

Fine-tuning Models PICARD (Scholak et al.,
2021) is a constrained decoding approach fine-
tuned on T5-3B. RASAT (Qi et al., 2022) and
Graphix (Li et al., 2023b) focus on how to incor-
porate structure information into the fine-tuning
process of the T5 model (Raffel et al., 2020), while
RESDSQL-3B (Li et al., 2023a) decouples schema
linking and skeleton parsing.

Open-Source LLMs Recently, there has been a
surge in open-source LLMs. We selected some of
the most recently popular LLMs, including vari-
ous sizes and versions of DeepSeek-Coder (Guo
et al., 2024), Qwen (Bai et al., 2023), StarCoder (Li
et al., 2023d), LLaMA2 (Touvron et al., 2023), and
CodeLLaMA (Roziere et al., 2023). We adopted
a unified prompt as shown in Figure 2 to ensure a
fair comparison with SENSE.

4.4 Implementation Details
We choose CodeLLaMA-7B and CodeLLaMA-
13B as our primary models, and DeepSeek-Coder-
1.3B as a weak model to generate preference data.
Our experiments were run on 8×A100 GPUs, com-
bining datasets from Spider and Bird with GPT-
4-generated data for supervised fine-tuning using
the AdamW optimizer with a learning rate of 2e-5
and a cosine warmup scheduler over three epochs.
The preference learning phase starts with the gen-
eration of the weak data through the fine-tuned

weak model and a SQL evaluator. The evaluator
recognize each generated SQL as positive or neg-
ative, thus further enabled us to craft a preference
dataset. This dataset served as the foundation for
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) training. For DPO training, the Adam
optimizer was selected, with the learning rate ad-
justed to 2e-6 and the β parameter maintained at
0.2, consistent with the original DPO settings.

4.5 Overall Performance

Results on General Settings Table 2 shows
prompting methods surpass fine-tuning in text-to-
SQL, thanks to closed-source LLMs and tailored
prompts. Open-source LLMs lag in generalization.
Larger models correlate with better outcomes, and
instruction tuning boosts performance, showcasing
synthetic data’s tuning utility. Remarkably, SENSE

achieves state-of-the-art (SOTA) results on the Spi-
der dataset, surpassing the GPT-4-based DAIL-
SQL. Specifically, SENSE-13B shows a 21.8% im-
provement over CodeLLaMA-13B-Instruct in the
development set and marginally exceeds DAIL-
SQL, indicating SENSE’s potential in narrowing the
performance gap between open and closed-source
models in text-to-SQL challenges.

Results on Challenge Settings Experiments on
BIRD reveal its complexity, none of the open-
source LLMs perform well on BIRD, yet SENSE-
13B sets a new standard, outperforming DAIL-SQL
by 5.98% on the test set, as Table 2 shows. This

7869



41 503
0

500

Fr
eq

ue
nc

y

80%

(a) Synthetic Data (Similiar Domains Merged)

80%← | → 20%
Short Head
Long Tail

79 140
0

500

80%

(b) Spider Train

40 69
0

500

80%

(c) Bird Train

1Figure 4: Domain density comparison. This visualization sorts domains by example count, showcasing a long-tail
distribution to highlight the broad diversity within our synthetic dataset.

Bird Train
Spider Train
Syntheic Data

1

Figure 5: 2-D t-SNE visualization comparing original
and synthetic data’s last-layer hidden representations
post-supervised fine-tuning on last token.

60 40
Base Model

+Spider
+Bird

+Spider & Bird
Strong Data

+15.40

+28.50

+28.70

+30.00

22.9

38.3

51.4

51.6

52.9

Bird

40 60 80 100

+23.80

+15.70

+25.90

+29.40

53.5

77.3

69.2

79.4

82.9

SpiderBird Spider

1
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Supervised fine-tuning data on CodeLLaMA-13B. We
report EX and TS for Bird and Spider, respectively.

highlights the benefits of specialized open-source
LLMs for challenging environments.

Results on Robust Settings Table 3 reveals
SENSE excels in robustness (SYN, DK, REAL-
ISTIC) even without extra training. SENSE-7B
and SENSE-13B lead, surpassing RESDSQL-3B
by 1.4% and 5.4% on average. Notably, SENSE’s
strength in DK suggests synthetic data effectively
leverages the base model’s domain knowledge.

4.6 Fine-grained Analysis on Hardness

Spider’s difficulty labels reveal SENSE-13B’s su-
periority across all levels, as shown in Table 4.
Performance gains over the best alternatives are no-
table: Easy (1.6%), Medium (3.4%), Hard (7.5%),
and Extra Hard (9.7%). This suggests that it has an
advantage in processing hard samples, benefiting
from the difficulty control in synthetic data prompt.

4.7 Ablation Study

Table 5 presents an ablation study on SENSE, dis-
secting its components to assess their individual
impact. The study focuses on three key topics.

Model Spider-Dev Bird
EX TS Dev

Ablation for Main Results

DeepSeek-Coder-1.3B♣ 79.1 80.2 40.7
w/o Strong 59.3 53.2 22.0

SENSE-7B 83.2 81.7 51.8
w/o Weak 82.3 81.6 49.9
w/o Strong 61.1 52.3 22.5

SENSE-13B 84.0 83.5 55.5
w/o Weak 83.9 82.9 52.9
w/o Strong 61.7 53.5 22.9

Transferability on Homogeneous Models

Qwen-1.8B♣ 76.2 75.2 38.1
w/o Strong 54.8 48.6 13.2

SENSEQ-7B 84.2 84.6 52.5
w/o Weak 83.9 83.4 50.5
w/o Strong 63.1 54.4 26.1

Table 5: Ablation and transferability results. Upper sec-
tion details the effects of excluding weak and strong
data in fine-tuning. Lower section assesses model trans-
ferability, using Qwen-1.8B and Qwen-7B. ♣ marks a
model fine-tuned with strong data.

Why Strong Data is Helpful? Analysis from
Figure 6 and Table 5 shows strong data signifi-
cantly boosts Spider accuracy due to its simpler
SQL queries and the emphasis on domain general-
ization, and it can be seen that the data of bird and
spider can mutually enhance each other when the
data in the corresponding field is absent. Figure 4 il-
lustrates strong data’s broader long-tail distribution,
enabled by LLMs’ stored knowledge, enhancing
SENSE’s ability to adapt to new domains. Addi-
tionally, t-SNE visualizations in Figure 5 highlight
synthetic samples’ role in bridging the gaps left by
human-annotated data, further validating the value
of synthetic data.
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List all song names by singers above the average age.

Wrong Column

SELECT Song_Name FROM singer  
WHERE Age > (SELECT Average FROM stadium)

_A

_av 21.39%

54.70%

_A

_av 89.41%

1.09%

Table: stadium
Stadium_ID Name Capacity Average

1 Stark's Park 10104 2106
2 Somerset Park 11998 1477

Table: singer
Singer_ID Name Country Age

1 Joe Sharp Netherlands 52
2 Timbaland United States 32

SELECT Song_Name FROM singer  
WHERE Age > (SELECT avg(Age) FROM stadium)

+ Preference Learning

How many car makers are there in each continents? 
List the continent name and the count.

Wrong Table

Table: continents
ContId Continent

1 america
2 europe

Table: countries
CountryId CountryName Continent PK(ContId)

1 usa 1
2 germany 2

SELECT T1.Continent, count(*) FROM countries AS T1 
JOIN car_makers AS T2 ON T1.CountryId = T2.Country 
GROUP BY T1.Continent

_countries

_contin 35.59%

64.02%

_countries

_contin 74.01%

25.93%

SELECT T1.Continent, count(*) FROM continents AS T1 
JOIN countries AS T2 ON T1.ContId  =  T2.Continent 
JOIN car_makers AS T3 ON T2.CountryId  =  T3.Country 
GROUP BY T1.Continent

Which African countries have a smaller population 
than that of any country in Asia?

Wrong Operator

Table: country

Code Name Continent Population

ABW     Aruba    North America 103000

AFG    Afghanistan Asia 22720000

AGO    Angola Africa 12878000

SELECT Name FROM country WHERE Continent = 'Africa'  
AND Population < (SELECT max(Population) FROM country 
WHERE Continent = 'Asia')

_max

_min 48.91%

51.01%

_max

_min 94.11%

5.88%

SELECT Name FROM country WHERE Continent = 'Africa'  
AND Population < (SELECT min(Population) FROM country 
WHERE Continent = 'Asia')+ Preference Learning

+ Preference Learning

Figure 7: Preference learning enhances text-to-SQL performance in critical tokens.

Model MMLU
5-shot

ARC-Challenge
25-shot

GSM8K
8-shot, CoT

HumanEval
Greedy Average

CodeLLaMA-7B 39.2 42.1 11.4 29.3 30.5
SENSE-7B 39.1 42.5 11.0 31.7 31.1

CodeLLaMA-13B 43.7 46.4 21.8 34.2 36.5
SENSE-13B 42.7 47.9 18.1 40.2 37.2

Table 6: Performance of SENSE and corresponding base models on MMLU, ARC-Challenge, GSM8K and
HumanEval.

Why Weak Data is Helpful? Weak data, when
used with preference learning, helps SENSE to re-
fine its output by learning from errors, ensuring
closer alignment with the SQL executor. As indi-
cated in Table 5, weak data significantly enhances
overall performance, particularly by improving
the complexity of SQL queries generated, with a
notable 4.9% uplift on BIRD when compared to
strong data-trained models. Further, Figure 7 and
case studies reveal weak data’s role in reducing hal-
lucinations in SQL generation, minimizing errors
in selecting columns, tables, and operators, vital
for crafting intricate SQL commands.

Transferablity across Different LLMs In Ta-
ble 2, SENSE is initialized with CodeLLaMA and
utilizes the smaller DeepSeek-Coder as the gen-
erator for weak data. From the perspective of
model differences, CodeLLaMA and DeepSeek-
Coder can be considered heterogeneous models due
to their distinct structural details and pre-training
data. This make our curiosity about whether SENSE

could effectively transfer to homogeneous models
with identical pre-training data. We selected the
Qwen series, a family of open-source models with

a rich variety of sizes. We used Qwen-7B as the
base model and Qwen-1.8B as the weak model for
synthesizing, creating a new variant, SENSEQ. As
shown in Table 5, we found that the approach of
using synthetic data works equally well under ho-
mogeneous models, demonstrating the same level
of improvement as SENSE. This confirms the trans-
ferability of the proposed method.

Performance on General and Board Tasks In
addition to evaluating the performance of SENSE

on several text-to-SQL tasks, we assessed its
generalization capabilities through experiments
on several benchmarks: MMLU (Hendrycks
et al., 2021) for language understanding, ARC-
Challenge (Clark et al., 2018) for common sense
reasoning, GSM8K (Cobbe et al., 2021) for math
reasoning, and HumanEval (Chen et al., 2021) for
code generation. The results, presented in Table 6,
highlight SENSE’s competitive performance across
these diverse tasks, demonstrating its broad appli-
cability beyond the SQL domain. Notably, while
SENSE maintaining competitive performance on
math reasoning, the SENSE-13B exhibits signifi-
cant improvement in code generation performance
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compared to its base models. These findings un-
derscore SENSE’s robust versatility and generaliza-
tion capabilities across various tasks. Furthermore,
our experiments show that SENSE models maintain
performance on MMLU tasks, even when specifi-
cally fine-tuned for text-to-SQL tasks, confirming
our proposed method won’t affect the knowledge
stored in the LLMs. Moreover, if there is a need
to enhance NLP task performance, additional gen-
eral data could be incorporated through instruction
fine-tuning, though this is beyond the scope of this
paper.

5 Related Work

Text-to-SQL Parsing In the realm of text-to-
SQL parsing, early methods like IRNET (Guo et al.,
2019) focused on learning representations using
attention-based models, while subsequent works
introduced fine-tuning based models (Bogin et al.,
2019; Wang et al., 2020; Cao et al., 2021; Hui
et al., 2022; Li et al., 2023a; Liu et al., 2021; Shi
et al., 2021). Other advancements (Shaw et al.,
2021; Scholak et al., 2021; Xie et al., 2022) have
leveraged T5, demonstrating their effectiveness.
Recently, the emergence of LLMs(OpenAI, 2022;
Achiam et al., 2023; Anil et al., 2023; Anthropic,
2023) has garnered significant attention. Building
on top of these models, various works have ex-
plored innovative prompting techniques. Such as
the automatic generation of Chain-of-Thought (Wei
et al., 2022) examples by ACT-SQL (Zhang et al.,
2023), the decomposition of complex tasks into
sub-tasks by DIN-SQL (Pourreza and Rafiei, 2023),
and sample organization by DAIL-SQL (Gao et al.,
2023) have significantly improved performance in
the text-to-SQL domain. TAP4LLM (Sui et al.,
2023) proposed a table provider to better perform
semi-structured data reasoning. (Tai et al., 2023)
study how to enhance reasoning ability CoT style
prompting. Our work sets apart by leveraging open-
source LLMs, matching the prowess of proprietary
models in text-to-SQL tasks.

Synthetic Data There are many methods have
investigated the usage of LLMs to synthesize data.
Self-Instruct (Wang et al., 2023) introduced a
framework for improving the instruction-following
capabilities. Yue et al. (2024) managed to use hy-
brid rationales in developing advanced math mod-
els. Yu et al. (2024) generated plenty of mathemat-
ical questions by rewriting from multiple aspects.
Yuan et al. (2024) uses supervised models to boot-

strap more augmented samples for math. Our ap-
proach, distinct from others, utilizes both large and
smaller models for data generation, showcasing
efficacy in text-to-SQL tasks.

6 Conclusion

In this paper, we proposed a novel model SENSE

to explore synthetic data in text-to-SQL pars-
ing. By combining synthetic strong data from
larger models with weak data from smaller mod-
els, SENSE enhances domain generalization and
learns from executor feedback through preference
learning. Extensive experiments demonstrate that
SENSE achieves state-of-the-art performance on
well-known benchmarks, significantly narrowing
the gap between open-source models and closed-
source models. The release of SENSE data and
models aims to further the progress in the text-to-
SQL domain, highlighting the potential of open-
source LLM to be fine-tuned with synthetic data.

Limitations

Although our method has shown promising results
and significant progress in various aspects, it’s cru-
cial to explore the potential limitations. Firstly, due
to limited computational resources and time con-
straints, we were unable to fine-tune our method
on larger language models, such as LLaMA2-70B.
The effectiveness of synthesizing data on larger
models remains unclear. Secondly, our evaluation
mainly focused on the text-to-SQL task. However,
the potential of our data synthesis technique across
diverse tasks, including code generation and math
problems, which also benefit from execution-based
validation, remains to be fully examined.
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