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Abstract
Textual data is often represented as real-
numbered embeddings in NLP, particularly
with the popularity of large language mod-
els (LLMs) and Embeddings as a Service
(EaaS). However, storing sensitive information
as embeddings can be susceptible to security
breaches, as research shows that text can be
reconstructed from embeddings, even without
knowledge of the underlying model. While de-
fence mechanisms have been explored, these
are exclusively focused on English, leaving
other languages potentially exposed to attacks.
This work explores LLM security through mul-
tilingual embedding inversion. We define the
problem of black-box multilingual and cross-
lingual inversion attacks, and explore their po-
tential implications. Our findings suggest that
multilingual LLMs may be more vulnerable to
inversion attacks, in part because English-based
defences may be ineffective. To alleviate this,
we propose a simple masking defense effective
for both monolingual and multilingual models.
This study is the first to investigate multilingual
inversion attacks, shedding light on the differ-
ences in attacks and defenses across monolin-
gual and multilingual settings.

1 Introduction

Industrial applications of natural language process-
ing (NLP) typically utilize language models (LMs)
and often rely on vector databases via frameworks
such as Embeddings as a Service (EaaS). In this
context, sentence embeddings are stored in a re-
mote database, as opposed to raw text, allowing
end-users to efficiently search across condensed
representations. As embeddings are not human-
readable, security of the encoded information may
be naively assumed, however recent works have
demonstrated that embeddings are no safer than
raw text; they are susceptible to inversion attacks,
whereby a malicious actor can train models to de-
code embeddings, thus exposing private informa-
tion (Song and Raghunathan, 2020; Morris et al.,

Figure 1: Schematic overview of a text embedding inver-
sion attack. A user accesses an EaaS provider, while an
attacker is eavesdropping. Although the attacker has no
direct access to the embedding model, they can reliably
decode the information stored in the embeddings.

2023; Zhou et al., 2023). Concretely, after gaining
access to embeddings and the black-box embedder
via the EaaS API, the malicious actor can train an
external model, which approximates the inversion
function that reconstructs the text from the em-
beddings. As such, there is a substantial threat to
privacy if malicious actors are able to eavesdrop on
communication channels between EaaS providers
and customers, as illustrated in Figure 2.

Previous work has shown that an exact match
for data recreation can be obtained in specific set-
tings, albeit with the limitation of assuming mono-
lingual English models and embeddings (Morris
et al., 2023). However, in real-world scenarios,
eavesdroppers may not know the source language
of the encoded text, as EaaS providers can have
international clientele. Thus to assess the current
level of risk posed to multilingual LMs, we intro-
duce multilingual inversion attacks. As the first
ever study in this direction, we focus specifically
on exact text reconstruction, assuming that the lan-
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guage of a target embedding is unknown. Lever-
aging a state-of-the-art multilingual black-box en-
coder, we find that the trained model can recon-
struct texts in certain languages more effectively
than monolingual counterparts. Additionally, we
also introduce cross-lingual inversion attacks, to
ascertain whether inversion attacks can be success-
ful when the target language is unknown by the
attacker. We thus attempt cross-lingual text recon-
struction (i.e., reconstructing German text with a
model not trained on German reconstruction), intro-
ducing an Ad hoc Translation method to overcome
the evaluation limitation of current string-matching
metrics in this cross-lingual scenario. Finally, we
assess the efficacy of an existing defense method
by Morris et al. (2023), ultimately finding that de-
fenses intended for monolingual models fall short
in protecting multilingual models. To this end, we
introduce simple masking defense, which proves
effective for both monolingual and multilingual
models, and which also does not require additional
model training. All our trained inversion models 1

and code 2 are open source, encouraging the re-
search community to engage in development of
defenses for vulnerable multilingual models.

2 Related Work

Models are well known to memorize training data,
and are therefore susceptible to leaking private in-
formation (Shokri et al., 2016; Carlini et al., 2018;
Nasr et al., 2019). As such, there is increased re-
search interest in exploring this vulnerability to
inversion attacks from the perspective of cyber-
security, simulating attacks against models to recre-
ate sensitive training data. Work in this direc-
tion has been conducted across various domains of
machine learning, such as computational genetics
(Fredrikson et al., 2014), computer vision (Fredrik-
son et al., 2015), and more recently NLP (Song and
Raghunathan, 2020). Generally, such works at the
intersection of machine learning and cyber-security
(e.g., on inversion attacks or adversarial attacks)
make assumptions about the imagined attacker’s
levels of access to the victim model. White-box
scenarios assume attacker access to the full model
(Wallace et al., 2019; Tsymboi et al., 2023), re-
sulting in many possible attack surfaces. Previous
works in NLP have shown that it is possible to re-
trieve sensitive training data by attacking models

1https://huggingface.co/yiyic/
2https://github.com/siebeniris/MultiVec2Text/

directly (Fredrikson et al., 2014, 2015), attacking
gradients (Zhu et al., 2019; Deng et al., 2021), as
well as through leveraging leaked hidden states (Li
et al., 2022). Meanwhile, black-box attacks assume
an attacker has no knowledge of the underlying
model itself, and can only interact with models at
the most abstracted level (e.g., provide input and
register output through an API). For example, Car-
lini et al. (2020) are able to extract sensitive training
data (e.g., names and phone numbers) from GPT-
2 (Radford et al., 2019a), by first generating data
from the model and then using membership infer-
ence attacks to filter utterances likely to be part of
the original training data.

In embedding inversion attacks, an imagined at-
tacker aims to recreate text from the distributed
representations. As opposed to a machine transla-
tion setting, this scenario assumes no access to a
source text x to condition on, and the goal is not
to decode a translation of x, but rather to recre-
ate the exact text of x — with no input other than
the embedding ϕ(x), given ϕ as an encoder. Song
and Raghunathan (2020) showed that 50%–70%
percent of tokens could be recovered in such a set-
ting. Subsequent attacks have further improved
over this metric, with newer approaches now able
to retrieve entire sentences of encoded text (Höh-
mann et al., 2021; Hayet et al., 2022; Morris et al.,
2023; Li et al., 2023). Existing defense mecha-
nisms include randomly perturbing embeddings
(Zhou et al., 2023) and parameter-efficient fine-
tuning (Zhang et al., 2023). Other methods for
securing embeddings include encryption (Huang
et al., 2020; Xie and Hong, 2021) and differen-
tial privacy (Lyu et al., 2020). However, until em-
bedding privacy is ensured, inversion attacks will
remain a threat, necessitating further investigation.

Finally, previous works on embedding inversion
have been confined to monolingual settings con-
cerning English (Song and Raghunathan, 2020; Lyu
et al., 2020; Hayet et al., 2022; Parikh et al., 2022;
Kim et al., 2022; Morris et al., 2023; Zhou et al.,
2023; Li et al., 2023). This leaves defenses for
non-English languages and multilingual models un-
explored, potentially compromising model security
for those languages. As a result, the vulnerability
of multilingual models and non-English models
remains an open question.
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Figure 2: Overview of Multilingual Vec2Text, extending Vec2Text (Morris et al., 2023) with Ad hoc Translation
and Masking Defense Mechanism (outlined in the green dashed line frame). Given access to a target embedding e
and query access to the embedder ϕ via an EaaS API, the inversion model ψ iteratively generates hypotheses ê to
attain the target. The generated text x̂ is in German, and translated to English (AdTrans(x̂)), to be compared with
the target text x. The masking defense serves as an effective defense against inversion attacks while preserving
utility in NLP tasks such as retrieval.

3 Methodology

In this work, we consider a scenario where a ma-
licious actor has illegitimately obtained both em-
beddings and API access to the black-box encoder,
as shown in Figure 1. To gauge the vulnerabil-
ity of multilingual models against black-box em-
bedding inversion attacks, we build upon previous
work by Morris et al. (2023), extending their attack
method to a multilingual setting, aiming to invert
sentence embeddings produced by a multilingual
model. We define the attack scenario formally as
follows: given a sensitive text sequence x and a
black-box encoder ϕ, the goal is to recover x from
the embedding obtained via ϕ(x) using an external
attacker model ψ. However, we can only access ϕ
through an EaaS API, and its architecture and pa-
rameters are inaccessible. To this end, we explore
the efficacy of existing defenses in this scenario,
and introduce a novel defense mechanism.

We approach embedding inversion attacks in the
context of text generation, considering the gener-
ation models’ efficacy in such attacks (Li et al.,
2023; Morris et al., 2023). In this scenario, the
generation model ψ conditions what information
can be encoded and decoded, with consequences
for text reconstruction. For example, if ψ is solely
pre-trained on Latin script, it cannot handle Cyrillic
or Devanagari scripts. Consequently, reconstruct-
ing text in unknown scripts is presently infeasible,
and whether text in unknown scripts can be recon-
structed remains unexplored. Hence, our study
investigates text reconstruction in unknown lan-
guages within the same script (i.e., Latin).

Multilingual Inversion Attacks Compared to
monolingual embedding inversion, investigating

multilingual inversion attacks introduces signifi-
cant complexity, as each language space of ψ, ϕ,
x, and training data is crucial. For instance, the
training scale for attacker models increases with
the number of languages and controlled parameters,
such as maximal sequence length (cf. Section 4).

We explore the potential of multilingual embed-
ding inversion assuming unlimited queries can be
sent to the black-box ϕ, obtaining embeddings ϕ(x)
for x ∈ D, where D is the training dataset. Follow-
ing the approximation approach from Morris et al.
(2023), we search for text x̂ closest to the target
embedding e under ϕ using the formula:

x̂ = argmax
x

cos(ϕ(x), e) (1)

In particular, as illustrated in Figure 2, the train-
ing and inference of the inversion model are con-
ditioned on the previous output. At correction step
t+ 1, the model takes the concatenation of the pre-
vious output x̂(t), hypothesis embedding ê(t), and
target embedding e. With this context noted, the
multilingual embedding inversion attack is com-
posed of the following steps:

• Base model Model Training: Develop an
attacker model ψ based on a text genera-
tion model pre-trained on the same language
scripts;

• Correction Model Training: Train ψ by
querying the black-box embedding model ϕ
with text x ∈ D, resulting in x̂ optimized us-
ing Eq. 1 (correction step 1).

• Inference: Execute embedding inversion at-
tacks on texts in the target language lt using
the trained inversion model ψ. Further opti-
mization (correction steps > 1) is performed
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with Eq.1, combined with beam search at se-
quence level.

Cross-Lingual Inversion Attacks In a multilin-
gual setting we assume that the inversion model is
trained on several languages, including the target
text language lt. However, this is an unrealistic
setting which requires immense computational re-
sources. We therefore investigate a cross-lingual
setting, in which the aggressor does not know the
true language of the target text lt. Concretely, we
investigate the extent it is possible to execute in-
version attacks leveraging a monolingual inversion
model trained on a different source language ls than
the target lt, thus introducing a cross-lingual attack.
As the text generated by the monolingual inversion
model will be in ls, current string-matching met-
rics for evaluating inversion attacks, such as BLEU,
are not applicable here, as there will be little or no
overlap between the ls and lt strings, even when
the underlying meaning of the two is the same. In
order to evaluate the success of the cross-lingual
inversion model, we propose a post-intervention
strategy Ad hoc Translation (AdTrans), as shown
in Figure 2. In this setup, the generated text is first
translated from ls in lt using EasyNMT 3. Then the
translated text is evaluated against the target text, to
verify whether the inverted text in ls can indeed un-
cover the target text in unknown lt (cf. Section 5.2).
As AdTrans hinges upon the availability of a reli-
able machine translation model for the pertinent
languages, this use case highlights the existing lim-
itations in current evaluation metrics for assessing
the threat posed by cross-lingual inversion attacks,
and the need for continued research in this space.

4 Experimental Setup

English Embeddings We reproduce the results
from Morris et al. (2023) by training inversion mod-
els on GTR-base (Ni et al., 2022) 4 on English
dataset. Full results can be found in Appendix B.

Multilingual Embeddings We use T5-base
(Raffel et al., 2023) as our generation model.
For the multilingual inversion models ψ, we
train on a state-of-the-art multilingual encoder ϕ:
multilingual-e5-base (ME5-base)5 (Wang et al.,
2022), which is a pre-trained transformer based

3https://github.com/UKPLab/EasyNMT
4Huggingface: sentence-transformers/gtr-t5-base
5Huggingface: intfloat/multilingual-e5-base

on XLM-R (Conneau et al., 2020), and noted to
be one of the best performing multilingual models
according to MTEB (Muennighoff et al., 2023).

Datasets Previous research (Morris et al.,
2023) trains inversion models on natural ques-
tions and question-answer pairs, such as MS-
Marco (Bajaj et al., 2018) and Natural Questions
(NQ) (Kwiatkowski et al., 2019). While these
datasets are advantageously large, they are lim-
ited to English. Thus for our experiments, we
train and evaluate the multilingual inversion models
on MTG, a benchmark suite tailored for multilin-
gual text generation training and evaluation (Chen
et al., 2022), with parallel samples across lan-
guages. MTG is curated from different domains,
including news, daily life, and Wikipedia. In order
to ensure the validity of our experiments, and test
generalizability, we exclude the data curated from
Wikipedia, as this domain data was already used
to train both T5-base and ME5-base models. For
each language, this results in 123k passages (i.e.,
paragraphs or sections of a document) available
for training data. We obtain 3-5M sentences for
training and 2k each for validation and test in each
language using NLTK (Bird and Loper, 2004) sen-
tence tokenization. This is considerably fewer train-
ing samples as compared to Morris et al. (2023),
where their GTR-base model was trained on 5M
passages from NQ6. Meanwhile, we train and eval-
uate on data in English, French, German and Span-
ish, noted as MTG-EN, MTG-FR, MTG-DE, and
MTG-ES, respectively. We also compose a 5M-
sentence multilingual dataset for training includ-
ing 1.25M sentences from each language, noted
as MTG-MULTI. We note that to reproduce the
findings presented by Morris et al. (2023), a test set
comprising 500 samples was utilized. All recon-
struction results are therefore based on 500 samples
from the regarding test data.

Metrics To be comparable with Morris et al.
(2023), we assess model performance using two
types of metrics. First, for text reconstruction,
we employ the following word-match metrics:
BLEU (Post, 2018), measuring n-gram similar-
ities between the true and reconstructed text;

6The models truncate texts into 32 tokens and 64 tokens, to
evaluate how sequence length affects the performance of em-
beddings inversion. Each passage in NQ is significantly longer
than 32 and 64 tokens. To obtain more training data samples
from MTG, we implement NLTK sentence tokenization on
MTG dataset, resulting in sentences with uneven distribution
of tokens length (cf. Appendix A).
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ROUGE (Lin, 2004), reporting the recall of overlap-
ping words of reconstructed text; Token F1, which
calculates the multi-class F1 scores between pre-
dicted tokens and true tokens, considering each
word as a class; and Exact-match, representing
the percentage of perfectly matching reconstructed
texts to the true texts. We also compute the cosine
similarity between the true embedding and the em-
bedding of the reconstructed text in the embedding
space of the trained ϕ. However, such metrics fall
short in terms of evaluating the recovery of the
semantic content, especially regarding specific pri-
vate information. The limitation is particularly evi-
dent in cross-lingual settings, for example, where
the generated German text conveys similar meaning
as the input English text, a nuance that word-match
metrics fail to capture (see Figure 2).

Evaluation In text generation, exploring the vast
space of possible sequences exhaustively is infea-
sible. Hence, we employ beam search at the se-
quence level to approximate the sum of immediate
text generations. Following Morris et al. (2023),
the inference is conducted greedily at the token
level and beam search is employed at the sequence
level. At every stage of correction, a set number b
of potential corrections is evaluated. For each po-
tential correction, the top b feasible continuations
are decoded. From the pool of b · b potential con-
tinuations, the b unique ones are selected based on
their embedding space distance from the reference
embedding e.

In this study, we analyze inference using varying
numbers of correction steps (1, 20, 50, and 100)
along with sequence beam widths (sbeam) of 4 and
8. We explore the impact of evaluation steps in
comparison to runtime and observe that evaluation
runtime doubles from 50 to 100 steps with sbeam,
while the additional performance gains are negligi-
ble (see Figure 6 in Appendix C). Thus, we report
the evaluation results until 50 steps with 8 sbeam.

Experiments We train an inversion base model
and Vec2Text corrector model, as described in Sec-
tion 3. To determine the potential of multilingual
embedding inversion attacks, we train base mod-
els and Vec2Text models specifically for MTG-
MULTI; for cross-lingual attacks, we train these
models for each language. In comparison with pre-
vious research, we train and evaluate ME5-based
inversion models on NQ, i.e., ME5_NQ.

We use the Adam optimizer with the learning

rate of 2e−5, epsilon of 1e−6, and 1000 warm-up
steps at a constant warm-up schedule. Each base
and corrector model is trained for 100 epochs. Due
to the prohibitive computational resources needed
for training inversion models, we limit each model
to a single training run. For inversion models, we
use a batch size of 512, while corrector models,
trained on data with 32 tokens, have a batch size
of 256. Batch sizes are halved for models trained
on data truncated to 64 tokens 7. All models are
trained on 4 AMD MI250 GPUs with distributed
training. Under these circumstances, training our
slowest model takes about 8 days.

5 Attacking Multilingual Language
Models

To explore the potential of multilingual embedding
inversion, we train ME5-base embedder on MTG
data in English, German, French, and Spanish, i.e.,
ME5_EN, ME5_FR, ME5_DE and ME5_ES, respec-
tively, and the composed multilingual dataset of
four languages, i.e., ME5_MULTI, and test on each
language for both settings, see results in Table 1.
To simulate more realistic attacks, we conduct thor-
ough cross-domain evaluation (cf. Appendix G).

5.1 Multilingual Text Reconstruction

Monolingual Text Reconstruction in Multiple
Languages We observe that the BLEU score
for each language peaks by 50 steps correction
with 8 sbeam. Moreover, Spanish models outper-
form the others in terms of the word-match metrics
across correction steps, achieving 80.02 on BLEU
with 65% of exact match. Despite having a larger
volume of data compared to other languages, the
English model unexpectedly performs the worst
across various metrics, as illustrated by the training
data distribution in Appendix A Figure 5. How-
ever, we show in Appendix E, the evaluation of
round-trip translated English test data indicates
no evidence of translationese effect. Additionally,
experiments and results for embedding inversion
over Finnish and Hungarian can be found in Ap-
pendix D, providing additional insights to the prob-
lem of multilingual Vec2Tex, beyond high-resource
Romance and Germanic languages. There, we ob-
serve sub-par performance for text reconstruction
(see: Table 6 of Appendix D), highlighting the need
to study a wider variety of languages in the future.

7The more detailed settings for hyper-parameters are illus-
trated in the GitHub repository.
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#Tokens #Pred Tok. BLEU ROUGE TF1 Exact COS
MONO MULTI MONO MULTI MONO MULTI MONO MULTI MONO MULTI MONO MULTI MONO MULTI

MTG-EN
Base (0 Steps) 32 32 31.94 31.95 11.57 10.79 45.98 44.39 44.97 43.71 0 0 0.9381 0.9215
Vec2Text (1 Step) 32 32 31.95 31.96 18.3 13.38 58.74 48.95 56.37 48.22 0.4 0.2 0.9236 0.8637
(20 Steps) 32 32 31.99 31.98 41.48 23.72 79.05 62.53 75.15 59.74 8.8 3 0.9441 0.8433
(50 Steps) 32 32 31.99 31.97 43.05 25.27 80.2 64.14 76.29 61.39 9.4 3.2 0.9464 0.9296
(50 Steps + 4 sbeam) 32 32 31.99 31.98 45.87 29.89 82.7 68.17 78.24 65.27 10.8 5 0.9372 0.9487
(50 Steps + 8 sbeam) 32 32 31.98 31.98 48.49 32.04 83.51 69.38 79.16 66.67 12 7.4 0.9277 0.9303
MTG-FR
Base [0 Steps] 32 32 32 32 18.64 19.81 52.86 55.2 52.93 55.68 0 0.2 0.9408 0.9511
Vec2Text (1 Step) 32 32 32 31.98 29.1 28.32 63.58 63.08 63.36 63.1 2.6 2 0.9655 0.9271
(20 Steps) 32 32 31.98 32 62.39 58.78 84.12 81.32 83.48 81.02 36 32 0.9752 0.9492
(50 Steps) 32 32 31.98 32 64.04 60.75 85.18 83.01 84.51 82.49 36.8 33 0.9754 0.9252
(50 Steps + 4 sbeam) 32 32 32 32 71.96 68.72 88.29 86.7 87.91 86.22 50.4 45.2 0.9643 0.942
(50 Steps + 8 sbeam) 32 32 32 32 74.54 73 89.12 89.38 88.83 88.84 54.4 49.6 0.9757 0.942
MTG-DE
Base (0 Steps) 32 32 32 31.98 13.3 13.7 43.13 45.24 44.6 46.14 0 0 0.9599 0.9642
Vec2Text (1 step) 32 32 31.93 31.98 22 18.08 55.55 51.95 56 52.07 1.2 0.2 0.9699 0.9516
(20 Steps) 32 32 31.95 32 56.6 41.37 80.95 70.41 79.84 69.81 30.2 16.6 0.9573 0.9232
(50 Steps) 32 32 31.95 32 57.36 43.59 82.33 72.28 81.4 71.54 30.4 17.4 0.9687 0.9278
(50 Steps + 4 sbeam) 32 32 31.98 31.98 65.79 52.48 85.84 76.7 84.56 75.75 42.4 28.2 0.9778 0.9321
(50 Steps + 8 sbeam) 32 32 32 32 69.5 54.08 87.8 77.57 86.46 76.44 47.4 29.6 0.9671 0.9646
MTG-ES
Base (0 steps) 32 32 31.95 32 23.21 27.09 55.15 60.54 56.75 62.07 1.6 1.8 0.938 0.9501
Vec2Text (1 step) 32 32 32 32 35.18 36.92 66.21 68.04 67.76 68.92 8 9.6 0.9549 0.9423
(20 Steps) 32 32 32 32 66.61 64.43 85.59 84.61 85.78 84.73 44.8 38.4 0.9632 0.9563
(50 Steps) 32 32 32 32 67.85 65.93 86.61 85.25 86.67 85.46 45.4 38.8 0.9697 0.9582
(50 Steps + 4 sbeam) 32 32 32 32 77.29 74.52 90.41 89.45 90.47 89.23 60.8 53.6 0.9697 0.9515
(50 Steps + 8 sbeam) 32 32 32 32 80.02 77.72 91.34 90.72 91.54 90.44 65 56.8 0.9579 0.987

Table 1: MONO evaluates Text Reconstruction in multiple languages, trained and evaluated on MTG datasets
with tokens length 32 in English, French, German, and Spanish, respectively. MULTI evaluates multilingual text
reconstruction, trained on MTG-MULTI and evaluated on MTG datasets in the same languages. The best results
across metrics for each language are in bold, with instances where MULTI outperforms MONO underlined.

Multilingual Text Reconstruction Without Prior
Knowledge of Language To evaluate the poten-
tial of multilingual text inversion without prior
knowledge of the target language, we train inver-
sion models on MTG-MULTI. As shown in Ta-
ble 1, ME5_MULTI base model outperforms (under-
lined) or matches the performance of monolingual
base models across languages. Despite each lan-
guage in MTG-MULTI having a quarter of the data
volume compared to its monolingual counterpart,
overall performance remains comparable, particu-
larly evident for French and Spanish. For Spanish,
ME5_MULTI slightly outperforms in word-match
metrics than ME5_ES also for Vec2Text model by 1
step correction. Across languages, the initial (base
model) cosine similarities of the ME5_MULTI ex-
ceed those of its monolingual counterparts, except
for English.

Moreover, we conduct qualitative analysis on
text reconstruction using ME5_MULTI on parallel
samples, in Table 2 and 11 (cf. Appendix H). Over-
all, the lower the cosine similarity of Step 1, the
fewer steps the model needs to generate the ex-
act match. These phenomena suggest that (i) high
monolingual data volume is not the sole determi-

nant of high-performing base and 1-step Vec2Text
models in both monolingual and multilingual set-
tings, (ii) multilingual training yields closer em-
beddings of reconstructed and target texts in the
embedding space, and (iii) the optimization ap-
proach utilizing cosine similarity is not as effective
for multilingual training compared to monolingual.

5.2 Cross-lingual Text Reconstruction

Cross-lingual text reconstruction assumes no prior
knowledge of the target language, and thus the em-
bedder ϕ is trained on a different source language
than the target text for evaluation. To investigate
the potential of this scenario, we conduct cross-
lingual evaluation on all the monolingual models,
the results on in-domain MTG are reported in Ta-
ble 3.

We observe that ME5-base models trained on
both NQ and MTG datasets have a tendency to
decode texts, for example x̂, in the language of
training data, e.g., ls, given the target text x which
is in a different language, e.g., lt. However, x̂ could
convey the same information in another language,
but current word-match metrics are not able to cap-
ture this. Thus the privacy leakage still exists.
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Step Text BLEU COS
Input ford urged to recall 1.3 million suvs over exhaust fumes
Step 1 ford urged to recall fumes from 1.3 million suvs 39.94 0.8056
Step 2 ford urged to recall 1.3 million suvs from oversowing fumes 66.06 0.9514
Step 3 ford urged to recall 1.3 million suvs omitted fumes 67.17 0.8764
Step 4 ford urged to recall 1.3 million suvs overfuming fumes 67.17 0.8484
Step 5 ford urged to recall 1.3 million suvs of exhaust fumes 70.71 0.9656
Step 6 ford urged to recall 1.3 million suvs over exhaust fumes 100 0.9653
Input ford wird aufgefordert 1,3 millionen suvs wegen abgasen zurückzurufen
Step 1 ford ist auf 1,3 millionen suvs zurückgefordertgas abgerufen 19.49 0.8704
Step 2 ford ist auf 1,3 millionen suvs in abgas zurückgefordert 19.07 0.8911
Step 3 ford ist von 1,3 millionen suvs wegen abgas zurückgerufen 31.56 0.9592
Step 4 ford ist angerufen, dass 1,3 millionen suvs wegen abgas zurückgerufen werden 22.42 0.9376
Step 5 ford wird aufgefordert , 1,3 millionen suvs aufgrund von abgas zurückzurufen 24.38 0.9598
Step 6 ford wird aufgefordert 1,3 millionen suvs wegen abgas zurückzurufen 75.06 0.8906
Step 7 ford wird aufgefordert 1,3 millionen suvs wegen abgasen zurückzurufen 100 0.9872

Table 2: Qualitative Analysis of Reconstructing Multilingual Parallel Texts in English and German using
ME5_MULTI. Step are the correction steps from Step 1 (initial hypothesis) to Step 6/7 for the correct inver-
sions. The colored boxes indicate misplaced tokens , wrong tokens , and exact matches . The best results for
metrics are in bold. Initial cosine similarity is underlined.

For example, the ME5_DE model inverts the fol-
lowing German sentence into English:

• Generated German report: trump einmal
fragte damals fbi director andrew mccabe
während seiner 2016-vote

• AdTrans English report: trump once asked
fbi director andrew mccabe during his 2016-
vote

• Target English report: trump once asked then-
acting fbi director andrew mccabe about his
2016 vote

In this case, the model incorrectly generates
“während” (during) rather than “about”; otherwise,
the generated text is close in meaning with the tar-
get English text. The information leakage would
not be properly captured with the current met-
rics evaluated on the German text. Appendix H
Table 12 shows further qualitative examples for
adding AdTrans to aid evaluation in cross-lingual
settings.

Finally, for in-domain evaluation, performance
improves across cross-lingual settings, as demon-
strated in Table 3. Moreover, as shown in Ap-
pendix G Table 10, performance is enhanced across
models across domains for each language, except
for the GTR-base model. Notably, the AdTrans
strategy proves particularly effective for multilin-
gual based LMs.

MTG-EN MTG-FR MTG-DE MTG-ES
ME5_EN

Base - 3.2 (0.9132) 3.71 (0.8945) 3.1 (0.9068)
Vec2Text - 4.62 (0.9421) 5.61 (0.9474) 4.33 (0.911)
AdTrans - 12.4 (↑168.08%) 6.72 (↑19.75%) 12.38 (↑185.79%)
ME5_FR

Base 3.3 (0.9176) - 2.97 (0.9038) 4.52 (0.9206)
Vec2Text 5.36 (0.9235) - 4.26 (0.9431) 5.94 (0.9241)
AdTrans 7.25 (↑37.71%) - 6.35 (↑49.47%) 13.7 (↑126.79%)
ME5_DE
Base 3.99 (0.8902) 2.96 (0.9082)) - 2.73 (0.9224)
Vec2Text 8.13 (0.9223) 4.54 (0.9223) - 4.61 (0.9163)
AdTrans 9.61 (↑18.19%) 10.37 (↑128.62%) - 11.01 (↑138.91%)
ME5_ES
Base 3.31 (0.9186) 3.96 (0.9035) 2.67 (0.8958) -
Vec2Text 4.71 (0.9223) 5.13 (0.8699) 3.97 (0.9460) -
AdTrans 5.91 (↑25.51%) 9.57 (↑86.56%) 5.56 (↑39.89%) -

Table 3: Cross-lingual evaluation with BLEU score and
cosine similarity (in brackets) for Base and Vec2Text
models with 50 correction steps and 8 sbeam. BLEU
scores and their growth (in brackets) compared with
Vec2Text models are reported with AdTrans. ↑ and ↓
denote performance gains and losses respectively. The
best BLEU results are in bold.

6 Defending against Inversion Attacks

To explore defenses against inversion attacks for
LMs and compare strategies between monolingual
and multilingual models, we investigate the trade-
off between retrieval and reconstruction perfor-
mance. Specifically, we apply noise insertion and
masking defense to GTR-base and ME5-base us-
ing the correction model with 10 steps. Evaluation
is conducted on both BEIR (Thakur et al., 2021)
(English) and CLIRMatrix (Sun and Duh, 2020)
(cross-lingual), observing the mean NDCG@10
measures retrieval across 12 tasks (full results in
Appendix I).
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Figure 3: Retrieval and Reconstruction performance
across varying levels of noise injection with monolin-
gual (GTR-Based) and multilingual (ME5-Based) lan-
guage models on BEIR (top) and CLIRMatrix (bottom)
datasets. The red dotted lines indicate the noise level
at which the disparity of efficacy of defense between
monolingual and monolingual embeddings emerges.

Inserting Noise Simple noise insertion (detailed
in Appendix I.1) effectively guards monolingual
LMs against inversion attacks (Morris et al., 2023),
which is confirmed by our experiments, demon-
strating that adding noise can defend against such
attacks while preserving embedding utility, as de-
picted in Figure 3.

With a noise level of λ = 10−3, retrieval perfor-
mance is preserved for both GTR and ME5 across
BEIR and CLIRMatrix. While there is a drop on
reconstruction with GTR and ME5_NQ on BEIR by
20%, there is no change with ME5_EN on BEIR
and ME5_MULTI on both BEIR and CLIRMatrix.

At the noise level 10−2, reconstruction perfor-
mance with GTR drastically drops to 16% of the
original BLEU on BEIR and 36% on CLIRMa-
trix. In contrast, reconstruction with multilingual
LMs consistently maintains over 70% of the origi-
nal BLEU, particularly with ME5 trained on MTG
over 85%. Additional noise (λ ≥ 10−1) dam-
ages significantly both retrieval and reconstruc-
tion performances. This notable disparity between
retrieval and reconstruction performance on GTR

(λ = 10−2) implies the efficacy of the noise inser-

Figure 4: Retrieval and Reconstruction performance
with masked monolingual (GTR-Based) and multilin-
gual (ME5-Based) language models on BEIR (top) and
CLIRMatrix (bottom) datasets. The red dashed lines
indicate the performance drop in percentage.

tion defense primarily on monolingual LMs rather
than multilingual ones.

A Frustratingly Simple Masking Defense To
enhance the security of LMs, we propose a sim-
ple defense method, achieved by masking the first
dimension of the embeddings with the encoding
of the target language lt. We use an iterator to
encode each language as an identifier, denoted as
idt ∈ R. The masked embedding model is defined
as following:

ϕmasking(x) = vec([idt, vec(ϕi(x))1≤i≤n]) (2)

given ϕ(x) = vec(ϕi(x))0≤i≤n where x is the in-
put text, n is the dimension of the embedding ϕ(x)
and n ∈ N.

We implement this simple masking defense on
both GTR-base and ME5-base models. As de-
picted in Figure 4, while retrieval performance re-
mains unaffected8 across all models, reconstruction
markedly declines for both monolingual and multi-
lingual LMs across the retrieval benchmarks, with
a notable drop by 92% with GTR on BEIR and 79%

8The performance of text reconstruction on CLIRMatrix
dataset with GTR is largely conflated by its superiority in
reconstructing English documents (details in Appendix I).
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on CLIRMatrix, and over 64% drop for all multilin-
gual models. The is a simple yet effective defense
against inversion attacks for both monolingual and
multilingual LMs, while fully preserving utility in
retrieval tasks.

7 Conclusion

While previous works on embedding inversion at-
tacks focus exclusively on English, we present the
first work on multilingual and cross-lingual embed-
ding inversion. Notably, we uncover that multilin-
gual models can be more vulnerable than mono-
lingual models, under certain conditions. Impor-
tantly, traditional defense tailored for monolingual
models prove ineffective in guarding multilingual
models. Thus we propose a more robust defense
applicable to both monolingual and multilingual
ones. Additionally, our preliminary experiments
over moderately-resourced Uralic languages fur-
ther stresses the importance of expanding the scope
of future works in embedding inversion studies, to
include a more diverse set of languages. In sum-
mary, our work advocates for a multilingual ap-
proach to LLM and NLP security as an entirety.

Limitations

Computing Resources A core limitation of this
work is the computationally intense experiments,
requiring in the area of 25,000 GPU computing
hours. While expanding this research direction to
more languages will further increase this expense,
we advocate for ensuring that languages other than
English are not left behind in terms of NLP secu-
rity.

Data Contamination Pre-trained LMs are often
trained on massive web-based datasets, resulting
in a high likelihood that a given model has al-
ready seen commonly used benchmark datasets
(Dodge et al., 2021a). Indeed, most wide-used
LMs are trained on massive datasets like the C4
Common Crawl 9 web scrape, including OpenAI’s
GPT models (Radford et al., 2019b; Brown et al.,
2020), Meta AI’s RoBERTa (Liu et al., 2019)
and LLaMAs (Touvron et al., 2023), Google AI’s
BERT (Devlin et al., 2018), and EleutherAI’s GPT-
Neo (Black et al., 2022) and GPT-J (Wang, 2021).
In this work, we utilize models including T5-base,
ME5-base and GTR-base, which are all trained
on massive public domain datasets, resulting in a

9https://commoncrawl.org

likely overlap of training data. For example, initial-
ized from T5, GTR-base is trained on NQ dataset,
which is again used as training data for text re-
construction by Morris et al. (2023); ME5-base
and T5-base overlaps in C4 and Wikipedia. In
an attempt to mitigate data contamination, we ex-
clude Wikipedia from the MTG dataset. However,
staving off data contamination entirely is nearly
infeasible when utilizing open-sourced pre-trained
large LMs. This limitation is the focus of several
previous works (Brown et al., 2020; Dodge et al.,
2021b; Magar and Schwartz, 2022; Jacovi et al.,
2023).

Number and Diversity of Languages In this
study, we extensively experiment on multilingual
and cross-lingual inversion security focused on four
Romance and Germanic languages, which are also
high-resource languages in NLP. Still, this means
that this work lacks the extensive linguistic diver-
sity needed to understand how embedding inversion
attacks affect massively multilingual models, or
lower-resourced languages. To this end, we include
some preliminary experiments for inverting mul-
tilingual sentence BERT in two Uralic languages,
i.e., Finnish and Hungarian. Ultimately, we ad-
vocate for more extensive research with a wider
sample of languages in various language families.

Ethics Statement

This work explores attacks on multilingual embed-
ding models. Our intent with this research is to
shed light on the vulnerabilities of languages other
than English, aiming to encourage the community
to include more languages in NLP security work.
While there is potential for misuse by malicious
actors, as with many works in NLP security, we
mitigate harm by including an effective counter-
measure to the attack presented in the paper. Still,
it is important to stress that embedding inversion
presently represents a substantial threat. To this
end, the LMs examined in this paper are open-
source models, and such that this work does not
constitute an imminent threat to EaaS providers,
who are likely using private models. Finally, we do
not knowingly experiment with any truly sensitive
data, ensuring that no real-world harm is caused by
the work carried out in this paper.
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Figure 5: The Distribution of the training data for mod-
els with the maximal token length of 32.

In the MTG datasets, English texts are sourced
from various origins, while German, Spanish, and
French texts are translated from English using ma-
chine translation and manually validated (Chen
et al., 2022). These languages exhibit diverse mor-
phologies, leading to variations in sentence lengths
and the number of sentences post-tokenization
across languages. Additionally, the NQ dataset
is included to reproduce findings from prior re-
search (Morris et al., 2023) and to assess the cross-
domain and cross-lingual performance of the text
reconstruction task. The NQ dataset predominantly
comprises English data, with Wikipedia passages
included without tokenization, resulting in all train-
ing data from NQ having 32 tokens.

B Monolingual English Text
Reconstruction

To have a proof of concept, we successfully re-
produce and replicate the experiment from Morris
et al. (2023), by training inversion models using
GTR-base and ME5-base as embedders on the NQ
dataset, noted as GTR and ME5_NQ.

The results for reconstructing English texts are
shown in Table 4, evaluated with correction steps
(1, 20, 50, 100) combined with beam search (4 and
8 sbeam). The base and 1-Step Vec2Text model
trained on ME5-base have a performance on par
with GTR-base. Moreover, the text embeddings
trained on ME5-base are closer in embedding space
than embeddings trained on GTR-base, i.e., with
higher cosine similarities.

While, with more steps of correction and sbeam,
the performance is boosted to 92.45 on BLEU with

82% exact match for GTR, while the best perfor-
mance for ME5_NQ is 80.86 on BLEU with 35%
exact match. The performance difference could be
due to the fact that the underlying GTR-base is t5-
based model, the same structure as the generation
model ψ.

However, utilizing ME5-base sets up a more real-
istic attack scenario of black-box embedding inver-
sion, as the structure of the embedder ϕ is unknown.
Both models are furthermore evaluated with cross-
domain English text reconstruction. Similarly, GTR

outperforms ME5 after 50 correction steps with
sbeam 8, see Table 9 in Appendix G.

C Runtime vs. BLEU scores

The evaluation of Vec2Text models is expensive in
terms of time and computation. In order to search
for the optimal runtime and performance trade-off,
Figure 6 shows BLEU scores at each step and the
lines represent the trend for runtime for the mono-
lingual models. The best trade-off points are at
the correction step of 50 with 8 sbeam for all the
models, while 100 steps takes more than double
the time achieving similar performance. The full
results are in Table 1 and 5. Until correction step 50
with 8 sbeam, performance increases steadily, and
the trend is generally aligned with cosine similar-
ity. As a result, we evaluate the subsequent models
until correction step 50 with 8 sbeam.
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Figure 6: BLEU scores vs. Runtime by Evaluation
for Inversion Models in English, French, German and
Spanish.
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#Tokens #Pred Tok. BLEU ROUGE TF1 Exact COS
GTR ME5 GTR ME5 GTR ME5 GTR ME5 GTR ME5 GTR ME5 GTR ME5

Base (0 Steps) 32 32 32 32 27.18 28.77 62.86 63.68 63.74 65.9 0.4 0.4 0.8793 0.9738
Vec2Text (1 Step) 32 31 32 32 48.62 47.92 78.39 77.03 78.44 78.35 8 4.8 0.921 0.9588
(20 Steps) 32 32 32 32 83.30 74.47 95.12 89.57 95.11 90.3 58 21.8 0.9862 0.992
(50 Steps) 32 32 32 32 84.31 75.03 95.49 89.76 95.6 90.56 58.4 21.8 0.9862 0.992
(50 Steps + 4 sbeam) 32 32 32 32 90.18 78.87 97.26 91.11 97.15 91.55 74.4 32.6 0.9853 0.9902
(50 Steps + 8 sbeam) 32 32 32 32 92.44 80.86 97.76 91.89 97.78 92.42 82 35 0.9921 0.9926
(100 Steps) 32 32 32 32 92.45 80.82 97.75 91.83 97.79 92.37 82 35 0.9921 0.9926
(100 Steps + 4 sbeam) 32 32 32 32 90.17 78.82 97.25 91.11 97.15 91.53 74.4 32.8 0.9824 0.9902
(100 Steps + 8 sbeam) 32 32 32 32 92.45 80.82 97.75 91.83 97.79 92.37 82 35 0.9921 0.9926

Table 4: Evaluation of English Text Reconstruction. The best performances for each model reached in the earliest
stages are in bold. The underlined results are where ME5-base model outperforms GTR-base model.

#Tokens #Pred Tok. BLEU ROUGE TF1 Exact COS

MTG-EN
(100 Steps) 32 31.98 48.53 83.51 79.12 12 0.9277
(100 Steps + 4 sbeam) 32 31.99 45.9 82.71 78.24 10.8 0.9372
(100 Steps + 8 sbeam) 32 31.98 48.53 83.51 79.12 12 0.9277
MTG-FR
(100 Steps) 32 32 74.44 89.1 88.77 54.4 0.9757
(100 Steps + 4 sbeam ) 32 32 71.93 88.26 87.89 50.4 0.9643
(100 Steps + 8 sbeam) 32 32 74.44 89.1 88.77 54.4 0.9757
MTG-DE
(100 Steps) 32 32 69.55 87.8 86.47 47.4 0.9791
(100 Steps + 4 sbeam) 32 31.98 65.61 85.73 84.46 42.2 0.9778
(100 Steps + 8 sbeam) 32 32 69.55 87.8 86.47 47.4 0.9791
MTG-ES
(100 Steps) 32 32 79.96 91.21 91.43 65 0.9579
(100 Steps + 4 sbeam) 32 32 77.48 90.52 90.56 60.8 0.9697
(100 Steps + 8 sbeam) 32 32 79.96 91.21 91.43 65 0.9579

Table 5: The evaluation of Text Reconstruction in multi-
ple languages, with the models trained and evaluated on
MTG datasets with tokens length 32 in English, French,
German and Spanish, respectively. The steps are from
100 steps to 100 steps + 8 sbeam.

D Inverting Multilingual Sentence BERT
Embeddings

We additionally experiment on inverting multi-
lingual sentence BERT in Finnish and Hungarian.
The inversion models are trained using the encoder-
decoder multilingual T5 (Wang et al., 2024) as gen-
eration model, and multilingual sentence BERT 10

is used as the encoder ϕ. We train models on
randomly extracted 1M data samples from Cul-
turaX (Nguyen et al., 2024) 11, validated and eval-
uated on 500 samples, respectfully. The detailed
evaluation results are reported in Table 6. Interest-
ingly, the corrector model, which converges em-
beddings with cosine similarity, did not improve
text reconstruction for Finnish texts, while it did
provide marginal improvement for Hungarian texts.
The notably poorer performance in this experiment
highlights the complexity of inverting textual em-
beddings, where model affinity and datasets play

10huggingface: sentence-transformers/distiluse-base-
multilingual-cased-v2

11huggingface: uonlp/CulturaX

crucial roles. For future work, we plan to investi-
gate more extensively how different model architec-
tures and language families influence embedding
inversion performance.

#Tokens #Pred Tok. BLEU ROUGE TF1 EXACT COS
Finnish
Base (0 Steps) 32 31 7.69 0.24 0.27 0.014 0.7068
Vec2Text (1 Step) 32 0.0 0.0 0.0 0.00 0.0 -0.0562
(20 Steps) 32 0.0 0.0 0.0 0.0 0.0 -0.0562
(50 Steps) 32 0.0 0.0 0.0 0.0 0.0 -0.0562
(50 Steps + 4 sbeam) 32 31 0.01 0.0 0.13 0.0 -0.0166
(50 Steps + 8 sbeam) 32 8.0 0.03 0.0 0.14 0.0 0.0034
Hungarian
Base (0 Steps) 32 31 6.74 0.31 0.30 0.002 0.6834
Vec2Text (1 Step) 32 31 7.15 0.32 30.52 0.2 0.7220
(20 Steps) 32 31 7.35 0.32 30.99 0.2 0.7170
(50 Steps) 32 31 7.37 0.32 31.04 0.2 0.7170
(50 Steps + 4 sbeam) 32 31 7.95 0.33 31.76 0.0 0.7564
(50 Steps + 8 sbeam) 32 31 8.00 0.33 31.28 0.0 0.8240

Table 6: Inverting Multilingual Sentence BERT textual
embeddings in Finnish and Hungarian. The best results
for each metric are in bold.

E No Evidence for Translationese Effect

In machine translation, there is clear evidence that
the presence of translationese in test sets may re-
sult in inflated human evaluation scores for MT
systems (Zhang and Toral, 2019). To investigate
whether our multilingual inversion model’s sub-par
performance in English is due to the characteristics
of translationese in other languages, we implement
round trip translation on MTG-EN test data us-
ing Spanish as the pivot language with EasyNMT,
the translation path is thus English → Spanish →
English. Then the evaluation of the multilingual
inversion model is done on the round-trip translated
English test set, the result is shown as in Table 7.
Compared to evaluation on MTG-EN test set, as
shown in Table 1, the performance of translated
English test set is about 30 on BLEU worse at each
stage of corrections. The hypothesis of the transla-
tionese effect on the difference of the performances
can therefore be rejected.
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#Tokens #Pred Tok. BLEU ROUGE TF1 EXACT COS
Vec2Text (1 Step) 29.59 30.98 10.03 47.54 41.28 0 0.9046
(20 Steps) 29.59 30.95 14.48 55.14 47.8 0.2 0.913
(50 Steps) 29.59 30.98 15.11 56.01 48.56 0.2 0.9261
(50 Steps + 4 sbeam ) 29.59 30.88 17.56 61.81 52.64 0.2 0.9461
(50 Steps + 8sbeam) 29.59 30.96 17.42 61.28 52.44 0.4 0.9185

Table 7: Evaluation of multilingual inversion model on
round-trip translated MTG-EN test dataset.

F Text Construction on Tokens Length 64

#Tokens #Pred Tokens BLEU ROUGE TF1 Exact COS
English
Vec2Text (1 Step) 37.78 43.73 18.13 59.33 57.28 0.8 87.94
(20 Steps) 37.78 41.32 38.48 78.38 74.23 10 88.75
(50 Steps) 37.78 40.97 39.27 79.74 75.4 10.2 92.70
(50 Steps + 4 sbeam) 37.78 40.67 45.23 81.68 77.31 14.6 89.18
(50 Steps + 8 sbeam) 37.78 40.19 47.29 83.34 78.62 16.6 91.09
French
Vec2Text (1 Step) 51.61 57.23 26.45 63.58 64.03 0.8 95.07
(20 Steps) 51.61 53.25 58.25 83.1 83.01 26.6 96.54
(50 Steps) 51.61 52.6 59.58 83.99 83.69 26.8 96.26
(50 Steps + 4 sbeam) 51.61 52.62 64.61 86.11 86.03 37.8 97.26
(50 Steps + 8 sbeam) 51.61 52.54 66.8 86.74 86.44 41.8 93.83
German
Vec2Text(1 Step) 49.75 56.09 19.65 54.58 55.19 0.2 97.43
(20 Steps) 49.75 52.62 46.11 76.1 75.3 15.6 93.98
(50 Steps) 49.75 52.76 46.61 76.69 75.86 15.8 95.72
(50 Steps + 4 sbeam) 49.75 51.91 52.78 79.6 78.93 25.6 92.98
(50 Steps + 8 sbeam) 49.75 51.82 55.73 80.87 80.21 30.8 94.97
Spanish
Vec2Text(1 Step) 62.66 62 26.03 64.16 65.78 0.4 97.57
(20 Steps) 62.66 62.23 56.07 83.53 83.7 17.4 98.28
(50 Steps) 62.66 62.09 56.73 84.37 84.46 17.4 97.01
(50 Steps + 4 sbeam) 62.66 61.95 64.27 86.78 87.01 29.2 95.39
(50 Steps + 8 sbeam) 62.66 61.76 65.57 87.73 87.85 32.8 97.36

Table 8: The evaluation of Text Reconstruction in multi-
ple languages, with the models trained and evaluated on
MTG datasets with maximal token length 64 in English,
French, German and Spanish, respectively. The best
results across metrics are in bold.

We train ME5-base inversion models on MTG
datasets with token lengths of 64 in English,
French, German, and Spanish, in comparison to
32-token length models. Results in Table 8 indi-
cate a performance degradation; for instance, the
BLEU score for the Spanish inversion model drops
by approximately 15 while doubling the number of
tokens. This highlights the challenges in this line
of research.

G Cross-Domain Text Reconstruction

Cross-Domain English Text Reconstruction To
evaluate the performance of embedding inversion
attacks on out-of-domain dataset in English, the
models trained on NQ and MTG-EN are cross-
evaluated on both datasets, respectively, as shown
in Table 9. The results on MTG-EN are similar on
BLEU for both base models trained on GTR-Base
and ME5-Base, while GTR model outperforms ME5
by more than 12 on BLEU, and the cosine similar-
ity of reconstructed and true text embeddings are
boosted by over 0.24 . In comparison, the cosine
similarity for ME5 models are not much varied and

NQ→MTG-EN MTG-EN→NQ MTG-MULTI→NQ
GTR
Base 5.81 (0.7334) - -
Vec2Text 39.08 (0.9767)
ME5
Base 5.89 (0.9272) 12.35 (0.9154) 11.63 (0.8894)
Vec2Text 26.96 (0.9440) 42.90 (0.9789) 31.84 (0.9310)

Table 9: Cross-Domain English Text Reconstruction
Evaluation, BLEU scores and COS are reported. Hori-
zontal comparison on ME5-base models, and vertically
on two embedders trained on the same NQ dataset. The
Vec2Text models are evaluated by 50 steps of correction
with sequence beam search width 8. → indicates the
cross-domain evaluation direction. For example, NQ →
MTG-EN indicates that the model is trained on NQ and
evaluated on MTG-EN.

constantly high (≥ 0.88) across stages of evalua-
tions and across domains. Additionally, ME_EN

outperforms ME_MULTI tested on NQ.

Cross-domain Cross-lingual Text Reconstruc-
tion Cross-lingual, cross-domain text reconstruc-
tion is one of the most challenging scenarios, yet
it also represents the most realistic context, with
both domain and target language unknown. As
shown in Table 10a, while the AdTrans strategy
does not enhance the performance of the GTR-Base
inversion model, there is a consistent improvement
in performance across datasets when using ME5-
Base inversion models. Particularly noteworthy is
the significant performance boost observed, espe-
cially evident when evaluating NQ-trained ME5-
base model ME_NQ on MTG-DE, resulting in a
remarkable 128.11% performance gain.

It is interesting that multilingual LMs reconstruct
texts in the language of training data, while mono-
lingual language model (GTR) reconstruct texts
mostly in the target language. This highlights the
differences of monolingual and multilingual LMs,
and warrants further research for future work.

H Qualitative Analysis

H.1 Multilingual Text Reconstruction

We conduct qualitative analysis on multilingual
text reconstruction using parallel samples. Table 11
shows the French and Spanish samples, in compar-
ison to Table 2, samples in English and German.
The samples are evaluated on ME5_MULTI. By
Step 2, French sentence is already reconstructed
with one word mismatch, however, the whole sen-
tence is only fully reconstructed by correction step
50 + 4 sbeam. The cosine similarity is high from
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MTG-FR MTG-DE MTG-ES
GTR-Base

Base 4.39 (0.7581) 3.22 (0.7052) 4.74 (0.7134)
Vec2Text 10.91 (0.8833) 6.46 (0.8138) 10.84 (0.9020)
AdTrans 10.48 (↓-3.92%) 6.15 (↓-4.84%) 9.95 (↓-1.67%)

ME5-Base
Base 3.13 (0.9513) 2.73 (0.9298) 3.64 (0.9293)

Vec2Text 6.46 (0.9487) 5.37 (0.9107) 5.91 (0.8963)
AdTrans 13.40 (↑107.32%) 8.54 (↑59.21%) 11.87 (↑100.79 %)

(a) Cross-lingual cross-domain evaluation with monolingual
models trained on NQ.

→NQ ME5_FR ME5_DE ME5_ES
Base 2.60 (0.96) 2.80 (0.8790) 2.32 (0.9266)

Vec2Text 4.00 (0.9441) 5.13 (0.9374) 3.41 (0.9380)
AdTrans 8.11 (↑102.50%) 10.18 (↑98.49%) 6.07 (↑78.04%)

(b) Cross-lingual cross-domain evaluation on NQ with monolin-
gual models trained on MTG datasets.

Table 10: Cross-lingual evaluation using BLEU score
and Cosine Similarity (in the brackets) for Base and
Vec2Text models by correction steps of 50 with 8 sbeam.
The BLEU scores and their growth (in the brackets)
compared with BLEU scores on Vec2Text models are re-
ported for AdTrans strategy for each model. ↑ indicates
performance gain while the ↓ indicates performance
loss. The result with the highest BLEU score with each
evaluated model on each dataset is in bold.

step 1, i.e., 0.9892, compared to the sample in
English, i.e., 0.8056 and in German, i.e., 0.8704.
While English and German samples are fully re-
constructed by step 6 and 7. As argued, the ap-
proximation approach with cosine similarity seems
to be more effective for models rendering lower
cosine similarity from initial steps. However, from
observations, ME5 models reconstructs closer em-
beddings across languages from the start.

H.2 Cross-lingual Text Reconstruction

We further conduct qualitative analysis on cross-
lingual text reconstruction, aided by AdTrans. As
shown in Table 12, the four way multilingual sam-
ples are used, all represent the same meaning. Each
sample is evaluated by ME5-base inversion models
trained on other three languages separately.

Consistent with previous quantitative analysis,
the cross-lingual reconstruction is difficult, and the
BLEU scores are consistently low. With AdTrans,
the BLEU scores are overly boosted, with an excep-
tion of evaluating Spanish sample with ME5_EN.
In this example, the highest performance gain is
adding AdTrans for evaluating English sample with
ME5_DE.

The intention of adding AdTrans is to improve
the utility of current string-matching metrics in
cross-lingual attack setting, while also expose the

inadequacy of such metrics in terms of LLMSec.
With this example, there is essential information
leakage in each evaluation that can not be captured
even after applying AdTrans.

I Full Defense Results

I.1 Noise Insertion Defense
Following (Morris et al., 2023), the noisy embed-

ding model is defined as following:

ϕnoisy(x) = ϕ(x) + λ · ϵ, ϵ ∈ N(0, 1) (3)

where λ is a hyperparameter controlling the amount
of noise injected.

I.2 Language Neutrality of Inversion Models
Drawing inspiration from Libovický et al. (2020),
we delve into the impact of language-agnostic em-
beddings on retrieval and reconstruction perfor-
mance. This is achieved by isolating the language-
specific component, represented by the mean of the
embeddings, which serves to identify the language
of the representations. Conversely, we extract the
language-agnostic component by subtracting the
mean embeddings, thereby capturing the essence
of the text in a language-independent manner.

We present the performance of language-
agnostic component on GTR-base and ME5-base
models across BEIR and CLIRMatrix benchmarks
in Table 13, 14, 15, and 16, 17, 18.

Consistently, our findings demonstrate that
language-agnostic embeddings either outperform
or perform equally well compared to the original
embeddings in retrieval tasks. However, while
there is only a slight degradation in performance for
text reconstruction on the CLIRMatrix benchmark
and with ME5-base models on the BEIR bench-
mark, the reconstruction performance experiences
a notable 20% decline with the GTR-base model
on the BEIR benchmark. This indicate that the dis-
tinction of language-specific and language-agnostic
component is more salient for multilingual models.

I.3 Results on BEIR Benchmark
We reproduce the retrieval and reconstruction on
GTR-base models across 12 BEIR tasks from (Mor-
ris et al., 2023), excluding the four private datasets.
Moreover, we implement retrieval on ME5-base
models. The full defense results for retrieval per-
formance and reconstruction tasks are shown in
Table 13, 14 and 15.
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Step Text BLEU COS
Input ford doit rappeler 1,3 million de suv en raison des gaz d’échappement
Step 1 ford doit rappeler 1,3 million de suv en raison du gaz d’absorption 68.12 0.9892
Step 2 ford doit rappeler 1,3 million de suv en raison du gaz d’échappement 76.12 0.9712
Step 3 ford doit rappeler 1,3 million de suv en raison du gaz d’échappement 76.12 0.9992
Step 4 ford doit rappeler 1,3 million de suv en raison du gaz d’échappement 76.12 0.9712
Step 5 ford doit rappeler 1,3 million de suv en raison du gaz d’échappement 76.12 0.9992
Step 6 ford doit rappeler 1,3 million de suv en raison du gaz d’échappement 76.12 0.9712
Step 7 ford doit rappeler 1,3 million de suv en raison du gaz d’échappement 76.12 0.9712
Step 50 ford doit rappeler 1,3 million de suv en raison du gaz d’échappement 76.12 0.9992
Step 50 + 4 sbeam ford doit rappeler 1,3 million de suv en raison des gaz d’échappement 100 0.9915
Input ford instó a retirar 1.3 millones suvs por el escape de humos
Step 1 ford imploró el 1,3 millones de suvs en la salida de humos 8.91 0.9491
Step 2 ford advirtió el 1,3 millones de humos selevados de suvs al elimin 8.91 0.8213
Step 3 ford se advirtió por eliminar 1,3 millones de humos a suvs a sale 8.45 0.9634
Step 4 ford se advirtió por el rescate de 1,3 millones de suvs por hum 9.67 0.9552
Step 5 ford se advirtió que 1,3 millones de suvs se escaparon por humo 5.06 0.9696
Step 6 ford se instó a la sépara de 1,3 millones de suvs por humos 10.39 0.9045
Step 7 ford instó a los 1,3 millones de suvs a salir del humo revapor 13.67 0.9481
Step 50 ford instó a la salida de 1.3 millones de suvs por el humo 22.63 0.9794
Step 50 + 4 sbeam ford instó a la salida de 1.3 millones de suvs con humos para elimin 14.95 0.831
Step 50 + 8 sbeam ford instó a retirar 1.3 millones suvs por el escape de humos 100 1.0000

Table 11: Qualitative Analysis of Reconstructing Multilingual Parallel Texts in French and Spanish using
ME5_MULTI. Step are the correction steps from Step 1 (initial hypothesis) to Step 50 + 4/8 sbeam for the
correct inversions. The colored boxes indicate misplaced tokens , wrong tokens , and exact matches . The best
results for metrics are in bold. Initial cosine similarity is underlined.

I.4 Results on CLIRMatrix Benchmark
To evaluate the cross-lingual scenario in retrieval
and reconstruction on monolingual and multilin-
gual models, we implement cross-lingual retrieval
and text reconstruction across 12 cross-lingual
datasets constructed from MULTI-8 of CLIRMa-
trix (Sun and Duh, 2020).

Let q be a query in language Lquery and d be
a document in language Ldoc. In our scenario,
the cross-lingual retrieval task involves retrieving
the document in language Ldoc when presented
with a query in language Lquery within the near-
est neighbor retrieval framework. For our eval-
uation, the cross-lingual datasets are constructed
with the triple (qLquery , dLdoc), where Lquery ∈
{en, fr, de, es} and Ldoc ∈ {en, fr, de, es}, and
Lquery ̸= Ldoc. We implement retrieval and recon-
struction both on GTR-base and ME5-base models.

The full defense results for retrieval performance
and reconstruction tasks are shown in Table 16, 17
and 18.
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Model Text BLEU COS AdTrans BLEU
Input ford urged to recall 1.3 million suvs over exhaust fumes.
ME5_ES ford insiste on-reclame a 1,3 millones de suvs. 5.02 0.8922 ford insists on-reclaiming me to

1.3 million suvs.

16.59↑

ME5_FR ford exhorte recall of blow ’parmi les 1,3 mil-
lion de suvs.

5.06 0.9717 ford urges recall of blow ’among the

1.3 million suvs.

16.59↑

ME5_DE ford appelliert an recall of 1,3 millionen suvs
über fume.

5.3 0.8866 ford appeals to recall of

1.3 million suvs over fume .

29.98 ↑

Input ford doit rappeler 1,3 million de suv en raison des gaz d’échappement.
ME5_EN ford notices that 1.3 million suvs get recalled

for gas-shock.
4.11 0.9276 ford remarque que 1,3 million de suvs

sont rappelés pour le choc au gaz .
11.72↑

ME5_ES ford se debe a recordar 1,3 millones de suv por
el evacuación de gas.

6.61 0.903 ford est dû à la mémoire de
1,3 million de suv pour l’évacuation du

gaz.

17.66↑

ME5_DE ford cite 1,3 millionen gas suv, weshalb sie die
abmeldung verpassen sollten.

4.02 0.903 ford cite 1,3 millions de gaz suv , c’est

pourquoi vous devriez rater l’annulation.

4.15↑

Input ford wird aufgefordert 1,3 millionen suvs wegen abgasen zurückzurufen.
ME5_EN ford has demanded that ford call back 1.3 mil-

lion agressive suvs.
4.46 0.9049 ford hat gefordert , dass

ford 1,3 millionen agressive suvs zurückruft .

8.64↑

ME5_ES ford ha exigido un apagón de 1.3 millones de
suvs por regreso.

4.07 0.891 ford hat einen stromaus-
fall von 1,3 millionen suvs
auf dem rückweg gefordert .

13.15↑

ME5_FR ford réclame une récharge de 1,3 million de
suvs en raison des agressions.

4.02 0.889 ford fordert eine aufladung von
1,3 millionen suvs wegen der übergriffe .

23.80 ↑

Input ford instó a retirar 1.3 millones suvs por el escape de humos.
ME5_EN ford vows to save 1.3 million suvs of smoke

ford was expelled.
4.37 0.8476 vado votos para salvar 1,3 millones de suvs

de humo vado fue expulsado.
4.05 ↓

ME5_FR ford a revendiqué 1 milliard de smaux de
fumée pour le sortir de ses suvs.

3.66 0.9183 ford reivindicó mil millones de smalls de
humo para sacarlo de sus súbditos.

4.05 ↑

ME5_DE ford appellierte die befreiung mit dem rauch
es gibt 1,3 milliarden suvs.

4.07 0.8642 ford apeló a la liberación con el humo hay
1,3 mil millones de suvs .

4.31↑

Table 12: Qualitative Analysis of Cross-lingual Text Reconstruction using monolingual ME5-base models. Text
shows the input and the reconstructed texts by Step 50 + 8 sbeam in the regarding languages, and subsequent
the metrics for evaluation (BLEU and COS). AdTrans shows the translation of reconstructed text into the target
language. The second BLEU evaluates the translated text to the original with ↑ indicating performance gains. The
colored boxes indicate matched tokens and information leakages .

arguana climate-fever dbpedia-entity fiqa msmarco nfcorpus nq quora scidocs scifact trec-covid webis-touche2020
GTR
λ
0 0.3278 0.1355 0.3058 0.2080 0.6466 0.2392 0.3060 0.8794 0.0951 0.2472 0.3757 0.2335
0.001 0.3276 0.1358 0.3079 0.2089 0.6480 0.2392 0.3056 0.8791 0.0948 0.2481 0.3775 0.2309
0.01 0.3203 0.1307 0.2993 0.2044 0.6328 0.2352 0.2993 0.8747 0.0930 0.2417 0.3702 0.2314
0.1 0.0059 0.0000 0.0003 0.0008 0.0026 0.0147 0.0001 0.0041 0.0011 0.0011 0.0049 0.0000
1 0.0008 0.0000 0.0000 0.0000 0.0000 0.0081 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000
Masking 0.32724 0.13585 0.3057 0.20788 0.6463 0.23954 0.30574 0.87937 0.09549 0.2457 0.37763 0.23341
Lang-agnostic 0.3275 0.13502 0.30589 0.20787 0.64664 0.23913 0.30564 0.87929 0.09542 0.24838 0.37687 0.23212
ME5
λ
0 0.3002 0.1441 0.3389 0.2155 0.6446 0.2509 0.3344 0.8788 0.1180 0.2876 0.4836 0.2208
0.001 0.3014 0.1433 0.3368 0.2155 0.6449 0.2506 0.3351 0.8783 0.1174 0.2871 0.4818 0.2241
0.01 0.2725 0.1267 0.3094 0.1936 0.6257 0.2368 0.3089 0.8634 0.1055 0.2509 0.4363 0.2141
0.1 0.0006 0.0000 0.0001 0.0004 0.0000 0.0098 0.0000 0.0002 0.0006 0.0010 0.0000 0.0000
1 0.0005 0.0000 0.0000 0.0000 0.0000 0.0108 0.0000 0.0000 0.0003 0.0010 0.0000 0.0000
Masking 0.30038 0.14403 0.33753 0.21603 0.64487 0.2512 0.33473 0.87858 0.11747 0.28666 0.4837 0.22062
Lang-agnostic 0.30021 0.14411 0.33891 0.2155 0.64459 0.25092 0.33442 0.87877 0.11793 0.28755 0.48357 0.22076

Table 13: BEIR performance (NDCG@10) for GTR-base and ME5-base at varying level of random noise (32
tokens).
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arguana climate-fever dbpedia-entity fiqa msmarco nfcorpus nq quora scidocs scifact trec-covid webis-touche2020
GTR
λ
0 60.43 82.65 68.26 41.12 61.72 67.52 80.98 43.87 63.6 65.64 65.4 37.76
0.001 47.23 72.73 53.93 33.27 49.08 53.22 65.18 42.5 48.92 53.36 53.31 30.88
0.01 7.59 16.26 11.6 7.13 9.85 8.26 10.52 15.3 6.86 8.1 8.91 8.51
0.1 1.71 1.92 1.83 1.65 1.76 1.74 1.77 1.64 1.71 1.78 1.72 1.72
1 1.48 1.58 1.51 1.41 1.63 1.51 1.53 0.98 1.49 1.59 1.5 1.4
Masking 3.69 7.71 4.52 3.68 4.37 3.89 4.42 9.36 3.06 3.38 3.63 4.44
Lang-agnostic 49.15 70.96 58.22 32.37 47.69 53.04 67.29 40.39 52.53 52.1 54.56 31.9

ME5_NQ
λ
0 46.75 63.29 63.21 30.57 51.24 54.35 71.49 24.85 51.18 52.76 50.8 28.44
0.001 44.62 35.28 39.01 30.94 42.67 54.09 45.31 17.56 52.15 53.04 51.03 30.96
0.01 35.8 30.33 34 25.63 33.3 45.52 38.34 15.95 40.86 43.61 40.88 24.69
0.1 3.8 5.11 4.84 3.4 4.27 4 4.63 3 3.58 3.64 3.65 3.34
1 1.94 2.11 1.92 1.82 2.04 2.05 2.12 1.2 1.9 1.95 1.98 1.89
Masking 9.68 12.72 13.06 8.85 11.09 11.18 11.98 10.89 9.06 9.39 9.57 8.97
Lang-agnostic 43.41 35.12 38.49 30.27 39.76 54.64 45.29 17.92 50.94 51.56 48.8 28.23
ME5_EN
λ
0 39.29 54.51 32.24 32.68 39.76 37.9 55.09 76.92 33.62 28.5 32.87 37.04
0.001 38.36 53.84 31.71 32.34 38.17 37.34 54.76 77.05 33.24 28.48 31.98 37.34
0.01 33.01 43.22 28.43 28.24 33.89 33.11 46.93 65.83 28.94 24.86 27.98 31.28
0.1 4.31 5.79 5.26 3.63 4.7 4.43 5.5 4.95 3.58 3.75 4.01 4.19
1 1.79 1.95 1.83 1.71 1.85 1.93 1.99 1.23 1.78 1.8 1.78 1.65
Masking 10.98 13.55 11.87 10.11 11.79 10.61 15.48 17.65 8.24 8.14 9.51 10.16
Lang-agnostic 38.77 51.98 30.87 31.9 37.61 36.49 52.67 74.27 31.67 28.65 30.18 36.1
ME5_MULTI
λ
0 23.02 31.38 21.89 20.55 25.39 22.45 35.55 62.65 18.99 16.71 19.89 23.28
0.001 23.54 31.61 22.46 20.05 25.04 22.58 35.38 62.24 19.02 16.95 18.76 22.72
0.01 20.2 26.36 20.06 16.7 21.59 19.69 30.49 52.94 15.93 14.95 17.65 20.12
0.1 3.62 4.66 4.4 3.31 4.05 3.84 4.22 4.21 3.08 3.5 3.62 3.6
1 0.94 1 1.23 0.92 1.05 1.01 1.18 0.61 0.98 0.97 0.99 0.92
Masking 7.76 9.7 8.98 7.19 8.85 7.26 10.48 14.33 6.18 6.22 6.65 7.17
Lang-agnostic 22.83 31.08 22.09 19.13 24.07 21.52 33.77 60.15 18.13 16.79 18.66 22.95

Table 14: BEIR Text Reconstruction performance (BLEU score) for monolingual and multilingual inversion models
at varying level of random noise (32 tokens).

GTR-Based ME5-Based
Defenses IR (NDCG@10) GTR IR (NDCG@10) ME5_NQ ME5_EN ME5_MULTI

λ
0 0.3333 61.58 0.3514 49.08 41.7 26.81
0.001 0.3336 50.3 0.3514 41.39 41.22 26.7
0.01 0.3277 9.91 0.3286 34.08 35.48 23.06
0.1 0.003 1.75 0.0011 3.94 4.51 3.84
1 0.0008 1.47 0.001 1.91 1.77 0.98
Masking 0.3333 4.68 0.3513 10.54 11.51 8.4
Lang-agnostic 0.3333 50.85 0.3514 40.37 40.1 25.93

Table 15: BEIR Retrieval Performance (NDCG@10) and Reconstruction performance (BLEU) (mean across tasks)
with GTR-based (left) and ME5-based (right) models across varying level of random noises and defense algorithms.
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Lquery English French German Spanish
Ldoc FRENCH GERMAN SPANISH ENGLISH GERMAN SPANISH ENGLISH FRENCH SPANISH ENGLISH FRENCH GERMAN

GTR
λ
0 0.19407 0.26324 0.24222 0.13205 0.14329 0.13589 0.1243 0.08702 0.1177 0.10308 0.088 0.10494
0.001 0.19377 0.2633 0.24108 0.13237 0.1435 0.13627 0.12476 0.08786 0.11741 0.10301 0.08805 0.1055
0.01 0.18651 0.25203 0.2326 0.12676 0.13617 0.13298 0.11846 0.07997 0.11234 0.09713 0.08234 0.09794
0.1 0 0 0 0 4.00E-05 0 0 0 0 0.00016 0 0.00023
1 0 0 0 0 0 0 0 0 0 0 0 0
Masking 0.19433 0.26272 0.24193 0.13237 0.14322 0.13579 0.12402 0.0871 0.11791 0.10337 0.08818 0.10477
Lang-agnostic 0.19439 0.26265 0.24206 0.13217 0.14284 0.13636 0.1241 0.08735 0.11766 0.10313 0.08845 0.10528
ME5_MULTI
λ
0 0.2861 0.3739 0.4141 0.2932 0.2598 0.3121 0.2878 0.1940 0.2875 0.2860 0.2181 0.2425
0.001 0.2853 0.3740 0.4124 0.2935 0.2603 0.3121 0.2876 0.1931 0.2873 0.2850 0.2181 0.2433
0.01 0.2484 0.3374 0.3731 0.2580 0.2271 0.2779 0.2583 0.1654 0.2590 0.2452 0.1811 0.2121
0.1 0 0 0.0001 0 0 0.0002 0 0 0 0 0 0
1 0 0 0 0 0 0.0002 0 0 0.0001 0 0
Masking 0.2861 0.3755 0.4129 0.2933 0.2594 0.3125 0.2882 0.1935 0.2877 0.2862 0.2179 0.2426
Lang-agnostic 0.2859 0.3740 0.4142 0.2933 0.2598 0.3125 0.2878 0.1939 0.2874 0.2862 0.2180 0.2425

Table 16: CLIRMatrix (multi8) performance (NDCG@10) for GTR-base and ME5-base at varying defense
mechanisms (32 tokens).

Lquery English French German Spanish
Ldoc FRENCH GERMAN SPANISH ENGLISH GERMAN SPANISH ENGLISH FRENCH SPANISH ENGLISH FRENCH GERMAN

GTR
λ
0 10.78 10.99 12.2 30.97 12.9 14.57 28.55 10.91 11.58 29.34 9.85 8.77
0.001 10.74 10 11.87 25.32 11.19 13.22 24.32 10.34 10.75 24.82 9.22 8.97
0.01 5.53 5.88 5.95 7.74 5.53 6.12 6.24 4.56 5.07 7.55 4.95 4.78
0.1 1.34 1.42 1.25 1.23 0.8 0.67 0.98 0.74 0.58 1.02 0.63 0.59
1 0.58 0.49 0.32 0.77 0.35 0.26 0.78 0.55 0.34 0.73 0.41 0.41
Masking 4.19 4.18 4.28 3.84 2.86 3.01 3.24 2.37 2.47 3.61 2.79 2.66
Lang-agnostic 11.01 10.95 11.88 26.19 12.13 13.29 24.24 10.42 11.08 25.02 10.6 9.61
ME5
λ
0 11.86 11.1 17.87 15.11 12.79 17.68 14.5 13.66 17.44 14.34 13.67 11.99
0.001 12.63 10.49 17.12 15.43 12.63 17.19 14.39 13.56 17.21 14.79 14.4 11.84
0.01 11.27 9.78 14.9 13.48 10.99 15.06 13.65 12.1 15.38 14.07 12.3 11.61
0.1 2.27 2.23 2.56 2.97 2.4 2.78 2.7 2.1 2.47 2.92 2.31 2.48
1 0.53 0.44 0.5 0.68 0.57 0.5 0.62 0.49 0.46 0.66 0.55 0.47
Masking 3.91 4.38 6.19 5.18 4.57 6.35 5.13 3.97 5.85 5.86 4.97 5.05
Lang-agnostic 12.61 10.98 17.01 14.27 11.77 16.05 13.92 13.3 17.19 14.57 13.79 12.09

Table 17: CLIRMatrix (multi8) Text Reconstruction Performance (BLEU score) for GTR and ME5_MULTI at
varying defense mechanisms (32 tokens). The performances for GTR without noise on English doc are in bold,
which boost the GTR’s overall performance.

GTR-Based ME5-Based
Defenses IR (NDCG@10) GTR IR (NDCG@10) ME5_MULTI

λ
0 0.1447 15.95 0.2879 14.33
0.001 0.1447 14.23 0.2877 14.31
0.01 0.1379 5.83 0.2536 12.88
0.1 0.0000 0.94 0.0000 2.52
1 0.0000 0.50 0.0000 0.54
Masking 0.1446 3.29 0.2880 5.12
Lang-agnostic 0.1447 14.70 0.2879 13.96

Table 18: CLIRMatrix Retrieval Performance (NDCG@10) and Reconstruction performance (BLEU) (mean across
tasks) with GTR-based (left) and ME5-based (right) models across varying level of random noises and defense
algorithms.
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