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Abstract

The rapid development of language models
(LMs) brings unprecedented accessibility and
usage for both models and users. On the
one hand, powerful LMs achieve state-of-the-
art performance over numerous downstream
NLP tasks. On the other hand, more and
more attention is paid to unrestricted model
accesses that may bring malicious privacy risks
of data leakage. To address these issues, many
recent works propose privacy-preserving lan-
guage models (PPLMs) with differential pri-
vacy (DP). Unfortunately, different DP imple-
mentations make it challenging for a fair com-
parison among existing PPLMs. In this paper,
we present PrivLM-Bench, a multi-perspective
privacy evaluation benchmark to empirically
and intuitively quantify the privacy leakage of
LMs. Instead of only reporting DP param-
eters, PrivLM-Bench sheds light on the ne-
glected inference data privacy during actual us-
age. PrivLM-Bench first clearly defines multi-
faceted privacy objectives. Then, PrivLM-
Bench constructs a unified pipeline to perform
private fine-tuning. Lastly, PrivLM-Bench per-
forms existing privacy attacks on LMs with
pre-defined privacy objectives as the empirical
evaluation results. The empirical attack results
are used to fairly and intuitively evaluate the
privacy leakage of various PPLMs. We con-
duct extensive experiments on three datasets of
GLUE for mainstream LMs.1

1 Introduction

The accelerating evolution of language models
(LMs) ushers a new era for both modern natural
language processing and the whole society. Cur-
rently, generative large language models (LLMs)
exhibit surprising capability and integrate previous
tasks into a unified text generation formulation. As

*Equal contribution.
1Code is publicly available at https://github.com/

HKUST-KnowComp/PrivLM-Bench.

a result, these LLMs obtain the dominating per-
formance on both expert-designed tasks and real-
world problems (Raffel et al., 2020; Chung et al.,
2022a; Brown et al., 2020; OpenAI, 2023; Ouyang
et al., 2022). Moreover, under appropriate instruc-
tions, LLMs can even be in-context learners or
zero-shot reasoners to solve unseen tasks (Chen
et al., 2021; Zhou et al., 2023; Kojima et al., 2022;
Wei et al., 2022; Sanh et al., 2022).

Beneath the improved performance, LMs’ train-
ing data also scale up with models’ sizes. LMs
are not only trained on annotated textual data for
specific tasks, but also devour a vast amount of tex-
tual data online. Unlike carefully crowd-sourced
annotation data, free-form texts crawled from the
Internet suffer from poor quality and unintended
personal data leakage. For example, simple model
interactions can lead to accidental personally iden-
tifiable information (PII) dissemination (Li et al.,
2023a; Lukas et al., 2023; Huang et al., 2022; Car-
lini et al., 2021b). Such PII exposure without notic-
ing victims or obtaining victims’ consent may vi-
olate existing privacy laws like the EU’s General
Data Protection Regulation (GDPR) and the Cali-
fornia Consumer Privacy Act (CCPA).

To respect data subjects’ privacy during model
training/fine-tuning, several studies (Qu et al.,
2021; Yue et al., 2022; Yu et al., 2022; Igam-
berdiev and Habernal, 2023) consider privacy pro-
tection as an additional objective. Differential
privacy (Dwork and Roth, 2014), known for its
wide adaptability and application, has become
mainstream for privacy-preserving LMs (PPLMs).
DP’s definition offers plausible deniability (Bind-
schaedler et al., 2017) and introduces bounded pri-
vacy parameters to describe the effectiveness of
examined mechanisms. This definition can nat-
urally defend against membership inference at-
tack (Shokri et al., 2016), which aims to determine
if a given sample belongs to the model’s training
dataset. Currently, motivated by DPSGD (Abadi
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et al., 2016), PPLMs can be achieved via various
implementations based on DP optimizers.

Unfortunately, although numerous implementa-
tions of PPLMs have been proposed, fair evalu-
ations of PPLMs are still unexplored. Existing
mainstream approaches simply use DP parameters
to quantify PPLMs’ privacy and it is rather hard
to make a fair comparison among PPLMs. Firstly,
Different DP formulations such as central DP, lo-
cal DP (Kasiviswanathan et al., 2011), and dχ pri-
vacy (Chatzikokolakis et al., 2013) assign distinct
heuristic meanings to DP parameters to implement
PPLMs. Secondly, the scope of the protected part
is ambiguous. For instance, most PPLMs imple-
mented from DPSGD offer privacy protection for
tuned sensitive data. However, during inference,
these PPLMs are not guaranteed to protect infer-
ence data privacy. Thus, simply claiming that these
PPLMs are privacy-preserving ignores inference
data privacy. Lastly, it remains unclear whether
DP’s worst-case upper bound overestimates pri-
vacy leakage. DP assumes a herculean adversary
who can manipulate the entire protected dataset,
which may be implausible for actual attacks. Con-
sequently, evaluation under the same DP param-
eters may still result in different privacy perfor-
mance on empirical privacy attacks.

To bridge the aforementioned gap, in this
work, we propose PrivLM-Bench to fairly quantify
PPLMs’ privacy-utility trade-off. PrivLM-Bench
adopts the prevailing setup of public pre-training
and private fine-tuning with several clarified pri-
vacy objectives. PrivLM-Bench incorporates multi-
faceted privacy attacks, including the data extrac-
tion attack (Carlini et al., 2021b), membership in-
ference attack (Shokri et al., 2016) and embedding-
level privacy attack (Song and Raghunathan, 2020)
to evaluate the privacy of PPLMs. The attacking
results can be an intuitive and fair indicator to quan-
tify the privacy leakage of existing PPLMs regard-
less of their detailed implementations. In summary,
we highlight the following contributions of our pro-
posed PrivLM-Bench:

1) PrivLM-Bench identifies inference data pri-
vacy as a key component for PPLMs’ privacy evalu-
ation and points out that DP-tuning cannot quantify
the inference data privacy after deploying PPLMs
for real-life applications.

2) PrivLM-Bench provides a unified pipeline
that allows fair comparisons among PPLMs.

3) We use PrivLM-Bench to conduct extensive
experiments on mainstream PPLMs. Empirical

findings indicate that current privacy attacks are sig-
nificantly less potent than the anticipated attacker
capabilities of defense mechanisms.

2 Related Works

2.1 Differential Privacy

To analyze differential privacy implementations
on language models, we first introduce the formal
definition of DP (Dwork and Roth, 2014):

Definition 1 (Differential Privacy). A randomized
algorithm mechanism M with domain D and range
R satisfies (ϵ, δ)-differential privacy if for any two
neighboring datasets D,D′ and for any subsets of
output O ⊆ R:

Pr[M(D) ∈ O] ≤ eϵPr[M(D′) ∈ O] + δ. (1)

The neighboring datasets D,D′ only differ in
one element. When we apply Definitions 1 on LMs,
D refers to the private fine-tuning dataset and M
usually refers to the LM updated with DP mecha-
nism so that the LM can be safely released while
preserving D’s privacy. For our experiments, DP
optimizers, such as DPSGD (Abadi et al., 2016),
are used as the backbone to implement various
PPLMs with DP guarantee.

2.2 Implementations on PPLMs

There are several optional techniques to build
PPLMs. Homomorphic Encryption (HE) can en-
sure PPLM’s data privacy via encryption during
the inference stage (Chen et al., 2022). Secure Mul-
tiparty Computation (SMPC) protects the privacy
of shared data and model parameters between ser-
vice providers and users (Wang et al., 2022; Hao
et al., 2022; Luo et al., 2023, 2024). Existing works
commonly exploit various DP mechanisms to im-
plement DP-based LMs with respect to given fine-
tuning corpus and can be summarized into 3 cate-
gories: 1): DP fine-tuning with DP optimizers (Qu
et al., 2021; Shi et al., 2022; Mattern et al., 2022;
Yue et al., 2022; Li et al., 2022b; Yu et al., 2022)
is a prevailing approach to protect the private fine-
tuning datasets. 2): DP prompt tuning (Duan et al.,
2023; Li et al., 2023c) adds noise to soft prompts
and performs private prompt tuning (Lester et al.,
2021; Li and Liang, 2021) with LMs’ parameters
frozen. 3): Embedding perturbation (Igamberdiev
and Habernal, 2023; Feyisetan et al., 2020; Krishna
et al., 2021) injects DP noise into the intermediate
representations to implement PPLMs.
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For privacy evaluation, most of these works sim-
ply report (ϵ, δ) pairs as the privacy budget. Still, a
few works endeavor to measure or explain privacy
alternatively. Auditing mechanisms (Nasr et al.,
2023; Jagielski et al., 2020; Lu et al., 2022) aim
to audit empirical privacy leakage. Feyisetan et al.
(2020) proposed plausible deniability statistics to
quantify plausible deniability given DP parameters.
Li et al. (2023c) and Du et al. (2023) evaluated pri-
vacy via empirical embedding-level attacks (Song
and Raghunathan, 2020). Motivated by such em-
pirical evaluations, PrivLM-Bench further clarifies
the privacy objectives and integrates more attacks
for empirical privacy evaluation.

3 PrivLM-Bench

3.1 Setup of Privacy Evaluation

PrivLM-Bench’s scope follows the mainstream
PPLMs’ approaches that pre-train LMs on public
corpus and then fine-tune these publicly pre-trained
LMs on private datasets D with privacy constraints.
Compared with publicly available pre-training data,
private fine-tuning data D are more likely to in-
clude or entail a set of sensitive attributes P . For
example, xs =“Alice’s phone number is +1 217-
123-4567” includes Alice’s personal phone number
and the area code “217” entails that Alice is likely
to live in Illinois of the U.S. Sensitive attributes P
may contain PII protected by privacy laws. Thus,
protection of P should be carefully enforced.

With the pre-trained initialization and sensitive
fine-tuning data D, we can implement and release
a PPLM f . Then, f can be used on downstream
tasks for inference without additional training/fine-
tuning. Similarly, we use I to denote the inference
data. PrivLM-Bench manages to quantify f ’s pri-
vacy regardless of its detailed implementation.

3.2 What Should be Regarded as Privacy for
PPLMs?

To quantify a given LM f ’s privacy-preserving abil-
ity, we first clarify PrivLM-Bench’s privacy objec-
tives. PrivLM-Bench includes multi-level privacy
evaluation from fine-tuning to the inference stage.

Privacy protection of fine-tuning data. To pro-
tect private fine-tuning data D, PrivLM-Bench con-
siders two privacy objectives to address data leak-
age. The first objective focuses on protecting tex-
tual samples of D while the second emphasizes its
sensitive attributes. Specifically, f should prevent
attackers from directly decoding the data sample

x ∈ D during the decoding stage. Additionally,
f ’s hidden representations (e.g., logits and embed-
dings) should be less confident about memorizing
sensitive patterns of D when the adversary queries
f with input x ∈ D.

Privacy protection during inference stage. DP
tuning provides a theoretical privacy bound for pro-
tecting D to safely release LMs. However, the
privacy of inference data I is unprotected and un-
specified by DP since the noise injected into the
fine-tuning stage is irrelevant to I . Consequently,
PPLMs that merely report DP parameters neglect
inference data privacy during practical model usage.
Additionally, from the data privacy perspective, in-
ference data I also inherently encompasses certain
private information. For instance, a healthcare fa-
cility may release its PPLM to serve patients. If
patients’ unprotected medical records are recov-
ered by malicious attackers, such data leakage may
violate existing privacy legislation and frustrate its
users. Therefore, it is imperative to take the privacy
of I into consideration for f ’s privacy evaluation.

3.3 Evaluation via Privacy Attacks
To measure privacy following predefined privacy
objectives, we propose to evaluate PPLMs via a
unified attack pipeline and use the performance of
various attacks as privacy metrics. PrivLM-Bench
assumes a black-box adversary who can query f
with arbitrary inputs and obtain response texts as
well as f ’s hidden representations. Moreover, the
adversary has powerful knowledge about D and I
and owns its auxiliary datasets AD and AI . AD

and AI share similar distributions with D and I , re-
spectively, such that the adversary can use them to
train powerful neural attackers. Intuitively, better
privacy protection is attained for any attack with
worse attack performance. Based on privacy ob-
jectives, the adversary’s attacks are classified into
three folds to evaluate any given f .

Data extraction attacks. Data extraction at-
tacks (DEAs) (Carlini et al., 2021b) assume that
the adversary knows certain prefixes which refer to
partial textual patterns of D or S. For a textual sam-
ple x = [p||s] ∈ D where x is split into a length-k
prefix p and a suffix s, DEAs aim to recover the
corresponding suffix s via prompting f with given
prefix p. p can be an empty string if the adversary
has no knowledge about D. To conduct DEAs on
generative LMs, we insert several pre-defined ca-
nary (Carlini et al., 2019) patterns with randomly
generated fake sensitive information into the train-
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Figure 1: Overview of PrivLM-Bench.
Privacy Attacks LM Vulnerability Targeted Objective Adv Cap Metrics
Data extraction attacks (DEAs) Text completion Fine-tuning data privacy f , prefixes Exposure
Membership inference attacks (MIAs) Predicted likelihood Fine-tuning data privacy f, f(x), AD AUC, TPR
Embedding inversion attacks (EIAs) Hidden representation Inference data privacy f, f(x), AI micro-F1

Table 1: A summary for evaluated privacy attacks, where Adv Cap refers to the adversary capability of assessed
information, AUC stands for the area under the ROC curve, and TPR denotes the true positive rate.

ing dataset. We assign different repetition times for
each canary and report the exposure (Carlini et al.,
2019) metric. The exposure metric uses the rank of
a specific pattern over potential candidates by com-
paring LMs’ perplexity (confidence). Memorized
patterns frequently lead to higher model confidence
with lower perplexity, resulting in higher exposure.

Membership inference attacks. Membership
inference attacks (MIAs) (Shokri et al., 2016) as-
sume that the adversary holds its auxiliary data AD

such that AD’s partial samples are also members of
f ’s fine-tuning corpus D. MIAs manage to deter-
mine if a given data sample x ∈ AD belongs to D.
We follow Likelihood Ratio Attacks (LiRA) (Car-
lini et al., 2021a) to conduct MIAs on victim LMs
by training multiple shallow models. Area under
the ROC Curve (AUC) scores and true positive rate
(TPR) under certain fixed false positive rates are
reported as MIA evaluation metrics.

Embedding-level privacy attacks. Under-
standing the privacy of vector data in vector
databases (Taipalus, 2023; Wang et al., 2021; Pan
et al., 2023) is crucial, and embedding-based at-
tacks play a fundamental role in this context. These
attacks (Song and Raghunathan, 2020; Pan et al.,
2020; Li et al., 2022a) assume that the adversary
possesses its auxiliary data AI that shares a sim-
ilar distribution with private data D and can ac-
cess f ’s embeddings during the inference stage.
Embedding-level attacks encompass attribute in-
ference attacks (AIAs) and embedding inversion
attacks (EIAs). For a data sample x ∈ I , AIAs aim
to infer private attributes of x given its embedding
f(x) while EIAs focus on recovering x given f(x).
To study the inference stage privacy leakage, we

follow the recently proposed generative EIAs (Li
et al., 2023b; Morris et al., 2023; Gu et al., 2023)
to use powerful decoders to recover the exact se-
quences and report micro-level precision, recall
and F1 as the evaluation metrics.

In summary, Table 1 lists the covered attacks for
PrivLM-Bench’s privacy evaluation. Full attack
details can be found in Appendix B.

3.4 Potential Applications
Based on the formulated pipeline, the PrivLM-
Bench can be used for three potential applications.

Comparison among PPLMs. PrivLM-Bench
enables a fair comparison among various PPLMs of
different architectures, learning objectives and pre-
training data to conduct private fine-tuning. This
comparison helps service providers select the most
suitable PPLM for target downstream tasks.

Develop new attacks and defenses. PrivLM-
Bench incorporates several existing privacy attacks
into a unified pipeline. New attacks and defenses
can be easily developed into PrivLM-Bench to con-
duct red-teaming assessments on LMs and PPLMs
to evaluate their effectiveness.

PPLM implementations’ verification. Most
PPLMs report DP parameters for privacy evalua-
tion. However, it remains unknown if their imple-
mentations are correct. PrivLM-Bench provides an
empirical privacy evaluation to verify the correct-
ness of these implementations.

4 Experimental Setups

4.1 Datasets
Existing PPLMs evaluate their claimed improve-
ment over tailored downstream tasks. These spe-
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cific tasks may not be feasible for other PPLMs.
Instead, PrivLM-Bench evaluates PPLMs in a more
fundamental aspect for natural language under-
standing (NLU). NLU is essential for general LMs
to identify the meaning of given texts. PrivLM-
Bench evaluates PPLMs on several NLU tasks
from GLUE (Wang et al., 2018) that include Nat-
ural Language Inference (MNLI) (Williams et al.,
2018), Stanford Sentiment Treebank v2 (SST2)
(Socher et al., 2013) and QNLI converted from
Stanford Question Answering Dataset (Rajpurkar
et al., 2016).

4.2 Data Pre-processing
PrivLM-Bench’s evaluated datasets, MNLI, SST2
and QNLI, can be naturally formulated as classifi-
cation tasks with given labels. However, besides
BERT-style masked LMs, PPLMs also include gen-
erative LMs such as GPT-2 that behave poorly for
conventional classification pipelines. We addition-
ally transform evaluated datasets to fit the genera-
tion pipeline. Inspired by T5’s formulation (Raffel
et al., 2020), given the premises and hypotheses of
NLI datasets or sentences from SST2 with corre-
sponding integer labels, we manually create textual
templates with labels and concatenate prefix sen-
tences with templates. For example, given a sam-
ple includes premise, hypothesis with label 0, the
converted sample for generation becomes a single
sentence [premise <SEP> hypothesis <SEP> The
relation is 0] where <SEP> is the special separator
token. We keep the integer label in the transformed
sentence for easier text-infilling formulation. Af-
ter the pre-processing, PrivLM-Bench can evaluate
most existing PPLMs.

4.3 Pretrained Weights and Fine-tuning
Methods

Since PrivLM-Bench unifies both classification
and generation tasks, various model architectures
with different pre-trained weights can be evalu-
ated by PrivLM-Bench. Specifically, We evaluate
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), GPT-2 (Radford et al., 2019), T5 (Raffel
et al., 2020) and FLAN-T5 (Chung et al., 2022b)
of different scales with four tuning algorithms with
and without the DP guarantee. The following con-
tent gives a brief summary of our evaluated tuning
algorithms.

Full fine-tuning. Full fine-tuning refers to
the commonly used methods to update the whole
model. For masked LMs such as BERT and

RoBERTa, we append one extra linear layer to per-
form classification. For generative LMs, including
GPT-2 and T5, we use language modeling head
with language modeling loss to conduct the next
token generation.

Prompt tuning (Lester et al., 2021). For prompt
tuning, we freeze the LMs and prepend certain
learnable virtual tokens to every data sample. In-
stead of updating the whole LMs, prompt tuning
only optimizes these task-specific virtual tokens.

Prefix tuning (Li and Liang, 2021). Prefix tun-
ing shares a similar idea as prompt tuning. Unlike
prompt tuning which appends a few tokens in the
beginning, prefix tuning attaches a sequence of
continuous task-specific vectors in front of inputs.
These appended continuous vectors are concate-
nated into LMs’ hidden states in every transformer
layer as well as inputs. Only these appended vec-
tors are updated throughout prefix tuning.

Infilling based tuning (Petroni et al., 2019).
For masked LMs, instead of appending classifiers
to their final output representations, infilling the
masked tokens can also be exploited to perform
classification tasks. We follow the pre-processing
pipeline to leave blanks for predicted positions,
like [premise <SEP> hypothesis <SEP> The rela-
tion is <MASK>], where <MASK> refers to the
mask token. For infilling-based tuning, we follow
previous works to update the whole LMs.

4.4 Other Details

Data split. Both membership inference attacks
and embedding-level attacks require auxiliary
datasets that share similar distributions with orig-
inal datasets. For each evaluated dataset, we ran-
domly split 40% training data as the auxiliary
dataset and use the remaining 60% to conduct
downstream tuning.

DP Parameters. During our experiments, we
follow previous studies (Li et al., 2022c; Yu et al.,
2021) to strictly bound δ = 1e-5 and ϵ = 8. Ad-
ditionally, we bound the gradient norms to be no
more than 0.1.

Tuning parameters. For all four tuning algo-
rithms, we use adamW as the optimizer with a
linear decay. We train all models for 5 epochs with
a virtual batch size of 1,024. In terms of learning
rates, for fine-tuning and infilling, the learning rate
is 1e-4; for prompt and prefix tuning, the learning
rate is 1e-2. We set 15 virtual tokens for optimiza-
tion for both prompt and prefix tuning.
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Model Non-DP (ϵ = ∞) DP (ϵ = 8, δ = 1e-5)
Fine-tuning Prompt Prefix Infilling Fine-tuning Prompt Prefix Infilling

BERTbase (110M) 82.97 66.38 79.20 82.05 65.19 47.44 43.69 61.57
BERTlarge (340M) 85.31 66.17 83.63 84.70 71.90 61.67 52.30 63.41
RoBERTabase (125M) 87.45 67.65 83.97 - 76.45 46.26 49.16 -
RoBERTalarge (355M) 90.10 70.49 89.74 - 83.53 60.81 64.10 -
GPT-2small (137M) 39.29 37.02 34.25 - 34.96 35.81 36.85 -
GPT-2medium (380M) 63.37 35.01 43.86 - 41.31 33.25 35.17 -
GPT-2large (812M) 76.48 31.28 52.44 - 46.75 33.28 35.05 -
GPT-2xl (1.6B) 82.88 34.37 44.37 - 47.73 32.37 35.17 -
T5base (223M) 86.33 32.23 75.62 - 78.50 31.64 64.87 -
T5large (738M) 89.13 35.59 72.69 - 54.85 31.67 34.79 -
T5xl (3B) 91.10 33.18 83.32 - OOM 38.63 66.51 -
FLAN-T5xl (3B) 92.07 34.79 87.94 - OOM 33.45 83.54 -

Table 2: Utility evaluation of various LMs with and without DP tuning on the MNLI dataset. We report the accuracy
(%) of the validation set as the models’ utility. OOM refers to out of memory for our GPU devices.

5 Experiments

For experiments, we first raise a few crucial re-
search questions (RQs) and use our experimental
results to address these RQs individually.
• RQ1: Do LMs share similar utility under the

same DP budget? If not, what are the factors that
affect LMs’ utility?
• RQ2: Do various tuning algorithms yield sim-

ilar performance on the same model?
• RQ3: Are empirical privacy attacks effective

on LMs with and without privacy protection?

5.1 Utility Evaluation for RQ1 and RQ2
By fixing values of (ϵ, δ) pairs during DP tuning,
we can compare PPLMs’ utility between masked
LMs and generative LMs. In Table 2, we com-
prehensively list various LMs’ utility of different
scales on the MNLI dataset. These results suggest
that LMs’ utility is affected by multiple factors,
including model architectures, pre-trained weights,
model sizes, tuning algorithms and DP constraints.

Model architectures with pre-trained weights.
By fixing a similar model size, for masked LMs,
RoBERTa models outperform BERT models with
around 10% improved accuracy on fine-tuning and
prefix-tuning and share comparable accuracy with
BERT models on prompt-tuning. In addition, un-
der the same T5 model architecture of a similar
size, FLAN-T5xl still significantly surpasses T5xl
on both DP and non-DP settings. Such utility im-
provement is likely to come from FLAN-T5’s large-
scale instruction tuning. Moreover, for generative
LMs, T5base even significantly surpasses GPT-2
models from the small size to the xl size in terms of
fine-tuning and prefix tuning. These results suggest
that model architectures, including their pre-trained
weights, play a crucial role in downstream tasks’
utility for tuning with and without DP constraints.

Model size. For the same model, after observing
the accuracy of different model scales of BERT,
RoBERTa, GPT-2 and T5, we can see that increased
model sizes are likely to bring better utility for both
DP and non-DP tuning.

DP constraints. Under the exact tuning method
of the same model, we can still observe that DP
tuning leads to non-negligible utility degradation
from fine-tuning to infilling.

Tuning algorithms. Additionally, results from
Table 2 suggest that distinct LMs have varied re-
silience when we switch from non-DP tuning to DP
tuning. For instance, for a given LM, fine-tuning
mostly yields the best results with and without DP
tuning and hurts ~10% accuracy for DP tuning.
However, when it comes to prompt and prefix tun-
ing for masked LMs, severe accuracy drops can be
observed. Moreover, prompt tuning and prefix tun-
ing are unreliable even for non-DP tuning for gen-
erative LMs such as GPT-2 models. These results
indicate that prefix tuning is better than prompt
tuning for both DP and non-DP tuning under the
same virtual token numbers. For infilling-based
knowledge probing, our results suggest that even
though infilling has comparable performance with
fine-tuning on the non-DP setting, infilling on nois-
ily updates may suffer poorer results than direct
fine-tuning for DP tuning.

5.2 Privacy Evaluation for RQ3

In this section, we perform privacy evaluations of
the mainstream LMs with and without DP tuning.
In Table 3, we list masked LMs’ privacy evaluation
with empirical privacy attacks for both fine-tuning
data privacy (MIAs) and inference data privacy
(EIAs). For generative LMs, we report the mean
exposure of GPT-2large and T5large in Figure 2.

MIAs. For MIAs, all DP-tuned LMs achieve

59



Model DP? Tuning Utility MIA EIA
AUC TPR@0.1% TPR@1% Pre Rec F1

BERTbase

Y
Finetune 77.72 50.12 0.11 0.98 44.22 18.05 25.63
Prompt 71.74 50.06 0.25 0.94 42.44 18.20 25.47
Prefix 68.29 49.96 0.12 1.08 44.62 18.41 26.06

N
Finetune 90.14 50.14 0.09 1.05 41.57 17.71 24.84
Prompt 79.34 51.40 0.15 1.36 43.80 18.53 26.05
Prefix 87.45 51.19 0.16 1.38 44.17 18.41 25.98

BERTlarge

Y
Finetune 81.14 49.80 0.12 0.97 42.29 17.65 24.91
Prompt 71.55 50.03 0.19 1.05 40.67 17.55 24.52
Prefix 69.05 49.77 0.12 1.00 42.68 17.92 25.24

N
Finetune 90.93 50.02 0.09 1.01 41.38 17.30 24.40
Prompt 76.07 49.91 0.08 0.91 41.97 17.89 25.09
Prefix 87.94 50.58 0.14 1.25 43.08 17.39 24.77

RoBERTalarge

Y
Finetune 84.31 50.20 0.11 1.02 37.96 15.62 22.13
Prompt 73.32 50.55 1.16 1.16 39.47 16.40 23.17
Prefix 72.71 49.74 0.62 1.06 38.12 16.15 22.69

N
Finetune 93.43 61.12 3.33 9.25 34.17 14.66 20.52
Prompt 81.62 49.83 0.08 1.01 39.45 16.40 23.17
Prefix 92.21 50.39 0.08 1.11 37.76 15.98 22.45

GPT-2medium

Y
Finetune 53.61 53.70 0.42 1.28 52.87 20.25 29.29
Prompt 51.84 50.02 0.09 0.82 52.85 20.53 29.57
Prefix 48.51 49.86 0.12 1.06 55.84 21.50 31.04

N
Finetune 58.22 59.28 0.67 2.31 56.64 21.80 31.48
Prompt 52.63 50.02 0.18 0.76 53.96 20.77 29.99
Prefix 51.02 49.87 0.27 1.15 51.08 20.47 29.22

GPT-2xl

Y
Finetune 55.59 53.26 0.24 1.46 59.55 23.09 33.28
Prompt 50.93 49.28 0.03 0.54 58.24 22.78 32.75
Prefix 49.67 49.52 0.09 0.85 51.08 20.47 29.22

N
Finetune 83.03 82.35 8.02 22.71 59.13 22.80 32.91
Prompt 51.93 48.73 0.06 0.88 58.40 22.87 32.87
Prefix 52.33 49.88 0.18 1.00 59.02 23.15 33.25

Table 3: A complete privacy evaluation of the QNLI dataset. MIA and EIA results are reported in %. TPR@0.1%
and TPR@1% denote true positive rate with fixed 0.1% and 1% false positive rate, respectively.

AUC scores around 0.5, indicating that MIAs on
these models are no better than random guessing.
Hence, DP-tuned LMs conform to DP’s definition
and offer robust fine-tuning data protection against
MIAs. Conversely, for fine-tuned LMs without DP,
MIAs are effective on RoBERTa models with AUC
exceeding 0.6, showing that fine-tuned RoBERTa
models are susceptible to MIAs. In contrast, MIAs
on BERT models without DP only gain marginal
improvement of no more than 1.4% compared to
DP-tuned BERT models across three tuning algo-
rithms. These findings underscore a critical gap in
the field of privacy attacks. The actual performance
of attacks falls short of the level of threat assumed
by existing defense mechanisms.

EIAs. For EIAs, since fine-tuning data privacy
is not guaranteed by DP-tuning, we study the in-
ference data privacy with and without DP tuning.
After comparing EIAs’ performance differences
between DP and non-DP settings among all models

in Table 3, we can observe the minimal variation
with no more than 2% deviation. This observation
indicates that DP tuning does not significantly alter
the level of inference data leakage in EIAs com-
pared to non-DP settings. Thus, naive DP tuning
on sensitive data cannot protect inference data pri-
vacy and requires additional privacy mechanisms
to support the general privacy protection claim.

DEAs. For DEAs, we utilize canaries’ exposure
to measure generative LMs’ training data privacy
by increasing occurrences of certain canaries. As
shown in the scatter plots of Figure 2, the results
reveal that DP-tuning is effective against DEAs
with reduced exposure in comparison with corre-
sponding non-DP tuning. For DP-based tuning
algorithms, even with the increased insertion num-
bers, DP-based prompt tuning and prefix tuning are
effective against DEAs with low exposure. This
underscores the effectiveness of DP-based meth-
ods in mitigating DEAs. However, when occur-
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Figure 2: DEA evaluation results of generative LMs on the MNLI dataset.

rences of given canaries increase, DP fine-tuning
still suffers from non-neglected increased expo-
sure, which requires larger noise to mitigate the
exposure. On the other hand, in terms of non-DP
baselines, fine-tuning and prefix tuning suffer from
high exposure when the insertion number increases,
which conforms to previous works’ findings on
fine-tuning (Carlini et al., 2021b). Unexpectedly,
our results show that prompt tuning can achieve
relatively low exposure with and without DP. Non-
DP prompt tuning yields lower exposure even than
DP-based prefix tuning and fine-tuning.

Upon analyzing the results, we summarize the
following findings. 1) DP-tuning is robust against
existing privacy attacks targeted at fine-tuning data.
Regardless of tuning methods, DP’s worst-case
bounding can strictly prevent the adversary from
identifying sensitive fine-tuning data. 2) Naive DP-
tuning falls short in safeguarding inference data pri-
vacy. Our analysis reveals that DP-based methods
do not significantly outperform non-DP baselines
in preventing EIAs. 3) The capability of existing
privacy attacks does not align with the level of
threat presumed by defense strategies. Notably,
several non-DP tuning methods effectively resisted
the evaluated attacks. For MIAs, we show that
LiRA is unsuccessful on non-DP BERT models.

5.3 Other Empirical Findings

In this section, we list other empirical findings ac-
cording to the evaluation results.

1) Large generative LMs have the potential
to outperform masked LMs with DP on NLU.
Our analysis, as presented in Table 2, reveals
that FLAN-T5xl with DP-based prefix tuning, can
match or even surpass the performance of masked

LMs with DP in NLU tasks.
2) Vulnerabilities to privacy attacks are model-

dependent. This is evident from the clustered pat-
terns of attack performance for the same models of
different sizes, as observed in Table 3 and Figure 2.
This suggests that certain architectures may inher-
ently possess more resilience to privacy breaches.

3) Parameter-efficient tuning methods are more
resistant to privacy attacks. In terms of attack re-
sults under non-DP settings, both prompt and prefix
tuning exhibit greater robustness compared to full
fine-tuning. This is particularly notable in their per-
formance against MIAs and DEAs, indicating that
these tuning methods inherently offer enhanced
privacy safeguards.

6 Conclusion

In this paper, we introduce PrivLM-Bench, a bench-
mark designed to assess and contrast LMs’ multi-
faceted privacy objectives. By integrating a variety
of masked and generative LMs with diverse tuning
algorithms, PrivLM-Bench facilitates an extensive
evaluation that encompasses both utility metrics
and empirical privacy attacks. Our results reveal
the effectiveness and limitations of various DP tun-
ing methods. Moreover, we point out the reality
that empirical privacy attacks demonstrate a less
potent threat compared to defense mechanisms’ as-
sumed powerful capabilities. In conclusion, our
study underscores that privacy evaluation and the
balancing act between privacy and utility is a com-
plex, ongoing challenge in the field. For future
work, we advocate for more potent privacy attacks
and utility-enhanced defense strategies that relax
the worst-case restriction in accordance with empir-
ical attacks to improve the privacy utility trade-off.
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Limitations

In our evaluation of language model privacy from
an adversarial standpoint, we acknowledge certain
limitations in the covered scope and effectiveness
of the proposed attacks. Firstly, our study does
not encompass all attack methodologies, notably
excluding the recent trend of prompt injection at-
tacks, which are significant in assessing the safety
of large language models. This omission represents
an area for potential future exploration to provide
a more comprehensive understanding of LLM vul-
nerabilities. Secondly, the efficacy of our attacks
in certain scenarios was limited. For instance, our
LiRA-based MIAs’ experiments demonstrated in-
adequate performance in discerning membership
status in non-differentially private (non-DP) tuned
BERT models.

In addition, from defenders’ perspectives,
though DP tuned models can well protect LMs
from inferring sensitive fine-tuning data, many DP
tuned LMs suffer from poor utility. Moreover, eval-
uated DP tuning strategies cannot defend against
inference stage data privacy.

In summary, these limitations emphasize the
need for ongoing development in the field of LM
privacy attacks and defenses.

Ethical Considerations

We declare that all authors of this paper acknowl-
edge the ACM Code of Ethics and honor the code of
conduct. This work comprehensively evaluates the
empirical privacy of LMs and PPLMs via existing
privacy attacks. The purpose of these attacks is not
to corrupt given LMs. Instead, we aim to test LMs’
robustness against known attacks and show that DP
can well protect the sensitive tuning data while fails
to guarantee inference data privacy. Our findings
reveal that LLM still needs further improvement
for the better privacy-utility trade-off.

Data. During our experiment, besides down-
stream fine-tuning data from GLUE tasks, we also
pre-define several canary patterns with randomly
generated or LLM-generated PII. Since these ca-
naries do not include any actual personal informa-
tion, our inserted canaries can be safe to release
and use.

Attacks. We are well aware that our evaluated
privacy attacks may be used for malicious purposes.
However, our experimental results that these em-
pirical privacy attacks are rather weak in terms of
privacy attacks and can be easily defended with

defense mechanisms. For example, data extrac-
tion attacks can be easily addressed with content
filters to avoid unsafe responses. We emphasize
that these empirical privacy attacks are beneficial
in enhancing defense strategies.
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A Training Details

During our experiment, we use 2 NVIDIA RTX
6000 to run our codes and it takes GPU hours
around 2 months to complete all experiments.

B Attack Details

In this section, we explain the attack details used
for our PrivLM-Bench including data extraction
attack (DEA), membership inference attack (MIA)
and generative embedding inversion attack (EIA).

B.1 MIA Details
We employ Likelihood Ratio Attacks (LiRA) (Car-
lini et al., 2021a) to perform MIAs.

When attacking the encoder-only model, such
as BERT and RoBERTa, we utilize the online ver-
sion of LiRA. This version assumes that the at-
tacker has obtained partial training data, which is
used to construct shadow models. We construct a
total of 128 shadow models to estimate the logit
distribution for each sample in the dataset. For
each shadow model, the training set and test set
are randomly divided. Within the 128 shadow
models, each sample is employed for both train-
ing and testing, enabling us to estimate the train-
ing logit distribution and testing logit distribution.
We assume their distributions to be Gaussian and
calculate the mean and variance for each sam-
ple. Specifically, for a sample x and shadow mod-
els fi where i = 1, 2, ..., 128, we can obtain its
training logit distribution N (µin, σ

2
in) and testing

logit distribution N (µout, σ
2
out). Let t(x, fi) :=

1{fi is trained on x} denote fi is trained on x,
fi(x) denote the logits of the LM. Then, we can
get the mean and variance of the logit distribution
of x as follows:

α =
1∑128

i=1 t(x, fi)
, β =

1∑128
i=1 ¬t(x, fi)

(2)

µin = α

128∑

i=1

t(x, fi)fi(x) (3)

σ2
in = α

128∑

i=1

t(x, fi)(fi(x)− µin)
2 (4)

µout = β
128∑

i=1

¬t(x, fi)fi(x) (5)

σ2
out = β

128∑

i=1

¬t(x, fi)(fi(x)− µout)
2 (6)

After that, we can calculate the likelihood ratio
of x as follows:

p(x|µin, σ
2
in)

p(x|µout, σ2
out)

The likelihood ratio is the ratio of the probability of
x in the train logit distribution and the probability
of x in the test logit distribution. A larger likelihood
ratio means the sample is more likely to be in the
training set.

When attacking the decoder models, for exam-
ple, GPT-2, we conduct a LiRA attack and choose
the pre-trained model as the shadow model. Specif-
ically, for a sample x, we calculate its likelihood
from the target model and shadow model. We use
the likelihood ratio as the indicator of membership.
A larger likelihood ratio indicates that the sample
is more likely to be in the training set.

B.2 DEA Details

For data extraction attacks on generative LMs, we
insert different types of pre-defined canaries (Car-
lini et al., 2019) into the training dataset. Here
we introduce the essential notations and the attack
method, as well as some details in our experiments.

We begin with the definition of log-perplexity
which measures the likelihood of data sequences
and the definition of canary.

Definition 2 (Log-Perplexity). Given a model f
with parameters θ, the log-perplexity of a sequence
x1...xn is

Pxθ(x1...xn) = −log2P(x1...xn|fθ) (7)

=
n∑

i=1

(−log2P(xi|fθ(x1...xi−1)))

Canaries refer to formatted sequences with some
spaces infilled with random words or characters
chosen from a specific randomness space R. In
format sequences, the "slots" denoted as ⃝ can
be filled with random values. For the format "The
random number is ⃝⃝⃝⃝⃝", each ⃝ might
be filled with a specific random number if R refers
to the numerical space of digits 0 to 9. We denote
the randomness as r and use the notation s[r] to
indicate the format s with holes filled with random-
ness r. Definitions of the rank and exposure of a
canary are introduced below.

Definition 3. Given a model with parameters θ
and the random space R, the rank of a canary s[r]
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Type Format for GPT-2 Format for T5 # of Candidates Notes
Name My name is ⃝ Encoder: What is your

name? Decoder: My
name is ⃝

80 -

City I live in ⃝. It is a beau-
tiful city

Encoder: Where do you
live? Decoder: I live in
⃝. It is a beautiful city

80 -

Email My email is ⃝ Encoder: What is your
email address? De-
coder: My email is ⃝

70 -

Phone Number My phone number is ⃝.
You can call me by this
number.

Encoder: What is your
phone number? De-
coder: My phone num-
ber is ⃝. You can call
me by this number.

100 The fill-in is composed
of 5 random digits like
"9 0 5 8 4".

Letters The letters are ⃝. It is
my password.

Encoder: What is your
password? Decoder:
The letters are ⃝. It is
my password.

100 The fill-in is composed
of 6 random letters from
the alphabet like ’ c z v
s k o’.

One Word [fixed word] [fixed
word] ⃝ [fixed word]
[fixed word]

Encoder: Choose one
random word. Decoder:
The chosen word is ⃝

100 The canary is composed
of four fixed words and
one random word from
the vocabulary of the to-
kenizer.

Three Words [fixed word] [fixed
word] ⃝ [fixed word]
[fixed word]

Encoder: Choose
three random words.
Decoder: The chosen
words are ⃝

100 The canary is composed
of four fixed words and
three random words
from the vocabulary of
the tokenizer.

Table 4: Different types of canary format and the number of full-in candidates of each canary format.

is

rankθ(s[r]) = |r′ ∈ R : Pxθ(s[r
′
]) ≤ Pxθ(s[r])|

(8)

The definition means the rank of a specific
canary is its index in the list of all possibly-
instantiated canaries, ordered by the empirical
model perplexity of all those sequences.

Definition 4 (exposure). Given a canary s[r], a
model with parameters θ and the random space R,
the exposure of s[r] is

exposureθ(s[r]) = log2|R| − log2|rankθ(s[r])|
(9)

There are some properties of the exposure. 1) It
is a real value ranging between 0 and log2|R|. 2) Its
maximum can be achieved only by the most likely,
top-ranked canary while its minimum of 0 is the
least likely. 3) Note that across possibly-inserted
canaries, the median exposure is 1.

In our experiment, we prepare different canary
types. For example, one format of our prepared
canaries is "I live in ⃝. It’s a beautiful city." while
another format is "My email is ⃝." We prepare
multiple candidates for each format. For example,
we use a list of city names like ["Tokyo, Japan",
"London, United Kingdom", "Beijing, China",

"New York, United States", ...] and fake email
addresses generated by a large language model(not
used in our experiments) like ["Liam@yahoo.com",
"Emma@outlook.com", " Olivia@gmail.com", ...]
for the above mentioned two formats. Meanwhile,
we also follow the setting of the original secret
sharer paper (Carlini et al., 2019), which utilizes
random words in the vocabulary of GPT-2 tokenizer
to fill in the corresponding slots.

Note that the cardinality |R| of the randomness
space R in our experiment is equal to the length of
the fill-in candidate list. For each candidate list, we
only insert 40% elements(with the corresponding
format) of the whole list to the training set. More-
over, to explore the effect of repetition of canaries,
we put them in a specific order and the first element
will emerge 10 times in the training set and each of
the following elements will repeat 10 more times
than its last element. When calculating exposures,
they are all taken into consideration along with
those who are not inserted into the training set.

We use exposure rate and mean exposure as our
DEAs’ metrics and elaborate on them in this para-
graph. Given a specific model, we consider a ca-
nary inserted in the training set as exposed when
its log-perplexity is lower than the perplexities of
any canary of the same type not inserted in the
training set. Thus, an exposed canary has a higher
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likelihood than all canaries not inserted. Note that
whether a canary is exposed or not is estimated
empirically because we can’t exhaust all possible
canaries that are not inserted. The proportion of ex-
posed canary is defined as exposure rate. We then
investigate the relationship between the frequency
of repetitions and the exposure levels experienced
by a specific canary type within a given model.
Both mean exposure and exposure rate can be rep-
resentative metrics to be reported.

We conduct experiments on four decoder-only
GPT-2 models: GPT-2small, GPT-2medium, GPT-
2large, GPT-2xl as well as T5 models: T5small,
T5base, T5large, T5xl and FLAN-T5xl which take
encoder-decoder architectures. The canary formats
are designed differently to adapt to GPT-2 and T5
model architectures. Accordingly, when calculat-
ing exposure rate and mean exposure, we calculate
the likelihood of the canaries for GPT-2 and the
conditional likelihood for T5. Table 4 shows the
details of the canary format in our experiment.

B.3 EIA Details
For the embedding inversion attack, we follow the
implementation of GEIAs (Li et al., 2023b) to train
a GPT-2 attacker Φ for each victim LM f based on
the auxiliary data AI .

Attacker training. To train the attacker decoder
model, we follow its language modeling objective
via manipulating inputs in the representation
level. For a given sentence x =“w0w1...wu−1” of
length u, we use f(x) to denote the embedding
of x of victim LM f . First, we apply one
trainable fully connected layer to align f(x) to
be the same dimension as the attacker model’s
token representation. We use Align(f(x)) to
denote the aligned sentence embedding and
Φemb(wi) to denote the representation of token
wi of the attacker model. Second, We concate-
nate Align(f(x)) to the left side of all tokens’
representation to obtain the attacker’s input:
[Align(f(x)),Φemb(w0),Φemb(w1), ...,Φemb(wu−1)] .

Lastly, we can feed the input before the attacker’s
first transformer block and apply language
modeling objective with the target sequence
[w0, w1, ..., wu−1,<eos>] by minimizing the
cross-entropy loss at each time step. Here, the
<eos> is the special end of sentence token.

Evaluation. For inference, the attacker Φ de-
codes the first token from Align(f(x)). Then to-
kens are generated iteratively from previous con-
texts with the sentence embedding till <eos> is

reached. The token-level micro precision/recall/F1
are reported as EIA’s evaluation metrics.

C Full Evaluation Results

In this section, we list our detailed evaluation re-
sults of the three attack methods in Table 5 and 6.
The comprehensive evaluation results help further
support our empirical findings mentioned in the
experimental sessions. We report exposure rate for
DEA. For MIA, AUC, TPR@0.1%, and TPR@1%
are reported. For EIA, micro-level Precision, Re-
call and F1-score are reported. In cases where an
attack method is inapplicable to a specific model,
we denote this with a “-” in the table entry.

For full evaluation results on DEAs, as shown
in Figure 5, we draw a scatter plot to display the
variation of mean exposure with different canary
repetitions for four different GPT-2 models and two
T5 models on the MNLI dataset. We use different
markers and colors to represent different tuning
methods and whether DP is applied. We fit a poly-
nomial of order 2 to data points of any specific
tuning method and DP implementation. Then, we
plot a 95% confidence interval of those data points.
We have the following observations:

1) In the case of fine-tuning, an increase in the
number of canary insertions results in a noticeable
elevation in mean exposure. However, this trend
becomes less discernible when applying differen-
tial privacy to T5 models, which indicates that T5
models are better protected under DP. Mean ex-
posures without DP generally surpass those with
DP. Intriguingly, for GPT-2 models, an increase
in model size leads to a gradual narrowing of the
confidence interval gap between models with and
without DP.

2) For prefix tuning, the mean exposure increases
when the number of canary insertions increases,
and exposures are larger when DP is not employed.

3) For prompt tuning, as the number of canary
insertions increases, we find that mean exposure is
not increasing as it does in fine-tuning and prefix
tuning settings. The confidence intervals for both
scenarios, with and without DP, largely overlap.

C.1 Evaluation with Varied DP Budgets

In this section, we investigated the variation of
mean exposure under multiple privacy budget ϵ on
GPT-2medium and T5base, as shown in Figure 3. We
set ϵ to be 4, 8, 20, 100 for GPT-2medium and T5base.
The results on different ϵ can be supplementary of
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Model DP? Tuning Algo Utility
Fine-tune Data Privacy Inference Data Privacy

DEA MIA EIA
ER AUC TPR@0.1% TPR@1% Pre Rec F1

GPT-2small

Y
Finetune 34.96 13.89 51.09 0.12 1.03 48.95 27.53 35.24
Prompt 35.81 5.95 50.55 0.12 1.37 47.43 28.08 3527
Prefix 36.85 9.13 50.70 0.03 0.73 50.08 28.72 36.50

N
Finetune 39.29 51.20 52.33 0.09 1.25 47.60 27.97 35.24
Prompt 37.02 6.35 50.43 0.30 1.25 45.64 27.56 34.37
Prefix 34.25 9.92 50.39 0.09 0.79 50.62 29.49 37.27

GPT-2medium

Y
Finetune 41.31 15.08 51.33 0.06 1.00 54.84 28.22 37.27
Prompt 33.25 4.37 51.10 0.15 1.46 46.60 27.60 34.67
Prefix 35.17 8.73 50.22 0.18 0.85 54.93 29.97 38.78

N
Finetune 63.37 91.27 54.49 0.21 1.37 56.63 27.52 37.04
Prompt 35.01 5.95 51.12 0.15 1.34 46.97 27.56 34.74
Prefix 43.86 35.32 50.77 0.21 1.31 53.74 30.34 38.78

GPT-2large

Y
Finetune 46.75 29.76 52.42 0.06 1.31 61.62 31.02 41.27
Prompt 33.28 5.95 51.00 0.18 0.91 58.66 32.35 41.71
Prefix 35.05 12.30 50.32 0.21 0.70 61.95 32.21 42.38

N
Finetune 76.48 98.41 61.04 0.33 2.96 61.05 31.04 41.15
Prompt 31.28 6.35 50.56 0.15 0.73 57.43 31.80 40.93
Prefix 52.44 68.25 50.30 0.24 0.67 60.44 32.69 42.43

GPT-2xl

Y
Finetune 47.73 48.81 51.67 0.03 0.73 62.18 31.59 41.90
Prompt 32.37 7.94 51.17 0.27 1.67 59.05 31.71 41.26
Prefix 35.17 6.35 50.21 0.06 0.51 61.76 32.77 42.82

N
Finetune 82.88 100.00 72.87 1.28 9.92 61.75 30.89 41.18
Prompt 34.37 5.95 50.91 0.42 1.28 58.42 31.36 40.81
Prefix 44.37 66.27 50.62 0.12 1.00 60.81 32.99 42.78

Table 5: Evaluation results on the MNLI dataset. DEA, MIA and EIA results are reported in %. The abbreviation
“ER” represents “Exposure Rate”.

the prior results shown in Figure 5.
For GPT-2medium, the mean exposure increases

when the number of canary insertions increases for
all ϵ. However, for T5base, the distribution of mean
exposure is more dispersed. When the number
of canary insertions increases, the increment of
mean exposure is not apparent and their confidence
intervals largely overlap. In addition, the mean
exposure of the T5base lies in the range of 1.5 to
2.5, which is less than the mean exposure of the
GPT-2medium that can reach up to 5. The above
observations suggest that T5 is more robust than
GPT-2 under different privacy budget ϵ.

C.2 DEA Evaluation with Exposure Rate

Besides reporting mean exposure, we plot the ex-
posure rate of various GPT-2 and T5 models in
Figure 4. We summarize the following observa-
tions:

1) For the fine-tuning setting, the exposure rate
gradually increases with the growth of the model
size without DP. In particular, the exposure rates of
T5large and xl approach 1 in our experiment, which
indicate that almost all canaries inserted are ex-
posed. We can observe a noticeable decrease in the
exposure rate when using DP, which means that DP
can be a good protection to avoid sensitive canaries

being exposed.
2) For prefix tuning, as the model size increases,

the exposure rate initially rises and then declines
for GPT-2 and T5, which suggests that a larger
model size does not necessarily increase the risk of
the canary being exposed when employing prefix
tuning.

3) For prompt tuning, whether using DP or not,
the exposure rate remains consistently low.
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Model DP? Tuning Algo Utility
Fine-tune Data Privacy Inference Data Privacy

DEA MIA EIA
ER AUC TPR@0.1% TPR@1% Pre Rec F1

BERTbase

Y
Finetune 77.72 - 50.12 0.11 0.98 44.22 18.05 25.63
Prompt 71.74 - 50.06 0.25 0.94 42.44 18.20 25.47
Prefix 68.29 - 49.96 0.12 1.08 44.62 18.41 26.06
Infilling 56.58 - - - - 42.23 18.12 25.36

N
Finetune 90.14 - 50.14 0.09 1.05 41.57 17.71 24.84
Prompt 79.34 - 51.40 0.15 1.36 43.80 18.53 26.05
Prefix 87.45 - 51.19 0.16 1.38 44.17 18.41 25.98
Infilling 85.17 - - - - 41.38 17.81 24.90

BERTlarge

Y
Finetune 81.14 - 49.80 0.12 0.97 42.29 17.65 24.91
Prompt 71.55 - 50.03 0.19 1.05 40.67 17.55 24.52
Prefix 69.05 - 49.77 0.12 1.00 42.68 17.92 25.24
Infilling 71.47 - - - - 40.73 17.30 24.28

N
Finetune 90.93 - 50.02 0.09 1.01 41.38 17.30 24.40
Prompt 76.07 - 49.91 0.08 0.91 41.97 17.89 25.09
Prefix 87.94 - 50.58 0.14 1.25 43.08 17.39 24.77
Infilling 88.89 - - - - 40.06 17.08 23.94

RoBERTabase

Y
Finetune 79.67 - 50.28 0.07 0.92 34.57 14.35 20.28
Prompt 57.82 - 49.83 0.17 0.90 38.87 16.07 22.74
Prefix 72.74 - 50.03 1.01 1.01 38.72 16.25 22.89

N
Finetune 91.73 - 64.90 3.34 10.39 37.77 15.81 22.29
Prompt 80.80 - 50.14 0.09 0.98 41.14 17.61 24.67
Prefix 89.68 - 50.62 0.15 1.20 39.88 17.08 23.91

RoBERTalarge

Y
Finetune 84.31 - 50.20 0.11 1.02 37.96 15.62 22.13
Prompt 73.32 - 50.55 0.15 1.16 39.47 16.40 23.17
Prefix 72.71 - 49.74 0.62 1.06 38.12 16.15 22.69

N
Finetune 93.43 - 61.12 3.33 9.25 34.17 14.66 20.52
Prompt 81.62 - 49.83 0.08 1.01 39.45 16.40 23.17
Prefix 92.21 - 50.39 0.08 1.11 37.76 15.98 22.45

GPT-2small

Y
Finetune 50.04 11.51 52.86 0.21 1.43 50.04 19.62 28.19
Prompt 49.77 6.75 50.15 0.15 0.82 48.02 20.56 28.79
Prefix 53.46 6.35 49.12 0.18 0.97 51.22 20.49 29.27

N
Finetune 52.24 38.10 55.22 0.15 2.22 53.26 20.65 29.76
Prompt 49.77 2.78 50.96 0.09 0.81 49.22 20.28 28.72
Prefix 49.58 8.33 49.45 0.12 0.94 50.32 20.28 28.91

GPT-2medium

Y
Finetune 53.61 17.46 53.70 0.42 1.28 52.87 20.25 29.29
Prompt 51.84 5.16 50.02 0.09 0.82 52.85 20.53 29.57
Prefix 48.51 7.54 49.86 0.12 1.06 55.84 21.50 31.04

N
Finetune 58.22 78.17 59.28 0.67 2.31 56.64 21.80 31.48
Prompt 52.63 4.76 50.02 0.18 0.76 53.96 20.77 29.99
Prefix 51.02 10.31 49.87 0.27 1.15 51.08 20.47 29.22

GPT-2large

Y
Finetune 55.32 31.75 52.24 0.03 1.03 58.33 22.76 32.75
Prompt 47.29 7.94 48.64 0.18 0.97 57.96 22.58 32.50
Prefix 50.71 9.52 48.93 0.09 0.82 58.69 22.93 32.98

N
Finetune 67.43 97.62 67.45 0.91 4.88 59.40 22.84 32.99
Prompt 50.19 5.95 49.69 0.09 0.82 57.65 22.62 32.49
Prefix 51.44 38.10 49.72 0.07 0.92 60.17 23.11 33.40

GPT-2xl

Y
Finetune 55.59 42.46 53.26 0.24 1.46 59.55 23.09 33.28
Prompt 50.93 7.14 49.28 0.03 0.54 58.24 22.78 32.75
Prefix 49.67 6.75 49.52 0.09 0.85 51.08 20.47 29.22

N
Finetune 83.03 99.60 82.35 8.02 22.71 59.13 22.80 32.91
Prompt 51.93 5.95 48.73 0.06 0.88 58.40 22.87 32.87
Prefix 52.33 33.73 49.88 0.18 1.00 59.02 23.15 33.25

Table 6: Full evaluation results on the QNLI dataset. DEA, MIA and EIA results are reported in %. The abbreviation
“ER” represents “Exposure Rate”.
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(a) DEA on GPT-2medium with different ϵ.
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(b) DEA on T5base with different ϵ.

Figure 3: DEA’s mean exposure evaluation results of GPT-2medium and T5base with varied ϵ on the MNLI dataset.
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(a) Exposure rate on GPT-2 models.
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(b) Exposure rate on T5 models.

Figure 4: DEA’s exposure rate evaluation results of GPT-2 and T5 models on the MNLI dataset.
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(a) DEAs on GPT-2small.
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(b) DEAs on GPT-2medium.
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(c) DEAs on GPT-2large.
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(d) DEAs on GPT-2xl.
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(e) DEAs on T5base.
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(f) DEAs on T5large.

Figure 5: DEA mean exposure evaluation results of GPT-2 and T5 models on the MNLI dataset. Note that we
obtained the x-axis “number of insertions” by multiplying the frequency of canary insertions into the dataset by the
total number of training epochs.
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