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Abstract

This paper highlights the importance of person-
alization in large language models and intro-
duces the LaMP benchmark — a novel bench-
mark for training and evaluating language mod-
els for producing personalized outputs. LaMP
offers a comprehensive evaluation framework
with diverse language tasks and multiple entries
for each user profile. It consists of seven person-
alized tasks, spanning three text classification
and four text generation tasks. We additionally
propose two retrieval augmentation approaches
that retrieve personal items from each user pro-
file for personalizing language model outputs.
To this aim, we study various retrieval mod-
els, including term matching, semantic match-
ing, and time-aware methods. Extensive exper-
iments on LaMP for zero-shot and fine-tuned
language models demonstrate the efficacy of
the proposed retrieval augmentation approach
and highlight the impact of personalization in
various natural language tasks.

1 Introduction

The recent development of large language models
(LLMs) has revolutionized natural language pro-
cessing (NLP) applications. As the use of LLMs,
such as GPT-4 (OpenAI, 2023), in real-world ap-
plications evolves, personalization emerges as a
key factor in meeting the user’s expectations for
tailored experiences that align with their unique
needs and preferences (Huang et al., 2022). Per-
sonalization has been widely studied by various
communities, including the information retrieval
(IR) and human-computer interaction (HCI) com-
munities, often with applications to search engines
and recommender systems (Fowler et al., 2015;
Xue et al., 2009; Naumov et al., 2019). Recent
work has also highlighted the impact and concerns
associated with personalizing LLMs and tying it
to ongoing work on alignment (Kirk et al., 2023).
Despite this and the importance of personalization

in many real-world problems, developing and eval-
uating LLMs for producing personalized responses
remain relatively understudied. To bridge this gap,
this paper underscores the importance of personal-
ization in shaping the future of NLP systems and
takes a first step towards developing and evaluat-
ing personalization in the context of large language
models by introducing the LaMP benchmark1 — a
comprehensive and diverse benchmarks of person-
alized text classification and generation tasks.

While many existing well-known NLP bench-
marks, such as GLUE (Wang et al., 2018), Super-
GLUE (Wang et al., 2019), KILT (Petroni et al.,
2021), and GEM (Gehrmann et al., 2021) have led
to significant progress in various NLP tasks, they
have often taken the dominant NLP approach of
“one-size-fits-all” to modeling and evaluation, and
do not allow the development of models that adapt
to the specific needs of end users – limiting ex-
tensive research on personalization in NLP tasks.
In contrast, LaMP offers a comprehensive evalu-
ation framework incorporating diverse language
tasks that require personalization. LaMP consists
of three personalized text classification tasks: (1)
Personalized Citation Identification (binary classi-
fication), (2) Personalized Movie Tagging (categor-
ical classification with 15 tags), and (3) Personal-
ized Product Rating (ordinal classification from 1
to 5-star rating for e-commerce products). Further,
LaMP includes four text generation datasets: (4)
Personalized News Headline Generation, (5) Per-
sonalized Scholarly Title Generation, (6) Personal-
ized Email Subject Generation, and (7) Personal-
ized Tweet Paraphrasing. For these seven tasks, we
explore the two dominant settings in personaliza-
tion: (a) personalization for new users with a user-
based data split and (b) personalization for future
interactions of existing users with a time-based data
split. Therefore, LaMP provides a rich environment

1LaMP stands for Language Model Personalization.
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for developing personalized NLP models. To foster
research in this area, we release the LaMP bench-
mark, the data construction, evaluation scripts, and
a leaderboard.

For personalizing the language model outputs, a
straightforward solution is to incorporate the user
profile into a language model prompt. However,
user profiles are often large and exceed the length
limitations of large language models. Even as such
limitations are relaxed with evolving technology,
the cost of processing large input sequences is con-
siderable. Therefore, we propose two retrieval aug-
mentation solutions for LLM personalization, in
which for each test input, we retrieve items from the
user profile to be included in the LLM prompt for
personalization. The first approach uses in-prompt
augmentation (IPA) for personalization, and the
second approach encodes each personal item sepa-
rately and integrate them later in the decoder using
the fusion-in-decoder model of Izacard and Grave
(2021). We demonstrate that using this approach,
the performance of language models improves on
all datasets in the LaMP benchmark. Based on this
retrieval augmentation solution, we evaluate differ-
ent retrievers for personalized prompt construction
and establish benchmark results for fine-tuned and
zero-shot language models. The empirical findings
of our research reveal that the process of fine-tuning
a language model utilizing our personalized aug-
mentation technique yields a noteworthy relative
average enhancement of 23.5% across the bench-
mark. Even in zero-shot settings where an off-the-
shelf LLM without fine-tuning (e.g., FlanT5-XXL)
is used, utilizing our proposed method results in a
relative average improvement of 12.2% across the
tasks. Finally, this paper smooths the path towards
developing advanced user-centric NLP systems.

2 The LaMP Benchmark

Problem Formulation. Generative language
models often take an input x and predict the
most probable sequence tokens y that follows
x. Personalizing language models can be de-
fined as conditioning the model’s output on
a user u, represented by a user profile. In
LaMP, we define user profile as the user’s his-
torical data, i.e., the past input and personalized
outputs produced by or approved by the user,
Pu = {(xu1, yu1), (xu2, yu2), · · · , (xumu , yumu)}.
Therefore, each data entry in the LaMP benchmark
consists of three components: an input sequence x

that serves as the model’s input, a target output y
that the model is expected to produce, and a profile
Pu that encapsulates any auxiliary information that
can be used to personalize the model for the user.

Overview of LaMP. Given the above problem
formulation, we develop the LaMP benchmark that
aims to assess the efficacy of LLMs in producing
personalized outputs y, based on inputs x and user-
specific information Pu. Outputs y of different
types result in seven diverse tasks spanning person-
alized text classification and generation:

• Personalized Text Classification
(1) Personalized Citation Identification
(2) Personalized Movie Tagging
(3) Personalized Product Rating

• Personalized Text Generation
(4) Personalized News Headline Generation
(5) Personalized Scholarly Title Generation
(6) Personalized Email Subject Generation
(7) Personalized Tweet Paraphrasing

2.1 Tasks Definitions
Next, we overview of each task used in LaMP and
detail data construction in Appendix A.

LaMP-1: Personalized Citation Identification
The citation behavior of researchers is dependent
on their interests and is commonly used to evalu-
ate and develop personalized systems for recom-
mending papers (Färber and Jatowt, 2020). This
task recasts citation recommendation as a binary
classification task and assesses the ability of a lan-
guage model to identify user preferences for cita-
tions. Specifically, if the user u writes a paper x,
a language model must determine which of two
candidate papers u will cite in x (see Figure 3).

To generate data samples, we leverage the Ci-
tation Network Dataset (V14) (Tang et al., 2008),
which comprises information on scientific papers,
authors, and citations. For this task, the profile of
each user encompasses all the papers they have au-
thored. We retain only the title and abstract of each
paper in the user’s profile.

LaMP-2: Personalized Movie Tagging
Users tagging behavior for media such as movies
and books are known to be idiosyncratic and de-
pends on their understanding of the tag and the
aspects of the item they focus on. This has moti-
vated a large body of work on personalized tagging
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Task Type Separation #Train #Dev #Test Input Length Output Length Profile Size #Classes

Citation Ident. binary classification
user 9682 2500 2500 51.40 ± 5.72

-
90.61 ± 53.87

2
time 6542 1500 1500 51.43 ± 5.70 84.15 ± 47.54

Movie Tag. categorical classification
user 3820 692 870 92.27 ± 20.83

-
159.29 ± 330.81

15
time 5073 1410 1557 92.39 ± 21.95 86.76 ± 189.52

Product Rat. ordinal classification
user 20000 2500 2500 145.14 ± 157.96

-
188.10 ± 129.42

5
time 20000 2500 2500 128.18 ± 146.25 185.40 ± 129.30

News Headline text generation
user 12527 1925 2376 30.53 ± 12.67 9.78 ± 3.10 287.16 ± 360.62

-
time 12500 1500 1800 29.97 ± 12.09 10.07 ± 3.10 204.59 ± 250.75

Scholarly Title text generation
user 9682 2500 2500 152.81 ± 86.60 9.26 ± 3.13 89.61 ± 53.87

-
time 14682 1500 1500 162.34 ± 65.63 9.71 ± 3.21 87.88 ± 53.63

Email Subject text generation
user 4840 1353 1246 436.15 ± 805.54 7.34 ± 2.83 80.72 ± 51.73

-
time 4821 1250 1250 454.87 ± 889.41 7.37 ± 2.78 55.67 ± 36.32

Tweet Para. text generation
user 10437 1500 1496 29.76 ± 6.94 16.93 ± 5.65 17.74 ± 15.10

-
time 13437 1498 1500 29.72 ± 7.01 16.96 ± 5.67 15.71 ± 14.86

Table 1: Data statistics of the tasks in the LaMP benchmark. Each dataset in the LaMP benchmark has two
evaluation settings: (a) user-based data split to test personalization for new users and (b) a time-based data split to
test personalization for future interactions of existing users.

(Gupta et al., 2010). We use this task to evaluate the
ability of language models to make tag assignments
for a movie contingent on the user’s historical tag-
ging behavior. Specifically, given a movie descrip-
tion x and a user’s historical movie-tag pairs, a
language model must predict one of 15 tags for x.
We obtain tag assignments from the MovieLens
dataset (Harper and Konstan, 2015). Additionally,
we obtain movie descriptions from MovieDB.2

LaMP-3: Personalized Product Rating
Product reviews commonly express a nuanced set
of user preferences for a product and which in turn
determine their rating for the product. Predicting
ratings based on user reviews has been studied
extensively in personalized sentiment prediction
tasks (Mireshghallah et al., 2022). While this is
commonly treated as a regression task, to use au-
toregressive language models, we frame it as a
multi-class classification task. Specifically, given
the user u’s historical review and rating pairs and
an input review x, the model must predict an in-
teger rating from 1− 5. We construct our dataset
from a dataset of Amazon reviews (Ni et al., 2019).

LaMP-4: Personalized News Headline
Generation
Authors writing displays distinct stylistic elements
influenced by both personal and social factors (Zhu
and Jurgens, 2021). Journalists authoring head-
lines are likely to balance between faithfully repre-
senting an article, appealing to their readers, and
maintaining their own identity. This offers a useful
testbed for personalized text generation. Here, we
evaluate the ability of a language model to capture

2https://www.themoviedb.org/

the stylistic patterns of an author by requiring it
to generate a headline for an input news article, x,
given a user profile of the authors’ historical article-
title pairs. To create a dataset, we use a collection
of Huffington Post articles (Misra, 2022; Misra and
Grover, 2021).

LaMP-5: Personalized Scholarly Title
Generation

As with LaMP-4, the generation of titles for re-
search articles offers a test bed for personalized
text generation but varies in text domain. In this
task, we require language models to generate titles
for an input article x, given a user profile of histori-
cal article-title pairs for an author. Here, only use
article abstracts. We create our dataset from the
Citation Network Dataset (V14) (Tang et al., 2008)
also used for LaMP-1.

LaMP-6: Personalized Email Subject
Generation

Similar to LaMP-4 and 5, generating email subjects
also provides a valuable test bed for personalized
text generation. Email assistance is also known to
be a task that significantly benefits from personal-
ization (Trajanovski et al., 2021). Here, we require
language models to generate an email subject for
an input email message x, given historical email-
subject pairs authored by a user. For this task, we
leverage a private dataset of emails the Avocado
Research Email Collection (Oard, Douglas et al.,
2015). Given its private nature this is unlikely to
be contained in pre-training data providing a mean-
ingful challenge for language models.
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Figure 1: An overview of the retrieval-augmented
method for personalizing LLMs. ϕq and ϕp represent
query and prompt construction functions.

LaMP-7: Personalized Tweet Paraphrasing

Social media posts adhere strongly to various per-
sonal stylistic patterns of authors (Zhu and Jurgens,
2021). Here, we construct a personalized tweet
paraphrasing task and require models to generate
a tweet in the style of a user given an input tweet
x, and a user profile of historical tweets by the
user. To construct this task we use data from the
Sentiment140 dataset (Go et al., 2009). Figure 3
provides examples of tasks 1-7 in LaMP.

2.2 Data Splits

To enable evaluation in common personalization
settings, LaMP offers two different data splitting
settings: (1) user-based separation and (2) time-
based separation. In user-based separation (denoted
as LaMP-iU for Task i), train/validation/test splits
are made by partitioning across users, ensuring that
no shared users appear across splits. This strategy
measures personalization for new users.

In time-based separation (denoted as LaMP-iT
for Task i), train/validation/test splits are made by
partitioning user items ordered by time. The most
recent user items are chosen to create the input-
output pairs, with older items serving as user pro-
files. Appendix A contains additional details, and
Table 1 reports dataset sizes.

2.3 Evaluation

For evaluating classification tasks, we use Accu-
racy for LaMP-1 (balanced binary classification),
Accuracy/F1 for LaMP-2 (multi-class classifica-
tion), and MAE/RMSE for LaMP-3 (ordinal multi-
class classification). Following previous works
(Zhou and Bhat, 2021; Panthaplackel et al., 2022)
on text generation, we use Rouge-1/Rouge-L (Lin,
2004) as evaluation metrics for the text generation
generation tasks (LaMP-4 to LaMP-7).

3 Retrieval Augmentation for
Personalizing LLMs

To personalize a language model two broad strate-
gies may be explored: (1) fine-tuning the LM for
each user and (2) prompting a shared LM with user
specific input or context. The former approach
necessitates substantial computational resources,
especially for fine-tuning larger LLMs. Moreover,
accommodating personalized LLMs for each user
in industry-scale systems encompassing millions or
billions of users necessitates a significant storage
and serving capacity. Therefore, we focus on devel-
oping strategies for training models personalized
via user-specific inputs.

Each task in LaMP, each user profile consists of
a potentially large collection of data points. Given
the inherent context length constraint of many
LLMs and the cost of processing long sequences,
we incorporate a subset of these data points as in-
put prompts. Further, not all entries within a user
profile are necessarily relevant to the specific input
at hand. To do this, we propose solutions based
on retrieval augmentation (See Figure 1). This
framework selectively extracts pertinent informa-
tion from the user profile that is relevant to the
current unseen test case and generates model pre-
dictions conditioned on this information.

Specifically, for a given sample (xi, yi) for user
u, we employ three primary components: (1) a
query generation function ϕq that transforms the
input xi into a query q for retrieving from the user
u’s profile, (2) a retrieval model R(q, Pu, k) that
accepts a query q, a user profile Pu and retrieves k
most pertinent entries from the user profile, and (3)
a prompt construction function ϕp that assembles a
personalized prompt for the user u based on input
xi and the retrieved entries. For retrieval augmen-
tation, we explore two strategies: (1) In-Prompt
Augmentation (IPA) and (2) Fusion-in-Decoder
(FiD) (Izacard and Grave, 2021). The input to both
approaches constructs inputs, x̄i, using R to select
k items from the user profile Pu:

x̄i = ϕp(xi,R(ϕq(xi), Pu, k)) (1)

where we use (x̄i, yi) to train or evaluate the lan-
guage models. With FiD, LLMs receive multiple
inputs, each of which is encoded separately within
its encoder. These separate encodings are then
merged together in the decoder. Here, the inputs
{x̄i1, ..., x̄ik} for the encoder are derived as:

x̄ij = ϕp(xi, dij) (2)
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where dij is the j’th retrieved item using retrieval
model from the user profile (i.e, R(ϕq(xi), Pu, k)).
Note that, IPA and FiD offer different tradeoffs.
FiD necessitates training of the language model
while IPA may be applied without training. Further,
while FiD can only be used with encoder-decoder
models, IPA can be used across architectures. How-
ever, FiD allows us to incorporate more items from
the user profile into the LLM’s input.

We explore various choices for the retrieval
model R. In our experiments, we study a strong
term matching model, BM25 (Robertson et al.,
1995), a state-of-the-art pre-trained dense retrieval
model, Contriever (Izacard et al., 2022), a retrieval
model that returns most recent profile entries in de-
scending order (i.e., Recency), and a Random doc-
ument selector from the user profile. The prompt
construction function ϕp concatenates the instruc-
tion for each task, the input sequence, and the user
profile. The specific prompts are presented in Table
5. For the ϕq function, we use the target input for
each task as the query (see Figure 3).

4 Experiments

This section describes our experiments, results, and
findings on the LaMP benchmark.

4.1 Experimental Setup

For training FiD and the generative model in IPA
we leverage AdamW (Loshchilov and Hutter, 2019)
with a learning rate of 5 × 10−5 and a batch size
64 and set 5% of the total training steps as warmup
using a linear scheduler. A weight decay of 10−4

is incorporated to prevent overfitting. The maxi-
mum input and output lengths is set to 512 and 128
tokens, respectively. We train both classification
and generation models for 10 and 20 epochs, re-
spectively. A FlanT5-base3 (Chung et al., 2022)
model is used for all experiments, unless explicitly
stated otherwise (in experiments with LLMs, we
use FlanT5-XXL). We employ beam search (Fre-
itag and Al-Onaizan, 2017) with a beam size of
4. All models are implemented with Huggingface
transformers and evaluations are conducted us-
ing the evaluate library. All the experiments are
conducted on a single Nvidia RTX8000 GPU with
49GB of GPU memory and 128GB of CPU mem-
ory for maximum 3 days on each experiment. All
the results reported are based on a single run.

3https://huggingface.co/google/flan-t5-base

4.2 Fine-Tuning Retrieval Augmented LMs
for Personalization

In the first sets of experiments, we establish base-
line personalization results for a fine-tuned lan-
guage model. We also investigate the impact of em-
ploying various retrieval techniques and the effect
of retrieving different quantities of entries from a
user profile. This analysis aims to provide insights
into the efficacy of diverse retrieval methods and
the potential benefits of adjusting the number of
retrieved entries for personalization tasks.

Impact of Retrievers on Retrieval-Augmented
Personalization Models. Here, we study differ-
ent implementations of R with a fine-tuned FlanT5-
base model for generating personalized output: (1)
a baseline random selector from the user profile,
(2) BM25 (Robertson et al., 1995), (3) Contriever4

(Izacard et al., 2022), and (4) Recency, in which
we select the latest item in the user profile based
on time (only for time-based separation setting).
BM25 is considered as a robust and strong term-
matching retrieval model and Contriever is a pre-
trained dense retrieval model.

The results of this experiment are shown in Ta-
ble 2 for user-based separation and in Table 3 for
time-based separation. The results suggest that per-
sonalization improves the performance for all tasks
within the LaMP benchmark. In most cases, even
a random selection of documents from the user
profile and the creation of personalized prompts
leads to performance improvements compared to
non-personalized prompts given to the LM. Note
that non-personalized prompt can be achieved with
no retrieval augmentation (No-Retrieval) or with
augmentation with a random item from all user pro-
files. Results for more non-personalized baselines
are presented in Appendix E.

When retrieving one document per user for per-
sonalizing the language model’s output, Contriever
demonstrates the best performance for most clas-
sification tasks (i.e., LaMP-1U, LaMP-2U, LaMP-
3U, LaMP-1T, and LaMP-2T). Recency only out-
performs Contriever in the LaMP-3T. Note that
recency is considered as a simple yet strong per-
sonalization signal in search and recommendation
(Fader et al., 2005; Reinartz and Kumar, 2000,
2003). For text generation, Contriever performs
best for Personalization News Headline Generation
(LaMP-4U) and Personalized Tweet Paraphrasing

4https://huggingface.co/facebook/contriever

7374

https://huggingface.co/google/flan-t5-base
https://huggingface.co/facebook/contriever


FlanT5-base (fine-tuned)

Non-Personalized Untuned profile, k = 1 Tuned profile

Dataset Metric No-Retrieval Random Random BM25 Contriever IPA FiD(k = 16)

LaMP-1U: Personalized
Citation Identification Accuracy ↑ 0.518 0.539 0.598 0.649 0.688 0.734 0.754

LaMP-2U: Personalized
Movie Tagging

Accuracy ↑ 0.468 0.442 0.497 0.524 0.536 0.556 0.642
F1 ↑ 0.435 0.403 0.459 0.480 0.506 0.519 0.607

LaMP-3U: Personalized
Product Rating

MAE ↓ 0.275 0.286 0.284 0.258 0.248 0.246 0.236
RMSE ↓ 0.581 0.607 0.602 0.573 0.563 0.565 0.539

LaMP-4U: Personalized
News Headline Generation

ROUGE-1 ↑ 0.153 0.159 0.162 0.167 0.173 0.186 0.180
ROUGE-L ↑ 0.140 0.147 0.148 0.153 0.159 0.171 0.166

LaMP-5U: Personalized
Scholarly Title Generation

ROUGE-1 ↑ 0.418 0.408 0.409 0.440 0.431 0.450 0.431
ROUGE-L ↑ 0.378 0.370 0.371 0.399 0.393 0.409 0.392

LaMP-6U: Personalized
Email Subject Generation

ROUGE-1 ↑ 0.379 0.473 0.486 0.586 0.572 0.587 0.567
ROUGE-L ↑ 0.358 0.457 0.470 0.570 0.558 0.575 0.555

LaMP-7U: Personalized
Tweet Paraphrasing

ROUGE-1 ↑ 0.509 0.510 0.514 0.521 0.524 0.528 0.517
ROUGE-L ↑ 0.455 0.457 0.460 0.468 0.471 0.475 0.464

Table 2: The results for a fine-tuned LM on the test set of the user-based setting. The number of retrieved document
for personalizing LM is denoted by k. Details for tuning the profile on validation sets is in Table 6 in Appendix D.

Figure 2: The performance on downstream tasks using the best retriever for each task from Tables 2 and 3 with
different numbers of retrieved entries, k, from the user profile. The results indicate that increasing the number of
retrieved documents for most datasets results in a better personalized performance.

(LaMP-7U) in user-based separation setting. For
Email Generation and Scholarly Title Generation
tasks (LaMP-5U and LaMP-6U), BM25 demon-
strates superior performance. Both BM25 and Con-
triever outperform a random profile selector in all
LaMP datasets. For the time-based separation set-
ting, Contriever outperforms other methods in all
generation tasks except News Headline Generation
(LaMP-4T), where recency performs better.

Generally, the results indicate that incorporating
any information from the user profile into the in-
put is not sufficient, but rather selecting the most
relevant and/or recent information is crucial. This
underscores the importance of careful considera-

tion in selecting and incorporating pertinent user
profile elements in LLM prompts. There is no clear
winner among the retrieval models we study and
an ensemble of relevance and temporal signals for
personalization should be studied in the future.

Impact of the Number of Retrieved Items, k,
on LLM Personalization. Each sample within
this benchmark consists of a substantial number of
user profile entries. As such, exploring the impact
of incorporating multiple entries to augment the
input of the language model can provide valuable
insights into addressing the unresolved challenges
posed by this benchmark. For the sake of space,
we focus on our In-Prompt Augmentation (IPA) ap-
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FlanT5-base (fine-tuned)

Non-Personalized Untuned profile, k = 1 Tuned profile

Dataset Metric No-Retrieval Random Random BM25 Contriever Recency IPA FiD(k = 16)

LaMP-1T: Personalized
Citation Identification Accuracy ↑ 0.628 0.625 0.657 0.682 0.688 0.691 0.714 0.698

LaMP-2T: Personalized
Movie Tagging

Accuracy ↑ 0.506 0.513 0.518 0.539 0.533 0.549 0.564 0.661
F1 ↑ 0.443 0.449 0.456 0.472 0.475 0.492 0.519 0.624

LaMP-3T: Personalized
Product Rating

MAE ↓ 0.280 0.280 0.279 0.278 0.281 0.279 0.266 0.250
RMSE ↓ 0.615 0.616 0.612 0.614 0.606 0.608 0.598 0.598

LaMP-4T: Personalized
News Headline Generation

ROUGE-1 ↑ 0.159 0.160 0.169 0.171 0.176 0.173 0.177 0.170
ROUGE-L ↑ 0.145 0.147 0.155 0.157 0.162 0.158 0.162 0.157

LaMP-5T: Personalized
Scholarly Title Generation

ROUGE-1 ↑ 0.462 0.459 0.460 0.471 0.472 0.466 0.479 0.456
ROUGE-L ↑ 0.416 0.412 0.414 0.423 0.426 0.420 0.431 0.414

LaMP-6T: Personalized
Email Subject Generation

ROUGE-1 ↑ 0.479 0.500 0.525 0.537 0.545 0.532 0.547 0.540
ROUGE-L ↑ 0.463 0.452 0.507 0.522 0.530 0.518 0.533 0.525

LaMP-7T: Personalized
Tweet Paraphrasing

ROUGE-1 ↑ 0.462 0.474 0.505 0.508 0.505 0.503 0.516 0.502
ROUGE-L ↑ 0.416 0.457 0.456 0.457 0.455 0.453 0.465 0.450

Table 3: The results for a fine-tuned LM on the test set of the time-based setting. The number of retrieved document
for personalizing LM is denoted by k. Details for tuning the profile on validation sets is in Table 8 in Appendix D.

proach for personalization and depict the model’s
performance w.r.t different profile sizes in Figure
2. This experiment uses the best retriever from
Tables 2 and 3 across various tasks, while varying
the number of retrieved entries from user profiles.
The results suggest that increasing the number of
retrieved items leads to improved performance in
downstream tasks. However, some tasks experi-
ence a decline in performance. Given the finite con-
text size of language models, exploring approaches
to generate a unified prompt from multiple user
entries may represent promising future work.

Impact of Tuning Retriever Hyperparameters.
Based on the performance on the validation set for
each dataset, we tuned two parameters: (1) the re-
trieval model (BM25 vs. Contriever vs. Recency)
for IPA and FiD, and (2) retrieved items count (k)
for IPA. We consistently utilize 16 documents for
FiD, as we do not observe much variance in the
results. Both IPA and FiD approaches use FlanT5-
base. For hyperparameter tuning, we used the fol-
lowing metrics on the development sets: Accuracy
for LaMP-1 and LaMP-2, MAE for LaMP-3, and
ROUGE-1 for all text generation tasks. The re-
sults for this tuned model are presented in the last
two columns of Table 2 and Table 3. As expected,
the tuned model outperforms the other models on
all datasets. For text classification tasks, FiD sur-
passes the performance of IPA in all datasets, with
the exception of LaMP-1T. Conversely, IPA ex-
hibits superior performance across all text genera-
tion datasets.

4.3 Zero-Shot Personalized Results for LLMs

With the widespread adoption of employing LLMs
with no fine-tuning in contemporary research, we
conduct an evaluation of two such models on our
benchmark.5 Particularly, we leverage GPT 3.5
(alias gpt-3.5-turbo or ChatGPT6) and FlanT5-
XXL (Chung et al., 2022). FlanT5-XXL comprises
11B parameters, however, the size of GPT-3.5 is
unknown (GPT3 consists of 175B parameters). For
evaluation, we provide each model with the inputs
corresponding to individual tasks and assess their
performance based on the generated outputs. In
classification tasks, if the produced output does not
correspond to a valid class, we resort to calculating
the similarity between each class label and the gen-
erated output utilizing BERTScore (Zhang* et al.,
2020). Thus, we assign the most similar label to
the generated output as the output for the given
input. GPT-3.5 generated out-of-the-label predic-
tions 8%, 4%, 6%, 4%, 2%, and 4% of the time
for the LaMP-1U, LaMP-1T, LaMP-2U, LaMP-2T,
LaMP-3U, and LaMP-3T tasks, respectively. On
the other hand, FlanT5-XXL predictions are con-
sistently among the questioned labels.

Table 4 shows the result of LLMs on this bench-
mark in a zero-shot scenario. The results show
that, except for the Personalized Tweet Paraphras-
ing task, using the user’s profile with LLMs im-

5As previously stated, FiD approach cannot be utilized
with untrained models. Consequently, the experiments con-
ducted in this section pertain solely to IPA method.

6https://openai.com/blog/chatgpt

7376

https://openai.com/blog/chatgpt


User-based Separation Time-based Separation

Non-Personalized Personalized Non-Personalized Personalized

Dataset Metric FlanT5-XXL GPT-3.5 FlanT5-XXL GPT-3.5 FlanT5-XXL GPT-3.5 FlanT5-XXL GPT-3.5

LaMP-1: Personalized
Citation Identification Accuracy ↑ 0.520 0.541 0.699 0.695 0.502 0.508 0.636 0.634

LaMP-2: Personalized
Movie Tagging

Accuracy ↑ 0.365 0.408 0.414 0.508 0.360 0.382 0.396 0.466
F1 ↑ 0.308 0.314 0.364 0.457 0.276 0.299 0.304 0.418

LaMP-3: Personalized
Product Rating

MAE ↓ 0.344 0.706 0.267 0.620 0.333 0.677 0.299 0.603
RMSE ↓ 0.650 0.972 0.552 1.049 0.650 0.948 0.616 1.002

LaMP-4: Personalized
News Headline Generation

ROUGE-1 ↑ 0.163 0.136 0.182 0.150 0.176 0.146 0.188 0.158
ROUGE-L ↑ 0.147 0.119 0.167 0.133 0.160 0.128 0.172 0.140

LaMP-5: Personalized
Scholarly Title Generation

ROUGE-1 ↑ 0.442 0.387 0.450 0.390 0.471 0.424 0.483 0.425
ROUGE-L ↑ 0.400 0.329 0.411 0.329 0.422 0.355 0.433 0.351

LaMP-6: Personalized
Email Subject Generation

ROUGE-1 ↑ 0.362 - 0.482 - 0.335 - 0.401 -
ROUGE-L ↑ 0.343 - 0.471 - 0.319 - 0.387 -

LaMP-7: Personalized
Tweet Paraphrasing

ROUGE-1 ↑ 0.453 0.399 0.448 0.390 0.448 0.390 0.440 0.382
ROUGE-L ↑ 0.395 0.336 0.394 0.322 0.396 0.330 0.389 0.318

Table 4: The zero-shot personalized results on the test set of user- and time-based separation settings. The tuned
retriever was selected based on the validation performance as reported in Tables 7 and 9 in Appendix D. The results
show that personalizing LLMs with the proposed approach improves all datasets in zero-shot setting except LaMP-7.

proves their performance on this benchmark in a
zero-shot setting. The outcomes in Tables 2 and
3 show the results for FlanT5-base, a 250M pa-
rameter model, fine-tuned on each task. Table 4
presents the zero-shot application of LLMs. These
findings indicate that fine-tuning smaller models on
downstream tasks leads to enhanced performance
in comparison to zero-shot performance of LLMs.

Finally, it is crucial to highlight that the observed
outcomes, which indicate superior performance
of FlanT5-XXL over GPT-3.5, should not be con-
strued as an inherent deficiency of the latter model.
The efficacy of LLMs is extensively contingent
upon the caliber and configuration of the input
prompts. It is worth noting that prompt engineer-
ing, which plays a significant role in performance
of LLMs, is not the central objective of this study.
Consequently, any disparities in performance must
be evaluated in light of this contextual information.

5 Research Problems Enabled by LaMP

LaMP can facilitate research in several areas, in-
cluding but not limited to:

Prompting Language Models for Personaliza-
tion. The integration of user profiles into lan-
guage models can be approached using hard
prompts, but their limited context size makes it
difficult to include lengthy user profile entries. Ex-
ploring different prompts for personalization could
be interesting. An alternative solution is generating
personalization prompts based on the user profile,
instead of relying on retrieved entries. Furthermore,

the use of soft prompts (Lester et al., 2021) can be
helpful for personalizing language models.

Evaluation of Personalized Text Generation.
The commonly used evaluation metrics for text gen-
eration, whether syntactical (Lin, 2004; Banerjee
and Lavie, 2005; Papineni et al., 2002) or seman-
tical (Zhang* et al., 2020), do not incorporate the
user into their evaluation process. Consequently,
such metrics may not be entirely suitable for eval-
uating personalized text generation problems. Ex-
ploring new evaluation metrics that account for the
user’s preferences can benefit this area of research.

Learning to Retrieve from User Profiles. Learn-
ing to rank has been widely explored in various re-
trieval scenarios. Optimizing ranking models that
select personalized entries for the sake of personal-
ized text classification and/or generation would be
a potentially impactful research direction.

6 Related Work

Personalization has been well studied for informa-
tion access problems, with the organization of the
Netflix Challenge and its associated datasets repre-
senting an important driver of academic focus on
personalization (Konstan and Terveen, 2021). It
also represents an important element of large-scale
industry recommender systems (Davidson et al.,
2010; Das et al., 2007; Xu et al., 2022) and has
also been extensively studied for search applica-
tions (Bennett et al., 2012; Dumais, 2016; Croft
et al., 2001; Tabrizi et al., 2018; Zeng et al., 2023),
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in contexts ranging from query auto-completion
(Jaech and Ostendorf, 2018) to collaborative per-
sonalized search (Xue et al., 2009). We refer read-
ers to Rafieian and Yoganarasimhan (2023) for an
overview of this line of work. Here, we cover per-
sonalization in NLP, focusing on research datasets.

Personalization has been examined extensively
for dialogue agents (Wu et al., 2021; Zhang et al.,
2018; Mazaré et al., 2018). Compared to other NLP
tasks. This focus likely stems from the importance
of tailoring dialogue to users and conditioning gen-
erated utterances on specific personas. Given the
lack of real conversational data, some work has
constructed dialogue data for users by promoting
crowd-workers to author dialogues based on spe-
cific personas (Zhang et al., 2018), and through
extracting user attributes and utterances from Red-
dit (Mazaré et al., 2018; Wu et al., 2021) and Weibo
(Zhong et al., 2022; Qian et al., 2021). To leverage
more realistic conversational data, recent work of
Vincent et al. (2023) annotate a dataset of movie
dialogues with narrative character personas and
posit the potential for using LLMs for dialogue
generation conditioned on these personas. Other
work has also leveraged publicly available reviews
and recipes to explore personalization for review
(Li and Tuzhilin, 2019) and recipe generation (Ma-
jumder et al., 2019). Wuebker et al. (2018) explore
parameter efficient models for personalized transla-
tion models. Finally, Ao et al. (2021) presents a per-
sonalized headline generation dataset constructed
from realistic user interaction data on Microsoft
News. This is closely related to the LaMP-4 task,
which focuses on personalization for authors rather
than readers. LaMP presents resources for the tasks
which have seen lesser attention than those based
on dialogue – expanding the underexplored space
of personalizing text classification/generation sys-
tems (Flek, 2020; Dudy et al., 2021).

While a body of work has focused on user-facing
applications, others have explored personalization
for more fundamental problems in language mod-
eling. They have used openly available user data
on Reddit (Welch et al., 2022), Facebook, Twitter
(Soni et al., 2022), and other blogging websites
(King and Cook, 2020). Besides pre-training LMs
for personalization, Soni et al. (2022) explores ap-
plying a personalized LM for downstream tasks
in stance classification and demographic inference.
Similarly, other work has explored personalized
sentiment prediction on publicly available Yelp
and IMDB data (Mireshghallah et al., 2022; Zhong

et al., 2021) – this work bears a resemblance to the
LaMP-3 task and ties back to rating prediction ex-
plored in recommendation tasks. Finally, Plepi et al.
(2022) examines the application of personalization
methods to modeling annotators in a classification
task reliant on modeling social norms – making
an important connection between personalization
and an emerging body of work on accommodating
human label variation in NLP (Rottger et al., 2022;
Gordon et al., 2022; Plank, 2022).

7 Conclusion

This paper presented a novel benchmark named
LaMP for training and evaluating language models
for personalized text classification and generation.
LaMP consists of seven datasets: three classifica-
tion and four generation datasets. We proposed
retrieval augmentation solutions for personalizing
LLMs. Notably, we studied two augmentation
approaches: in-prompt augmentation (IPA) and
fusion-in-decoder (FiD). We performed extensive
experiments using various LLMs and retrieval tech-
niques for selecting user profile entries for produc-
ing personalized prompts. We demonstrated that
our LLM personalization approaches can lead to
12.2% average performance improvements across
datasets on zero-shot setting, and 23.5% with fine-
tuning. Finally, we underscore the paramount im-
portance of personalization in the current era domi-
nated by large language models. We firmly believe
that the future of natural language processing sys-
tems lies in a user-centric approach, tailoring solu-
tions to individual needs for optimal effectiveness.
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Task definitions Although all tasks are designed
to assess language models’ proficiency in person-
alization, certain tasks could be better grounded
in realistic scenarios and real-world applications.
For instance, framing the Personalized Citation
Identification task as a binary classification prob-
lem might not accurately represent real-world situ-
ations, where individuals generally need to interact
with a more extensive array of articles. Addition-
ally, while Personalized Product Rating is intrin-
sically linked to predicting user satisfaction, the
approach may not be entirely realistic, as reviews
in real-world contexts are often accompanied by a
numerical rating, rendering direct score prediction
less relevant. That being said, LaMP creates an
environment for evaluating the abilities of LMs in
producing personalized outputs.

Leakage to LLM pretraining data The data
used for creating the LaMP benchmark mostly con-
sists of publicly available data on the Web, e.g.,
public tweets, scholarly articles, news articles, and
product reviews. We should take this into consider-
ation that some of this data may have been observed
by the large language models during their pretrain-
ing process. Therefore, they may even perform
poorer in unseen cases compared to what we ob-
serve from the results on most the LaMP datasets.
For this reason, we included the Avocado dataset
for Personalized Email Subject Generation as this
is not publicly available on the Web and we expect
that language models do not use this dataset for
pretraining given the restrictions on the data usage
agreement.

Evaluating personalized generation The ma-
jority of text generation tasks addressed in this
research employ short text generation as it offers
greater convenience for evaluation purposes. Well-
defined metrics, such as ROUGE and BLEU scores,
are readily available to assess the quality of short
text generation. Conversely, evaluating long text
generation poses significant challenges due to its
subjective nature, absence of a definitive reference,
the necessity for coherence and consistency, con-
textual comprehension, varied output, semantic and
factual accuracy, as well as the limitations of con-
ventional metrics. Evaluators must account for
multiple factors, encompassing structural integrity,
clarity, effective employment of context, creativity,
and subjectivity. Attaining consistent and objective
evaluations proves arduous, as it heavily relies on
human judgment, which can introduce biases.

Privacy and personalization Finally, we urge
the readers to be mindful of privacy implication of
LLM personalization. Several studies have shown
successful membership attacks against deep learn-
ing models (including LLMs) (Mattern et al., 2023;
Shokri et al., 2017), thus using personal and private
data in fine-tuning may put the privacy of some
users at risk. Despite its importance, this paper
does not study privacy issues and further analyses
are required to ensure how fine-tuned personalized
models can preserve the privacy of users. Note that
we do not have privacy concerns for the proposed
retrieval augmentation approach when a zero-shot
language model is used, assuming that the zero-
shot language model is hosted in-house or at a
trusted third party.
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A Data Creation Details for Tasks in the
LaMP benchmark

This section explains the details behind creating
inputs, outputs, and profile entries for each task in
the LaMP benchmark. Note that all datasets are in
English language.

A.1 User-based Separation Setting

Personalized Citation Identification. To gener-
ate data samples, we leverage the Citation Network
Dataset (V14) (Tang et al., 2008), which comprises
information on scientific papers, authors, and cita-
tions. The dataset does not provide demographic
details of the users in the data. We select all papers
from this dataset that meet the following criteria: 1)
they are written in English, 2) they contain at least
one reference and one author, and 3) they include
an abstract. Subsequently, we group papers based
on their authors and only consider authors who
have written at least 50 papers. For each author,
we randomly select one of their papers and one of
its cited references. For negative document selec-
tion, we randomly choose one of the first author’s
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co-authors and one of the papers they have cited
in one of their papers, which has not been cited
by the first author. If no such author exists, we
randomly select an author and repeat this process.
Finally, we construct the input, output, and profile
of the generated samples for this task, employing
the template depicted in Figure 3 in Appendix B.
After creating the samples for all users, we divide
users into the train, validation, and test sets for this
task.

Personalized Movie Tagging. To construct our
dataset for this task, we leverage the MovieLense
dataset (Harper and Konstan, 2015) obtained from
the MovieLense website7. This dataset includes
the tags that individual users have attributed to
each film. However, it does not contain the de-
scriptions or summaries of the films. To acquire
these, we retrieve the overviews of each film in
this dataset from the Movie Database website8.
The MovieLense dataset comprises over a thou-
sand tags. However, for our dataset, we retain only
the top 15 most frequently selected tags as labels.
The dataset does not provide demographic details
of the users in the data. Furthermore, for the sake
of simplicity, we only include users who have as-
signed a single tag to a film. We only retain users
with a minimum of five tagged movies. Then, we
partition the users into training, validation, and test
sets. For each movie tagged by a user, we use the
movie description as input, the movie’s tag as the
output, and the remaining movies tagged by the
same user and their tags as the user profile for that
sample, following the template shown in Figure 3
in Appendix B. Finally, we randomly select 50% of
the generated samples for each user in training, val-
idation, and test sets, and add them to the samples
of the corresponding set.

Personalized Product Rating. In this task, we
create our dataset by leveraging the Amazon Re-
views Dataset (Ni et al., 2019). We filtered out
users (i.e., amazon customers who have written re-
views) who have written less than 100 and the 1%
users with the most reviews as outliers. Since the
Amazon Reviews dataset is quite extensive, we ran-
domly sampled a subset of users from the dataset,
which we then split into training, validation, and
testing sets. Note that the dataset does not provide
demographic details of the users in the data.

7https://movielens.org/
8https://www.themoviedb.org/?language=en-US

To construct the input-output pairs for our task,
for each user, we randomly select one of their re-
views as the input to the task and use their other
reviews as their profile. Specifically, we use the
profile to capture the author’s writing style, pref-
erences, and tendencies. In this setup, the user’s
score for the input review serves as the ground truth
output for our task. To gain a better understanding
of the input, output, and profile, refer to Figure 3
in Appendix B.

Personalized News Headline Generation. To
construct our dataset for this task, we leverage the
News Categorization dataset (Misra, 2022; Misra
and Grover, 2021) from the HuffPost website. The
dataset provides author information for each article
and is used to group articles by their respective
authors. The dataset does not provide demographic
details of the users in the data. We filtered out the
authors with less than four articles. In cases where
an article has multiple authors, we assign it only to
the first author.

We then randomly split the authors into training,
validation, and test sets. For each author in each
set, we create input-output pairs by selecting each
article as the input, the headline of the article as
the output, and the remaining articles written by
the same author as their profile. This setup aims
to capture the author’s writing style, preferences,
and tendencies, which can be leveraged to gener-
ate headlines that align with their interests. An
example of this setup is presented in Figure 3 in
Appendix B. Finally, to ensure a diverse and repre-
sentative dataset, we randomly select 50% of the
created samples for each author and add them to
the user’s corresponding set.

Personalized Scholarly Title Generation. Sim-
ilar to Section LaMP-1, we leverage the Citation
Network Dataset (V14) (Tang et al., 2008) that in-
cludes information about scientific papers, authors,
and citations to construct our dataset. The dataset
does not provide demographic details of the users
in the data. We only kept the papers that meet the
following criteria: 1) written in English, 2) have at
least one reference and one author, and 3) have an
abstract. Then, we group papers by their authors
and only consider authors who have published at
least 50 papers. For each author, we randomly
choose one of their papers and use its abstract as
input, its title as output, and the remaining papers
as the author’s profile. Figure 3 in Appendix B
illustrates the input format for this task. After cre-
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ating the samples for all users, we divide users into
the train, validation, and test sets for this task.

Personalized Email Subject Generation. In this
study, we adopt the Avocado Research Email Col-
lection (Oard, Douglas et al., 2015) as the primary
dataset for our task. The dataset does not provide
demographic details of the users in the data. To
curate the dataset, we first perform a filtering step
where we exclude emails with subject lengths of
fewer than five words and content lengths of fewer
than 30 words. Next, we group the emails based on
their sender’s email address, retaining only those
from users with email frequencies ranging between
10 to 200 emails. We further divide the users into
distinct training, validation, and test sets to ensure
that our model generalizes well to unseen data. To
generate training examples for each user, we cre-
ate input-output pairs by considering each email as
the input and the corresponding email subject as
the output. We supplement these pairs with other
emails written by the same user as their profile,
as shown in Figure 3 in Appendix B. We ensure
that our dataset is diverse and representative by
randomly selecting 50% of the curated samples for
each user and adding them to their respective sets.

Personalized Tweet Paraphrasing. In this task,
we utilize the Sentiment140 dataset (Go et al.,
2009) as our tweet collection set. The dataset does
not provide demographic details of the users in the
data. To ensure that the collected tweets are of
adequate length, we only retain tweets containing
at least 10 words. We then group the tweets based
on the user ID and filter out users with fewer than
10 tweets. Subsequently, we randomly select one
tweet from each user profile and use it as input to
ChatGPT (i.e., gpt3.5-turbo) to generate a para-
phrased version. The generated paraphrase is then
utilized as the input to our NLP task, with the origi-
nal tweet serving as the corresponding output. The
remaining tweets of the user constitute the user’s
profile, excluding the one selected as input. Fig-
ure 3 in Appendix B provides an overview of the
input-output-profile template for our proposed task.
After creating the samples for all users, we divide
users into the train, validation, and test sets for this
task.

A.2 Time-based Separation Setting
Personalized Citation Identification. To gener-
ate data samples, we leverage the Citation Network
Dataset (V14) (Tang et al., 2008), which comprises

information on scientific papers, authors, and cita-
tions. The dataset does not provide demographic
details of the users in the data. We select all papers
from this dataset that meet the following criteria:
1) they are written in English, 2) they contain at
least one reference and one author, and 3) they in-
clude an abstract. Subsequently, we group papers
based on their authors and only consider authors
who have written at least 50 papers. We divide
each author’s papers based on the publication year
into three groups chronologically: 1) profile pa-
pers, 2) train papers, 3) validation papers, and 4)
test papers, where the order of groups shows the
flow of time. Each train, validation, and test paper
set in this task consists of only one paper. Then,
for each paper in the train, validation, and test sets
for the user, we select each paper and one of its
cited references. For negative document selection,
we randomly choose one of the first author’s co-
authors and one of the papers they have cited in
one of their papers, which has not been cited by the
first author. If no such author exists, we randomly
select an author and repeat this process. Finally,
we construct the input, output, and profile of the
generated samples for this task, employing the tem-
plate depicted in Figure 3 in Appendix B. It should
be noted that after creating all the samples in the
train, validation, and test sets for all the users and
aggregating them, we randomly select a subset of
validation and test sets to create the final sets for
the task.

Personalized Movie Tagging. To construct our
dataset for this task, we leverage the MovieLense
dataset (Harper and Konstan, 2015) obtained from
the MovieLense website9. This dataset includes the
tags that individual users have attributed to each
film. The dataset does not provide demographic
details of the users in the data. However, it does not
contain the descriptions or summaries of the films.
To acquire these, we retrieve the overviews of each
film in this dataset from the Movie Database web-
site10. The MovieLense dataset comprises over a
thousand tags. However, for our dataset, we retain
only the top 15 most frequently selected tags as
labels. Furthermore, for the sake of simplicity, we
only include users who have assigned a single tag
to a film. We only retain users with a minimum of
five tagged movies. We divide each user’s tagged
movies based on the date they tagged into three

9https://movielens.org/
10https://www.themoviedb.org/?language=en-US
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groups, chronologically: 1) profile movies, 2) train
movies, 3) validation movies, and 4) test movies,
where the order of groups shows the flow of time.
Each train, validation, and test movies set in this
task consists of 20%, 10%, and 10% of movies,
respectively. Then, for each movie in the train,
validation, and test sets for the user, we use the
movie’s description as the input, the movie’s tag
as the output, and the profile movies and their tags
as the profile for that sample, following the tem-
plate shown in Figure 3 in Appendix B. It should
be noted that after creating all the samples in the
train, validation, and test sets for all the users and
aggregating them, we randomly select a subset of
validation and test sets to create the final sets for
the task.

Personalized Product Rating. In this task, we
create our dataset by leveraging the Amazon Re-
views Dataset (Ni et al., 2019). The dataset does
not provide demographic details of the users in the
data. We filtered out users (i.e., amazon customers
who have written reviews) who have written less
than 100 and the 1% users with the most reviews as
outliers. Since the Amazon Reviews dataset is quite
extensive, we randomly sampled a subset of users
from the dataset. We divide each user’s reviews
based on the review date into three groups chrono-
logically: 1) profile reviews, 2) train reviews, 3)
validation reviews, and 4) test reviews, where the
order of groups shows the flow of time. Each train,
validation, and test reviews set in this task consists
of only one review.

To construct the input-output pairs for our task,
for each user, we select their reviews in each of
train, validation, and test sets as the input to the
task and use the profile reviews as their profile.
Specifically, we use the profile to capture the au-
thor’s writing style, preferences, and tendencies.
Additionally, the user’s score for the input review
serves as the ground truth output for our task. To
gain a better understanding of the input, output, and
profile, refer to Figure 3 in Appendix B. It should
be noted that after creating all the samples in the
train, validation, and test sets for all the users and
aggregating them, we randomly select a subset of
validation and test sets to create the final sets for
the task.

Personalized News Headline Generation. To
construct our dataset for this task, we leverage the
News Categorization dataset (Misra, 2022; Misra
and Grover, 2021) from the HuffPost website. The

dataset provides author information for each article
and is used to group articles by their respective
authors. The dataset does not provide demographic
details of the users in the data. We filtered out the
authors with less than ten articles. In cases where
an article has multiple authors, we assign it only
to the first author. We divide each author’s arti-
cles based on the publishing date into three groups
chronologically: 1) profile articles, 2) train articles,
3) validation articles, and 4) test articles, where the
order of groups shows the flow of time. Each train,
validation, and test articles set in this task consists
of 20%, 10%, and 10% articles, respectively. Then,
for each article in the train, validation, and test sets
for the user, we create input-output pairs by select-
ing each article as the input, the headline of the
article as the output, and the profile articles writ-
ten by the same author as their profile. This setup
aims to capture the author’s writing style, prefer-
ences, and tendencies, which can be leveraged to
generate headlines that align with their interests.
An example of this setup is presented in Figure 3
in Appendix B. It should be noted that after cre-
ating all the samples in the train, validation, and
test sets for all the users and aggregating them, we
randomly select a subset of validation and test sets
to create the final sets for the task.

Personalized Scholarly Title Generation. We
leverage the Citation Network Dataset (V14) (Tang
et al., 2008) that includes information about scien-
tific papers, authors, and citations to construct our
dataset. The dataset does not provide demographic
details of the users in the data. We only kept the
papers that meet the following criteria: 1) written
in English, 2) have at least one reference and one
author, and 3) have an abstract. Then, we group
papers by their authors and only consider authors
who have published at least 50 papers. We divide
each author’s papers based on the publication year
into three groups chronologically: 1) profile pa-
pers, 2) train papers, 3) validation papers, and 4)
test papers, where the order of groups shows the
flow of time. Each train, validation, and test paper
set in this task consists of only one paper. Then,
for each paper in the train, validation, and test sets
for the user, we use its abstract as input, its title
as output, and the profile papers as the author’s
profile. Figure 3 in Appendix B illustrates the input
format for this task. After creating the samples for
all users, we divide users into the train, validation,
and test sets for this task. It should be noted that
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after creating all the samples in the train, validation,
and test sets for all the users and aggregating them,
we randomly select a subset of validation and test
sets to create the final sets for the task.

Personalized Email Subject Generation. In this
study, we adopt the Avocado Research Email Col-
lection (Oard, Douglas et al., 2015) as the primary
dataset for our task. The dataset does not provide
demographic details of the users in the data. To
curate the dataset, we first perform a filtering step
where we exclude emails with subject lengths of
fewer than five words and content lengths of fewer
than 30 words. Next, we group the emails based on
their sender’s email address, retaining only those
from users with email frequencies ranging between
10 to 200 emails. We divide each user’s emails
based on the publishing date into three groups
chronologically: 1) profile emails, 2) train emails,
3) validation emails, and 4) test emails, where the
order of groups shows the flow of time. Each train,
validation, and test emails set in this task consists
of 20%, 10%, and 10% articles, respectively. Then,
for each article in the train, validation, and test sets
for the user, we create input-output pairs by consid-
ering each email as the input and the corresponding
email subject as the output. We supplement these
pairs with profile emails written by the same user
as their profile, as shown in Figure 3 in Appendix
B. It should be noted that after creating all the sam-
ples in the train, validation, and test sets for all the
users and aggregating them, we randomly select a
subset of validation and test sets to create the final
sets for the task.

Personalized Tweet Paraphrasing. In this task,
we utilize the Sentiment140 dataset (Go et al.,
2009) as our tweet collection set. The dataset does
not provide demographic details of the users in the
data. To ensure that the collected tweets are of
adequate length, we only retain tweets containing
at least 10 words. We then group the tweets based
on the user ID and filter out users with fewer than
10 tweets. We divide each user’s tweets based on
the publication year into three groups chronologi-
cally: 1) profile tweets, 2) train tweets, 3) valida-
tion tweets, and 4) test tweets, where the order of
groups shows the flow of time. Each train, vali-
dation, and test tweet set in this task consists of
only one paper. Then, for each tweet in the train,
validation, and test sets for the user, we use it as
input to ChatGPT (i.e., gpt3.5-turbo) to generate
a paraphrased version. The generated paraphrase

is then utilized as the input to our NLP task, with
the original tweet serving as the corresponding out-
put. The profile tweets of the user constitute the
user’s profile. Figure 3 in Appendix B provides
an overview of the input-output-profile template
for our proposed task. It should be noted that after
creating all the samples in the train, validation, and
test sets for all the users and aggregating them, we
randomly select a subset of validation and test sets
to create the final sets for the task.

B Samples of the Tasks Introduced in the
LaMP Benchmark

As mentioned earlier, LaMP proposes seven tasks
to evaluate language model personalization. In or-
der to create the data points, we use just a carefully
designed template for each task. Figure 3 depicts a
sample and template for each task in LaMP. Gen-
erally, each sample in each task has an input and
output accompanied by a profile consisting of sev-
eral entries about the user, helping the model to
produce personalized results for the user. While
the profile entries in the same task have a similar
structure, the structure varies between tasks. For
example, Figure 3 shows that the profile for Per-
sonalized Product Rating comprised of documents
with text and score sections, while the profile en-
tries in Personalized Scholarly Title Generation
have abstract and title attributes.

C Prompts Used for Adding User Profile
to the Language Model’s Input

In order to use multiple entries from the user pro-
file to personalize the language model’s input, we
construct task-specific prompts using the templates
and instructions in Table 5.

The prompt creation consists of two stages: 1)
Per Profile Entry Prompt (PPEP) creation and 2)
Aggregated Input Prompt (AIP) creation. In the
first stage, following the instructions in Table 5,
we create a prompt for each profile entry. In the
second stage, following the instructions in Table
5, we combine the PPEP prompts into a single
prompt to be fed to the language model. It should
be noted that due to the limited context size of lan-
guage models, we need to trim the PPEP prompts.
More accurately, considering k prompts need to be
merged and that the maximum capacity for the task
input is L̄ and the maximum context size of the lan-
guage model is L, we let each PPEP occupy L−L̄

k
tokens in the language model’s input. For PPEPs
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2

Input
LaMP-1: Personalized Citation Identification

Output Profile

For an author who has written the paper with the title 
“[TITLE]”, which reference is related?  

Just answer with [1] or [2] without explanation.  
[1]: “[REF1]” [2]: “[REF2]”

[1] title: [TITLE] 
abstract: [ABSTRACT]

LaMP-2: Personalized Movie Tagging

Which tag does this movie relate to among the following tags? 
Just answer with the tag name without further explanation. 
tags: [sci-fi, based on a book, comedy, action, twist ending, 

dystopia, dark comedy, classic, …] description: [MOVIE]
comedy description: [MOVIE] 

tag: [TAG]

LaMP-3: Personalized Product Rating

What is the score of the following review on a scale of 1 to 5? 
Just answer with 1, 2, 3, 4, or 5 without further explanation. 

review: [REVIEW]
4 text: [REVIEW] 

score: [SCORE]

LaMP-4: Personalized News Headline Generation

Generate a headline for the following article: [ARTICLE]
The Best Cheap 
Wine: Two Buck 
Chuck vs Three 

Wishes

title: [TITLE] 
text: [ARTICLE]

LaMP-5: Personalized Scholarly Title Generation

Generate a title for the following abstract of a paper: [ABSTRACT] Attention is All 
You Need title: [TITLE] 

abstract: [ABSTRACT]

LaMP-6: Personalized Email Subject Generation

Generate a subject for the following email: [EMAIL] A bug in the 
class HelloWorld title: [TITLE] 

email: [EMAIL]

LaMP-7: Personalized Tweet Paraphrasing

Paraphrase the following tweet without any explanation before or 
after it: [TWEET]

I hope so! what 
time do you get 
out? I get out at 

335
text: [TWEET]

Figure 3: An overview of the templates used for creating data samples for each task in LaMP. Teletype text is
replaced with realistic data for each task.

Task Per Profile Entry Prompt (PPEP) Aggregated Input Prompt(AIP)
1: Citation Identification “Pi[title]” add_to_paper_title(concat([PPEP(P1), ..., PPEP(Pn)],

", and "), [INPUT])
2: Movie Tagging the tag for the movie: “Pi[description]” is

“Pi[tag]”
concat([PPEP(P1), ..., PPEP(Pn)], “, and ”). [INPUT]

3: Product Rating Pi[score] is the score for “Pi[text]” concat([PPEP(P1), ..., PPEP(Pn)], “, and ”). [INPUT]
4: News Headline Genera-
tion

“Pi[title]” is the title for “Pi[text]” concat([PPEP(P1), ..., PPEP(Pn)], “, and ”). [INPUT]

5: Scholarly Title Genera-
tion

“Pi[title]” is the title for “Pi[abstract]” concat([PPEP(P1), ..., PPEP(Pn)], “, and ""). Following the
given patterns [INPUT]

6: Email Subject Genera-
tion

“Pi[title]” is the title for “Pi[text]” concat([PPEP(P1), ..., PPEP(Pn)], “, and ”). [INPUT]

7: Tweet Paraphrasing “Pi[text]” concat([PPEP(P1), ..., PPEP(Pn)], “, and ”) are written by
a person. Following the given patterns [INPUT]

Table 5: Prompts template used to augment the input of the LM with the user profile. concat is a function
that concatenates the strings in its first argument by placing the string in the second argument between them.
add_to_paper_title is a function designed to add the string in its first argument to the paper’s title in the
Personalized Citation Identification task. PPEP is a function that create the prompt for each entry in the retrieved
profile entries. [INPUT] is the task’s input.

that are longer than the calculated number, we trim
the non-template parts that have less importance in

the final performance of the model – the parts that
do not provide category, score, or title. We select
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L̄ = 256 in this paper.

D Performance of the Models on the
Validation Set

This section reports the results of experiments on
the validation set. Table 6 reports the results of fine-
tuning the language model on the user-based sepa-
ration setting on the validation set. Table 8 shows
the results of fine-tuning the language model on the
time-based separation setting on the validation set.
Table 7 shows the results of zero-shot evaluation of
large language models on the user-based separation
setting on the validation set. Table 9 depicts the
results of zero-shot evaluation of large language
models on the time-based separation setting on the
validation set.

E Performance of Some Other
Non-Personalized Baselines on the
LaMP Benchmark

To explore the performance of additional baselines,
we present the performance of the Support Vector
Machine (SVM) (Hearst et al., 1998) as a con-
ventional classifier, BERT (Devlin et al., 2019)
as a neural transformer-based encoder, and BART
(Lewis et al., 2020) as a generative model. SVM
and BERT are evaluated on classification tasks, and
BART is evaluated on generation tasks within the
LaMP benchmark. The results for the user-based
and time-based separation configurations are docu-
mented in Table 10 and Table 11, respectively.

F Dataset Licenses

This section specifies the licences and terms of use
for each task, which is the same as the original
dataset’s license:

1. Personalized Citation Identification: CC BY-
NC-SA 4.0

2. Personalized Movie Tagging: Educational or
academic research, NON COMMERCIAL
USE

3. Personalized Product Rating: CC BY-NC-SA
4.0

4. Personalized News Headline Generation: CC
BY-NC-SA 4.0

5. Personalized Scholarly Title Generation: CC
BY-NC-SA 4.0

6. Personalized Email Subject Generation: Av-
ocado Collection End User Agreement
LDC2015T03

7. Personalized Tweet Paraphrasing: CC BY-
NC-SA 4.0

G AI Assistance Usage

In this paper, ChatGPT11 has been used as a writing
assistant. In more detail, an initial paragraph is
given to the ChatGPT and asked to paraphrase the
given text. Further edits were also applied to the
generated text and then used.

11https://chat.openai.com/
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FlanT5-base (fine-tuned)

Non-Personalized Untuned profile, k = 1 Tuned retriever, k Tuned profile

Dataset Metric No-Retrieval Random Random BM25 Contriever IPA FiD(k = 16)

LaMP-1U: Personalized
Citation Identification Accuracy ↑ 0.522 0.526 0.597 0.623 0.695 Contriever, 4 0.731 0.743

LaMP-2U: Personalized
Movie Tagging

Accuracy ↑ 0.449 0.447 0.513 0.498 0.524
Contriever, 4

0.560 0.640
F1 ↑ 0.403 0.405 0.462 0.442 0.472 0.512 0.613

LaMP-3U: Personalized
Product Rating

MAE ↓ 0.314 0.324 0.312 0.282 0.275
Contriever, 4

0.258 0.259
RMSE ↓ 0.624 0.650 0.633 0.609 0.589 0.572 0.577

LaMP-4U: Personalized
News Headline Generation

ROUGE-1 ↑ 0.158 0.163 0.167 0.176 0.188
Contriever, 4

0.201 0.194
ROUGE-L ↑ 0.144 0.151 0.152 0.161 0.172 0.185 0.180

LaMP-5U: Personalized
Scholarly Title Generation

ROUGE-1 ↑ 0.424 0.387 0.389 0.441 0.405
BM25, 2

0.453 0.445
ROUGE-L ↑ 0.382 0.350 0.352 0.401 0.367 0.414 0.405

LaMP-6U: Personalized
Email Subject Generation

ROUGE-1 ↑ 0.392 0.466 0.469 0.575 0.567
BM25, 4

0.583 0.559
ROUGE-L ↑ 0.374 0.452 0.454 0.563 0.553 0.570 0.547

LaMP-7U: Personalized
Tweet Paraphrasing

ROUGE-1 ↑ 0.511 0.512 0.512 0.520 0.522
Contriever, 4

0.526 0.511
ROUGE-L ↑ 0.456 0.456 0.457 0.465 0.467 0.471 0.457

Table 6: The personalized text classification and generation results for a fine-tuned language model (i.e., FlanT5-
base) on the validation set of user-based separation setting. k denotes the number of documents retrieved for
personalizing language model outputs.

Non-Personalized Personalized

Dataset Metric FlanT5-XXL GPT-3.5 FlanT5-XXL GPT-3.5

LaMP-1U: Personalized
Citation Identification Accuracy ↑ 0.522 0.510 0.675 0.701

LaMP-2U: Personalized
Movie Tagging

Accuracy ↑ 0.348 0.372 0.369 0.466
F1 ↑ 0.268 0.290 0.294 0.424

LaMP-3U: Personalized
Product Rating

MAE ↓ 0.357 0.699 0.282 0.658
RMSE ↓ 0.666 0.977 0.5841 1.102

LaMP-4U: Personalized
News Headline Generation

ROUGE-1 ↑ 0.164 0.133 0.192 0.160
ROUGE-L ↑ 0.149 0.118 0.178 0.142

LaMP-5U: Personalized
Scholarly Title Generation

ROUGE-1 ↑ 0.455 0.395 0.467 0.398
ROUGE-L ↑ 0.410 0.334 0.424 0.336

LaMP-6U: Personalized
Email Subject Generation

ROUGE-1 ↑ 0.332 - 0.466 -
ROUGE-L ↑ 0.320 - 0.453 -

LaMP-7U: Personalized
Tweet Paraphrasing

ROUGE-1 ↑ 0.459 0.396 0.448 0.391
ROUGE-L ↑ 0.404 0.337 0.396 0.324

Table 7: The zero-shot personalized text classification and generation results on the validation set of user-based
separation setting. For personalized models, the tuned retriever based on the validation performance was selected.
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FlanT5-base (fine-tuned)

Non-Personalized Untuned profile, k = 1 Tuned retriever, k Tuned profile

Dataset Metric No-Retrieval Random Random BM25 Contriever Recency IPA FiD(k = 16)

LaMP-1T: Personalized
Citation Identification Accuracy ↑ 0.629 0.630 0.662 0.695 0.709 0.681 Contriever, 4 0.732 0.694

LaMP-2T: Personalized
Movie Tagging

Accuracy ↑ 0.512 0.506 0.531 0.538 0.551 0.546
Contriever, 4

0.570 0.658
F1 ↑ 0.460 0.453 0.480 0.485 0.505 0.493 0.522 0.615

LaMP-3T: Personalized
Product Rating

MAE ↓ 0.278 0.276 0.273 0.269 0.272 0.260
Recency, 4

0.259 0.252
RMSE ↓ 0.595 0.598 0.590 0.583 0.589 0.576 0.568 0.586

LaMP-4T: Personalized
News Headline Generation

ROUGE-1 ↑ 0.164 0.166 0.176 0.176 0.177 0.179
Recency, 2

0.185 0.178
ROUGE-L ↑ 0.149 0.151 0.160 0.161 0.163 0.165 0.169 0.164

LaMP-5T: Personalized
Scholarly Title Generation

ROUGE-1 ↑ 0.462 0.458 0.459 0.473 0.470 0.462
Contriever, 4

0.472 0.454
ROUGE-L ↑ 0.414 0.410 0.412 0.425 0.423 0.416 0.423 0.411

LaMP-6T: Personalized
Email Subject Generation

ROUGE-1 ↑ 0.470 0.503 0.504 0.509 0.519 0.510
Contriever, 4

0.520 0.513
ROUGE-L ↑ 0.455 0.450 0.489 0.496 0.507 0.497 0.509 0.500

LaMP-7T: Personalized
Tweet Paraphrasing

ROUGE-1 ↑ 0.462 0.462 0.507 0.509 0.514 0.510
Contriever, 4

0.518 0.505
ROUGE-L ↑ 0.414 0.448 0.457 0.460 0.464 0.459 0.467 0.455

Table 8: The personalized text classification and generation results for a fine-tuned language model (i.e., FlanT5-
base) on the validation set of time-based separation setting. k denotes the number of documents retrieved for
personalizing language model outputs.

Non-Personalized Personalized

Dataset Metric FlanT5-XXL GPT-3.5 FlanT5-XXL GPT-3.5

LaMP-1T: Personalized
Citation Identification Accuracy ↑ 0.498 0.478 0.656 0.640

LaMP-2T: Personalized
Movie Tagging

Accuracy ↑ 0.326 0.333 0.361 0.439
F1 ↑ 0.255 0.273 0.283 0.403

LaMP-3T: Personalized
Product Rating

MAE ↓ 0.335 0.720 0.294 0.608
RMSE ↓ 0.639 1.000 0.586 1.022

LaMP-4T: Personalized
News Headline Generation

ROUGE-1 ↑ 0.173 0.146 0.192 0.159
ROUGE-L ↑ 0.157 0.128 0.175 0.138

LaMP-5T: Personalized
Scholarly Title Generation

ROUGE-1 ↑ 0.472 0.413 0.472 0.421
ROUGE-L ↑ 0.419 0.348 0.422 0.352

LaMP-6T: Personalized
Email Subject Generation

ROUGE-1 ↑ 0.316 - 0.382 -
ROUGE-L ↑ 0.302 - 0.369 -

LaMP-7T: Personalized
Tweet Paraphrasing

ROUGE-1 ↑ 0.454 0.390 0.440 0.392
ROUGE-L ↑ 0.401 0.331 0.391 0.325

Table 9: The zero-shot personalized text classification and generation results on the validation set of time-based
separation setting. For personalized models, the tuned retriever based on the validation performance was selected.
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SVM BERT BART

Dataset Metric Validation Test Validation Test Validation Test

LaMP-1T: Personalized
Citation Identification Accuracy ↑ 0.512 0.523 0.520 0.483 - -

LaMP-2T: Personalized
Movie Tagging

Accuracy ↑ 0.836 0.609 0.609 0.593 - -
F1 ↑ 0.810 0.580 0.588 0.559 - -

LaMP-3T: Personalized
Product Rating

MAE ↓ 0.227 0.515 0.395 0.364 - -
RMSE ↓ 0.446 0.992 0.758 0.718 - -

LaMP-4T: Personalized
News Headline Generation

ROUGE-1 ↑ - - - - 0.166 0.159
ROUGE-L ↑ - - - - 0.151 0.145

LaMP-5T: Personalized
Scholarly Title Generation

ROUGE-1 ↑ - - - - 0.418 0.409
ROUGE-L ↑ - - - - 0.380 0.375

LaMP-6T: Personalized
Email Subject Generation

ROUGE-1 ↑ - - - - 0.405 0.379
ROUGE-L ↑ - - - - 0.387 0.361

LaMP-7T: Personalized
Tweet Paraphrasing

ROUGE-1 ↑ - - - - 0.515 0.512
ROUGE-L ↑ - - - - 0.460 0.456

Table 10: The results of non-personalized text classification and generation results on the validation and test set of
user-based separation setting of SVM (Hearst et al., 1998), BERT (Devlin et al., 2019), and BART (Lewis et al.,
2020).

SVM BERT BART

Dataset Metric Validation Test Validation Test Validation Test

LaMP-1T: Personalized
Citation Identification Accuracy ↑ 0.540 0.500 0.584 0.582 - -

LaMP-2T: Personalized
Movie Tagging

Accuracy ↑ 0.842 0.647 0.639 0.637 - -
F1 ↑ 0.810 0.610 0.602 0.598 - -

LaMP-3T: Personalized
Product Rating

MAE ↓ 0.221 0.556 0.337 0.342 - -
RMSE ↓ 0.448 1.203 0.706 0.725 - -

LaMP-4T: Personalized
News Headline Generation

ROUGE-1 ↑ - - - - 0.177 0.171
ROUGE-L ↑ - - - - 0.161 0.157

LaMP-5T: Personalized
Scholarly Title Generation

ROUGE-1 ↑ - - - - 0.458 0.456
ROUGE-L ↑ - - - - 0.414 0.416

LaMP-6T: Personalized
Email Subject Generation

ROUGE-1 ↑ - - - - 0.498 0.532
ROUGE-L ↑ - - - - 0.486 0.518

LaMP-7T: Personalized
Tweet Paraphrasing

ROUGE-1 ↑ - - - - 0.507 0.504
ROUGE-L ↑ - - - - 0.455 0.453

Table 11: The results of non-personalized text classification and generation results on the validation and test set of
time-based separation setting of SVM (Hearst et al., 1998), BERT (Devlin et al., 2019), and BART (Lewis et al.,
2020).
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