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Abstract

Reconstructing natural language from non-
invasive electroencephalography (EEG) holds
great promise as a language decoding technol-
ogy for brain-computer interfaces (BCIs). How-
ever, EEG-based language decoding is still in
its nascent stages, facing several technical is-
sues such as: 1) Absence of a hybrid strategy
that can effectively integrate cross-modality
(between EEG and text) self-learning with intra-
modality self-reconstruction of EEG features
or textual sequences; 2) Under-utilization of
large language models (LLMs) to enhance
EEG-based language decoding. To address
above issues, we propose the Contrastive EEG-
Text Masked Autoencoder (CET-MAE), a
novel model that orchestrates compound self-
supervised learning across and within EEG
and text through a dedicated multi-stream en-
coder. Furthermore, we develop a framework
called E2T-PTR (EEG-to-Text decoding us-
ing Pretrained Transferable Representations),
which leverages pre-trained modules alongside
the EEG stream from CET-MAE and further
enables an LLM (specifically BART) to de-
code text from EEG sequences. Comprehen-
sive experiments conducted on the popular text-
evoked EEG database, ZuCo, demonstrate the
superiority of E2T-PTR, which outperforms
the baseline framework in ROUGE-1 F1 and
BLEU-4 scores by 8.34% and 32.21%, respec-
tively. Our proposed pre-trained EEG-Text
model shows the potential to improve down-
stream tasks involving EEG and text. This
opens up promising avenues for its application
in inner speech BCI paradigms, meriting fur-
ther investigation.

1 Introduction

Decoding natural language from non-invasive brain
recordings with electroencephalography (EEG) is
an emerging topic that holds promising benefits
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Figure 1: Text-evoked EEG Recording in ZuCo
datasets. Participants’ EEG and eye-tracking data are
simultaneously recorded during natural reading to cap-
ture text-evoked brain activity.

for patients suffering from cognitive impairments
or language disorders. Thanks to the burgeoning
development of pre-trained large language mod-
els (LLMs) (Zhao et al., 2023a), the potential of
using an open vocabulary to decode human brain
activity has been gradually unlocked. Specifically,
through the commendable text understanding and
generation capabilities of cutting-edge LLMs (Tou-
vron et al., 2023; Ouyang et al., 2022), translat-
ing complex spatio-temporal EEG signals into nu-
anced textual representations, which is known as
EEG-to-Text, is being achieved. Compared to con-
ventional paradigms of brain-computer interfaces
(BCIs), such as motor imagery (MI) (Al-Saegh
et al., 2021), steady-state visual evoked potential
(SSVEP) (Wang et al., 2016), and P300 (Cecotti
and Graser, 2010), EEG-to-Text can convey much
more intended commands from the human brain
to computers, and thus presents a more extensive
range of applications. Its potential as a novel and
powerful BCI paradigm suggests it could contribute
to advancements in the field of imagined or inner
speech BCIs.

Several existing EEG studies (Li et al., 2022a;
Yi et al., 2024) were focused on developing spe-
cialized pre-trained models for EEG only, aiming
to extract universal semantic representations from
the human brain. However, the pre-trained model
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bridging EEG and text has been ignored, which
may be important to enhance the representation
learning for inter-modality conversion (Bai et al.,
2023). This motivates us to develop a hybrid model
to orchestrate compound pre-trained representa-
tions across and within EEG and text. This en-
deavor faces the core challenge: How to bridge
the semantic gap between EEG and text while es-
tablishing an implicit mapping in the latent repre-
sentation space? Responding to this challenge, we
focus on self-supervised learning (SSL), because of
its great capability in multi-modal representation
learning (Chen et al., 2024). Contrastive learn-
ing is one of the important SSL strategies, learn-
ing semantic-level representations across modali-
ties (as CLIP does for language and image) (Rad-
ford et al., 2021). Masked modeling methods ex-
hibit significant capability of intra-modality self-
reconstruction, such as BERT (Devlin et al., 2019)
in nature language processing and masked autoen-
coder (MAE) (He et al., 2022) in computer vision.

Inspired by the above prevailing SSL strategies,
we propose a novel pre-trained model to align EEG
and text, Contrastive EEG-Text Masked Autoen-
coder (CET-MAE), as shown in Figure2(a). CET-
MAE integrates contrastive learning and masked
signal modeling through a dedicated multi-stream
encoder. It effectively learns pre-trained represen-
tations of EEG and text by balancing the latent
embeddings represented by self-reconstruction and
the semantic-level aligned embeddings of text to-
kens and text-evoked EEG features. In terms of
masked signal modeling, CET-MAE implements a
high mask ratio (specifically, 75%) on both EEG
and text data, presenting a meaningful challenge for
the model to handle an increased amount of miss-
ing information during the reconstruction phase.
This setting not only enhances the model’s under-
standing of individual modality but also facilitates
cross-modal interactions and support.

Furthermore, to make the most of LLMs’ ca-
pability in language understanding and genera-
tion as well as to fully use pre-trained represen-
tations learned by CET-MAE, we introduce a new
EEG-to-Text decoding framework, EEG-to-Text us-
ing Pre-trained Transferable Representations (E2T-
PTR). E2T-PTR utilizes pre-trained modules along-
side the EEG stream from CET-MAE and further
adopts the BART (Lewis et al., 2020) to decode
language from EEG sequences. By transferring the
pre-trained representations from CET-MAE, E2T-
PTR significantly enhances EEG-to-Text decoding,

surpassing both the baseline and state-of-the-art
(SOTA) methods.

Our main contributions are summarised below:

• Introducing CET-MAE, the first pre-trained
EEG-text model for EEG-based language de-
coding. CET-MAE integrates the reconstruc-
tion of text and EEG features with seman-
tic alignment, forming a multi-stream SSL
framework for both intra-modality and cross-
modality representation learning.

• Developing a new EEG-to-Text framework
via E2T-PTR. The new E2T-PTR framework
can leverage CET-MAE’s pre-trained EEG
representations and the capabilities of LLMs
(BART) for text generation.

• Conducting extensive EEG-to-Text experi-
ments on three, four, and five reading tasks
in ZuCo. Results demonstrate that our frame-
work outperforms previous works, offering
valuable insights into leveraging pre-trained
transferable representations to enhance EEG-
to-text decoding.

2 Related Works

2.1 Self-supervised Representations Learning

Multimodal self-supervised representation learning
aims to explore the interactions between different
modalities to produce semantically generalizable
representations for downstream tasks.

In recent years, there have been substantial pro-
gresses across various modalities, such as vision-
language pre-training (Zhao et al., 2023b; Lin et al.,
2023). A range of existing methods rely on con-
trastive learning, which can effectively draw closer
to the global representations of matched pairs in
latent spaces with semantic-level self-supervised
constraints. But contrastive learning sometimes
tends to overlook the self-information of individ-
ual modalities, particularly at more granular lev-
els. On the other hand, multimodal masked signal
modeling integrates cross-modality self-learning
with intra-modality self-reconstruction, focusing
on reconstructing one modality from another. This
approach may help the model learn the associa-
tions between modalities. However, it may lead
to an excessive emphasis on fine-grained details,
potentially weakening the overall cross-modality
correlation and causing issues such as insensitivity
to whether the inputs are matched pairs. A series of
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recent works, such as CMAE (Huang et al., 2023),
CAV-MAE (Gong et al., 2022) and SimVTP (Ma
et al., 2022), have already successfully integrated
both contrastive learning and masked signal mod-
eling so that their complement advantages can be
utilized.

Our work draws inspiration from the above SSL
methods but with a novel strategy. In the pro-
posed CET-MAE, the utilization of both text and
EEG streams not only achieves an explicit con-
trastive learning objective to capture global coor-
dination but also avoids erroneous learning pro-
cesses. Meanwhile, the utilization of the joint
stream can facilitate the information interaction
between modal-specific embeddings to achieve
masked signal modeling effectively. To the best of
our knowledge, this is the first EEG-to-Text masked
autoencoder that attempts to establish transferable
representation learning between EEG and text.

2.2 Open Vocabulary EEG-to-Text Decoding

Previous works (Nieto et al., 2022; Kamble et al.,
2023) on EEG-to-Text have been severely confined
by a limited number of (several or tens of) words in
terms of vocabulary size. These closed-vocabulary
efforts primarily focused on recognizing low-level
linguistic features, such as individual words or syl-
lables. However, these works can hardly capture
more complex, high-level semantic and contextual
aspects of language.

The development of LLMs has significantly
enhanced the field of EEG-based text decoding.
The first work using LLM (Wang and Ji, 2022)
integrates an additional EEG encoder to align
the pre-trained BART for EEG-to-Text, providing
important inspiration for subsequent works. C-
SCL (Feng et al., 2023) employs curriculum learn-
ing to effectively mitigate the discrepancy between
subject-dependent and semantic-dependent EEG
representations in EEG-to-Text translation. De-
Wave (Duan et al., 2024) uses a quantized varia-
tional encoder to convert continuous EEG signals
into discrete sequences, alleviating the reliance
on eye fixations. Despite advancements, prior
efforts struggled to bridge the complex semantic
gap between EEG and text on an open-vocabulary
scale. Our proposed CET-MAE aims to tackle this
challenge. Additionally, our E2T-PTR framework
transfers CET-MAE’s representations and lever-
ages the BART to achieve superior text generation
outcomes.

3 Methods

3.1 Preliminary
ZuCo benchmark dataset. For our work, we
use the ZuCo1.0 (Hollenstein et al., 2018) and
ZuCo2.0 (Hollenstein et al., 2023) datasets, which
contain the EEG and eye tracking data during five
natural reading tasks. The corpus for sentiment
reading (SR) task v1.0 comes from the movie re-
views. The corpus for the remaining four tasks is
sourced from Wikipedia and comprises two ver-
sions each of Natural Reading (NR) and Task-
Specific Reading (TSR), specifically NR v1.0, NR
v2.0, TSR v1.0, and TSR v2.0. The word-level
EEG was recorded and aligned by the eye-tracking
fixations, and the sentence-level EEG was recorded
during the entire reading procedure. We follow
the preprocessing and dataset splits established by
baseline work (Wang and Ji, 2022).

Natural masking ratios of EEG feature se-
quences. Our investigation reveals the word-level
contextual EEG presentations in ZuCo datasets are
severely corrupted due to missing eye-tracking fix-
ations, leading to mismatches between EEG raw
data and text, as shown in Figure1. This misalign-
ment leads to fragmented word-level EEG feature
sequences, which fails to capture the cohesive se-
mantics of entire sentences and inevitably compli-
cates the representations learning of EEG and text.

Different from previous works, we concatenate
the word-level EEG features and the sentence-level
EEG features as our EEG feature sequences E as

E = [Eword1, Eword2, .., EwordN , Esentence]. (1)

Incorporating sentence-level EEG features offers
several benefits. First, it provides a holistic view
of EEG sequences, enriching the interpretation of
overall sentence semantics. Secondly, it acts as a
form of data augmentation, which can mitigate the
issue of data incompleteness, thereby alleviating
semantic discrepancies caused by the misalignment
between word-level EEG and text. To provide a
clearer overview, we have presented the detailed
statistics of the natural masking ratio (NMR) of
EEG feature sequences under three categories of
reading task combinations in Appendix A.

Definitions in EEG-to-Text Decoding. Given
a sequence of EEG features E as the input to the
model M, the aim is to decode the ground-truth
word tokens W from open-vocabulary V via M.
These corresponding EEG-Text pairs ⟨E,W⟩ are
collected during natural readings.
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Figure 2: Illustration of the proposed EEG-text pre-training model (CET-MAE) and EEG-to-Text decoding
framework (E2T-PTR). (a) CET-MAE Model: CET-MAE features modality-specific autoencoders with a mask-
ing strategy for text and EEG features, complemented by a multi-stream transformer encoder that orchestrates
self-reconstruction and cross-modality semantic alignment, enhancing representation learning for EEG semantic
decoding. (b) E2T-PTR Framework: E2T-PTR transfers both word- and sentence-level EEG representations
extracted from CET-MAE’s pre-trained modules, further facilitating text generation through the BART.

During the testing phase, the model M operates
with an implicit understanding of the ground-truth
word tokens W. Its primary objective remains to
decode the EEG feature sequences E to generate
an output that closely matches tokens W. This in-
volves the model generating the sequence of words
with the highest probability within the probability
distribution P of the V.

3.2 EEG-Text Masking
We perform random masking on the text tokens, fol-
lowed by processing with BERT. For EEG masking,
we adopted the following settings. Word-level EEG
feature sequences are randomly masked, while

sentence-level EEG feature sequences are compul-
sorily masked. This aims to force the model to
fully reconstruct the contextual semantics within
the sentence-level EEG feature sequences.

3.3 CET-MAE Encoder
As illustrated in Figure 2(a), the CET-MAE model
needs to extract the embeddings of text and EEG
separately and then feed the embeddings into the
multi-stream transformer encoder to learn the cross-
modal representations.

Text encoder. We utilize the pre-trained
encoder-decoder model BART as the text encoder.
Due to the suitable capabilities in natural language
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understanding and generation (Li et al., 2022b),
we opt to freeze weights of the BART 1 encoder
to maintain its high-level language comprehension
from the last hidden states. Firstly, the text tokens
are converted into high-quality text embeddings
with positional encoding by BART. The learnable
embeddings are then used to replace the masked
word tokens.

EEG encoder. The EEG encoder is designed
as a Multi-layer Transformer Encoder ) (Vaswani
et al., 2017) to capture the temporal relationships
from EEG sequences with spatial and frequency
features in each token. A learnable linear projec-
tion layer is employed to transform the EEG em-
beddings from the EEG encoder, aligning their di-
mensions with those of the text embeddings.

Multi-stream Transformer encoder. The piv-
otal design of this module lies in the integration of
EEG, text, and the joint streams. We implement
the dual-modality streams for EEG-text contrastive
learning, especially using a specialized head for
each modality. It is equipped with the layer normal-
ization (LN) and the feed-forward network (FFN)
enabling the production of embeddings that pre-
serve their unique properties(Gong et al., 2022).
Notably, we control the learning process to en-
sure that learnable vectors at masked positions do
not enter into the text stream, thereby preventing
the inclusion of misleading contrastive feedback.
Equally crucial for the two reconstruction tasks, the
joint stream is utilized to facilitate the integration
of the embeddings from both text and EEG modali-
ties. This design aims to deepen the interaction and
enhance the cooperation between EEG and text,
fostering a more effective learning synergy.

3.4 CET-MAE Decoder

We apply a lightweight Transformer encoder as
the EEG decoder. For EEG reconstruction tasks,
EEG embeddings are first mapped to the original
dimensions through a learnable linear projection
layer. Subsequently, EEG embeddings with learn-
able masked tokens are inserted back into their orig-
inal positions. The final EEG embeddings added to
the positional embeddings are fed into the EEG de-
coder. Since the text encoder has already encoded
the masked tokens and captured their positional
information within the text, we employ a learnable
linear projection layer as the text decoder to predict
the masked text tokens.

1https://huggingface.co/facebook/bart-large

3.5 CET-MAE Training Objectives

CET-MAE is pre-trained by three objectives: (1)
Masked Text Modeling (LT ): it aims to predict
the masked text tokens by utilizing hybrid rep-
resentations that integrate information from both
textual and EEG embeddings. (2) Masked EEG
Modeling (LE): it learns to reconstruct the origi-
nal EEG feature sequences, especially predicting
masked word- and sentence-level features based
on hybrid representations, where the error is mea-
sured by mean square error (MSE). (3) EEG-Text
Contrastive Learning (LCL): it involves a process
where the corresponding EEG and text represen-
tations are computed by separate global average
pooling layers. The objective is to bring the aligned
pairs (matched EEG and text embeddings) closer
together while pushing unpaired ones further apart.
Our goal L is minimizing is the summation of these
three learning objectives:

L = λT · LT + λE · LE + λCL · LCL (2)

3.6 E2T-PTR Framework

The proposed E2T-PTR is illustrated in Figure 2(b).
It can be summarized into the following key points.

Word-sentence level input tokens. We add the
sentence-level EEG features as our input tokens.
As detailed in 3.1, concatenating the sentence-level
EEG feature sequences as the last token can effec-
tively alleviate the incoherent contextual semantics
due to gaps in word-level EEG features.

Effective transfer capability. We investigate
how to effectively transfer the cross-modality rep-
resentations learned from the CET-MAE to down-
stream tasks such as EEG-to-Text decoding. The
E2T-PTR employs a synergy of the following criti-
cal components: the EEG encoder, the linear pro-
jection layer, and the EEG-stream transformer en-
coder, all of which are integral components as out-
lined within the CET-MAE. For the LLM backbone,
we also apply the BART which excels at natural
language generation tasks.

Fine-tuning strategy. We fine-tune all param-
eters of E2T-PTR during the training phase. The
weights of CET-MAE are first loaded into the EEG
encoder, the linear projection layer, and the EEG-
stream transformer encoder. As the linguistic back-
bone of E2T-PTR, the BART is also fully fine-tuned
to improve its ability to generate fine-grained text
tokens from EEG embeddings.
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Method Training BLEU-N(%) ROUGE-1(%)
Sample N=1 N=2 N=3 N=4 P R F

EEG2Text (Wang and Ji, 2022) 10710 40.1 23.1 12.5 6.8 31.7 28.8 30.1
DeWave (Duan et al., 2024) 10710 41.35 24.15 13.92 8.22 33.71 28.82 30.69
E2T-PTR (proposed) 10710 42.09 25.13 14.84 8.99 35.86 30.01 32.61
C-SCL (Feng et al., 2023) 14567 35.91(—) 25.91(—) 21.31(—) 18.89(—) — — —
C-SCL* 14407 34.87(44.14) 25.32(31.61) 21.17(25.67) 18.98(22.51) 36.97 34.31 35.51
E2T-PTR (proposed) 14407 34.92(44.31) 25.43(31.67) 21.00(25.52) 18.59(22.22) 37.15 33.93 35.39
EEG2Text* 18791 58.06 49.98 46.21 44.13 52.31 48.76 50.41
E2T-PTR (proposed) 18791 59.20 50.77 46.82 44.63 53.76 50.03 51.77

Table 1: Comparison of our E2T-PTR framework with previous methods on the ZuCo dataset for three and four
reading tasks. * means that our reproduced results. Results enclosed in parentheses are calculated following the
approach of EEG2Text, which includes retaining consecutive repeated words in the generated text.

(1)
Ground Truth: He was first appointed to fill the Senate seat of Ernest Lundeen who had died in office.

EEG2Text: was a elected to the the position seat in the Hemy in died died in 18 in

E2T-PTR: was the elected to the the position seat of John Hemy, resigned resigned in office.

(2)
Ground Truth: Jeb Bush was born in Midland, Texas, where his father was running an oil drill company.

DeWave: uan Bush was a in 18way, Texas, in he father was an insurance refinery company.

E2T-PTR: uan Bush was born in Newway, Texas, and his father was a a insurance company company.

(3)

Ground Truth: After Raymond graduated from high school, he enrolled in the "Universidad del Sagrado Corazon"
(University of the Sacred Heart) of San Juan, where he earned a Bachelors Degree ...

E2T-PTR: the’s from Yale school, he went in the UniversityAmericancleities de Reyrado Corazon"
(University of the Sacred Heart) in Spain Francisco, Puerto he studied a Bachelor.ors ...

Table 2: EEG-to-Text decoding results. Bold words indicate exact match, Italic words indicate semantic resemblance,
and Underline words indicate error match. We evaluate the translation performance of the same test sentences
reported in EEG2Text, DeWave.

4 Experiments

4.1 Datasets and Evaluation

We pre-trained our CET-MAE models under three,
four, and five reading tasks in ZuCo v1.0 and ZuCo
v2.0. For fairness, we assessed the performance of
E2T-PTR for the EEG-to-Text task under the identi-
cal dataset scale used during the pre-training phase.
We adopt the BLEU and ROUGE-1 scores for eval-
uating the EEG-to-Text generation performance.
More details are presented in Appendix B.

4.2 Implementation Details

The CET-MAE model features a robust EEG en-
coder with transformer encoder blocks (6 layers,
2048 hidden dimensions, and 8 attention heads).
The EEG decoder is a lightweight transformer en-
coder of 1 layer with 8 heads. The multi-stream
transformer encoder is designed with 1 layer, a
4096 hidden dimension, and 16 attention heads.
The mask ratios for EEG feature sequences and tex-
tual tokens are set at 75% (which can achieve the
best results based on trial-and-error). For the CET-

EEG Mask
Ratio (%)

Text Mask
Ratio (%)

BLEU-N (%)
N=1 N=2 N=3 N=4

25 25 42.14 25.02 14.55 8.62
50 25 41.74 24.75 14.39 8.52
50 50 41.80 24.69 14.25 8.40
75 50 41.93 25.02 14.72 8.81
75 75 42.09 25.13 14.84 8.99

Table 3: The performance of our E2T-PTR framework
under different combinations of CET-MAE mask ra-
tios rising from 25% to 50% , and to 75% across three
reading tasks.

MAE pertaining objective L, we set λT =0.1, λE=1,
λCL=0.01. This setting is refined through experi-
ments to balance the gradients of each loss in the
overall training objective, ensuring that the model
learns effectively from each task. We pre-train
the CET-MAE model from scratch for 100 epochs.
Subsequently, we fine-tune the E2T-PTR model
for EEG-to-Text tasks over 50 epochs, employing a
batch size of 32 and utilizing the AdamW optimizer.
More details are provided in Appendix B.
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4.3 Main Results

Table 1 shows the performance of our E2T-PTR
framework on the ZuCo benchmarks. In three read-
ing tasks, E2T-PTR achieves BLEU-1 to BLEU-4
SOTA scores of 42.09%, 25.13%, 14.84%, and
8.99%, respectively. Moreover, it outperforms best
in ROUGE-1 Precision, Recall, and F1 scores com-
pared to recent works. Notably, without remov-
ing repetitive generated word tokens, E2T-PTR
surpasses C-SCL in BLEU-1 and BLEU-2 scores
across four reading tasks. Particularly under the
five reading tasks with 18791 training samples,
E2T-PTR scores 59.20%, 50.77%, 46.82%, and
44.63% in BLEU-1 to BLEU-4, significantly ex-
ceeding the baseline work EEG2Text.

Table2 presents a comparative analysis of the de-
coding results between our model and other models
under three reading tasks. Our model E2T-PTR
demonstrates an enhanced ability to generate more
complete grammatical structures, which is evident
from the reduced error rates and increased semantic
coherence in the decoded sentences, exemplified by
expressions such as “his father was” and “Bush
was born in”. Our model also excels in decoding
common and proper nouns, such as “office” and
“University of the Sacred Heart”. It also adeptly
produces semantically similar words, such as, “ap-
pointed” vs “elected”, and “Ernest Lundeen” vs
“John Hemy”. Intriguingly, upon expanding our
training samples to 1.75 times (10710 to 18791),
we observe an obvious improvement in the trans-
lation quality of the model, especially concerning
fine-grained recognition. More comprehensive re-
sults are included in the Appendix C.

Our investigation delved into the transfer per-
formance of CET-MAE across varying EEG and
text masking ratios under three reading tasks. Ta-
ble 3 details the performance shifts under different
combinations of masking ratios rising from 25%
to 50%, and to 75%. We discovered that the CET-
MAE model excels at the higher masking ratios
of 75%, starkly contrasting with the traditional
15% mask ratio suggested in BERT. This result
is consistent with recent findings in multi-modal
masked models (Ma et al., 2022; Geng et al., 2022),
suggesting that inter-modal interactions may pro-
mote performance improvement. We further pon-
der this phenomenon and suggest that, in terms of
CET-MAE structure, it appears to be suited for re-
constructing masked EEG features and predicting
masked word tokens. In terms of the masking strat-

egy, forcefully masking sentence-level EEG embed-
dings can better compel the model to learn global
semantic information. Furthermore, we discuss the
overall masking ratio for the EEG, the natural EEG
masking ratio under three reading tasks is 32.51%
as mentioned in Appendix A. Therefore, the total
masking ratio for the EEG is 83.13% 2 (32.51% of
natural + 50.62% of CET-MAE masked).

For a more rigorous validation, we further imple-
mented the leave-one-subject-out validation strat-
egy for both the CET-MAE model and the E2T-
PTR framework, detailed in Table 4. This valida-
tion approach proved extremely valuable in testing
the generalization performance across different sub-
jects within the EEG dataset. Given the inherent
noise and individual variability in EEG data, it is
crucial to evaluate how well a model performs un-
der such conditions. The results obtained from the
leave-one-subject-out validation not only exceeded
our initial performance metrics presented in Table 1
but also underscored the strong generalizability of
our models. These results affirm the ability of our
models to effectively manage the inherent variabil-
ity in EEG data, thereby demonstrating robust per-
formance as each subject’s data was sequentially
excluded from the training set.

4.4 Ablation Studies
Table 5 details the ablation experiments, affirm-
ing the effectiveness of each component in our
approaches for EEG-to-Text generation quality.
First, sentence-level EEG features positively im-
pact BLEU scores, notably BLEU-1, underscoring
their importance in capturing essential semantic
information for improved text generation. Second,
CET-MAE, focusing on masked signal modeling
and contrastive learning between EEG and text, is
fundamental. Integrating CET-MAE with the base-
line framework (Wang and Ji, 2022) significantly
boosts BLEU scores, especially BLEU-4. Third,
combining E2T-PTR with CET-MAE enhances per-
formance across metrics, particularly Precision, Re-
call, and F1 score of ROUGE-1, showcasing E2T-
PTR’s role in effectively transferring CET-MAE’s
learned representations.

4.5 Transfer Performance of SSL Models
We further pre-train and compare the transfer per-
formance of the following SSL models: 1) Con-
trastive EEG-Text (CET) learning model: The CET

2Overall Masking Ratio = NMR + (1 - NMR) × CET-MAE
Masking Ratio.
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Model Validation Strategy
BLEU-N(%) ROUGE-1 (%)

N=1 N=2 N=3 N=4 P R F

E2T-PTR
Split each subject’s data in an 8:1:1 ratio 42.09 25.13 14.84 8.99 35.86 30.01 32.61
Leave-one-subject-out Cross-validation 44.98 27.57 17.23 10.99 38.74 31.84 34.82

Table 4: Performance comparison of E2T-PTR frameworks between two different data splitting strategies under
three reading tasks and used BLEU-N (%) and ROUGE-1 (%) as the evaluation metrics.

Sentence-level EEG
feature sequences

CET-MAE E2T-PTR
Training
Sample

BLEU-N (%) ROUGE-1 (%)
N=1 N=2 N=3 N=4 P R F

✕ ✕ ✕ 10710 41.16 23.99 13.49 7.68 34.68 28.96 31.45
✓ ✕ ✕ 10710 41.63 24.48 13.96 8.06 35.13 29.27 31.83
✓ ✓ ✕ 10710 41.88 24.85 14.52 8.74 35.26 29.50 32.02
✓ ✓ ✓ 10710 42.09 25.13 14.84 8.99 35.86 30.01 32.61

Table 5: The results of ablation experiments on CET-MAE and E2T-PTR structures under three reading tasks. We
verified the effectiveness of each component and used BLEU-N (%) and ROUGE-1 (%) as the evaluation metrics.

Metrics (%)
Our SSL Models

CET ET-MAE CET-MAE

BLEU-1 41.77 41.80 42.09
BLEU-2 24.68 24.72 25.13
BLEU-3 14.33 14.43 14.84
BLEU-4 8.60 8.53 8.99
ROUGE-1 P 35.59 35.06 35.86
ROUGE-1 R 30.11 29.31 30.01
ROUGE-1 F 32.51 31.82 32.61

Table 6: Evaluating transfer performance across CET,
ET-MAE, and CET-MAE under three reading tasks.

that has no reconstruction objective. For a fair
comparison, we implement CET using the same
encoder architecture (modal-specific encoders +
multi-stream encoder) with CET-MAE but remove
the reconstruction task (LE and LT ). We use this
model to investigate the impact of contrastive learn-
ing. 2) EEG-text masked autoencoder (ET-MAE)
model: The ET-MAE has the same architecture as
CET-MAE but the contrastive loss (LCL) is set to
0. The masking strategy is the same as CET-MAE.
We use this model to examine the effectiveness of
masked signal modeling. 3) Our proposed CET-
MAE is detailed in Section 3.

To ensure fairness, CET and ET-MAE are pre-
trained with the same pipeline as CET-MAE. We as-
sess their EEG-to-Text transfer performance using
the E2T-PTR framework. Results in Table 6 demon-
strate CET-MAE’s superiority over two other SSL
models (CET and ET-MAE) across most evalu-
ation metrics. Specifically, CET-MAE achieves

improvements of 0.32%, 0.45%, 0.51%, and 0.39%
in BLEU-1 to BLEU-4, respectively, compared
to CET. Against ET-MAE, CET-MAE records in-
creases of 0.29%, 0.41%, 0.41%, and 0.46% for
these metrics, respectively. The trend of enhance-
ment is consistent in ROUGE-1 metrics as well.

5 Conclusion

This study contributes to the development of EEG-
based language decoding by introducing an effec-
tive EEG-text pre-trained model, CET-MAE, and a
highly capable and LLM-empowered EEG-to-Text
decoding framework, E2T-PTR. CET-MAE uses a
multi-stream architecture to incorporate both intra-
and cross-modality SSL within one unified system:
1) Intra-modality streams explore representative
embeddings that reflect the intrinsic characteris-
tics of EEG or text sequences, leveraging masked
modeling with a mask ratio of up to 75%; 2) Inter-
modality stream provides dual-modal representa-
tions to enhance intra-modality reconstruction and
constrains the encoder to maximize semantic con-
sistency between text and its corresponding EEG
sequences. E2T-PTR transfers pre-trained EEG
representations and leverages BART’s capabilities
for text generation from these consistent and rep-
resentative features. Extensive experiments on the
latest text-evoked EEG dataset, ZuCo, demonstrate
the superiority of this work in both qualitative and
quantitative assessments. The proposed CET-MAE
model shows great potential for enhancing EEG-
based language decoding tasks and could be uti-
lized for other inner speech BCI datasets.
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Limitation

The limitations of our study are summarized as
follows:

Dataset Scale: The performance of both the
CET-MAE model and the E2T-PTR framework
is constrained by the scale of currently available
datasets. We are in the process of developing our
datasets to fully exploit the potential of our models
and frameworks.

Teacher Forcing: While our results are pushing
the open vocabulary EEG-to-Text decoding perfor-
mances to a new SOTA, they still depend on the
implicit use of teacher forcing, a common precon-
dition in recent studiess (Wang and Ji, 2022; Duan
et al., 2024; Feng et al., 2023; Xi et al., 2023). This
reliance on teacher forcing could be constraining
the full capabilities of the LLMs. Noted that recent
work (Yang et al., 2024) has reported promising
results with the autoregressive capabilities of large
speech models like Whisper (Radford et al., 2023)
on the MEG datasets (Schoffelen et al., 2019). This
may offer potential solutions to the challenges of
using teacher forcing in the EEG-to-Text field. Our
future work will aim to verify the correctness of
the aforementioned new methods and explore the
autoregressive capabilities of LLMs to reduce re-
liance on teacher forcing.

Exploration of LLMs: We plan to explore more
advanced LLMs to enhance our EEG-to-Text de-
coding capabilities. This will involve testing new
models and techniques to improve performances
and uncover deeper insights from EEG data.
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A Natural Masking Ratio of Datasets

To provide a clear perspective, we present the de-
tailed statistics of the NMR of EEG feature se-
quences for three categories of reading task combi-
nations in Table7.

B Datasets and Implementation Details

We utilize the combination of both ZuCo v1.0
and ZuCo v2.0 to form the final ZuCo bench-
mark. The EEG features are collected with a
128-channel system under the sampling rate of
500Hz. After the noise canceling process, only
105 channels are used. There are 8 frequency
bands determined in the ZuCo dataset as follows:
theta1 (4–6 Hz), theta2 (6.5–8 Hz) alpha1 (8.5–10
Hz), alpha2 (10.5–13 Hz), beta1 (13.5–18 Hz)
beta2 (18.5–30 Hz) and gamma1 (30.5–40 Hz) and
gamma2 (40–49.5 Hz). The Hilbert transform is ap-
plied in each of these time series. The final features
of the EEG are formed by concatenating features
from all 8 frequency bands, resulting in a vector
with a dimension of 840. For three reading tasks,
we pre-train and fine-tune the models on “SR v1.0
+ NR v1.0 + NR v2.0”. For four reading tasks, we
choose the combination of “SR v1.0 + NR v1.0 +
NR v2.0 + TSR v1.0”. For five reading tasks, the
models are pre-trained and fine-tuned on “SR v1.0
+ NR v1.0 + NR v2.0 + TSR v1.0 + TSR v2.0”. Dur-
ing pre-training, the datasets were split into training
and testing sets in a 90% to 10% ratio. During the
EEG-to-Text fine-tuning phase, the datasets were
further divided into training, validation, and testing
sets with an 80%, 10%, and 10% split respectively.
The test set samples remained consistent through-
out the above two stages. The dataset statistics
of EEG-to-Text decoding are detailed in Table 8.
Our training hyper-parameters are listed in Table 9.
To ensure a fair comparison, we conducted both
pre-training and fine-tuning for the EEG-to-Text
decoding task using datasets with the same combi-
nations of reading tasks.

C Generated Samples

We show more details in EEG-to-Text translation
results generated on our models in Table 10, Ta-
ble 11, and Table12. In our experiments, we aim
to select the same sentences from the test sets of
three, four, and five reading tasks where feasible.
This enables us to directly observe and compare
the generated results with the ground truth across
different task conditions.

D Subject-independent Performance

As reported in Table1, we present the average
BLEU-N and ROUGE-1 scores for all 30 subjects.
However, considering the individual variations of
brain activities during semantic processing and cog-
nitive operations within different subjects, we fur-
ther provide individual BLEU-N and ROUGE-1
scores for each subject. We use radar charts shown
in Figure3 and Figure4 to visually represent these
differences, allowing for an intuitive comparison
across subjects. For a detailed numeric breakdown
of these variances, refer to Table13 and Table14.

E Impact of the Masking Strategy

The masking strategy is crucial in Masked Autoen-
coders. For the text, the BERT masking strategy
has proven highly effective. For the EEG modal-
ity, we introduce a pivotal design that involves
mandatory masking of sentence-level EEG feature
sequences, as detailed in Section 3.2. We delve
into the impact of this strategy on the EEG-to-Text
decoding task. Comparative results between ran-
dom and forced masking strategies are presented in
Table 15. The forced masking strategy outperforms
the random masking strategy in the EEG-to-Text
decoding, highlighting the efficacy of our proposed
strategy in compelling the model to reconstruct the
contextual semantics within sentence-level EEG
feature sequences comprehensively.

F Impact of the Multi-Stream Design

Our investigation, as detailed in Table 16, reveals
the transfer performance of a multi-stream design
in the CET-MAE and E2T-PTR frameworks. The
multi-stream approach, which provides the spe-
cialized handling of text and EEG using separate
streams, outperformed a single joint stream design.
Notably, in the E2T-PTR framework, leveraging
the EEG-specific stream for fine-tuning yielded a
marked improvement in EEG-to-Text task perfor-
mance over a joint modality stream. This modality-
focused approach appears to capitalize on the nu-
anced semantic information inherent in EEG em-
beddings, resulting in a more sophisticated and con-
textually relevant latent space. This is substantiated
by the observed uptick in BLEU and ROUGE met-
rics. Our study underscores the criticality of fine-
grained, modality-specific processing approaches
in the domain of EEG-Text representation learning.
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Reading Tasks Missing Paris Total word tokens NMR(%)

SR v1.0 + NR v1.0+NR v2.0 90362 277966 32.51
SR v1.0 + NR v1.0+NR v2.0+TSR v1.0 137460 373817 36.77
SR v1.0 + NR v1.0+NR v2.0+TSR v1.0+TSR v2.0 204089 515979 39.55

Table 7: Statistics for natural masking ratios under three, four, and five reading tasks in ZuCo benchmarks.

Reading Task Training Sample Validation Sample Testing Sample

SR v1.0 + NR v1.0+NR v2.0 10710 1332 1407
SRv1.0+NRv1.0+NRv2.0+TSRv1.0 14407 1790 1799
SRv1.0+NRv1.0+NRv2.0+TSRv1.0+TSRv2.0 18791 2287 2404

Table 8: Dataset Statistics of the EEG-to-Text decoding. SR: Normal Reading (Sentiment), NR: Normal Reading
(Wikipedia), TSR: Task Specific Reading (Wikipedia).

Hyperparameters Pre-training Fine-tuning

Models CET-MAE E2T-PTR
Reading Tasks 3 4 5 3 4 5
Datasets Splits 9:1 8:1:1
Epochs 100 50 40 40
Batch Size 32 32
Learning Rate 5e-7 2e-7 2e-5 2e-5
Optimizer AdamW, weight decay= 1e-2, betas =(0.9,0.999)
LR Scheduler Cosine Annealing, T_max=20
GPUs RTX4090

Table 9: Implementation details in our pre-training and fine-tuning.

Figure 3: The radar chart of 18 subjects from Subject YAG to YSD on each metric.
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(1)
Ground Truth: At the urging of his wife, Columba, a devout Mexican Catholic, the Protestant Bush became a Roman Catholic.

E2T-PTR: the time of his wife, hea, he former Catholic Catholic, he actor pastorman a Catholic Catholic.

(2)
Ground Truth: While attending a motorcycle race, he met a local girl named Columba Garnica Gallo, whom he eventually married.

E2T-PTR: in the local school, he was his man boy named Marya,ett,o, who he later married.

(3)
Ground Truth: He then enrolled at Phillips Andover, a private boarding school in Massachusetts already attended by his
brother George.

E2T-PTR: was went in the Academy Mary College where private school school in Massachusetts. known by his father,.

(4)
Ground Truth: He took a job in real estate with Armando Codina, a 32-year-old Cuban immigrant and self-made American
millionaire.

E2T-PTR: was a job as the estate in theando Iice in who company-year-old Italian immigrant. former-made millionaire
millionaire.

(5)
Ground Truth: After earning his degree, Bush went to work in an entry level position in the international division of Texas
Commerce Bank, which was run by Ben Love.

E2T-PTR: the his bachelor in he became to work for the office- position at the Department banking of the Instruments..
where was later by theitott

(6)
Ground Truth: He later became an educator, teaching music theory at the University of the District of Columbia; he was also
director of the District of Columbia Music Center jazz workshop band.

E2T-PTR: was became a American and and at and and the University of California West of Columbia. and also also
a of the school of Columbia’s Department. department..

(7)
Ground Truth: Bush stayed in Houston with another family to finish the school year, and spent most summers and holidays
at the family estate, known as the Bush Compound.

E2T-PTR: was in the until his family, raise his year year. and then the of in summers there the family’s. including
as the Bush Ranchound.

(8)
Ground Truth: Robert Henry Dee (born May 18, 1933 in Quincy, Massachusetts) is a former three-sport letterman at Holy Cross
College who was one of the first players signed by the Boston Patriots in 1960.

E2T-PTR: Frost, (born April 5, 18) New, Massachusetts) is a retired United-timeport star carrier and the Cross College. played a of
the founders African to by the University Celtics. the.

Table 10: EEG-to-Text decoding example results on test sentences under three reading tasks. Bold words indicate
exact match, Italic words indicate semantic resemblance, and Underline words indicate error match.

Figure 4: The radar chart of 12 subjects from Subject ZKW-ZJS on each metric.
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(1)
Ground Truth: At the urging of his wife, Columba, a devout Mexican Catholic, the Protestant Bush became a Roman Catholic.

E2T-PTR: the academy of his mother, hea, she young Catholic-, she young preacher co an Catholic Catholic in

(2)
Ground Truth: While attending a motorcycle race, he met a local girl named Columba Garnica Gallo, whom he eventually married.

E2T-PTR: serving the Louisiana school he he met a man hero named Dela Jacksonett.ienne. who he would struck.

(3)
Ground Truth: He then enrolled at Phillips Andover, a private boarding school in Massachusetts already attended by his
brother George.

E2T-PTR: was returned in the University Mary College Massachusetts public school school in the. owned by his father,.

(4)
Ground Truth: He took a job in real estate with Armando Codina, a 32-year-old Cuban immigrant and self-made American
millionaire.

E2T-PTR: was many second as the estate with theando Feric, where local-year-old hotel shipping who hotel-trained millionaire
millionaire who

(5)
Ground Truth: After earning his degree, Bush went to work in an entry level position in the international division of Texas
Commerce Bank, which was run by Ben Love.

E2T-PTR: a his Ph at he went to work for the apprentice- role at the Springfield trade of the Instruments. at working he
subsequently by Jamesoittt

(6)
Ground Truth: He later became an educator, teaching music theory at the University of the District of Columbia; he was also
director of the District of Columbia Music Center jazz workshop band.

E2T-PTR: was earned president assistant at and English at at the University of Wisconsin Arts of Columbia, and also the a
of the Special School Columbia Library Project. line..

(7)
Ground Truth: Bush stayed in Houston with another family to finish the school year, and spent most summers and holidays
at the family estate, known as the Bush Compound.

E2T-PTR: was in Hollywood for his oil, work his term year, and to the summers and holidays at the sprawling estate,
the as the Bush Compound.

(8)
Ground Truth: Robert Henry Dee (born May 18, 1933 in Quincy, Massachusetts) is a former three-sport letterman at Holy Cross
College who was one of the first players signed by the Boston Patriots in 1960.

E2T-PTR: Joseph Bol,born July 22, 1923) Ball, Massachusetts) is best former Republican-timeides quarterbackman who the Cross
College, is elected of the founder " to to the University Bruins. 1993.

Table 11: EEG-to-Text decoding example results on test sentences under four reading tasks. Bold words indicate
exact match, Italic words indicate semantic resemblance, and Underline words indicate error match.

(1)
Ground Truth: At the urging of his wife, Columba, a devout Mexican Catholic, the Protestant Bush became a Roman Catholic.

E2T-PTR: the academy of his mother, hea, she young Catholic Catholic, she young and accepted a Catholic Catholic in

(2)
Ground Truth: While attending a motorcycle race, he met a local girl named Columba Garnica Gallo, whom he eventually married.

E2T-PTR: serving a motorcycle race, he met a local girl named Columba Garnica Gallo, whom he eventually married.

(3)
Ground Truth: He then enrolled at Phillips Andover, a private boarding school in Massachusetts already attended by his
brother George.

E2T-PTR: was enrolled at Phillips Andover, a private boarding school in Massachusetts already attended by his brother George.

(4)
Ground Truth: He took a job in real estate with Armando Codina, a 32-year-old Cuban immigrant and self-made American
millionaire.

E2T-PTR: was his job with the estate with theco Ferela and and firm-year-old firm shipping who hotel-trained millionaire merchant.

(5)
Ground Truth: After earning his degree, Bush went to work in an entry level position in the international division of Texas
Commerce Bank, which was run by Ben Love.

E2T-PTR: a his degree, Bush went to work in an entry level position in the international division of Texas Commerce Bank,
which was run by Ben Love.

(6)
Ground Truth: He later became an educator, teaching music theory at the University of the District of Columbia; he was also
director of the District of Columbia Music Center jazz workshop band.

E2T-PTR: was became president educator, teaching music theory at the University of the District of Columbia; he was also
director of the District of Columbia Music Center jazz workshop band.

(7)
Ground Truth: Bush stayed in Houston with another family to finish the school year, and spent most summers and holidays
at the family estate, known as the Bush Compound.

E2T-PTR: is in Hollywood for his company, work his war year. and enrolled the summers and holidays at the sprawling estate,
the as the Bush Compound.

(8)
Ground Truth: Robert Henry Dee (born May 18, 1933 in Quincy, Massachusetts) is a former three-sport letterman at Holy Cross
College who was one of the first players signed by the Boston Patriots in 1960.

E2T-PTR: Emerson Dee (born May 18, 1933 in Quincy, Massachusetts) is a former three-sport letterman at Holy Cross College
who was one of the first players signed by the Boston Patriots in 1960.

Table 12: EEG-to-Text decoding example results on test sentences under five reading tasks. Bold words indicate
exact match, Italic words indicate semantic resemblance, and Underline words indicate error match.
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Subjects YAG YAK YMS YHS YSL YRK YRH YDR YIS YRP YLS YTL YFR YDG YAC YFS YMD YSD

BLEU-1 46.23 46.67 45.65 46.12 46.50 46.34 45.90 46.13 45.90 46.45 46.12 46.56 44.75 46.78 46.28 46.51 46.89 45.65
BLEU-2 28.98 28.93 28.80 28.94 29.57 29.10 28.88 29.28 28.78 29.41 28.94 29.63 27.79 29.60 28.70 29.93 29.82 28.52
BLEU-3 18.07 17.74 17.69 17.85 18.32 17.70 17.82 18.76 17.57 18.45 17.64 18.44 16.90 18.22 17.44 18.87 18.52 17.88
BLEU-4 11.27 10.85 11.09 11.04 11.22 10.70 10.89 12.10 10.64 11.82 10.67 11.44 9.88 11.34 10.50 12.09 11.48 11.18
ROUGE1-R 35.21 35.66 35.73 34.99 36.00 35.23 35.86 35.17 34.77 35.37 35.13 35.58 34.24 34.86 35.30 35.62 35.94 35.03
ROUGE1-P 41.55 42.46 42.88 41.91 43.32 41.69 42.36 41.53 41.29 42.20 42.20 42.04 40.27 41.37 42.30 42.84 42.97 41.90
ROUGE1-F1 38.02 38.65 38.87 38.04 39.22 38.09 38.73 37.97 37.66 38.39 38.24 38.45 36.92 37.72 38.41 38.79 39.04 38.05

Table 13: Subject-independent Performance of BLEU-N(%) and ROUGE-1 from Subject YAG to YSD.

Subjects ZKW ZPH ZAB ZKB ZMG ZJN ZDN ZJM ZGW ZDM ZKH ZJS

BLEU-1 37.99 38.49 38.16 38.02 37.97 38.31 37.84 38.05 38.36 38.15 38.19 37.11
BLEU-2 20.83 21.07 20.83 20.89 21.14 20.74 20.81 20.73 21.58 20.92 21.00 20.34
BLEU-3 10.82 11.19 11.14 10.91 11.40 11.16 11.19 10.72 11.75 10.90 11.13 10.48
BLEU-4 5.76 6.01 6.18 5.70 6.34 6.18 6.27 5.55 6.60 5.82 6.29 5.49
ROUGE1-R 25.34 25.21 24.51 25.38 25.44 25.53 25.46 25.27 26.15 25.08 25.78 24.15
ROUGE1-P 30.44 30.43 29.39 30.74 30.55 30.48 30.31 30.27 31.14 30.10 31.02 28.84
ROUGE1-F1 27.55 27.45 26.62 27.67 27.64 27.65 27.53 27.43 28.30 27.24 28.04 26.17

Table 14: Subject-independent performance of BLEU-N(%) and ROUGE-1 from Subject ZKW to ZJS.

Method
Training
Sample

Mask
Stragety

BLEU-N(%) ROUGE-1 (%)
N=1 N=2 N=3 N=4 P R F

E2T-PTR
10710 Random Mask 40.51 24.10 14.05 8.24 35.38 29.68 32.17
10710 Force Mask 42.09 25.13 14.84 8.99 35.86 30.01 35.61

Table 15: Investigating the impact of mask strategy in EEG feature sequences during CET-MAE pre-training.

Model Training
Sample

BLEU-N(%) ROUGE-1(%)
CET-MAE E2T-PTR N=1 N=2 N=3 N=4 P R F

✕ Joint Stream 10710 41.60 24.53 14.19 8.35 35.34 29.57 32.09
✓ Joint Stream 10710 41.61 24.57 14.34 8.52 35.74 29.79 32.37
✓ EEG Stream 10710 42.09 25.13 14.84 8.99 35.86 30.01 32.61

Table 16: We validated the performance impact of multi-stream design on pre-training and downstream tasks. The
✓ indicates the use of a multi-stream design during pre-training, while the ✕ indicates no use.
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