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Abstract

Large language models (LLMs) have shown001
strong arithmetic reasoning capabilities when002
prompted with Chain-of-Thought (CoT)003
prompts. However, we have only a limited004
understanding of how they are processed005
by LLMs. To demystify it, prior work006
has primarily focused on ablating different007
components in the CoT prompt and empirically008
observing their resulting LLM performance009
change (Madaan and Yazdanbakhsh, 2022;010
Wang et al., 2023; Ye et al., 2023). Yet, the011
reason why these components are important012
to LLM reasoning is not explored. To fill013
this gap, in this work, we investigate “neuron014
activation” as a lens to provide a unified015
explanation to observations made by prior016
work. Specifically, we look into neurons within017
the feed-forward layers of LLMs that may have018
activated their arithmetic reasoning capabilities,019
using Llama2 (Touvron et al., 2023) as an020
example. To facilitate this investigation, we021
also propose an approach based on GPT-4022
to automatically identify neurons that imply023
arithmetic reasoning. Our analyses revealed024
that the activation of reasoning neurons in the025
feed-forward layers of an LLM can explain the026
importance of various components in a CoT027
prompt, and future research can extend it for a028
more complete understanding.1029

1 Introduction030

Arithmetic reasoning is one of the emergent prop-031

erties in large language models (LLMs), which is032

necessary for them to tackle tasks that require mul-033

tiple steps to arrive at the correct answer. In recent034

years, Chain-of-Thought (CoT) has become a popu-035

lar prompting strategy to elicit reasoning2 in LLMs036

(Wei et al., 2022). Despite its successes, there is037

little understanding of what makes it effective and038

how LLMs utilize it to facilitate reasoning.039

1Our source code will be released upon paper acceptance.
2Our work focuses on “arithmetic reasoning”. For ease of

presentation, we use “reasoning” interchangeably with it.

To address this concern, a line of research has 040

focused on decomposing the CoT prompt into vari- 041

ous components and performing ablation studies on 042

them to ascertain the significance of each compo- 043

nent on the LLM reasoning performance (Madaan 044

and Yazdanbakhsh, 2022; Wang et al., 2023; Ye 045

et al., 2023). Although these studies have yielded 046

several insightful observations on the effect of in- 047

put on LLM’s reasoning performance, they do not 048

shed light on how these inputs are being processed 049

internally by LLMs to perform reasoning. 050

On the other hand, there is a growing body of 051

research in the field of mechanistic interpretabil- 052

ity (Elhage et al., 2021; Wang et al., 2022a) that 053

specifically examines the internals of LLMs to un- 054

derstand their mechanism. In this vein, Stolfo et al. 055

(2023) studied the internal mechanism of LLMs to 056

perform arithmetic calculation, suggesting that at- 057

tention heads facilitate information traversal, while 058

the feed-forward layer (FFN) handles information 059

processing to produce accurate answers for a given 060

computation. However, Stolfo et al. (2023) only 061

studied the mechanism for a single mathematical 062

computation and doesn’t study arithmetic reason- 063

ing in full scope. In parallel, some other research 064

demonstrated that LLMs consist of neurons that 065

can be associated with human-interpretable con- 066

cepts, which play a crucial role in various capabili- 067

ties of LLMs (Geva et al., 2022; Dai et al., 2021; 068

Gurnee et al., 2024). Specifically, Geva et al. (2022) 069

showed that neurons in the FFN layer of a trans- 070

former model (Vaswani et al., 2017) form key-value 071

pairs that facilitate next-token prediction by pro- 072

moting concepts in the vocabulary space. However, 073

none of the prior work has applied the intuition to 074

understand LLM reasoning. 075

Motivating by the need to form a deeper under- 076

standing of how CoT prompts elicit reasoning in 077

LLMs and observing the pivotal role of neurons 078

within the FFN layers of LLMs, in this work, we 079

propose to investigate the activation of FFN neu- 080
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rons in LLMs as a lens to interpret their arithmetic081

reasoning capabilities. In particular, we aim to use082

neuron activation to provide a unified explanation083

of observations that were only empirically made084

by prior work (Madaan and Yazdanbakhsh, 2022;085

Wang et al., 2023; Ye et al., 2023).086

To this end, we first propose an approach based087

on GPT-4 (OpenAI, 2023) to automatically search088

for neurons that are related to arithmetic reasoning089

(e.g., arithmetic addition, logical connections, etc.).090

Prior work trying to search for concept-relevant091

neurons has fully relied on human labor. For exam-092

ple, Geva et al. (2022) introduced an approach to093

manually examine a neuron’s top promoted tokens094

and determine if the neuron promotes the given095

concept or not. However, this manual approach096

can become impractical for LLMs with a large097

number of layers and numerous neurons per layer.098

Our approach instead decides whether a given neu-099

ron expresses a certain concept automatically by100

prompting the GPT-4 to read its top promoted to-101

kens and make a judgment on its represented con-102

cept. Our experimental results demonstrate the103

high effectiveness of utilizing GPT-4 for this pur-104

pose. Subsequently, we apply our proposed ap-105

proach to identify FFN neurons in Llama2-7B that106

promote concepts relevant to arithmetic reasoning.107

Leveraging the identified reasoning neurons, we108

performed a series of analyses on observations109

made by prior work (Madaan and Yazdanbakhsh,110

2022; Wang et al., 2023; Ye et al., 2023), including111

the importance of textual explanation, equations,112

arithmetic diversity, and the negligible impact of113

incorrect labels in CoT prompts. Specifically, we114

analyzed the activation patterns of the identified rea-115

soning neurons such as their activation frequency116

and strength to gain insights into prior observa-117

tions. Our results reveal that the activation of FFN118

neurons in LLMs can be used to explain their arith-119

metic reasoning capability. We then conclude the120

paper with a discussion of future work that can121

complement the proposed neuron activation analy-122

sis with other approaches to form a more complete123

understanding of LLM reasoning.124

2 Background and Related Work125

2.1 Prior Work towards Understanding the126

CoT Reasoning of LLMs127

Prior studies attempted to understand the arithmetic128

reasoning in LLMs by decomposing the Chain-129

of-Thought (CoT) prompt into different semantic130

components and evaluating their importance via ab- 131

lation studies. We present a summary of the major 132

findings from prior work in Table 1. For example, 133

to understand whether equations matter in the few- 134

shot CoT prompt, Ye et al. (2023) experimented 135

with a CoT variant where all equations (e.g., “21 - 136

15 = 6”) were eliminated and only the calculation 137

results (e.g., “6”) was presented. By observing the 138

resulting LLM performance change, one can empir- 139

ically gauge the importance of equations in a CoT 140

prompt. While previous studies have highlighted 141

the significance of various components (e.g., tex- 142

tual explanation, equations, etc.) within the CoT 143

prompt, the underlying reason behind these obser- 144

vations remains unanswered. This thus motivates 145

us to provide a more fundamental understanding of 146

the inner mechanism of LLM reasoning. 147

2.2 Interpreting Neurons of LLMs 148

Many prior interpretability works have studied neu- 149

rons to understand the inner mechanism of LLMs 150

and have led to the discovery of many interesting 151

types of neurons such as knowledge neurons (Dai 152

et al., 2021), skill neurons (Wang et al., 2022b), sen- 153

timent neurons (Radford et al., 2017), concept neu- 154

rons (Geva et al., 2022), universal neurons (Gurnee 155

et al., 2024), and many others related to linguistic 156

and grammar features (Durrani et al., 2022; Sajjad 157

et al., 2022). Furthermore, the activation patterns of 158

these neurons have been found to significantly influ- 159

ence the behavior of LLMs (Geva et al., 2022). To 160

discover the targeted neurons, probing is the most 161

widely used approach, which involves training a 162

simple classifier (probe) on the representations of 163

neurons using a human-annotated dataset (Gurnee 164

et al., 2023; Belinkov, 2022). Another popular ap- 165

proach specific to transformer-based LLMs is the 166

projection of neuron representations to the vocab- 167

ulary space, introduced by Geva et al. (2022), and 168

has been widely adopted (Dar et al., 2022; Belrose 169

et al., 2023; Ghandeharioun et al., 2024). However, 170

to the best of our knowledge, none of the prior work 171

has applied neuron activation to understand LLM 172

reasoning. Our work draws inspiration from Geva 173

et al. (2022) but extends it for a unified explanation 174

of observations in CoT prompting. To this end, 175

we also proposed an automatic approach based on 176

GPT-4 for neuron discovery. 177

Relevant to our work, Stolfo et al. (2023) have 178

also attempted to understand arithmetic reasoning 179

by interpreting their neuron behaviors. However, 180
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Research Questions Examples in CoT Prompts Prior Work Findings
Does equation matter?

(RQ3)
w Equation: Let’s think step by step. First there are 15 trees. Then there were 21
trees after some more were planted. So there must have been 21 - 15 = 6 trees. The
answer is 6.
w/o Equation: Let’s think step by step. First there are 15 trees. Then there were 21
trees after some more were planted. So there must have been 6 trees. The answer is 6.

Wang et al. (2023);
Ye et al. (2023);

Madaan and
Yazdanbakhsh

(2022)

Yes

Does textual
explanation matter?

(RQ4)

w Textual Explanation: Let’s think step by step. First Leah had 32 chocolates and
her sister had 42 chocolates. So in total they had 32 + 42 = 74 chocolates. Then they
ate 35 chocolates. So there must be 74 - 35 = 39 chocolates. The answer is 39.
w/o Textual Explanation: 32 + 42 = 74. 74 - 35 = 39. The answer is 39.

Wang et al. (2023);
Ye et al. (2023);

Madaan and
Yazdanbakhsh

(2022)

Yes

Does the diversity of
arithmetic operators

matter? (RQ5)

AddOnly: Let’s think step by step. First there are 3 cars. Then 2 more cars arrive. So
there must be 3 + 2 = 5 cars. The answer is 5.
MultOnly: Let’s think step by step. First a farmer has 5 cows. Then each cow has 4
legs. So the cows have 5 x 4 = 20 legs in total. The answer is 20.

Ye et al. (2023) Yes

Does incorrect
reasoning or gold
label not matter?

(RQ6)

Correct Label: Let’s think step by step. First there are 15 trees. Then there were 21
trees after some more were planted. So there must have been 21 - 15 = 6 trees. The
answer is 6.
Incorrect Label: Let’s think step by step. First there are 15 trees. Then there were 21
trees after some more were planted. So there must have been 21 - 15 = 1 trees. The
answer is 1.
OOD Label: Let’s think step by step. First there are 15 trees. Then there were 21
trees after some more were planted. So there must have been 21 - 15 = Dawson trees.
The answer is Dawson.

Wang et al. (2023);
Ye et al. (2023)

No

Table 1: Summary of shared findings from prior works. Our reproduced results are shown in Table 2.

the majority of their study focused on coarser units181

such as the entire attention or FFN block. Further-182

more, their investigation solely focused on how183

LLMs execute arithmetic calculations whereas the184

(multi-step) reasoning process is underexplored.185

2.3 Concept Promotion via Neuron Activation186

of Geva et al. (2022)187

Our work builds upon the findings of Geva et al.188

(2022), which shows the role of the feed-forward189

network (FFN) layer in the construction of an190

LLM’s prediction – (a) each FFN layer induces ad-191

ditive updates to token representations, which can192

be further decomposed into weighted collections of193

sub-updates; (b) both the token representation and194

sub-updates of the FFN layer can be projected at195

any stage to a distribution over the output vocabu-196

lary. Through the vocabulary space projection, the197

authors found that the sub-updates of an FFN layer198

often encode human-interpretable concepts. Next,199

we briefly describe Geva et al. (2022)’s findings;200

more details should refer to the original paper.201

Consider an auto-regressive transformer-based202

LLM consisting of L layers, which predicts the203

next token by projecting its last-layer hidden state204

onto a vocabulary V via an embedding matrix E ∈205

Rd×|V|, where d denotes the embedding size and206

|V| represents the vocabulary size. We denote the207

FFN component in the l-th layer as FFN l. Given208

a token sequence X = (x1, ..., x|X|) as input, the209

representation of each token xi at layer l (denoted 210

as xli ∈ Rd) is updated by FFN l as follows: 211

x̄l
i = xl

i + FFN l(xl
i) (1) 212

The updated representation x̄li then goes through 213

the multi-head self-attention at layer l, which re- 214

sults in xl+1
i for the next FFN layer (i.e., FFN l+1). 215

With the residual connection (He et al., 2016), each 216

FFN update can be seen as producing additive up- 217

dates to the token representation. 218

In transformers, each FFN l is defined with two 219

parameter matrices K l, V l ∈ Rdm×d, where dm 220

is the intermediate hidden dimension, and a non- 221

linearity function f : 222

FFN l(xl
i) = f(Klxl

i)V
l (2) 223

Eqn 2 can further be decomposed as: 224

FFN l(xl
i) =

dm∑

j=1

f(xl
i · kl

j)v
l
j =

dm∑

j=1

ml
ijv

l
j (3) 225

where klj ∈ Rd and vlj ∈ Rd are the j-th row of 226

K l and V l, respectively, and ml
ij = f(xli · klj) 227

is a scalar representing the activation coefficient 228

of vlj (i.e., the neuron). Geva et al. (2022) inter- 229

preted each term in this sum as a set of dm sub- 230

updates to the token representation. They also 231

proposed to project this sub-update to the vocab- 232

ulary by Evlj . By analyzing the projected vocab- 233

ulary tokens (typically tokens with top projection 234

scores), they found that the sub-update often en- 235

codes human-interpretable concepts. It is important 236
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to note that every vlj is a static parameter that is237

input-independent, while the coefficient ml
ij de-238

pends on the input token xi.239

Observing their critical roles and leveraging their240

interpretability after projection, Geva et al. (2022)241

demonstrated the potential of encouraging non-242

toxic language by manipulating the coefficients243

of FFN neurons in LLMs. This was achieved by244

identifying FFN neurons representing non-toxic245

language concepts and then increasing their coeffi-246

cients. Getting inspired by their findings, our work247

aims to explore: Can FFN neuron activation be248

similarly used to interpret and even control LLM249

reasoning? It is important to note that “toxicity”250

and “reasoning” represent distinct extents of ab-251

straction. While whether a sentence is toxic or not252

can be judged by superficial keyword searching,253

“reasoning” is more abstract and can encompass254

multiple aspects (e.g., logical induction, mathe-255

matical calculation, etc.), which thus presents a256

significant challenge.257

3 Neuron Discovery using GPT-4258

To facilitate the neuron analysis, we first propose an259

approach for discovering neurons that express con-260

cepts related to arithmetic reasoning. To achieve261

the same goal, Geva et al. (2022) manually exam-262

ined the top-scoring vocabulary tokens projected by263

each neuron vlj and annotated its concept. However,264

this manual search approach can become impracti-265

cal for LLMs with deep layers and numerous sub-266

updates per layer. To overcome this inefficiency,267

we propose a method that leverages GPT-4 to auto-268

mate the search process.269

Our proposed approach involves two steps. First,270

for a given LLM, we store the K neurons vlj’s271

with the largest coefficient ml
ij from each layer l272

and at each generation time step i, using a set of273

examples E that showcase the LLM’s capability274

(i.e., arithmetic reasoning in our case) to provide275

the prompt. We only considered the top-K neurons276

to narrow our search to the most activated neurons.277

This returns a set of candidate neurons N . We278

present this step in Algorithm 1.279

In the second step, we task GPT-4 to determine280

whether each neuron in N promotes a predefined281

concept Cname (e.g., arithmetic addition). How-282

ever, employing GPT-4 to classify all neurons in283

N still requires a large number of prompts and284

may incur significant costs. To address this issue,285

we propose to first filter out the irrelevant neurons286

Algorithm 1 Candidate Neuron Collection
1: Input: A set of examples E implying the capability, a

filtering threshold K, the target LLM
2: Output: A set of candidate neuronsN .
3: InitializeN ← {}
4: for each example in E :
5: for each decoding step i :
6: for each layer l = 1, ..., L :
7: {ml

ij′}Kj′=1← FindLargestK({ml
ij}dmj=1,K)

8: N ← N ∪ {vlj |ml
ij ∈ {ml

ij′}Kj′=1}

Algorithm 2 Neuron Annotation via GPT-4
1: Input: Concept Cname, a set of seed tokens Sname, fil-

tering thresholds P and F , embedding E of LLM, and
candidate neuron setN .

2: Output: A subset of neuronsR ⊂ N representing con-
cept Cname.

3: InitializeR← {}
4: for each neuron vn ∈ N :
5: VP = {w1, ..., wP } ← GetLargestP(Evn, P )
6: if |VP ∩ Sname| ≥ F :
7: if GPT4ConceptQuery(VP , Cname) :
8: R ← R∪ {vn}

by using a set of human-annotated “seed tokens” 287

(denoted as Sname) that are likely to be associ- 288

ated with the given concept as per human intuition. 289

For instance, when searching for neurons that pro- 290

mote arithmetic addition, relevant tokens may in- 291

clude “add”, “addition”, “sum”, “+”, and “plus”. 292

Although a neuron that promotes the given concept 293

may not invariably promote all the tokens from the 294

seed tokens, it is quite probable that it promotes 295

at least some of them. Leveraging this insight, we 296

filter out neurons that do not consist of at least a 297

threshold of F seed tokens in their top-P promoted 298

tokens VP , obtained by projecting the neuron to 299

vocabulary space. Finally, we prompt GPT-4 to 300

inquire whether a neuron from filtered N promotes 301

a given concept or not, This step is described in 302

Algorithm 2, and we include the prompt script in 303

Appendix A. 304

Neuron Activation Following Geva et al. (2022), 305

we consider a neuron being activated in a layer l at 306

a time step i when the neuron’s coefficient ml
ij is 307

ranked at top 10. The other alternative would be to 308

define a threshold based on ml
ij to determine its ac- 309

tivation. However, coming up with an appropriate 310

threshold poses a challenge, as the threshold value 311

may vary across different layers or even among 312

the individual neurons. Consequently, we opt to 313

focus solely on neurons with the top 10 largest 314

coefficients in our analysis. 315
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CoT Prompt Accuracy

CoT 16.83%
w/o Equation (RQ3) 12.58%
w/o Textual Explanation (RQ4) 13.41%
AddOnly (RQ5) 13.26%
MultOnly (RQ5) 13.13%
Incorrect Label (RQ6) 16.45%
OOD Label (RQ6) 7.58%

Table 2: The accuracy of Llama2-7B on GSM8k test set
based on different CoT prompts.

4 Experimental Setup316

Dataset and Model Setup We conduct our experi-317

ment on the GSM8k dataset (Cobbe et al., 2021),318

which is widely used for evaluating the arithmetic319

reasoning capabilities of LLMs. It consists of di-320

verse grade school math word problems and only321

requires basic arithmetic operations to solve, of-322

ten involving problem-solving steps ranging from323

two to eight. We use Llama2-7B (Touvron et al.,324

2023) as our model to investigate the reasoning325

capabilities in LLMs. However, we believe that our326

findings apply to other transformer-based decoder-327

only LLMs as well.328

We base our experiments on the CoT prompts329

obtained from Fu et al. (2023), with a slight modifi-330

cation to encourage consistent format in multi-step331

reasoning, for the ease of further analysis. Each332

CoT prompt consists of eight exemplars. Addi-333

tionally, we adapt the CoT prompts into different334

various to reproduce prior observations. For repro-335

ducibility purposes, we provide a complete list of336

our prompts in the Appendix H.337

Before investigating the mechanism of LLM rea-338

soning, we have conducted experiments to replicate339

and validate observations made by prior work (Ta-340

ble 1). For RQ4 and RQ6, different prior work341

adopted different ablation designs. We opted for342

the most suitable and fair design among them. The343

experimental results based on Llama2-7B are pre-344

sented in Table 2, which present consistent obser-345

vations as prior research. We refer readers to Ap-346

pendix B for more details.347

Summary of Research Questions (RQs) Lever-348

aging the lens of neuron activation, we aim to an-349

swer two sets of questions. The first set of ques-350

tions (RQs 1-2) tries to understand the underlying351

mechanism of LLM reasoning where we initially352

find different neurons related to arithmetic reason-353

ing and explore the importance of these discov-354

ered reasoning neurons for activating reasoning in355

LLMs. Built upon this foundational understanding356

of LLMs’ reasoning mechanism, the second set of 357

questions (RQs 3-6) attempts to provide a unified 358

explanation of observations made by prior work. 359

5 Understanding the Mechanism of 360

Reasoning in LLMs 361

5.1 RQ1: Are there neurons or sub-updates 362

related to the concept of “reasoning”? 363

To answer this question, we apply the proposed 364

approach in Section 3 to automatically identify 365

neurons implying a set of 7 concepts, including 366

logical connectors, which plays a crucial role in 367

deciding the reasoning direction, a set of four arith- 368

metic operations (i.e., add, subtract, multiply, and 369

division), and others (equals to and calculation), 370

which are also important to arithmetic reasoning. 371

Though they may not fully encompass arithmetic 372

reasoning, these concepts are sufficient for an ini- 373

tial investigation of neuron activation. The seed 374

token set Sname for each concept, the identified 375

neuron examples, and the expanded concept tokens 376

found in the identified neurons, are presented in 377

Table 3. The specific implementation details are 378

included in Appendix C. 379

We find a total of 113 neurons associated with 380

the listed concept in Llama2-7B. We performed 381

manual validation of the results and didn’t find any 382

objection. Notably, we discovered neurons that 383

group certain concepts using different language 384

characters. For instance, the neuron, “L21N7027”, 385

corresponding to the 21st layer and 7027-th row of 386

V 21, promotes tokens like “and” and “+” with their 387

corresponding translation for Chinese (U+4e0e) 388

and Japanese (U+3068). Additionally, we also 389

found some neurons with polysemantic character- 390

istics, where a single neuron promotes multiple 391

concepts. For instance, “L27N10751” promotes 392

tokens related to both addition (+, plus, +=, ..) and 393

subtraction (-, minus, -+, ..). 394

Activation Pattern of Reasoning Neurons Our 395

further investigation found out intriguing activation 396

pattern of reasoning neurons throughout an LLM’s 397

reasoning process. For example, in Figure 2 of 398

Appendix D, we showed that the logical connector 399

neurons are often activated at the beginning of a 400

generated sentence, whereas arithmetic neurons are 401

mostly activated in response to arithmetic symbols 402

and numbers. Once a neuron is activated, it remains 403

activated for a few subsequent time steps. This 404

persistence implies a lasting impact of activated 405

neurons on text generation in its proximity. 406
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Concept Seed Tokens Expanded Tokens #of
Neurons

Exemplar Neurons

Logical
Connectors

(Clogic)

{first, so, meaning,
therefore, then, next,

hence }

{logic, implies, thus, however,
accordingly, subsequently, later,

corresponding, etc. }

65 L10N9818{then, THEN, Then, then, ..},
L11N3000{therefore, Therefore, accordingly,

donc,..}, L11N7742, L12N1030

Addition
(Cadd)

{add, addition, +, sum,
plus }

{added, U+002B, adding, ++,
increment, total, etc.}

18 L12N4814{added ,addition ,add,..}, L21N7027{+
,add ,U+4e0e, U+306,..}, L27N10751{+, plus, -,

minus,..}

Subtraction
(Csub)

{subtract, -, minus, sub } { -=, negative, U+2212, etc. } 2 L19N7900{-= ,- ,minus,2̆212, ..}, L25N5227

Multiplication
(Cmul)

{multiply, product, times,
mult, *, x }

{ multip, multi, U+00D7, double,
twice, triple, fold, larger, etc. }

5 L16N10193{multip, double, multip, multiply, ..},
L18N4462, L20N6554, L22N1345, L22N1236

Division
(Cdiv)

{divide, division, div, /, %
}

{ div, divided, divisions, U+00F7,
partition, partitions, etc. }

2 L20N10457{div ,divided ,division ,U+00F7,.. },
L26N1378{div, Div, div, Div, division,.. }

Equals to
(Ceq)

{ =, total, equals, equal,
equivalent }

{ equality, identical, same, exactly,
contain, exact, etc. }

6 L14N7597{identical, difference, differences,
equal,..}, L18N7531, L18N1850, L20N3177,

L20N5535, L24N154

Calculation
(Ccal)

{formula, equation,
calculation, algorithm,

expression, computation }

{rewrite, sum, application, ratio,
percentage, eqn, rate, etc. }

14 L11N815{equation, formula, Formula, diagram,..},
L7N7176, L8N3689, L13N2019, L15N3958

Table 3: List of concepts related to arithmetic reasoning along with their seed tokens and the count of discovered
neurons in Llama2-7B. We also list the expanded tokens, promoted by the discovered neurons and their exemplar
neurons. For some exemplar neurons, we also show its top-scored vocabulary tokens enclosed within braces.

5.2 RQ2: Are the discovered neurons407

important for eliciting the reasoning408

capability of LLMs?409

To validate the importance of our discovered neu-410

rons, we corrupt these neurons by adding Gaussian411

noise to them. If these neurons are critical to LLM412

reasoning, the corrupted LLM should present a413

decrease in their performance. Specifically, for414

all reasoning neurons in FFN, we added noise415

to the neurons, changing Eqn 3 to FFN l(xli) =416 ∑dm
j=1m

l
ij(v

l
j + Noise). As a baseline, we also417

corrupted the same number of random neurons for418

comparison. Subsequently, we run the Llama2-419

7B with corrupted reasoning neurons and random420

neurons separately. We report the few-shot CoT421

performance of each LLM variant on the GSM8k422

test set in Table 4.423

We observe a substantial performance decrease424

of 12.29% when the discovered reasoning neurons425

are corrupted, in contrast to a decrease of only426

5.47% observed when random neurons are cor-427

rupted. The results thus show the essential role428

of the discovered reasoning neurons in facilitating429

effective reasoning by LLMs. In addition, the per-430

formance drop when corrupting random neurons431

implies that some of these neurons may also play432

an important role (e.g., for context understanding).433

As shown in Table 5, these neurons reveal non-zero434

coefficients on average.435

LLM Variant Accuracy

No corruption 16.83%
w/ corrupted reasoning neurons 4.54%
w/ corrupted random neurons 11.37%

Table 4: Llama2-7B’s performance before and after
corruption of reasoning neurons vs random neurons.

5.2.1 Correlation between the reasoning 436

performance of LLMs and the activation 437

of their reasoning neurons 438

Given that the identified neurons make critical con- 439

tributions to an LLM’s arithmetic reasoning, a nat- 440

ural question is: Does an LLM’s reasoning perfor- 441

mance correlate positively with how their reasoning 442

neurons are activated? To answer this question, we 443

performed an experiment in the zero-shot CoT set- 444

ting (Kojima et al., 2022). We specifically selected 445

a zero-shot CoT setting for this analysis because it 446

is unbiased due to the lack of demonstration. In our 447

experiment, we select four zero-shot CoT prompts 448

with varying levels of accuracy on the GSM8K test 449

set, sourced from Yang et al. (2023). The prompts 450

include “Let’s think step by step”, “Take a deep 451

breath and work on this problem step-by-step”, 452

“Break this down”, and “A little bit of arithmetic 453

and a logical approach will help us quickly arrive 454

at the solution to this problem”. Their respective 455

accuracies are 7.05%, 4.47%, 11.06%, and 5.83% 456

in Llama2-7B. In Figure 1, we plot their accuracy 457

along with the average coefficient of their reasoning 458

neurons per time step during the output generation. 459
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Figure 1: Correlation between prompt accuracy and the
LLM’s average coefficient on the discovered reasoning
neurons (blue stars) and its average count of reasoning
tokens (orange diamonds).

The result confirms our hypothesized positive cor-460

relation. It also reveals the potential of predicting461

an LLM’s reasoning performance by examining the462

activation of their reasoning neurons, without need-463

ing human-annotated labels. We leave systematic464

explorations of this potential to the future.465

Additionally, we examine if the same correlation466

can be observed superficially at the word level, be-467

cause, if the word-level statistics present the same468

correlation, it could be a more convenient approach469

of probing into an LLM’s reasoning performance470

than neuron activation. To respond to this question,471

we similarly examine the correlation between the472

count of reasoning tokens in the LLM generation,473

using a combination of the human-annotated seed474

tokens and the GPT-4-extracted expanded tokens475

listed in Table 3, and their accuracy on the GSM8k476

test set. Our result is presented in Figure 1. Intrigu-477

ingly, we observe no positive correlation between478

the two factors, which thus highlights the impor-479

tance of performing neuron-level analysis, as the480

latter offers direct insights into the functioning of481

LLMs that may not be visible from simply analyz-482

ing their superficial text generation.483

6 Understanding Prior Observations via484

the Lens of Neuron Activation485

In this section, we revisit the major findings from486

prior work and use the activation of FFN neurons487

in an LLM to explain them. For each research488

question (RQ), our analysis will be based on how489

each CoT prompt variant triggers different neuron490

activation patterns. These observations are sum-491

marized in Table 5, where the number of total or492

unique activated neurons is counted across the en-493

coding steps of each CoT prompt, and the reported494

coefficient is an average per neuron. To show a495

baseline, we also report the average coefficient of496

randomly sampled neurons.497

6.1 RQ3: Why do equations matter? 498

Prior works (Wang et al., 2023; Ye et al., 2023; 499

Madaan and Yazdanbakhsh, 2022) have shown that 500

equations play an important role in eliciting reason- 501

ing in LLMs. Looking into its activation pattern, 502

we found the CoT prompt without equations (de- 503

noted as “w/o Equation”) activates fewer reasoning 504

neurons overall, 842 activations, compared to the 505

CoT prompt with equations (CoT), 1119 activa- 506

tions. Furthermore, we observed a decrease in both 507

the number of activated neurons for individual con- 508

cepts and their corresponding average coefficients 509

across all categories. This shows that equations 510

play an important role in activating the reasoning 511

neurons which are deemed to be important for arith- 512

metic reasoning. As a result, the presence of equa- 513

tions can help elicit arithmetic reasoning in LLMs. 514

Interestingly, we also note that although there 515

were no equations or arithmetic operators in the 516

“w/o Equation” prompt, neurons associated with 517

arithmetic operations (i.e., Cadd, Csub, Cmul, Cdiv) 518

were still activated. This indicates that even in the 519

absence of explicit equations in the CoT prompt, 520

LLMs are capable of recognizing the necessity of 521

performing arithmetic operations, which explains 522

the 12.58% retained accuracy in Table 2. 523

6.2 RQ4: Why do text explanations matter? 524

The importance of textual explanations as found 525

in prior work (Wang et al., 2023; Ye et al., 2023; 526

Madaan and Yazdanbakhsh, 2022) is also consis- 527

tent with our observation. We found that the CoT 528

prompt without textual explanations activates rea- 529

soning neurons fewer times, 783 activated neurons, 530

compared to the CoT prompt with explanation, 531

1119 activated neurons. Specifically, we observe 532

a significant decrease in the activation of neurons 533

associated with logical connectors (Clogic) and a 534

slight decrease in the activation of neurons associ- 535

ated with arithmetic operations (particularly Cadd). 536

This shows the utility of textual explanations not 537

only in activating neurons associated with logical 538

connectors, crucial for determining the reasoning 539

direction but also in activating neurons associated 540

with arithmetic operations. 541

6.3 RQ5: Why does arithmetic diversity in 542

exemplars matter? 543

Ye et al. (2023) showed that arithmetic diversity 544

in exemplars is important for arithmetic reason- 545

ing, i.e. CoT prompts that consist of all arithmetic 546
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Prompt Type Logical
Connectors

(Clogic)

Addition
(Cadd)

Subtraction
(Csub)

Multiplication
(Cmul)

Division
(Cdiv)

Equals to
(Ceq)

Calculation
(Ccal)

Reasoning
Neurons

(Total)

Random
Neurons

CoT (226, 35, 2.62) (599, 15, 2.54) (87, 2, 2.38) (98, 4, 3.075) (28, 2, 2.19) (19, 4, 2.27) (62, 6, 1.37) (1119, 68, 2.51) 1.15

w/o Equation
(RQ3)

(207, 36, 2.60) (449, 13, 2.18) (41, 2, 2.09) (67, 4, 2.94) (19, 2, 1.71) (11, 3, 2.14) (48, 6, 1.45) (842, 66, 2.29) 1.53

w/o Textual
Explanation (RQ4)

(85, 28, 1.50) (450, 13, 2.94) (86, 2, 2.34) (73, 4, 2.95) (51, 2, 2.46) (11, 3, 2.68) (27, 6, 1.03) (783, 58, 2.62) 1.45

AddOnly (RQ5) (286, 32, 2.55) (651, 14, 3.04) (97, 2, 2.62) (173, 4, 2.24) (13, 1, 1.66) (40, 5, 2.24) (90, 8, 1.25) (1350, 66, 2.65) 1.39

MultOnly (RQ5) (212, 25, 2.37) (322, 11, 2.37) (97, 2, 1.82) (229, 5, 2.7) (36, 1, 1.87) (28, 4, 2.79) (127, 10, 1.37) (1051, 58, 2.17) 1.5

Incorrect Label
(RQ6)

(221, 35, 2.60) (601, 15, 2.52) (97, 2, 2.41) (103, 4, 2.86) (28, 2, 2.10) (24, 4, 2.26) (65, 6, 1.35) (1139, 68, 2.47) 1.45

OOD Label (RQ6) (240, 41, 2.53) (543, 15, 2.62) (92, 2, 2.20) (97, 4, 2.94) (26, 2, 2.21) (23, 4, 2.02) (66, 7, 1.39) (1087, 75, 2.50) 1.50

Table 5: For each prompt variant, we present (count of activated neurons, count of unique activated neurons, average
coefficient) for each concept or total. We also present the average coefficient of random neurons as a baseline.

operations in their demonstrations yield better per-547

formance than the ones that do not. Our results548

in Table 5 indicate that the performance decline is549

likely caused by the bias introduced by the partial550

operators. We observe that the AddOnly prompt551

activates a higher number of Cadd neurons (651552

vs 599) and Cmul neurons (173 vs 98) when com-553

pared to CoT, but fewer Cdiv neurons with a lower554

average coefficient. Similarly, we found that Mul-555

tOnly activates a significantly higher number of556

Cmul neurons when compared to the CoT prompt557

(229 vs 98), but significantly fewer Cadd neurons558

(322 vs 599). This shows that although both Ad-559

dOnly and MultOnly activate the neurons related560

to arithmetic reasoning, they exhibit a bias toward561

emphasizing specific arithmetic operations, which562

explains their degraded performance.563

6.4 RQ6: Why does incorrect reasoning or564

gold label not matter?565

Prior work (Wang et al., 2023; Min et al., 2022)566

shows that incorrect labels in the few-shot exem-567

plars do not matter, as long as the labels come from568

the same distribution. Consistent with our previous569

findings, we observed a similar reasoning neuron570

activation pattern for CoT prompts with correct571

and incorrect labels. However, despite a 9.25% de-572

crease in accuracy for the “OOD Label” prompt, it573

still exhibited a similar reasoning neuron activation574

pattern compared to the patterns of CoT.575

To understand this phenomenon, we conducted576

the second analysis. In the prior work, Geva et al.577

(2022) found that LLMs refresh their token rep-578

resentations by accumulating sub-updates (Sec-579

tion 2.3). Therefore, two CoT prompts with similar580

performance presumably should reveal similar sub-581

updates per layer in the corresponding step, and582

vice versa. To validate it, we looked into the neu-583

ron activation for each prompt in the encoding steps584

where the labels were manipulated (e.g., the posi- 585

tions of “1” and “Dawson” in Table 1), as other 586

input tokens are the same in all the three prompts. 587

We then plotted the overlap of activated neurons 588

per layer between CoT and “Incorrect Labels” or 589

between CoT and “OOD Label” in Figure 4 of Ap- 590

pendix E. Note that here we consider all activated 591

neurons, no matter if they are discovered as rea- 592

soning neurons or not. We observe a substantial 593

overlap of 63.05% on average in the former case 594

while merely 14.91% in the latter. The observation 595

is consistent with our hypothesis, showing that the 596

activation of FFN neurons can be used to explain 597

the performance of CoT prompting. 598

The two observations (i.e., inconsistent reason- 599

ing neuron’s activation pattern based on Table 5 but 600

consistent sub-update pattern based on the overlap 601

analysis) thus imply that the activation of reason- 602

ing neurons are necessary but not sufficient to elicit 603

reasoning in LLMs. In fact, our qualitative anal- 604

ysis showed that in the case of providing OOD 605

labels, the LLM still engages in reasoning, and 606

their reasoning paths are similar to those prompted 607

by correct labels (see examples in Appendix F), 608

which explains the activation of their reasoning 609

neurons. However, this reasoning is biased by the 610

use of OOD tokens as variables, leading to messy 611

variable references and an increasing amount of 612

incorrect reasoning as the reasoning proceeds. We 613

include a further discussion in Limitations. 614

7 Conclusions 615

Our work is among the first in applying neuron 616

activation analysis to understanding LLMs in arith- 617

metic reasoning. Our results offer valuable insights 618

into the role of neurons and their utility in under- 619

standing the internal mechanism of LLMs. We thus 620

expect this work to pave the way for future research 621

on LLM interpretability. 622
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Limitations623

A crucial question to raise is, does neuron activa-624

tion represent all about LLM reasoning? Despite625

its efficacy in explaining RQs 3-6, it is inherently626

limited by its focus on analyzing neurons individu-627

ally without considering the interaction among neu-628

rons or other LLM components (e.g., attention mod-629

ules). Consequently, a major limitation of our ap-630

proach is that it may not be suitable for understand-631

ing very complex phenomena that arise from the632

interactions among different components of LLMs.633

For instance, to fully understand in-context learn-634

ing within CoT, analyzing neurons in isolation may635

prove insufficient. Instead, as explored by Olsson636

et al. (2022), it requires studying attention heads637

and their circuits, which are sub-networks of neu-638

rons. Despite this limitation, through our study, we639

show that analysis of neuron activation can play an640

important role. Therefore, future work should study641

it together with other approaches such as circuit642

analysis (Olsson et al., 2022; Wang et al., 2022a),643

top-down-approach (Zou et al., 2023; Meng et al.,644

2022), etc. to provide a more complete picture of645

LLMs’ inner mechanism for reasoning.646

Similarly, as discussed in Section 6.4, the activa-647

tion of reasoning neurons are necessary but not a648

sufficient to elicitate the reasoning ability of LLMs.649

Furthermore, their activation may only indicate the650

appearance of these concepts during an LLM’s rea-651

soning process, but this can be easily “faked” (e.g.,652

prompting an LLM to produce a sequence of con-653

cept tokens pretending to be performing reasoning).654

As a result, the coefficient of reasoning neurons as655

a metric is more helpful when the prompts to LLMs656

are valid. Thus, it is important to exercise caution657

when drawing conclusions from the analysis.658

Furthermore, although we employ seven con-659

cepts introduced in Section 5.1 to study arithmetic660

reasoning in LLMs, they may not represent the full661

scope of arithmetic reasoning. Hence, our study is662

also limited to the scope of these seven concepts.663

Finally, our analyses are all based on Llama2-7B664

LLMs. Further exploration could verify if we can665

see the same observation for other LLMs as well.666

Ethics Statement667

We do not anticipate any severe ethical issues from668

using the proposed approach. We use fully open-669

sourced datasets and will open-source our results670

and dataset as well. On the other hand, we stress671

the positive impact of our work, as it contributes672

to interpreting the black box of LLMs. Forming 673

a clear understanding of the inner mechanism of 674

LLMs is crucial for their safe and trustworthy ap- 675

plications. With our investigation of neuron activa- 676

tion for understanding LLMs, we hope to inspire 677

more researchers to extend the research of LLM 678

interpretability. It is also our plan to connect neu- 679

ron activation with the present societal concerns 680

around LLM safety (e.g., analyzing an LLM’s rea- 681

soning process and detecting potential vulnerabili- 682

ties through their neuron activation patterns). 683
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A Prompt for Neuron Annotation with832

GPT-4833

To implement the GPT4ConceptQuery function in834

Algorithm 2, we query GPT-4 using the following835

prompt: “A neuron in language model promotes836

the following set of words: w1, .., wP . Is this neu-837

ron promoting Cname? First, answer in Yes or No838

format and provide an explanation.” The function839

returns “Yes” when GPT-4 considers the neuron (as840

represented by their projected vocabulary tokens)841

to represent the target concept Cname. We addi-842

tionally prompt GPT-4 to provide an explanation as843

it empirically motivates more precise results from844

GPT-4.845

B Additional Details of Replicating846

Observations of Prior Work847

Before investigating the mechanism of LLM rea-848

soning, we first conduct experiments to replicate849

and validate observations made by prior work (Ta-850

ble 1). The experimental results based on Llama2-851

7B are presented in Table 2. We successfully repli-852

cated all the results of the prior work.853

Although some research questions (RQs) were854

common in prior work, the experiment design855

could differ. In these cases, we opted for a856

more suitable or fair experiment design among857

them. Specifically, for RQ4, “Does textual expla-858

nation matter?”, we follow the specification of Ye859

et al. (2023) instead of Madaan and Yazdanbakhsh860

(2022). Madaan and Yazdanbakhsh (2022) ablated861

the text and rewrites the multiple equations into a862

single equation to evaluate the importance of the863

text. We find it unfair to compare the importance864

of equations in the few-shot exemplar as single865

problem-solving steps rather than multiple steps.866

In our experiments, we only remove text while867

retaining all the equations from our original CoT868

instead of restructuring them into singular equa-869

tions. Similarly, for RQ6, “Does correct reasoning870

or gold label matter?", Ye et al. (2023) proposed to871

manipulate only the labels of the equation. On the872

other hand, Wang et al. (2023) proposed to manipu-873

late other components such as operators and textual874

explanations as well. We follow the specification875

of Ye et al. (2023) instead of Wang et al. (2023) for876

its simplicity and ease of analysis.877

C Additional Implementation Details for 878

Neuron Discovery (RQ1) 879

In Algorithm 1, we randomly select 20 examples 880

from the GSM8k (Cobbe et al., 2021) test set as E 881

and set K = 20. Additionally, we perform simple 882

greedy decoding on Llama2-7B that consists of 7 883

billion parameters using a single NVIDIA A100 884

GPU for 6-7 hours to save the candidate neurons 885

using Algorithm 1. Subsequently, we employ Al- 886

gorithm 2 to identify associated neurons for each 887

concept, with thresholds P = 20 and F = 2 where 888

we prompt GPT-4 ∼ 1300 times to obtain the rea- 889

soning neurons listed in Table 3. 890

D Reasoning Neurons Activation 891

Dynamics 892

To better understand the activation pattern of identi- 893

fied reasoning neurons in Section 5.1, we plot their 894

activation throughout an LLM’s reasoning text for 895

a randomly selected example, as shown in Figure 3 896

and Figure 2. Our goal is to discern the activation 897

sites of these reasoning neurons and utilize this 898

information to understand the role of these reason- 899

ing neurons in each reasoning step or process. To 900

this end, we first divide the LLM’s reasoning text 901

into four sections to simplify the observation - (1) 902

Beginning of a sentence (BOS) (2) Equations (3) 903

Numbers (4) Other texts. The activation showed a 904

clear pattern of activation for both neurons related 905

to arithmetic operations and logical connections. 906

In Figure 3, the heightened activation of arithmetic 907

neurons, encompassing those involved in addition, 908

subtraction, multiplication, and division, within 909

equations is evident. Conversely, Figure 2 demon- 910

strates increased activation of logical connection 911

neurons at the beginning of sentences (BOS). These 912

observations underscore the specific roles played 913

by different neurons in the reasoning process. 914

E Neuron Activation Overlap between 915

CoT with Correct Labels and Incorrect 916

or OOD Labels 917

The neuron activation overlap between CoT prompt 918

with correct labels and incorrect or OOD labels, 919

discussed in Section 6.4 is shown in Figure 4. 920

F Example Predictions for CoT with 921

OOD labels 922

We list the example prediction for CoT with OOD 923

labels as discussed in Section 6.4 is listed in Table 6. 924
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Figure 2: Activation pattern of logical connector neurons for a randomly sampled example. The horizontal dotted
line represents the average coefficient of randomly sampled neurons for the same set of examples.
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Figure 3: Activation pattern of neurons related to arithmetic neurons (add, subtraction, multiplication, division) for
a randomly sampled example. The horizontal dotted line represents the average coefficient of randomly sampled
neurons for the same set of examples.
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Figure 4: Overlap of neuron activation when the LLM
is prompted with CoT and “Incorrect Labels” or “OOD
Labels”.

925

G Implementation Details 926

We use models, Llama2-7B (Touvron et al., 2023) 927

and GPT-4 (OpenAI, 2023), and the GSM8K 928

dataset (Cobbe et al., 2021) that are consistent with 929

their intended use. For each experiment in our 930

analysis (RQs 2-6), we perform simple greedy de- 931

coding on Llama2-7B which consists of 7 billion 932

parameters using a single NVIDIA A100 GPU for 933

6-7 hours. 934

H CoT Prompts for Reproducibility 935

We list all the CoT prompts used in our analysis, 936

RQs 1-6. The CoT prompts (Correct) is listed in Ta- 937

ble 7, CoT prompt w/o equation is listed in Table 8, 938

CoT prompt w/o text is listed in Table 9, AddOnly 939

prompt is listed in Table 12, MultOnly prompt is 940

listed in Table 13, CoT prompt with incorrect labels 941

is listed in Table 10, and CoT prompt with OOD 942
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Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day
with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg. How much in dollars does she make every
day at the farmers’ market?
Let’s think step by step
First Janet’s ducks lay 16 eggs per day.
Then she eats 3 for breakfast every day.
So she has 16 - 3 = Dylan eggs left.
Then she bakes muffins for her friends every day with 4.
So she has Dylan - 4 = Dylan eggs left.
Then she sells the remainder at the farmers’ market daily for $2 per fresh duck egg.
So she has Dylan - 4 = Dylan eggs left.
So she makes $2 * Dylan = Dylan dollars.
The answer is Dylan.

Question: Two trains leave San Rafael at the same time. They begin traveling westward, both traveling for 80 miles. The next day,
they travel northwards, covering 150 miles. What’s the distance covered by each train in the two days?
Let’s think step by step
First two trains leave San Rafael at the same time.
Then they begin traveling westward, both traveling for 80 miles.
So they travel 80 miles each.the next day, they travel northwards, covering 150 miles.
So they travel 150 miles each.
So they travel 80 + 150 = Dylan miles each.
The answer is Dylan.

Table 6: Example prediction for CoT prompts with out-of-distribution (OOD) labels

labels is listed in Table 11.943
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Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees.
How many trees did the grove workers plant today?
Let’s think step by step
First there are 15 trees.
Then there were 21 trees after some more were planted.
So there must have been 21 - 15 = 6 trees.
The answer is 6.

Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
Let’s think step by step
First there are 3 cars.
Then 2 more cars arrive.
So there must be 3 + 2 = 5 cars.
The answer is 5.

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
Let’s think step by step
First Leah had 32 chocolates and her sister had 42 chocolates.
So in total they had 32 + 42 = 74 chocolates.
Then they ate 35 chocolates.
So there must be 74 - 35 = 39 chocolates.
The answer is 39.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason
give to Denny?
Let’s think step by step
First Jason had 20 lollipops.
Then he had 12 after giving some to Denny.
So he gave Denny 20 - 12 = 8 lollipops.
The answer is 8.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have
now?
Let’s think step by step
First Shawn has 5 toys.
Then he got 2 toys each from his mom and dad.
So he must have 5 + 4 = 9 toys.
The answer is 9.

Question: There were nine computers in the server room. Five more computers were installed each day, from monday to
thursday. How many computers are now in the server room?
Let’s think step by step
First there were 9 computers.
Then for each of 4 days, 5 more computers were added.
So 5 * 4 = 20 computers were added.
So there must be in total 9 + 20 = 29 computers.
The answer is 29.

Question: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls
did he have at the end of Wednesday?
Let’s think step by step
First Michael started with 58 golf balls.
Then he lost 23 on Tuesday.
So he had 58 - 23 = 35 golf balls.
Then he lost 2 more on Wednesday.
So he must have 35 - 2 = 33 golf balls.
The answer is 33.

Question: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
Let’s think step by step
First Olivia has 23 dollars.
Then she bought five bagels for 3 dollars each.
We know 5 bagels for 3 dollars each will be 5 * 3 = 15 dollars.
So she has 23 - 15 = 8 dollars left.
The answer is 8.

Table 7: Full prompt for CoT prompting for arithmetic reasoning.
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Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21
trees. How many trees did the grove workers plant today?
21 - 15 = 6.
The answer is 6.

Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
3 + 2 = 5.
The answer is 5.

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
32 + 42 = 74.
74 - 35 = 39.
The answer is 39.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give
to Denny?
20 - 12 = 8.
The answer is 8.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
5 + 4 = 9.
The answer is 9.

Question: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday.
How many computers are now in the server room?
5 * 4 = 20.
9 + 20 = 29.
The answer is 29.

Question: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he
have at the end of Wednesday?
58 - 23 = 35.
35 - 2 = 33.
The answer is 33.

Question: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
5 * 3 = 15.
23 - 15 = 8.
The answer is 8.

Table 8: Full prompt for w/o equation CoT prompting for arithmetic reasoning.
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Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees
did the grove workers plant today?
Let’s think step by step
First there are 15 trees.
Then there were 21 trees after some more were planted.
So there must have been 6 trees.
The answer is 6.

Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
Let’s think step by step
First there are 3 cars.
Then 2 more cars arrive.
So there must be 5 cars.
The answer is 5.

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
Let’s think step by step
First Leah had 32 chocolates and her sister had 42 chocolates.
So in total they had 74 chocolates.
Then they ate 35 chocolates.
So there must be 39 chocolates.
The answer is 39.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?
Let’s think step by step
First Jason had 20 lollipops.
Then he had 12 after giving some to Denny.
So he gave Denny 8 lollipops.
The answer is 8.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
Let’s think step by step
First Shawn has 5 toys.
Then he got 2 toys each from his mom and dad.
So he must have 9 toys.
The answer is 9.

Question: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers
are now in the server room?
Let’s think step by step
First there were 9 computers.
Then for each of 4 days, 5 more computers were added.
So 20 computers were added.
So there must be in total 29 computers.
The answer is 29.

Question: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of
Wednesday?
Let’s think step by step
First Michael started with 58 golf balls.
Then he lost 23 on Tuesday.
So he had 35 golf balls.
Then he lost 2 more on Wednesday.
So he must have 33 golf balls.
The answer is 33.

Question: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
Let’s think step by step
First Olivia has 23 dollars.
Then she bought five bagels for 3 dollars each.
We know 5 bagels for 3 dollars each will be 15 dollars.
So she has 8 dollars left.
The answer is 8.

Table 9: Full prompt for w/o text CoT prompting for arithmetic reasoning.

16
7189



Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees.
How many trees did the grove workers plant today?
Let’s think step by step
First there are 15 trees.
Then there were 21 trees after some more were planted.
So there must have been 21 - 15 = 1 trees.
The answer is 1.

Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
Let’s think step by step
First there are 3 cars.
Then 2 more cars arrive.
So there must be 3 + 2 = 3 cars.
The answer is 3.

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
Let’s think step by step
First Leah had 32 chocolates and her sister had 42 chocolates.
So in total they had 32 + 42 = 12 chocolates.
Then they ate 35 chocolates.
So there must be 12 - 35 = 45 chocolates.
The answer is 45.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to
Denny?
Let’s think step by step
First Jason had 20 lollipops.
Then he had 12 after giving some to Denny.
So he gave Denny 20 - 12 = 2 lollipops.
The answer is 2.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
Let’s think step by step
First Shawn has 5 toys.
Then he got 2 toys each from his mom and dad.
So he must have 5 + 4 = 6 toys.
The answer is 6.

Question: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How
many computers are now in the server room?
Let’s think step by step
First there were 9 computers.
Then for each of 4 days, 5 more computers were added.
So 5 * 4 = 22 computers were added.
So there must be in total 9 + 22 = 23 computers.
The answer is 22.

Question: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at
the end of Wednesday?
Let’s think step by step
First Michael started with 58 golf balls.
Then he lost 23 on Tuesday.
So he had 58 - 23 = 14 golf balls.
Then he lost 2 more on Wednesday.
So he must have 14 - 2 = 23 golf balls.
The answer is 23.

Question: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
Let’s think step by step
First Olivia has 23 dollars.
Then she bought five bagels for 3 dollars each.
We know 5 bagels for 3 dollars each will be 5 * 3 = 23 dollars.
So she has 23 - 23 = 9 dollars left.
The answer is 9.

Table 10: Full prompt for Incorrect CoT prompting for our RQ3 experiment.
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Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees
did the grove workers plant today?
Let’s think step by step
First there are 15 trees.
Then there were 21 trees after some more were planted.
So there must have been 21 - 15 = Dawson trees.
The answer is Dawson.

Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
Let’s think step by step
First there are 3 cars.
Then 2 more cars arrive.
So there must be 3 + 2 = Russel cars.
The answer is Russel.

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
Let’s think step by step
First Leah had 32 chocolates and her sister had 42 chocolates.
So in total they had 32 + 42 = Cedric chocolates.
Then they ate 35 chocolates.
So there must be Cedric - 35 = Hendricks chocolates.
The answer is Hendricks.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?
Let’s think step by step
First Jason had 20 lollipops.
Then he had 12 after giving some to Denny.
So he gave Denny 20 - 12 = Edison lollipops.
The answer is Edison.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
Let’s think step by step
First Shawn has 5 toys.
Then he got 2 toys each from his mom and dad.
So he must have 5 + 4 = Kaylin toys.
The answer is Kaylin.

Question: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers
are now in the server room?
Let’s think step by step
First there were 9 computers.
Then for each of 4 days, 5 more computers were added.
So 5 * 4 = Mcgowan computers were added.
So there must be in total 9 + Mcgowan = Damarion computers.
The answer is Damarion.

Question: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of
Wednesday?
Let’s think step by step
First Michael started with 58 golf balls.
Then he lost 23 on Tuesday.
So he had 58 - 23 = Jemima golf balls.
Then he lost 2 more on Wednesday.
So he must have Jemima - 2 = Astrid golf balls.
The answer is Astrid.

Question: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
Let’s think step by step
First Olivia has 23 dollars.
Then she bought five bagels for 3 dollars each.
We know 5 bagels for 3 dollars each will be 5 * 3 = Gallagher dollars.
So she has 23 - Gallagher = Baily dollars left.
The answer is Baily.

Table 11: Full prompt for Out-of-distribution (OOD) CoT prompting for arithmetic reasoning.
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Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
Let’s think step by step
First there are 3 cars.
Then 2 more cars arrive.
So there must be 3 + 2 = 5 cars.
The answer is 5.

Question: Paddington has 40 more goats than Washington. If Washington has 140 goats, how many goats do they have in total?
Let’s think step by step
First Paddington has 40 more goats than Washington.
We know Washington has 140 goats.
So Paddington has 40 + 140 = 180 goats.
So they have 180 + 140 = 320 goats in total.
The answer is 320.

Question: Christina has 3 snakes. 1 snake is 2 feet long. Another snake is 16 inches long. The last snake is 10 inches long. How many inches are
all of her snakes combined?
Let’s think step by step
First Christina has 3 snakes.
Then 1 snake is 2 feet long.
We know 1 foot is 12 inches.
So 2 feet is 12 + 12 = 24 inches.
Then another snake is 16 inches long.
Then the last snake is 10 inches long.
So all of her snakes combined are 24 + 16 + 10 = 50 inches.
The answer is 50.

Question: Bush and Matt are brothers. Bush is younger than Matt by 3 years. This year Bush will be 12 years old. What will be Matt’s age 10
years from now?
Let’s think step by step
First Bush is younger than Matt by 3 years.
We know Bush will be 12 years old this year.
So Matt will be 12 + 3 = 15 years old this year.
Then Matt’s age 10 years from now will be 15 + 10 = 25 years old.
The answer is 25.

Question: Jeremy listened to five more songs yesterday than today. Yesterday, he listened to nine songs. How many songs did Jeremy listen to in
two days?
Let’s think step by step
First Jeremy listened to 9 songs yesterday.
Then he listened to 5 more songs yesterday than today.
So he listened to 9 + 5 = 14 songs today.
So he listened to 9 + 14 = 23 songs in two days.
The answer is 23.

Question: Jar A has 28 marbles. Jar B has 12 more marbles than jar A. Jar C has as many marbles as jar B. How many marbles are there
altogether?
Let’s think step by step
First Jar A has 28 marbles.
Then Jar B has 12 more marbles than jar A.
So Jar B has 28 + 12 = 40 marbles.
Then Jar C has as many marbles as jar B.
So Jar C has 40 marbles.
So there are 28 + 40 + 40 = 108 marbles altogether.
The answer is 108.

Question: Marion received 20 more turtles than Mia at the animal rescue center. If Mia received 40 turtles, how many turtles did they receive
together?
Let’s think step by step
First Marion recieved 20 more turtles than Mia.
We know Mia received 40 turtles.
So Marion received 20 + 40 = 60 turtles.
So together they received 60 + 40 = 100 turtles.
The answer is 100.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
Let’s think step by step
First Shawn has 5 toys.
Then he got 2 toys each from his mom and dad.
So he must have 5 + 4 = 9 toys.
The answer is 9.

Table 12: Full prompt for AddOnly CoT prompting for arithmetic reasoning.
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Question: Super Clean Car Wash Company cleans 80 cars per day. They make $5 per car washed. How much money will they make in 5 days?
Let’s think step by step
First Super Clean Car Wash Company cleans 80 cars per day.
Then they make 5 dollars per car washed.
So they make 80 x 5 = 400 dollars per day.
So they make 400 x 5 = 2000 dollars in 5 days.
The answer is 2000.

Question: A farmer has 5 cows. Each cow has 4 legs. How many legs do the cows have in total?
Let’s think step by step
First a farmer has 5 cows.
Then each cow has 4 legs.
So the cows have 5 x 4 = 20 legs in total.
The answer is 20.

Question: Sam watches two movies each day. Each movie is 2 hours long. How many minutes does Sam spend watching movies in 5 days?
Let’s think step by step
First Sam watches two movies each day.
Then each movie is 2 hours long.
We know 1 hour is 60 minutes.
So 2 hours is 60 x 2 = 120 minutes.
So Sam spends 120 x 2 = 240 minutes watching movies each day.
So Sam spends 240 x 5 = 1200 minutes watching movies in 5 days.
The answer is 1200.

Question: Carla has 3 bags. Each bag has 5 apples. How many apples does Carla have in total?
Let’s think step by step
First Carla has 3 bags.
Then each bag has 5 apples.
So Carla has 3 x 5 = 15 apples in total.
The answer is 15.

Question: James takes 20 units per semester at community college. If each unit costs $50 how much does he pay for 2 semesters?
Let’s think step by step
First James takes 20 units per semester at community college.
Then each unit costs 50 dollars.
So he pays 20 x 50 = 1000 dollars per semester.
So he pays 1000 x 2 = 2000 dollars for 2 semesters.
The answer is 2000.

Question: In a jar that has 50 ants, the number of ants in the jar doubles each hour. How many ants will be in the jar after 5 hours?
Let’s think step by step
First there are 50 ants in the jar.
Then the number of ants in the jar doubles each hour.
So there will be 50 x 2 = 100 ants in the jar after 1 hour.
So there will be 100 x 2 = 200 ants in the jar after 2 hours.
So there will be 200 x 2 = 400 ants in the jar after 3 hours.
So there will be 400 x 2 = 800 ants in the jar after 4 hours.
So there will be 800 x 2 = 1600 ants in the jar after 5 hours.
The answer is 1600.

Question: Mark loves to see shows in theaters. He decided to visit the theater at least once a week. One performance lasts 3 hours. The price of the
ticket depends on the time spent in the theater and stands at $5 for each hour. How much will Mark spend on visits to the theater in 6 weeks?
Let’s think step by step
First Mark decided to visit the theater at least once a week.
Then one performance lasts 3 hours.
We know the price of the ticket depends on the time spent in the theater and stands at 5 dollars for each hour.
So the price of the ticket for one performance is 5 x 3 = 15 dollars.
So Mark will spend 15 x 6 = 90 dollars on visits to the theater in 6 weeks.
The answer is 90.

Question: A sixty bulb watt uses 60 watts of power each day. If Allyn has 40 such bulbs in his house and pays an electricity bill of twenty cents per
power watt used, calculate Allyn’s total monthly expenses on electricity in June.
Let’s think step by step
First a sixty bulb watt uses 60 watts of power each day.
Then Allyn has 40 such bulbs in his house.
So Allyn has 40 x 60 = 2400 watts of power each day.
Then Allyn pays an electricity bill of twenty cents per power watt used.
So Allyn pays 2400 x 0.2 = 480 dollars per day.
So Allyn pays 480 x 30 = 14400 dollars per month.
The answer is 14400.

Table 13: Full prompt for MultOnly CoT prompting for arithmetic reasoning.
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