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Abstract

Large Language Models (LLMs) can exhibit
considerable variation in the quality of their
sampled outputs. Reranking and selecting
the best generation from the sampled set
is a popular way of obtaining strong gains
in generation quality. In this paper, we
present a novel approach for reranking LLM
generations. Unlike other techniques that
might involve additional inferences or train-
ing a specialized reranker, our approach re-
lies on easy to compute pairwise statistics
between the generations that have minimal
compute overhead. We show that our ap-
proach can be formalized as an extension
of self-consistency and analyze its perfor-
mance in that framework, theoretically as
well as via simulations. We show strong
improvements for selecting the best k gen-
erations for code generation tasks as well
as robust improvements for the best gen-
eration for the tasks of autoformalization,
summarization, and translation. While our
approach only assumes black-box access to
LLMs, we show that additional access to to-
ken probabilities can improve performance
even further.

1 Introduction
The rapid advancement and remarkable achieve-
ments of generative large-scale pre-trained language
models (LLMs) have brought about a revolutionary
transformation in the field of natural language pro-
cessing (NLP). These models have demonstrated
significant enhancements in various NLP applica-
tions, such as machine translation, summarization,
and code generation. Individual generations sam-
pled from the models often yield high-quality re-
sults. However the quality of generated outputs can
exhibit considerable variability. Multiple output
samplings for the same input can produce certain
generations which are of substantially higher qual-
ity than the quality of the average generation from
the model.
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Several approaches have been proposed to exploit
this phenomenon. One strategy involves improving
the underlying models themselves to make the qual-
ity of the average generation consistently better.
This can be achieved by taking existing model gen-
erations, ranking them based on a human feedback,
automated evaluation metrics like BLEU score, or
execution feedback in case of code. The ranked gen-
erations can then be finetuned on directly or can
be used to train a reward model that can be used
in an RL loop (Hsieh et al., 2023; Ouyang et al.,
2022; Ho et al., 2022; Polu et al., 2022; Liu and
Liu, 2021; Ouyang et al., 2022). Another common
approach is best-of-n sampling or reranking. In this
approach, the underlying model is not touched –
we instead take multiple samples from the model
and select the best one post-facto using a reranking
method (Ravaut et al., 2022; Jiang et al., 2022b;
Zhang et al., 2022; Chen et al., 2021; Shi et al.,
2022; Li et al., 2022b; Mizumoto and Matsumoto,
2016; Uesato et al., 2022). While this approach
can often given strong improvements, most extant
reranking techniques involve computationally in-
tensive or cumbersome methods to compute the
ranking criterion. These include methods like train-
ing an auxiliary model as a reranker, evaluating
the probability of the query given the generated an-
swer (query likelihood) but at the price of doubling
the inference cost, etc. In case of code generation
models, another alternative is executing the gener-
ated code on unit tests. While such an approach
has been applied in various models such as Alpha-
Code (Li et al., 2022b) which is targeted towards
contest coding problems, it becomes much less fea-
sible as you move past the contest coding setting
due to the complexity of setting up the build envi-
ronment for arbitrary code as well as sandboxing it
appropriately.

Recently, a simple approach, called self-
consistency was proposed for selecting the best an-
swer from multiple generations (Wang et al., 2022)
for tasks where the set of possible answers is small –
for example multiple choice questions or math word
problems where there is a unique answer consist-
ing of a single or a very limited number of tokens.
In that paper, the authors sample multiple chain-
of-thought generations from the LLM, extract the
predicted answer at end each generation and select
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the answer with the most number of votes. The
motivation behind this is the observation that you
can take different reasoning paths to get to the
same answer. Thus the method aims to marginalize
over multiple different reasoning paths and rank
the answers based on their marginal probability
rather than their probability conditioned on a sin-
gle reasoning path. While they achieve substantial
improvements over existing baselines, it is not im-
mediately clear how to apply this to open-ended
generation tasks like code generation, summariza-
tion, or translation - where there is often no chain-
of-thought or reasoning path to marginalize over,
nor is there necessarily a unique correct answer.

We start off with two key observations – (1) We
can have semantically equivalent or near-equivalent
generations that are nevertheless not exact matches.
These are one subset of generations we can marginal-
ize over (2) For open-ended tasks, a generation can
encompass multiple elements. For summarization,
there might be multiple relevant facts in the text
that a good summary should mention. For code,
there might be multiple branch conditions that
need to be present to generate a correct implemen-
tation. Our generation set could be structured such
that while different generations include a different
subset of elements (different facts in case of sum-
marization or different branch conditions in case
of code), we have only a single generation that
contains all of the relevant elements. In this case,
simply marginalizing over semantically equivalent
generations would not be sufficient as there is no
semantically equivalent generation for the optimal
generation.

We develop these two observations in the next
section into a minimal overhead reranking method
for such open-ended tasks which does not require
access to token probabilities.

Concretely, our contributions are as follows –

• We connect the above two observations with
the notion of self-consistency. Based on that
connection, we then proceed to design an effec-
tive minimal overhead reranker which does not
require access to token probabilities. We show
that the reranking methods utilized in previous
works Shi et al. (2022); Li et al. (2022b) can
also be understood within the same conceptual
framework.

• We conduct simulations where we demonstrate
that our framework is capable of recovering the
best or near-best generation in many cases. We
also prove some properties of our methodology
that provide guarantees on its effectiveness.

• We extend our reranker to optionally account
for token log probabilities (if they are pro-
vided) and show that doing so gives a much
better reranker than just mean log probability

reranking (which also requires access to token
log probabilities)

• Empirically, while our focus is on code gener-
ation tasks where we demonstrate significant
gains, we also experiment with the tasks of
autoformalization, summarization, and trans-
lation and find that our approach leads to
non-trivial though smaller gains there.

• As our method is based on pairwise similarity
between generations, we are able to leverage
that property to improve ranked best-of-k per-
formance for different values of k.

• We conduct multiple experiments ablations to
understand the effect of various experimental
settings.

The rest of the paper is organized as follows. In
Section 2 we present our motivation. In Section 3 we
present our method and the similarity function. In
Section 4, we present and discuss our experimental
results. In Section 5, we describe the related work
and we finally conclude in Section 6.

2 Motivation
Consider the following coding problem from the
MBPP dataset –

def remove_dirty_chars(string, second_string):
"""
Write a function to remove characters

from the first string which are
present in the second string.

>>> remove_dirty_chars("probasscurve",
"pros")

’bacuve’
>>> remove_dirty_chars("digitalindia",

"talent")
’digiidi’
>>> remove_dirty_chars("exoticmiles",

"toxic")
’emles’
"""

A solution to the above problem would be seman-
tically equivalent to "iterate over the string skipping
characters in second_string and then convert the
result back to a string and return". Two parts of
the semantic meaning of this solution could then be
(1) the return type should be a string (2) when it-
erating through the string, any character in second
string has to be skipped over. These observations
can be converted into predicates for the generations.
Specifically, for this prompt, we can define the pred-
icates (1) p1 = is the return value of the generated
program a string? (2) p2 = in the generated pro-
gram, are all characters in second_string skipped
over in the return string? These predicates capture
properties of the semantic meaning of the genera-
tions. We sample three generations for the above
prompt resulting in the following generations:
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# First generation (Incorrect)
return [char for char in string if char

not in second_string]

# Second generation (Incorrect)
return ’’.join([char for char in string])

# Third generation (Correct)
return ’’.join([char for char in string

if char not in second_string])

Now if we were able to evaluate the above predi-
cates at inference time on the generations, we would
be able to detect that generation 3 is the only one
that satisfies both and is thus an optimal genera-
tion. However generating the relevant predicates,
and then generating code to evaluate arbitrary pred-
icates on code that confirms to the given natural
language specification with high precision is an un-
solved problem.

Is there a way transform the problem into some-
thing more tractable? Let us look at the votes each
predicate gets from the different generations (i.e.
on how many generations the predicate evaluates
to true). p1 gets 2/3 votes (from the 2nd and 3rd
generation) and thus the majority vote is that it
should be true. p2 gets 2/3 votes (from the 1st and
3rd generation) and thus the majority vote again
says it should be true. Generation 3 is the only one
that agrees with the majority vote for p1, p2 and is
thus the consensus choice.

In fact, we do not even have to do the step of
first counting votes for p1, p2 to figure out what
their majority vote value is! We can just compute
how much a generation agrees with the other 2
generations on the evaluation for p1, p2. To elabo-
rate, generation 1 agrees with generation 3 on p2
but not p1. It does not agree with generation 2 on
anything. Thus it has a total agreement score of 1.
Similarly generation 2 also has an agreement score
of 1. Generation 3 however agrees with generation
1 on p2 and with generation 2 on p1 resulting in
an agreement score of 2. Thus generation 3 has
the highest agreement with all other generations
and is the consensus choice. This transformation is
depicted in Figure 1.

There are a couple of points to note regarding the
above. (A) The answer we want for both predicates
ends up being also what the majority vote predicts.
This is the connection to self-consistency that we
will formalize shortly. (B) While the above proce-
dure handles Observation (2) in the mentioned in
the introduction, does it also handle Observation
(1)? Note that if we had a 4th generation

# Fourth generation (Correct)
new_str = ’’
for c in string:

if c not in second_string
new_str += c

return new_str

this would also agree with the 3rd generation on
p1, p2. Thus this generation is semantically equiv-
alent to the 3rd generation with respect to p1, p2.
Including this generation would lead to a tie be-
tween the 3rd and 4th generation with respect to
the scheme above. Thus the above procedure can
also account for generations that are semantically
equivalent.

As mentioned before, at inference time how-
ever, we have access neither to such predicates
nor to what their evaluation on the different gener-
ations might be. However, as the previous example
showed, we do not actually even need an evalua-
tion of the predicates on the generations. We only
actually need an understanding of how much a pair
of generations agree on relevant predicates. In the
next section we will describe simple similarity func-
tions to approximate this agreement without any
knowledge of the possible predicates and later show
their empirical effectiveness. For now, we attempt
to formalize the above intuition, connect it with
self-consistency, and give it theoretical grounding.

Let v be a vector of length k where each element
represents a predicate and the value represents the
property’s value that you want the generation to
have. For example, for the example above, v would
be of length 2 with a value of 1 in both. In gen-
eral, we do not restrict v to be just a binary vector
as some predicates can have multiple possibilities
as an answer. Let ui be the vector for the ith
generation representing the predicates’ values for
that generation. We now make the self-consistency
assumption which is that for each individual pred-
icate, the most frequent response is assumed to
be correct. Formally if vl can take on ml values
1, . . . ,ml and without loss of generality, vl = 1,
then l = argmaxj

∑n
i=1 I(ul

i = j).
Now as mentioned, at inference time, we may

not have access to either the predicates or their
values for different generations. Thus we only as-
sume access to the agreement between the different
generations on the predicates’ values (later on we
will approximate this with similarity functions be-
tween generations). In particular we assume we
know what the pairwise fractional agreement on
the predicates is between generations denoted as
a(ui,uj) =

1
k

∑k
t=1 I(ut

i = ut
j)∀i, j ∈ [1, n] where i

indexes the generations and t the predicates. We
then try to identify a generation i such that the
average pairwise fractional agreement for that gen-
eration with all other generations is maximized –
i.e. a(ui,v) is maximized.
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Plurality approximation Pairwise agreement 

approximation

Figure 1: On the left we have the original setup where we have predicates which we know the optimal
generation should satisfy and which we can evaluate on the generations. In the middle, we drop the

assumption that we know whether the optimal generation should satisfy the predicates or not. On the
right, we drop the assumption that we need to evaluate the predicates on the different generations – only

assuming we know on how many predicates a pair of generations agree

Given this problem formulation and selection
criterion, we can establish the following:
Theorem 2.1. For k = 1, we always recover the
best u. However for k > 1, it is not guaranteed.

Informally if there is only a single predicate we
care about, then we can always recover the optimal
generation. Moreover:
Theorem 2.2. If there exists ub = v, then b =
argmaxi

1
n−1

∑
i ̸=j a(ui,uj).

Informally this says that if a generation g exists
such that its predicate vector perfectly aligns with
the optimal vector v, selecting the generation with
the highest average fractional agreement with other
generations will pick g.

The previous theorem only works if the optimal
generation is part of the set of generations. What if
that is not the case (as is likely)? The next theorem
gives upper and lower bounds on the fractional
agreement we can expect. Now if we assume that
uj
i are iid from Bernoulli(pj) and n is the number

of generations, then we can show that

Theorem 2.3. E[
∑k

j u
j
b] ≤

∑k
j=1 pi +

√
k logn

2

where ub denotes the sequence selected by our
method.

All proofs for these theorems are presented in the
Supplement. While the theorems give some guar-
antees on the performance, the bounds in Theorem
2.3 are still not very tight. Furthermore, they are
only for the case where the predicates are binary
valued. To further substantiate our selection cri-
terion — picking the generation with the highest
average fractional agreement with all other genera-
tions — we conducted a simulation. The setup is
as follows – we fix the number of predicates (length
k of the vector v in the above notation) as well as
the number of values the predicate can take. We
then simulate the generations predicate evalutions
by assuming a generation has an equal chance of
having an value the predicate can take. However we
force the self-consistency constraint that for every

predicate, the plurality of generations should have
the property that matches the predicate value in
v. The results are in the Supplement. Our find-
ings show that our method successfully recovers the
best generation the majority of the time, signifi-
cantly outperforming random selection. Moreover,
on average, the generation we recover demonstrates
nearly 100% agreement with best generation, even
in cases where we do not select the best generation.
The full details are in the Supplement.

3 Method

As previously mentioned, we may not have the ca-
pability to compute predicates at inference time,
thereby rendering the computation of the exact frac-
tional agreement with v i.e. a(u,v), unattainable.
However as we found out in the last section, choos-
ing the generation that has the maximum average
fractional similarity with all other generations can
be a good approximation. However as we may not
have predicates at inference time, we cannot always
compute that either. Intuitively however, if two
generations are more similar to each other – for
an appropriate definition of similarity – then they
will tend to agree more on any possible predicates.
Surprisingly, we find that a very simple similarity
function, which we will define shortly, is sufficient
for our purposes.

Once we have our similarity function, we
can define a generalized self-consistency score
GSCSim(i) for each generation i, given by

1
M−1

∑M
j=1,j ̸=i Sim(i, j). Here, Sim denotes the

similarity function, and M represents the number
of generations.

For generations with unique answers, if we have:

Sim(i, j) = I(Answer in generation i is an exact
match with Answer in generation j)

this is equivalent to the self-consistency criterion.
Two other reranking methods - MBR-Exec (Shi
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et al., 2022) and AlphaCode (Li et al., 2022b) - can
be viewed in terms of the same formulation with
the difference being that of the similarity function.
MBR-Exec executes model generated code. It then
defines gives a similarity score of 1 if a pair of pro-
grams agree on all unit tests and 0 otherwiseFor
each program, they sum the similarity vs all other
programs and pick the program with the highest
similarity. Similarly AlphaCode clusters its gener-
ated programs by executing them on test cases and
selecting a program from the largest cluster – with
two programs cluster together if they agree on on
all test cases. This is conceptually equivalent to
what MBR-Exec does. We give further evidence
that this is a useful way to frame self-consistency by
evaluating another OpenAI Ada embedding based
similarity function (Section I in the Supplement).
While its performance is promising, as the similar-
ity function is a lot more heavyweight requiring a
separate embedding model, we chose not to explore
it further.

One straightforward way to encode a generation
is by using a binary vector that denotes the presence
or absence of an n-gram. Surprisingly, we find this
simple encoding to be sufficient for defining a robust
similarity function. For open-ended generation, we
define our similarity function as follows. For each
generation we define a vector v of size |V | where
V is set of all possible n-grams for n = 1 to n = K
where K is a hyperparameter. For the experiments
in this paper, we simply use K = 1. We show in
Section G, increasing K can be helpful though only
up to a point. Each element i of v is simply whether
token i is present in the generation or not. We then
take the inner product between two such vectors
as similarity. We call this the Ngram consistency
score (NCS) and refer to the K = 1 version as the
Unigram consistency score (UCS). Figure 2 shows a
visualization of v for an example sentence. Formally

UCS(i, j) =
1

|V |vi · vj

where

vj
i = I(tj ∈ gi)

where tj is the jth token and gi the ith generation.
This definition only requires model generations and
incurs minimal computational overhead – we only
need to compute the unigram overlap instead of
training an auxiliary model, running generated pro-
grams, or performing additional inferences using
the same model (which will increase compute cost
as well as latency). Notably, we don’t normalize
the inner product by the norm of the vectors. This
is a deliberate design choice that encourages more
diverse sequences, in response to known issues of
neural generation models producing degenerate and
repetitive sequences (Zhang et al., 2022; Welleck

et al., 2019). We delve into this topic in Section J
in the Supplement.

When token probabilities are available, we can
leverage them to improve our approach. Intuitively,
if a generation has a low token probability for the
generated token, then finding a match for that that
token should count for less. In accordance with this
intuition, we introduce two further variants. First
we modify the definition of v as follows

vj
i =





1
cij

∑cij
k p(ti,kj ) if tj ∈ gi,

0 otherwise

where cji is the number of times token tj appears
in generation i and p(ti,kj ) is the token probability
of the jth token’s kth appearance in generation
i. We call this the weighted n-gram consistency
score (WUCS). Figure 2 has a visualization for an
example sentence.

The mean log probability of a sequence is an
oft-used ranking method. We can combine it with
WUCS by further weighting each generation by the
per token probability as follows – for a generation
i, Consensus-WUCS = WUCS ·e(1/|gi|)·p(gi) where
gi is the length of generation i.

Finally, to rank the generations, we employ
argmaxi GSCSim(i) where Sim can take the form
of UCS, WUCS, or Consensus-UCS. The dia-
gram illustrating the progression from UCS to
Consensus−WUCS is show in Figure 3.

3.1 Extending to ranked pass@k

A common evaluation metric for code generation
problems is ranked pass@k wherein we assess
whether any program among the top k selected
programs (selected from a larger set) can pass all
the given unit tests for that problem. Typically, the
top k generations are selected based on a predeter-
mined ranking. However, with our similarity-based
metric, we can apply a more nuanced approach.

For a particular problem, if the highest-ranked
generation for a specific prompt is correct, we have
already succeeded. We would only need to utilize
the remaining generations in our k-budget if the
top-ranked generation does not pass some unit test
case. In this event, we could consider the top-
ranked generation as a hard negative and select the
next generation that exhibits lower similarity to
the top-ranked generation.

More specifically, if we have selected programs
Sk′ so far (|Sk′ | = k′ < k, then we modify the GCS
function to select the k′ + 1th item in the list. In
particular, we compute

GCSranked
sim =

1

n− 1
(
∑

j /∈Sk′

sim(i, j)−
∑

j∈Sk′

sim(i, j))
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0.9 0.7 0.8 0.5 0.7 0.3 0.8 0.9 0.6

I think I saw your dog chase my dog

I : (0.9 + 0.8)/2 = 0.7

dog : (0.6 + 0.3)/2 = 0.45

while = 0

think = 0.7

saw = 0.5

used by UCS used by Weighted-UCS
<latexit sha1_base64="DGSD5sfvitVvbRtYDjCT97rpYuY=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWakqMuiG5cV7AM6Q8mkmTY0kxmSTKEM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OkAiujeN8o9LG5tb2Tnm3srd/cHhUPT7p6DhVlLVpLGLVC4hmgkvWNtwI1ksUI1EgWDeY3Od+d8qU5rF8MrOE+REZSR5ySoyVPC8iZhyE2XQ+4INqzak7C+B14hakBgVag+qXN4xpGjFpqCBa910nMX5GlOFUsHnFSzVLCJ2QEetbKknEtJ8tMs/xhVWGOIyVfdLghfp7IyOR1rMosJN5Rr3q5eJ/Xj814a2fcZmkhkm6PBSmApsY5wXgIVeMGjGzhFDFbVZMx0QRamxNFVuCu/rlddK5qrvX9cZjo9a8K+oowxmcwyW4cANNeIAWtIFCAs/wCm8oRS/oHX0sR0uo2DmFP0CfP38gkf8=</latexit>vi
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Figure 2: On the left, we depict the vi corresponding to the sentence I ate food used by UCS. On the
right we show the vi corresponding to the sentence I think I saw your dog chase my dog used by

Weighted-UCS

UCS Weighted-UCSTake token confidence into account

Consensus 
Weighted-UCS

Add mean logprobs

Figure 3: Flow diagram showing how we progress
from UCS to Consensus−WUCS.

Note that for k = 1, GCS and GCSranked are
equivalent. We demonstrate in Section 4.4 that
GCSranked

Sim performs significantly better in ranking
for pass@k where k > 1 than raw GCS. This ap-
proach leads to a more efficient utilization of the
ranked generations, improving the overall effective-
ness of the code generation task.

4 Results

We conducted experiments utilizing the Codex
family of models, specifically Codex-davinci-001,
Codex-davinci-002, and Codex-Cushman as well as
Llama family of models. In addition we also eval-
uated GPT-J for Xsum, MiniF2F, and WMT14.
Unfortunately due to the unexpected shutdown
of the OpenAI API, we were unable to obtain
results for Codex-001 and Codex-Cushman on
the Xsum, MiniF2F, and WMT14 datasets. We
evaluated these models on a range of datasets
for code generation tasks – in particular on the
HumanEval (Chen et al., 2021), MBPP, MBPP-
sanitized (Austin et al., 2021) datasets for code
generation. For the autoformalization of MiniF2F
to Isabelle, we used the dataset provided by (Jiang
et al., 2022a). For text summarization, we utilized
the Xsum dataset (Narayan et al., 2018). For ma-
chine translation, we used the WMT14 French to
English and German to English datasets (Bojar
et al., 2014).

Our primary evaluation metric for code genera-
tion is ranked pass@1 where we rerank a sample set
of generations and assess whether the top-ranked
generation successfully passes all unit tests. We
also evaluate with ranked pass@k for k > 1. For

the MiniF2F autoformalization task, we measure
the quality using the BLEU score, following Wu
et al. (2022). For Xsum we use the Rouge-2 and
Rouge-L scores for evaluation. For all code genera-
tion datasets, we sample 125 generations from the
models which serves as our dataset for the different
experiments For MiniF2F and Xsum, we sample 50
generations from the model. Unless otherwise spec-
ified, for all experiments, we use the Codex-davinci-
002 model. Following (Shi et al., 2022; Zhang et al.,
2022), we perform bootstrap sampling 50 times
with a sample size of 25 to generate the results.

Our baselines are Random selection, Ranking
by mean log probability, Ranking using Medoid
in our confidence weighted unigram space, and for
code generation - ranking using the Coder Reviewer
Ranker method (Zhang et al., 2022). A full de-
scription of the datasets, experiments, and
the baselines is in the Supplement. We also
have several additional results in the Supple-
ment.

4.1 GSC scores are higher for correct
answers

As a sanity check, we first evaluate whether the GSC
scores are indeed higher for the correct generations 1

The results are in Table 8 in the Supplement. The
ratios are consistently > 1 for all models except for
the UL2-20B model for which they still remain very
close to 1.

4.2 UCS shows strong improvements for
Code Generation

As shown in Tables 1 and 3 (Supplement), the
application of the UCS, WUCS, and Consensus-
WUCS methods leads to substantial improvements
in the accuracy as well as mean reciprocal rank of
code generation across various models and datasets.

In the HumanEval dataset, UCS variants consis-
tently outperform the traditional methods, namely
Random and mean log probability. For instance,

1We used the generations in (Li et al., 2022b) pro-
vided by them as part of their Supplementary Material.
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the Codex002 model exhibits a substantial accu-
racy improvement from 0.435 (Random) to 0.568
(Consensus-WUCS). Even the less performing mod-
els, such as Llama-13B and Llama-30B, exhibit
noticeable accuracy gains when our proposed meth-
ods are employed.

Similar trends are observed in the MBPP-S and
MBPP datasets. UCS, WUCS, and Consensus-
WUCS consistently improve the accuracy across all
models. Specifically, the Consensus-WUCS method
consistently dominates Random and mean log prob-
ability ranking in all categories, and almost al-
ways outperforms WUCS as well. Of particular
note is the performance of WUCS, which surpasses
the mean log probability method in every model
and dataset combination. In fact it is the best
method for all dataset and model combinations ex-
cept LLama-13B model for MBBP and MBPP-S.
UCS, which does not require token probabilities and
relies only on the generations, also demonstrates a
consistent superiority over the random reranking.

Consensus-WUCS and WUCS are also almost al-
ways better than the Medoid based approach with
Consensus-WUCS outperforming it 13/15 times. A
discussion of the mean reciprocal ranking perfor-
mance is deferred to the Supplement but the trend
is similar.

4.3 UCS shows consistent improvements
for non-coding tasks

Next, we evaluated the performance of UCS,
WUCS, and Consensus-WUCS on the non-coding
tasks. In the case of the MiniF2F dataset, evaluated
using the BLEU metric, Consensus-WUCS outper-
forms all other methods for the Codex002 model
except for Medoid. For the Llama-13B, Llama-30B,
and GPT-J models, the top performers are closely
matched, with Consensus-WUCS, WUCS, and UCS
all delivering competitive scores.

Turning to the Xsum dataset, we see a similar
trend. For the Rouge-2 metric, Consensus-WUCS
achieves the highest score for the Codex002 and
both LLama models, and ties for the best score
with WUCS for the Llama-13B model. In the
GPT-J model, UCS performs slightly better than
the WUCS and Consensus-WUCS. Nonetheless,
all these methods surpass Random, and Mean-
logp reranking methods and almost always surpass
Medoid.

With the Rouge-L metric, UCS variants show
the best performance for the all models except
Codex002. For the Llama-30B model, WUCS and
Consensus-WUCS share the top spot, while UCS
achieves the best score for the GPT-J model. Once
again, these methods generally outperform Medoid,
Random, and Mean-logp reranking methods.

For the WMT14 translation dataset, Conensus-
WUCS is the best for all models and both tasks
except for the German to English Llama-13B model.

WUCS also shows strong performance, matching
Consensus-WUCS score on 3 model-task combina-
tions. UCS is also consistently better than random
selection.

In total, Consensus-WUCS gets the top spot in
12/20 comparisons, WUCS in 7/20, UCS in 3/20,
and Medoid in 5/20 primarily due to MiniF2F.

4.3.1 Cause of smaller performance
improvements for non-coding tasks

We took the top 3 and bottom 3 generations for
coding and non-coding tasks and computed the un-
igram overlap within each set. The results are in
Table 7 (Supplement). The ratio of the overlap for
coding tasks was a lot higher than that for non-
coding tasks giving a hint as to why we see a much
stronger improvement for coding tasks. This means
that if a unigram is not shared between two gen-
erations, that gives a lot more information about
whether two generations are semantically far apart
for coding tasks versus non-coding tasks. Thus com-
puting the unigram overlap statistic is a lot more
informative for code generation tasks vs non-code
generation tasks which could be the reason behind
the smaller gains for non-coding tasks. However we
want to note that while the gains are smaller, they
are similar to gains that that past published papers
report for such metrics and importantly, the gains
are robust across different tasks and models.

4.4 GCSranked comparison

In Figure 4 (Supplement), we show how the model
performance changes as k for pass@k increases.
We compare GCS vs GCSranked. While the perfor-
mance of GCS declines quickly, GCSranked main-
tains good performance even at larger values of k
for all code generation datasets.

5 Related Work

In Mizumoto and Matsumoto (2016), they use a
perceptron based reranker to rerank model gener-
ated translations. SummaReranker (Ravaut et al.,
2022) use mixture of experts training to train their
reranker to optimize for multiple automated evalua-
tion metrics (like ROUGE or BLEU score) at once.
PairReranker (Jiang et al., 2022b) uses automated
evaluation metrics to rank model generations and
then select the top few best and worse and train
a model to classify the better summary between
a pair of summaries. All of the previous rerank-
ing methods however require training an auxiliary
model. More detailed related work is described in
the Supplement.

6 Conclusion

We analyze the self-consistency method for prob-
lems that have fixed answers and develop a frame-
work to extend it to open-ended generations. We
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No logprobs used
Random UCS

HumanEval
Codex002 0.435 0.539
Codex001 0.345 0.402
Code-Cushman 0.311 0.353
Llama-13B 0.142 0.177
Llama-30B 0.207 0.257

MBPP-S
Codex002 0.55 0.572
Codex001 0.494 0.523
Code-Cushman 0.436 0.457
Llama-13B 0.247 0.261
Llama-30B 0.325 0.253

MBPP
Codex002 0.536 0.58
Codex001 0.475 0.505
Code-Cushman 0.305 0.386
Llama-13B 0.185 0.183
Llama-30B 0.262 0.276

logprobs used
Medoid Mean-logp WUCS Consensus-WUCS

0.437 0.539 0.558 0.568
0.354 0.408 0.426 0.445
0.335 0.355 0.373 0.381
0.17 0.17 0.187 0.192
0.225 0.228 0.263 0.267

0.583 0.57 0.580 0.589
0.532 0.515 0.535 0.546
0.467 0.456 0.472 0.488
0.284 0.27 0.266 0.277
0.357 0.348 0.363 0.373

0.563 0.512 0.587 0.594
0.505 0.503 0.520 0.525
0.343 0.319 0.405 0.420
0.202 0.197 0.195 0.199
0.276 0.273 0.287 0.294

No logprobs used
Random UCS

MiniF2F
Codex002 55.8 55.6
Llama-13B 24.3 24.6
Llama-30B 26 25.6
GPT-J 24.2 24.7

Xsum Rouge2
Codex002 19.7 21
Llama-13B 9.2 10.4
Llama-30B 10.7 12.1
GPT-J 6.5 7.1

Xsum RougeL
Codex002 33.9 34.8
Llama-13B 19.6 20.9
Llama-30B 21.4 23
GPT-J 17.2 18

WMT14 French →
English BLEU

Codex002 34.7 36.2
Llama-13B 4.3 4.4
Llama-30B 3.9 4
GPT-J 3.8 3.9

WMT14 German →
English BLEU

Codex002 30.7 31.6
Llama-13B 3.4 3.5
Llama-30B 3.7 3.7
GPT-J 3.1 3.3

logprobs used
Medoid Mean-logp WUCS Consensus-WUCS

58.2 52.9 55.8 56.2
24.9 24.2 24.7 24.8
26.4 25.6 25.7 25.7
24.8 24 24.8 24.8

21.8 21.4 21.5 21.9
10.3 10.3 10.6 10.6
12 12.2 12.2 12.3
6.9 6.6 7 6.9

36.3 35.1 35.3 35.6
20.7 20.3 21 20.9
22.7 22.8 23.1 23.1
17.5 16.6 17.8 17.5

35.9 36.6 36.5 37
4.2 4.5 4.5 4.6
4 4 4.1 4.1

3.8 3.9 4 4

31.2 33.2 32.1 34
3.1 4 3.5 3.6
3.5 3.9 3.8 3.9
3.2 3.2 3.3 3.3

Table 1: Accuracy of generated code for HumanEval, MBPP, MBBP-S as well as performance on Xsum,
MiniF2F, WMT14 French to English, and WMT14 German to English datasets. All scores are out of 100.

Best results are colored in first, second. Italics for best in category (logprobs used vs not).

establish connections between our framework and
other code generation reranking functions and prove
that if the optimal generation is present in our gen-
eration set, we can always recover it as well as prove
bounds on how close we can get to the optimal gen-
eration under certain settings.

Our simulated tests reveal our ability to consis-
tently recover the best or close to best possible gen-
eration in the set. We introduce several lightweight
similarity functions and show that they give strong
and consistent improvements over state of the art
baselines. Notably, our Unigram Consistency Score
(UCS) function, the most minimal of our similarity
functions, requires only access to raw generations to
effectively rerank. We show that the UCS variants
uniformly enhance the performance of code and text
generation and are competitive with strong base-
lines like Coder Reviewer Reranker despite them

needing a lot more compute resources as well as
time. For code generation, we also leverage the
fact that our reranking metric is based on pairwise
similarity to improve performance for pass@k for
k > 1. Additionally, we conduct multiple variations
on our primary experiments to ascertain the robust-
ness and reliability of our performance. We also
find that similar to self-consistency, increasing the
number of generations improves the performance
of the model.

7 Broader Impact and Limitations

When the diversity of correct answers is higher,
then the unigram overlap statisic may not well
capture the notion of semantic similarity and more
sophisticated similarity measures might be needed.
As a paper that tries to improve the performance of
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Large Language Models (LLMs), it inherits the risk
and rewards of LLMs in general. LLMs have shown
themselves highly relevant and useful for a number
of tasks but in particular code generation. Our
method shows particularly strong improvements for
that task and thus we hope will have a broad impact.
Nevertheless, we did not evaluate our method on
whether it increases its propensity to select biased
or toxic generations which we leave to future work.
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Supplementary Material

A Proofs

A.1 Proof of Theorem 2.1
Proof. This is true by definition for k = 1. For
k > 1, let us assume that the number of categories
L = 3. If the best generation g agrees with v on
only one of the elements, then wlog, let that be the
1st one. Then the agreement score is (p1 + p′2)/2
where p′2 < p2. Let the agreement score for a
generation g′ that does not agree at all with v be
(p′1+ p′′2)/2. However if for example p1 = 0.34, p′1 =
0.32, p′2 = 0.01, p′′2 = 0.32, then g′ will be selected
over g.

A.2 Proof of Theorem 2.2
Proof. It is true by assumption for k = 1. As-
sume it is true for k = t. Then that means
that given the self consistency assumption that
at(ub,v) is the highest possible where at is the
agreement until k = t. Then for t + 1, we know
that

∑
i ̸=b I(u

t+1
b = ut+1

i is the highest (again by
self-consistency assumption). Thus at+1 is also the
highest proving the theorem.

A.3 Proof of Theorem 2.3
Formally, let uj

i ∼ Bernoulli(pj). Let b =

argmaxi
∑j

pj · uj
i + (1 − pj) · (1 − uj

i ) =

argmaxi
∑j

uj
i · (2pj − 1) (i.e. the sequence se-

lected by our method). Then we want a bound on
E[
∑k

j u
j
b].

Proof. Let qi =
∑

j u
j
i . As all are iid, E[qi] =∑

j pj . We can upper bound this by upper bound-
ing E[maxi qi]. Note that uj

i is subgaussian with
parameter 1/2 as it’s bounded in [0, 1]. Thus
qi is subgaussian with parameter

√
k/2. Thus

E[max qi − E[qj ]] ≤
√

k logn
2 =⇒ E[max qi] ≤

∑
i pi +

√
k logn

2 where n is the number of genera-
tions (Wainwright, 2019)

B Simulation results

We setup our simulation as follows. Let d be the
number of predicates, n the number of generations,
and l the number of categories. Then for each pred-
icate, we uniformly at random sample a categorical
distribution and then generate ui from that distri-
bution. We then apply our criterion of picking the
ub that has the highest average fractional agree-
ment with all other ui and measure (1) the % of
times we are able to retrieve the generation that has
the best agreement with v (2) the % agreement ub

has with the best possible generation out of the set.
We vary d, l between 2 and 50, and n between 25
and 250. All our results are based on 1000 samples.
The results are in Figures 5–7 and 8–10.

For the first metric, we are able to retrieve the
best generation a very high fraction of the time
when l is < 5 even when d goes to higher values.
Even when l is larger, we are still able to retrieve
the best generation a non-trivial fraction of times
– and notably our performance does not degrade
much as n goes from 25 to 250.

Turning our attention to the second metric, we
are able to consistently get a generation close to the
best generation. This is especially true for small l
where even when d increases to large values, we are
able to get close to 100% agreement with the best
generation. Even at high values of l however, we get
relatively good agreement with the best generation –
especially compared to picking a random generation
– a heuristic we consistently beat.

C Detailed Related Work

C.1 Finetuning on model generations

There is a large body of work that tries to improve
model generation quality by refining the underlying
model itself. In Holtzman et al. (2019), they find
that neural text generations produce high frequency
words too often and low frequency words not often
enough. Inspired by this in Welleck et al. (2019),
they add an auxiliary objective that minimizes the
log likelihood of tokens immediately preceding the
current token. In Liu and Liu (2021), they generate
sample summaries from the model, rank them, and
then finetune on the sampled summaries with rank-
ing loss. In Su et al. (2022) they use a contrastive
loss to push token representations of distinct tokens
apart from each other. In Li et al. (2015), they use
the maximum mutual information criterion to de-
sign an objective function that promotes diversity
in text generation. Zhang et al. (2018) extend that
framework by leveraging adversarial training.

C.2 Advanced decoding

There are also several advanced decoding methods
to improve model generation quality. In (Vijayaku-
mar et al., 2016), the log probabilities of tokens
are adjusted depending on their similarity to previ-
ously chosen words. However this method requires
generations to be done jointly with coordination.
This can cause significant infrastructure and latency
overhead if the model itself is distributed across
multiple GPUs or machines which is far from un-
usual for LLMs. In (Li et al., 2022a) they use an
auxiliary LLM model to contrast the token prob-
abilities against the primary LLM and use them
for decoding. In (Su et al., 2022), they have a
degeneration penalty to penalize generation of al-
ready generated tokens. A significant caveat of all
such methods is that they also require access to
the decoding procedure of the LLM. You cannot
just take the generations from an LLM API. Our
approach also bears some similarity to Mangu et al.
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Symbol Meaning

v Predicate vector

ui Predicate vector for the ith generation

a(ui,uj) Fraction of elements on which ui,uj agree

Sim(i, j) Similarity function value for generations i, j

GCSSim Generalized Consistency Score using Similarity Function

Sim = 1
M−1

∑M
j=1,j ̸=i Sim(i, j)

GCSranked
Sim GSCSim ranking function with GCSranked

sim = 1
n−1 (

∑
j /∈Sk′ sim(i, j)−∑

j∈Sk′ sim(i, j))

UCS Unigram Consistency Score function

WUCS Weighted Unigram Consistency Score function

Consensus−WUCS Mean log probability score of generation + Weighted Unigram Consistency Score function

pass@k Whether there is a passing generation after generating k samples

Table 2: Symbol table

Medoid Mean-logp UCS WUCS Consensus-WUCS

HumanEval
Codex002 0.515 0.604 0.615 0.630 0.633
Codex001 0.432 0.484 0.488 0.507 0.517
Code-
Cushman

0.4 0.428 0.434 0.451 0.454

Llama-13B 0.231 0.221 0.242 0.248 0.25
Llama-30B 0.29 0.286 0.324 0.327 0.327

MBPP-S
Codex002 0.64 0.626 0.67 0.643 0.647
Codex001 0.594 0.575 0.594 0.599 0.605
Code-
Cushman

0.527 0.521 0.531 0.541 0.549

Llama-13B 0.355 0.331 0.340 0.344 0.347
Llama-30B 0.425 0.408 0.337 0.436 0.438

MBPP
Codex002 0.631 0.549 0.651 0.655 0.659
Codex001 0.574 0.58 0.587 0.596 0.598
Code-
Cushman

0.435 0.29 0.479 0.494 0.503

Llama-13B 0.269 0.3 0.261 0.305 0.304
Llama-30B 0.346 0.332 0.351 0.358 0.359

Table 3: Mean reciprocal rank of generations for HumanEval, MBPP, MBBP-S. Best results are colored
in first, second.
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Figure 4: pass@k for k > 1 for HumanEval, MBPP, MBPP-S

(2000) where they compute a consensus hypothesis
by doing multiple alignment of sentence lattices.

C.3 Code generation reranking

There have also been multiple reranking propos-
als for code generation in particular. A unique
characteristic of code (as oppposed to text) is that
code can be executed. Thus several methods have
tried to exploit that property for reranking. MBR-
Exec (Shi et al., 2022) and AlphaCode (Li et al.,
2022b) both execute the generated codes on unit
tests. They rank the different codes according to
how many other codes are semantically equivalent
to them (i.e. have the same results on the given
unit tests). CodeT (Chen et al., 2022) uses LLMs to
generate both code and candidate unit tests. They
then find sets of generated codes such that the prod-
uct of the size of the set and the size of the unit test
set the codes agree on is maximized. More recently,
Coder-Reviewer Ranker (Zhang et al., 2022) applies
the well known Maximum Mutual Information ob-
jective (Li et al., 2015) to code generating LLMs
by using the strong few shot and zero prompting
capabilities of LLMs to obtain the query likelihood.

D Experimental baselines
As mentioned earlier, we could not obtain Codex-
001 and Codex-Cushman results on Xsum and
MiniF2F due to the unexpected API shutdown.
For the BLEU and Rouge-2 metrics, we report the
values divided by 100. In terms of our baselines,
we have

1. Random selection - we randomly select a
generation from the set of generations

2. Ranking by mean log probability - we take
the average log probability across the tokens in
the generation and select the generation with
the highest mean log probability

3. Ranking using Medoid - we take the gen-
eration with the lowest mean distance to all
other generations in our confidence weighted
unigram space as used in WUCS.

4. Coder Reviewer Ranker - This method has
two variants – Normalized Reviewer (NR), and
Normalized Coder Reviewer (NCR). NR com-
putes the mean per token log p(x|y), where y
is the generation and x is the prompt, and
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then ranks based on this metric. On the other
hand, NCR merges the mean log probabil-
ity ranking with NR, ranking according to
log p(x|y) + log p(y|x). As the state of the art
in code reranking, these methods represent a
strong baseline.

E Comparison with Coder-Reviewer
Ranker

The comparison with the Code Reviewer Ranker
baseline, specifically with the Normalized Reviewer
(NR) and Normalized Coder-Reviewer (NCR) vari-
ants, is in Table 4. As the state of the art in
code reranking, these methods represent a strong
baseline. Our results demonstrate that the WUCS
and Consensus-WUCS methods are highly compet-
itive. Consensus-WUCS consistently outperforms
NR and often surpasses NCR as well, despite the
fact that NR and NCR require a second forward
pass, which doubles the inference cost and adds
latency overhead.

In the HumanEval dataset, Consensus-WUCS
yields the highest accuracy for the Llama-13B and
Llama-30B models. Similarly, in the MBPP-S
dataset, Consensus-WUCS delivers superior perfor-
mance for the Llama-13B and Llama-30B models,
and closely matches the NCR for Codex models. In
the MBPP dataset, the Consensus-WUCS method
ranks as the best for Code-Cushman, Llama-13B,
and Llama-30B models.

Notably in 40% of the experiments (6 out of 15),
Consensus-WUCS outperforms all other methods,
including the highly competitive NCR. Further-
more, Consensus-WUCS ranks second in 8 out of
the 15 experiments, reinforcing its strong perfor-
mance across diverse models and datasets.

Our results present evidence of the effectiveness
of WUCS and Consensus-WUCS, which hold their
own against much more heavyweight state-of-the-
art methods and frequently deliver superior perfor-
mance.

F Improvements are consistent across
different generation temperatures

In Figure 11 (Supplement) we show how UCS
reranking behaves for MBPP as the decoding sam-
pling temperature increases. While accuracy can
vary across temperatures, the ranking of the differ-
ent methods remains consistent. Consensus-WUCS
dominates in terms of accuracy for most of the tem-
perature regimes until you hit the temperature of
1. Importantly, for lower temperatures where we
get the best results, Both Consensus-WUCS as well
as WUCS get the best accuracy. While just UCS
is on par with mean log-probability ranking until
a temperature of 0.4 after which it falls behind,
we note that UCS does not use any probability
information about the generation and thus a fair
comparison would be to that of random ranking

which it is consistency better than for almost the
entire temperature range.

G Varying the maximum n-gram length
does not change results

As mentioned in Section 3, UCS only considers uni-
grams. Here we consider Ngram Consistency Score
– the more generalized version. To account for the
fact that a sentence will have fewer n-grams, the
more n increases, we multiply p(ti,kj ) by |gi|

|gi|−|ti,kj |−1

where ti,kj is now the kth appearance of the jth
n-gram in the ith generation. In Figure 12 (Sup-
plement), we show how the ranking behaves as the
n increases. As can be seen, while there is a slight
improvement going from n = 1 to n = 4, the im-
provement flattens after that point. 4-grams is also
what is conventionally used when computing BLEU
score so it is interesting that the same value ends
up being optimal in the drastically different setting
of code generation with each word being a token
instead of an English word.

H Increasing number of samples maintains
reranking strength

In Figure 13 (Supplement), we show how the perfor-
mance changes for MBPP and Xsum as the number
of samples increases. All variants of UCS are able
to maintain accuracy (although Consensus-WUCS
sees a drop in the beginning for Xsum but main-
tains its performance subsequently) even as the
number of samples increases from 5 to 100. Mean-
while, the mean log probability ranking drastically
declines in terms of accuracy, quickly falling below
even random selection. This is likely due to the
tendency of mean log probability ranking to choose
degenerate sequences (Holtzman et al., 2019) which
UCS variants seem to be able to avoid.

I Ada model embeddings also give a boost

To understand how generalizable the intuition be-
hind the GCS metric (as opposed to the UCS met-
ric) is for other similarity functions, we took the
generations and used the text-ada-embedding-002
model by OpenAI to generate embedding vectors for
the generations. We then used cosine similarity be-
tween the generations as the similarity function and
used GCSCosine Similarity to rank. The results are in
Table 5. Using OpenAI embeddings as well results
in improved performance over Random selection as
well as mean log probability ranking validating our
intuition that choosing the generation that is on
average, the most similar to all other generations is
a good ranking metric. That said, this particular
similarity function underperforms UCS, especially
for code generation so we did not investigate it
further.
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WUCS Consensus-WUCS N. Reviewer N. Coder-Reviewer

HumanEval
Codex002 0.558 0.568 0.524 0.576
Codex001 0.426 0.445 0.42 0.482
Code-Cushman 0.373 0.381 0.358 0.385
Llama-13B 0.187 0.192 0.164 0.181
Llama-30B 0.263 0.267 0.219 0.241

MBPP-S
Codex002 0.58 0.589 0.559 0.595
Codex001 0.535 0.546 0.509 0.55
Code-Cushman 0.472 0.488 0.455 0.512
Llama-13B 0.266 0.277 0.228 0.266
Llama-30B 0.363 0.373 0.302 0.325

MBPP
Codex002 0.587 0.594 0.631 0.592
Codex001 0.52 0.525 0.532 0.545
Code-Cushman 0.405 0.42 0.398 0.339
Llama-13B 0.195 0.199 0.185 0.2
Llama-30B 0.287 0.294 0.289 0.283

Table 4: Comparison with Coder-Reviewer Reranker. Best results are colored in first, second.

Random Mean-logp GSCAda Consensus-WUCS
HumanEval 0.437 0.533 0.487 0.568
MBPP 0.533 0.416 0.579 0.594
MBBP-S 0.549 0.568 0.601 0.589
MiniF2F (BLEU) 0.558 0.556 0.584 0.562
Xsum (Rouge-2) 0.197 0.214 0.219 0.219

Table 5: Performance of cosine similarity of ada embedding as the similarity function. Metric is accuracy
for HumanEval, MBPP, MBPP-S and BLEU for MiniF2F. Best results are colored in first, second.

J Normalizing inner product degrades
performance

Neural generation models are well known to gener-
ate repetitive sequences (Zhang et al., 2022; Welleck
et al., 2019). In (Welleck et al., 2019), they mod-
ify the standard log-likelihood object for language
models to minimize the probability of tokens imme-
diately preceding the current token. This effectively
pushes the model to generate unique new tokens
and they show significant improvements in their
model after they do this. If we normalize the inner
product, then we would be effectively "canceling
out" the contribution to the similarity score by
having more unique tokens.

We evaluated the effect of normalizing the in-
ner product by the vector norms. To understand
better whether our performance is just an effect
of selecting longer and more diverse sequences or
whether the similarity metric itself is useful as well,
we ran ablations where we evaluated ranking based
on the longest sequence, as well as based on mean
across the elements of vi as defined in Section 3
– which takes into account the sequence diversity.
The results are in Table 6 in the Supplement. Nor-
malization results in a decline in performance. Fur-
thermore neither ranking by the longest sequence
nor ranking by sequence diversity is sufficient to give
the results we see as neither result in a consistent
improvement even against the Random selection
baseline.
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Random WUCS WUCS-normalized Longest Most Diverse

HumanEval
Codex002 0.435 0.558 0.462 0.441 0.51
Codex001 0.345 0.426 0.382 0.338 0.369
Llama-30B 0.207 0.263 0.235 0.208 0.215

Random WUCS WUCS-normalized Longest Most Diverse

MBPP
Codex002 0.536 0.587 0.576 0.529 0.52
Codex001 0.475 0.52 0.517 0.475 0.457
Llama-30B 0.262 0.287 0.278 0.263 0.245

Random WUCS WUCS-normalized Longest Most Diverse

Xsum
Codex002 0.197 0.215 0.211 0.197 0.188
Llama-30B 0.107 0.122 0.12 0.107 0.116
GPT-J 0.065 0.07 0.07 0.065 0.069

Table 6: Impact of normalization. Best results are colored in first, second.
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Figure 5: The above figures show what percentage of the time we are able to retrieve the best generation
out of the set of generations that we have. Here n is the number of generations, d is the number of

predicates, and l is the number of values the predicates can hold. For these figures, l is held fixed at 2
(binary predicates)
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Figure 6: The above figures show what percentage of the time we are able to retrieve the best generation
out of the set of generations that we have. Here n is the number of generations, d is the number of

predicates, and l is the number of values the predicates can hold. This is Part I of two figures.
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Figure 7: The above figures show what percentage of the time we are able to retrieve the best generation
out of the set of generations that we have. Here n is the number of generations, d is the number of

predicates, and l is the number of values the predicates can hold. This is Part II of two figures.
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Figure 8: The above figures show what % the best generation as per the highest fractional agreement
heuristic and a randomly selected generation agree with the best generation of the set. Here n is the
number of generations, d is the number of predicates, and l is the number of values the predicates can

hold. For these figures, l is held fixed at 2 (binary predicates)
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Figure 9: The above figures show what % the best generation as per the highest fractional agreement
heuristic and a randomly selected generation agree with the best generation of the set. Here n is the
number of generations, d is the number of predicates, and l is the number of values the predicates can

hold. This is Part I of 2 figures.
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Figure 10: The above figures show what % the best generation as per the highest fractional agreement
heuristic and a randomly selected generation agree with the best generation of the set. Here n is the
number of generations, d is the number of predicates, and l is the number of values the predicates can

hold. This is Part II of 2 figures.
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Figure 11: Accuracy for MBPP as the decoding sampling temperature increases.
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Figure 12: Accuracy for MBPP as the n in n-gram increases.
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HumanEval MBPP Xsum MiniF2F WMT-14 French To English WMT14 German to English
Ratio 1.95 1.34 1.21 1.08 1.07 1.08

Table 7: Diversity ratio between best and worst generations from Codex002 model for various datasets

Aqua Multiarith StrategyQA

Codex001 +2.8% +4.4% +2.5%
Codex002 - +7.1% +3.3%
LaMDA-137 +1.9% +4.4% +3.9%
UL2-20B -1% -0.1% -0.1%

Table 8: Ratio of average GSC score for correct
generations by average GSC score for incorrect

generations.
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Figure 13: Accuracy for MBPP and Rouge-2 for
Xsum as the number of generations increase.
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