
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6942–6959
August 11-16, 2024 ©2024 Association for Computational Linguistics

Harnessing the Power of Large Language Models
for Natural Language to First-Order Logic Translation

Yuan Yang1, Siheng Xiong1, Ali Payani2, Ehsan Shareghi3 & Faramarz Fekri1

1Georgia Institute of Technology, 2Cisco, 3Monash University
{yyang754@,sxiong45@,faramarz.fekri@ece.}gatech.edu

apayani@cisco.com ehsan.shareghi@monash.edu

Abstract

Advancements in logical reasoning, utilizing
LLMs to convert natural language into logical
symbolism, combined with the use of external
theorem provers, have repositioned the sym-
bolic approach as a central point of interest.
The main challenge within this paradigm lies
in the LLMs’ capability to accurately trans-
late natural language (NL) statements into
first-order-logic (FOL) expressions. Although
LLMs have shown notable success, there re-
mains a gap in understanding the limitations
and challenges they encounter in NL-FOL
translation. This is primarily due to the ab-
sence of datasets and evaluation test beds at
the required fine-grained level. We present
MALLS, a dataset of 28K diverse and ver-
ified sentence-level NL-FOL pairs collected
from GPT4. We utilize a combined strategy
of FOL rule parsing, human annotation, and
automatic filtering to ensure quality. We also
present LOGICLLAMA, a LLaMA2-7B/13B
fine-tuned on MALLS for NL-FOL translation,
which can be used standalone or to correct pre-
viously generated rules by GPT3.5 after being
further fine-tuned via a novel reinforcement
learning with human feedback (RLHF) frame-
work. We benchmark a wide range of LLMs
on MALLS and previous datasets, highlight-
ing weaknesses in them in NL-FOL translation
and demonstrating the advantages of MALLS.
We also show that LOGICLLAMA achieves
GPT4-level performance and can generalize to
other datasets. Project repo is available here.

1 Introduction

The traditional logic-based approaches to reason-
ing (Bos and Markert, 2005; Zettlemoyer and
Collins, 2005; Kwiatkowksi et al., 2010), once re-
garded as foundational for many core NLP tasks,
lost popularity due to their limited scalability and
coverage. The rise of end-to-end deep neural net-
works has garnered significant attention because

of their impressive downstream performance (Sel-
sam et al., 2018; Wang et al., 2021), although
at the cost of losing interpretability. The re-
cent remarkable progress of large language mod-
els (LLMs) has revitalized interest in logic, plac-
ing it once again at the forefront of reasoning. One
straightforward approach to harness the power of
LLMs such as GPT4 (OpenAI, 2023) is to first
translate natural language (NL) statements (e.g.,
premises and conclusions in textual entailment
task) to first-order logic (FOL) formula via in-
context learning, and then pass the symbolic forms
to Symbolic Mathematical Theory (SMT) solvers.
This approach has significantly surpassed the per-
formance of LLM-only methods such as Chain-
of-Thought (Wei et al., 2022) and has established
new state-of-the-art for complex deductive reason-
ing tasks (Pan et al., 2023; Ye et al., 2023; Olaus-
son et al., 2023).

Despite the success of this new promising direc-
tion, very little is understood about the difficulties
current LLMs face in the NL-FOL translation task
itself. This is mainly due to the absence of fine-
grained curated data of NL statements and their
corresponding FOL, with controlled complexity
and diversity that enables a categorical study of the
capabilities and shortcomings of LLMs in trans-
lation. This is crucial to understand what exact
kinds of complexity the model builders should tar-
get to improve. Annotating the FOL rules for
NL statements is expensive and requires domain
expertise. Most of the existing logic reasoning
datasets do not have parallel FOL annotations.
LogicNLI (Tian et al., 2021) and FOLIO (Han
et al., 2022) are the few exceptions that provide
NL-FOL pairs with sentence-level FOL annota-
tion (Table 1). However, LogicNLI pairs are syn-
thetically generated from a few templates, which
do not reflect real-world commonsense, whereas
FOLIO pairs suffer from NL-FL misalignment and
are too small for sufficient fine-tuning.

6942

https://github.com/gblackout/LogicLLaMA

Dataset Source
#NL-FOL

pairs
NL FOL

Vocab
size

Avg.
#words

Mean
Perplexity

Avg.
#literals

∀ ∃ ¬ ∧ ∨ → ↔ ⊕

LogicNLI3 Synthetic 12K 2061 13.9 215.0 2.8 2783 5327 10230 6590 2373 8712 3288 0
FOLIO3 Expert 2K 5105 10.4 203.2 2.1 1111 182 421 631 167 1137 17 121

MALLS-test GPT4+Expert 1K
20959 15.7 51.7 4.6 27256 1738 3443 25209 5164 25212 1835 1777

MALLS-dev GPT4+Filter 27K

Examples

LogicNLI
NL: If someone is either not wet or not every, then he is not jealous and not sharp. FOL: ∃x(¬wet(x) ∨ ¬every(x))→ (¬jealous(x)
∧¬sharp(x)). Error: synthetic statement; does not reflect commonsense

NL: All guilty people are not tall. FOL: ∃xguilty(x)→ ¬tall(x). Error: synthetic statement; does not reflect commonsense

FOLIO

NL: Zaha Hadid is a British-Iraqi architect, artist and designer. FOL: British-IraqiArchitect(zahaHadid). Error: oversimplified
FOL; does not align with NL

NL: If people order takeout from delivery services often, then they grow their own fresh vegetables in their home garden. FOL: ∀x
(Takeout(x)→ Garden(x)). Error: oversimplified FOL; does not align with NL

MALLS

NL: A car must have a motor and wheels to be considered functional. FOL: ∀x Car(x) ∧ Functional(x)→ (HasMotor(x)∧
HasWheels(x))). Error: none

NL: A grocery store sells food and household items. FOL: ∀x∃y∃z(GroceryStore(x) ∧ Food(y) ∧ HouseholdItem(z) ∧ Sells(x, y)∧
(Sells(x, z)). Error: none

Table 1: Statistics of LogicNLI, FOLIO, and MALLS. MALLS consists of the largest set of verified NL-FOL pairs
that are more diverse and natural than prior works.

We present MALLS (large language Model
generAted NL-FOL pairS), a 28K real-world, di-
verse, and verified sentence-level NL-FOL pairs
collected from GPT4. Compared to prior
datasets (Table 1), MALLS enjoys better diver-
sity in terms of vocabulary, context, and com-
plexity and is the largest dataset to date in this
category, which provides sufficient samples for
evaluation and fine-tuning. To create MALLS,
we implement an adaptive pipeline that prompts
GPT4 for pairs with diverse context. Knowing that
GPT4 can generate misaligned FOL rules, we take
extra caution in verifying the generated pairs. We
verify the dataset with human annotation, identify
categorical mistakes made by the GPT4, and filter
the dataset from 34k to 28k. We further analyze
the type of errors GPT4 made, revealing categori-
cal areas of weakness in the latest LLMs.

On top of MALLS, we present LOGICLLAMA,
a LLaMA2-7B/13B model family (Touvron et al.,
2023) for NL-FOL translation fine-tuned with
LoRA (Hu et al., 2021). LOGICLLAMA can be
used for (1) directly translating NL to FOL as a
standalone translator and (2) can be used in combi-
nation with more powerful general-purpose mod-
els such as GPT3.5, where it serves a “correction
model” that corrects outputs from GPT3.5, which
we found yields better performance with a fraction
of the cost of GPT4 1. In particular, we propose a
novel data augmentation and reinforcement learn-
ing with human feedback (RLHF) framework that

1As of Feb 2024, GPT3.5 costs $0.002/1K tokens for
completion whereas GPT4 costs $0.06/1K.

trains LOGICLLAMA on the synthetically per-
turbed NL-FOL pairs using a FOL verifier as the
reward model, making LOGICLLAMA to achieve
GPT4-level performance.

We summarize our contributions as follows:
(1) We present MALLS, a 28K real-world, di-
verse, and verified sentence-level NL-FOL pairs
collected from GPT4, which, to the best of our
knowledge, is the largest dataset to date in this
category. (2) We also present LOGICLLAMA,
a LLaMA2-7B/13B model family fine-tuned on
MALLS, which, in the experiments, achieves
GPT4 level performance on NL-FOL translation
tasks on three benchmarks.

2 Related Work

NL-FOL translation. NL-FOL translation has
been a long-standing challenge in both NLP and
the formal logic literature. It is a critical task and
plays a central role in many real-world logic-based
AI systems and applications, such as natural lan-
guage theorem proving (Abzianidze, 2017), logic-
grounded natural language inference (NLI) (Bos
and Markert, 2005; Han et al., 2022; Pan et al.,
2023), logic-grounded QA (Wang et al., 2021),
controlled text generation (Poesia et al., 2023; Lu
et al., 2020). The lack of a high-performing trans-
lation model with wide data coverage is the main
obstacle for these systems to generalize to more
tasks.

Traditionally, NL-FOL translation is addressed
via rule-based methods (Abzianidze, 2017; Zettle-
moyer and Collins, 2005; Bos and Markert, 2005).

6943

Due to the complexity of natural language, these
methods are difficult to scale to real-world ap-
plications. Recently, there has been an increas-
ing interest in approaching this task via neural ap-
proaches (Lu et al., 2022; Cao et al., 2019; Hahn
et al., 2022; Wang et al., 2021; Singh et al., 2020;
Levkovskyi and Li, 2021), which gives rise to a
new paradigm of using LLMs for translation.

Recent works (Pan et al., 2023; Ye et al., 2023;
Olausson et al., 2023) have successfully used
GPT models for translation via in-context learning
(ICL). While they demonstrate impressive down-
stream task performance, it is crucial to study
how these LLMs perform in fine-grained cate-
gories. More importantly, GPT-based ICL meth-
ods come with several limitations: (1) As of Feb
2024, GPT-4 costs $0.06/1K tokens and can be ex-
pensive to run; GPT-3.5, while costs less, struggles
with complex translation (§5); (2) they are closed-
source and subject to constant updates, making it
difficult for privacy-sensitive use cases and repro-
ducing results for academic purposes; (3) they lack
extendability for future integration with down-
stream tasks such as NLI and QA. Therefore, is
it valuable to have small and open-source LLMs
with GPT-level performance while preserving pri-
vacy and extendability.

NL-FOL datasets. Most of the existing logic
reasoning datasets such as LogiQA (Liu et al.,
2020), RuleTaker (Clark et al., 2020), ReClor (Yu
et al., 2020) and text2log (Levkovskyi and Li,
2021), either do not provide sentence-level FOL
annotations, or the annotations are generated with-
out verification. Among them, LogicNLI (Tian
et al., 2021) and FOLIO (Han et al., 2022) are
closest to our work, which provides NL statements
with parallel FOL annotations. However, pairs in
LogicNLI are generated synthetically and share a
similar FOL template. FOLIO consists of real-
world expert-written pairs, but the size of 2K is
insufficient for fine-tuning an LLM. This work ex-
tends the prior work and proposes to collect NL-
FOL pairs from GPT4. As a result, MALLS has
collected 28K pairs that are more diverse in terms
of context and complexity. In experiments, we
evaluate LOGICLLAMA on MALLS as well as
on LogicNLI and FOLIO and demonstrate that
MALLS is of high quality and enables models to
generalize to other benchmarks.

3 MALLS

Creating a dataset of diverse NL statements with
faithfully aligned FOL annotations is crucial to
evaluating and fine-tuning LLMs for logic-based
reasoning. Existing datasets (Table 1) are either
synthetic or too small for such purposes. To this
end, we create the MALLS dataset by collecting
NL-FOL pairs from GPT4 which is considered to
be the most powerful LLM to date.

3.1 Prompt pipeline

To collect data from GPT4, we implemented
a prompt pipeline that dynamically adjusts the
prompts to ensure the diversity and validity of the
NL-FOL pairs. The pipeline consists of the fol-
lowing modules: (1) N-gram frequency counter;
(2) Prompter; and (3) FOL rule verifier.

N-gram frequency counter. During prompt-
ing, we keep track of the frequencies of the N-
grams in the entire NL statement corpus. Specif-
ically, we track 1- and 3-grams. Once the fre-
quency of a specific N-gram in the collected data
reaches the frequency threshold (500 and 250 re-
spectively), we will instruct GPT4 to not produce
any NL-FOL pairs including it. For example, “...
DO NOT involve concepts and terms (and the syn-
onyms) such as animal, food, ...”. The list of N-
grams in the instruction grows as more reach the
frequency threshold.

Prompter. A prompter assembles the prompts
generated from different modules (prompt table
shown in §A): (1) SYSTEM PROMPT: specifying
the basic requirements such as the syntax and
generation format. (2) FEW-SHOT EXAMPLES

PROMPT: consisting 5 NL-FOL pair examples
randomly sampled from the corpus. Initially,
pairs are sampled from the FOLIO dataset and
later on from the GPT4-generated ones (we
checked to ensure none of the FOLIO examples,
or close variations are leaked into the GPT4
generated NL-FOL pairs.). This diversifies the
prompts and leads to less similar examples. (3)
NEGATIVE N-GRAM PROMPT: instructing GPT4
not to involve frequent N-grams (introduced
earlier) in the generated NL-FOL pairs. (4) FOL
PROMPTS: generating prompts that specify the
desired form of FOL rules, i.e., the number of
variables and whether or not to include more
logic operators such as ⊕, ¬, and ∨ which we
found GPT4 tends to ignore in default generation.
These configurations are picked randomly every

6944

Figure 1: Snippet from the top 200 frequent FOL term
pairs in MALLS (for full version see Appendix A).
Many terms are associated with a wide range of other
terms, suggesting the rules are semantically diverse.

time the prompt is generated. (5) BREAK-DOWN

PROMPT: We found GPT4 by default tends to
make over-complicated predicates that absorb
important logical meanings. For example, “
NL: A fruit is considered ripe if it is ma-
ture and its color has changed from green to
red. ### FOL: ∀x(Fruit(x) ∧ Mature(x) ∧
ColorChangedToRed(x) → Ripe(x)). ”
The predicate ColorChangedToRed is com-
plicated and should be broken down into
“ColorBefore(x, y) ∧ ColorAfter(x, z) ∧
Green(y) ∧ Red(z)”. We detect long predicate
names and include a prompt encouraging the
model to break down the rules.

FOL rule verifier. GPT4 can sometimes gen-
erate syntactically invalid FOL rules. We imple-
ment a verifier that checks the syntax of the rules.
Specifically, we specify the context-free grammar
(CFG) of the expected FOL rule and parse the gen-
erated FOL with NLTK 2 CFG parser, and erase
those that could not be parsed (grammar and ex-
ample parse trees in §A).

3.2 NL-FOL alignment check
Apart from the syntax validity we also ensure FOL
rules align with the NL sentences. The straightfor-
ward approach is to check each pair manually as
that in FOLIO (Han et al., 2022). However, con-
ducting a full annotation is prohibitive for the size
of MALLS (x14 times larger) for an academic bud-
get. Instead, we employ a hybrid approach where
we first manually annotate a subset of MALLS,
identify the common error modes, and then imple-
ment a filtering module to filter those in the entire
set. We find this approach to be effective and in-
crease the correct ratio from 84.5% to 92.8%.

MALLS Annotation. We annotate a subset of
1K examples uniformly sampled from MALLS.
Each sample is rated with respect to a 3-point

2https://www.nltk.org/

Free Var. (32.7%) Nested Equiv. (30.7%)

NL: Children who are vaccinated against a disease
have a reduced risk of contracting that disease.

NL: A liquid is considered boiling if its temperature
is at or above its boiling point.

FOL: ∀x∀y(Child(x)∧
VaccinatedAgainst(x, y)→ ReducedRisk(x, y))

FOL: ∀x(Liquid(x)→ (Boiling(x)↔
TemperatureAtOrAboveBoilingPoint(x)))

Error: undefined free variable y Error: wrong usage of↔
Nested Impl. (18.0%) Aggressive Xor (1.9%)

NL: Drinking a lot of water and getting enough sleep
is good for your health.

NL: A guitar has strings, while a keyboard has keys.

FOL: ∀x(Person(x)→ ((DrinksALotOfWater(x)∧
GetsEnoughSleep(x))→ GoodForHealth(x)))

FOL: ∀x∀y(Guitar(x) ∧ Keyboard(y)→
(HasStrings(x)⊕ HasKeys(y)))

Error: unnecessarily nested Impl.;
redundant predicate Person

Error: NL does not imply that HasStrings contradicts
with HasKeys

Missing NL Info (15.1%) Other (1.6%)

NL: Ice cream melts when exposed to heat and
becomes solid when frozen.

NL: An athlete can be a professional if they are
paid for their performance.

FOL: ∀x(IceCream(x)→ (ExposedToHeat(x)⊕
Frozen(x)))

FOL: ∀x(Athlete(x) ∧ PaidForPerformance(x)→
Professional(x))

Error: "becomes solid" is missing in FOL Error: quantifier should be ∃

Table 2: Examples of different error types. The per-
centage (%) reported on each column denotes the share
of each specific error within the total errors observed.

scale: correct, partial, and incorrect. Each sam-
ple is evaluated by 3 annotators and gets the fi-
nal rating via majority votes. We recruited 6
graduate students in CS/ECE department with a
background in FOL. The annotators were pro-
vided with detailed instructions regarding the rat-
ing scales, and several examples per rating to clar-
ify further (details in §A). The annotators were
given 3 hours to finish the rating of 500 examples.
The labeled 1K subset consists of 84.5% correct,
11.8% partial, and 3.7% incorrect pairs. We mea-
sure Krippendorff’s alpha for the inter-annotator
agreement rate alignment check, which is 0.714,
indicating the annotations are generally aligned.

Filtering MALLS. We analyze the 1K sam-
ples, identify four common error modes (Table 2),
and design corresponding modules to filter them:
(1) Free variables. GPT4 occasionally generates
FOL rules with free variables such as “∀xP (x) ∧
R(x, y)”, where y is not bounded. We remove
them by parsing the rule and checking if it contains
free variables. (2) Nested equivalence/implication.
For some complex NL statements such as “If an
A has B, C, D then it is E”, GPT4 tends to con-
fuse between “∧”, “→”, and “↔” and generates
inaccurate rules such as “∀xA(x) → (B(x) ∧
C(x) ∧ D(x) ↔ E(x))”. We find samples with
this nested structure all have a similar alignment
issue, so we remove these pairs by parsing the rule
and checking if it contains such a structure. (3)
Aggressive xor. We find GPT4 struggles with the
meaning of “⊕”, and may generate a rule such as
“A(x) ⊕ B(x)” for an NL sentence “A or B”. To
remove those pairs with aggressive xor usage, we
construct a 5-shot prompt and use GPT3.5 to iden-
tify the potential pairs and then remove the incor-
rect ones manually. (4) Missing NL information.

6945

We find GPT4 may omit important entities or con-
cepts in the FOL rule. We adopt a similar treat-
ment as (3), where we first do 5-shot in-context
learning with GPT3.5 to identify potentially in-
correct samples and then remove the true incor-
rect ones manually. After removing these incor-
rect samples, the resulting 1K samples have 92.8%
correct, 6.0% partial, and 1.2% incorrect pairs. We
filter the raw MALLS of 34K samples the same
way and obtain the final 28K verified samples.

3.3 MALLS statistics

General statistics. We show the general statistics
in Table 1 together with those of LogicNLI and
FOLIO3. MALLS contains 28K NL-FOL pairs,
which is significantly larger than LogicNLI and
FOLIO, and different from LogicNLI which is
synthetically generated, the pairs are also more di-
verse and contextually rich, where the NL state-
ments have a vocabulary size of 20.9K and an av-
erage length of 15.7 compared to 10 in FOLIO.
By leveraging the strong natural language com-
patibility of GPT4, the NL statements of MALLS

are more natural and better in reflecting real-world
commonsense, reaching 1/4 of the mean perplex-
ity (computed with GPT2) than LogicNLI and FO-
LIO. For FOL rules, the average number of literals
reached 4.6 indicating more complex rules (also
see Figure 8 in §A).

Pair diversity. The NL-FOL rules in MALLS

are highly diverse. To see this, we investigate the
frequencies and the correlations of the FOL terms.
A term is either a predicate name or a named entity
in a FOL rule. For example, “∀x((Person(x) ∧
Drinks(x)) → DependentOn(x, Caffeine))”
consists of 4 terms, i.e., Person, Drinks,
DependentOn and Caffeine. MALLS has a total
term vocabulary size of 49394 and the most fre-
quent terms occur less than 2K times (Figure 9
in §A), suggesting a diverse vocabulary distribu-
tion. On the other hand, we investigate the cor-
relations between terms and illustrate the top 200
frequent term pairs. We show a snippet of this in
Figure 1 (full diagram at Figure 7 in §A). Note
that if a term is associated with many other terms,

3Note that the FOLIO statistics are different from those
reported in (Han et al., 2022). As of 2023, the released dataset
misses the ground truth FOL annotations for conclusions in
the training set, and some pairs contain duplicates and in-
valid FOL rules. We removed those during pre-processing.
Also, the LogicNLI statistics are obtained from the official
repo here, which contains 12K samples instead of the 20K
reported in the paper.

Instruction:

Correct the following FOL rule so that it

matches the meaning of the NL statement.

NL:

A region is a desert if it receives very little

precipitation and supports sparse vegetation.

FOL:

∃sparse ∀x ∀Desert (¬(Region(x)) ∧

SparseVegetation(x) → Desert(x))

Comments:

N/A

FOL:

∀x Region(x) ∧ ReceivesLittlePrecipitation(x)

∧ SparseVegetation(x) → Desert(x)

Translation Correction

Instruction:

Translate the following natural language (NL)

statement to a first-order logic (FOL) rule

NL:

A region is a desert if it receives very little

precipitation and supports sparse vegetation.

Comments:

N/A

FOL:

∀x Region(x) ∧ ReceivesLittlePrecipitation (x)

∧ SparseVegetation(x) → Desert(x)

Input

Prompt

LogicLLaMA

Output

Auxiliary

Input Prompt

GPT-3.5

Output

ො𝑥FOL

𝑥FOL

𝑥NL

Figure 2: Input and expected outputs for translation and
correction.

this typically means the rules involving that term
are diverse in semantics and context, and Figure 1
suggests that it is indeed the case. For example, for
rules involving Book, they cover the knowledge of
its genre (e.g., Fiction), places (e.g., Library),
viewership (e.g., Bestseller), and so on.

4 LOGICLLAMA NL-FOL Translation

Besides evaluation, MALLS makes it possible to
fine-tune local LLMs such as LLaMA2-7B/13B
to reach GPT4-level performance, which we refer
to as LOGICLLAMA. Unlike typical NLP tasks,
where one fine-tunes with a naive autoregressive
objective, fine-tuning for NL-FOL translation is
nontrivial. In §4.1 and §4.2, we present three ways
to train LOGICLLAMA. And in §4.3, we propose
two metrics for evaluating an FOL rule against the
ground truth.

4.1 Autoregressive fine-tuning
The LOGICLLAMA can be trained to directly
translate the FOL from NL, i.e., (T1) translation
task; it can also be trained to correct the generated
FOL from a more powerful model such as GPT3.5,
i.e., (T2) correction task. Intuitively, we found
in experiments that GPT3.5 is good at doing the
“heavy-lifting” part of the translation and can cap-
ture the main part of the FOL rule; then presum-
ably, one can train a smaller model that corrects
the output from the GPT3.5 to get a better result.

Figure 2 shows the input and output sequence of
the two tasks: let ⟨xNL,xFOL⟩ be an NL-FOL pair
from MALLS; for (T1), the input and output are
the original sequences xNL and xFOL respectively;
and for (T2), let x̂FOL = GPT(xNL) be the FOL
predicted by GPT3.5, the input is the NL and the
prediction put together [xNL, x̂FOL] and the out-
put is the ground-truth FOL, xFOL. We train both

6946

https://github.com/omnilabNLP/LogicNLI

(T1) and (T2) via standard autoregressive objec-
tive. Specifically, we fine-tune LLaMA2-7B/13B
with LoRA for all the attention and feedforward
linear layers on MALLS.

4.2 RLHF fine-tuning
While (T1) translation and (T2) correction are
easy to train, they do not lead to optimal perfor-
mance. This is due to FOL rules having mul-
tiple logically equivalent forms. For example,
“A ← B” is equivalent to “A ∨ ¬B”, and an
LLM trained with text-level autoregression is not
capable of recognizing the equivalent forms. To
enable LOGICLLAMA to comprehend the FOL
rules, we propose to fine-tune LOGICLLAMA via
RLHF with a logical equivalence solver (discussed
in §4.3) as the reward model. To do so, as shown
in Figure 12, we augment the MALLS with syn-
thetic FOL rules by perturbing the ground-truth
and GPT3.5-generated FOL rules and train the
model to correct the perturbed rules. We refer to
this mode as (T3) RLHF Correction.

FOL Rule Perturbation. In (T2) correction,
the model is trained to correct samples generated
by GPT3.5. These samples are mostly correct but
they lack diversity in covering various FOL forms
and levels of correctness. Considering the high
variance of RLHF training, such a dataset would
not be sufficient. To this end, we propose to gen-
erate synthetic FOL rules by randomly perturbing
the FOL rules in MALLS. We leave details of
perturbation to §B. We generate 150K perturbed
samples in the form of ⟨xNL,xFOL, x̂FOL⟩, where
x̂FOL is the FOL rule perturbed from xFOL.

RLHF Correction. To conduct RLHF fine-
tuning, a reward model that captures logical equiv-
alence between FOL rules is needed, which com-
pares the final corrected rule to the ground-truth
rule and measures how close they are. This gives
rise to an RL approach to the problem. Formally,
let RM : X × X 7→ [0, 1] be a function that maps a
pair of FOL sequences, xFOL and x′

FOL, to a scalar
score representing the pair similarity, our objective
can be formalized as maximizing the score (effec-
tively the expected return in RL),

max
π

RM(xFOL,x
′
FOL),where (1)

x′
FOL ∼ πθ(xFOL|xNL, x̂FOL),

for all tuples ⟨xNL,xFOL, x̂FOL⟩ in the augmented
dataset via a policy πθ(xFOL|xNL, x̂FOL) which is
exactly the base autoregressive model we would

R: ∀x Country(x) ∧ InEU(x) → EUCountry(x) R’: ∀y LocatedInEU(y) → EUCountry(y)

Country(x) InEU(x)
EU

Country(x)
R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

DUMMY
LocatedIn

EU(y)
EU

Country(x)
R’

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

LE score: 7 / 8 = 0.875

Figure 3: Example of computing the Logical Equiva-
lence score, 7/8=0.875.

like to fine-tune in (T3). With objective Eq.(1),
task (T3) is now similar to the RLHF 4 proposed
in InstructGPT (Ouyang et al., 2022) with the only
difference being the reward model RM, where in
our case, RM is a logical equivalence solver (§4.3)
instead of a language model and the model is opti-
mized via PPO (Schulman et al., 2017). We sum-
marize key aspects of three tasks in §B and train-
ing settings in §D.

4.3 FOL evaluation

Consider two FOL rules “R : ¬(P (A) ∧ P (B))”
and “R′ : ¬P (A) ∨ ¬P (B)” — R and R′ are
logically equivalent but are different in raw text;
also consider a pair of rules “R : ∀xP (x)” and
“R′ : ∀x∀yP (x) ∧ Q(y)” — if R is the ground-
truth and R′ the LLM prediction, how should one
measure the distance between the two?

Logical equivalence (LE). We propose to mea-
sure the logical equivalence between the rules
by matching their truth tables and computing the
overlap ratio. We introduce this with a running
example in Figure 3. Specifically, let R and R′

be the two rules parsed from the text xFOL and
x′

FOL. We identify the set of literals in each rule
P = [p1, p2, ...] andQ = [q1, q2, ...]. For Figure 3,
P = [Country(x), InEU(x), EUCountry(x)] and
Q = [LocatedInEU(y), EUCountry(y)]. We con-
sider the set of literals as an array of Boolean
variables, and the FOL as a circuit that takes in
the Boolean values and outputs a single Boolean
value. Therefore, we can represent a FOL with
a truth table that enumerates all inputs and the
resulting outputs. To compare R and R′, we
count the number of configurations that match and
divide it by the total number of configurations;
this yields a score in [0, 1]. In Figure 3, this is
7/8 = 0.875. The main issue with this approach

4Technically, (T3) does not involve human feedback, but
we keep the name since the protocols are the same.

6947

is finding the right input bindings between P and
Q, and dealing with the case where the numbers
of inputs are different (i.e., |P| ̸= |Q|). We
solve this by finding the binding that gives the
highest LE score via greedy search and filling the
rest of the missing inputs with dummy inputs. In
Figure 3, InEU(x) binds to LocatedInEU(y) and
EUCountry(x) binds to EUCountry(y); and we fill
in a dummy in Q to match Country(x) in P . We
leave more details in §C.

Reward design for RLHF correction. The re-
ward model RM in (T3) measures the similarity be-
tween two text FOLs xFOL, x′

FOL. Therefore, we
use the LE score as the main source of the re-
ward. However, we also want the model to ex-
tract the right predicate and entity names from the
NL statement. We incorporate this aspect by com-
puting the BLEU score between the text xFOL and
x′

FOL with a specialized FOL tokenizer. We set the
final reward as the mixture of the two: RM(xFOL,
x′

FOL) = ω ∗ LE(R,R′) + (1−ω) ∗BLEU(xFOL,
x′

FOL) , where ω is the mixing ratio and in exper-
iments we set it to 0.7. With this setting, we en-
courage the model to prioritize on generating the
logical equivalent rules rather than ones that are
similar in plain text with a high BLEU score.

5 Experiments

We address the following questions in the experi-
ment section: (Q1) How good is MALLS for eval-
uating existing LLMs? Does it provide better in-
sights into the shortcomings? (Q2) How good
is MALLS for fine-tuning? Can we train LOGI-
CLLAMA that also generalizes to other datasets
such as FOLIO? (Q3) How well does the LOGI-
CLLAMA perform in direct translation mode and
correction mode?

Dataset. For MALLS, we use the human-
annotated subset (1K) as the test set; we hold out
2K samples as the valid set, and the rest samples
are used for training (T1-3); we also include 1K
pairs from the training set of LogicNLI since it has
a different rule distribution where rules are mostly
grounded rules (i.e., many of them do not contain
any variables) instead of FOL rules. We evaluate
the LLMs on MALLS test set as well as the full
FOLIO dataset and the test set of LogicNLI.

Methods. To answer (Q1) and (Q2), we eval-
uate LOGICLLAMA together with a wide range
of LLMs on the task of NL-FOL translation:
LLaMA2-7B/13B, Mistral-7B, Mixtral, Gemini

Methods
LogicNLI FOLIO MALLS

FOL BLEU FOL LE FOL BLEU FOL LE FOL BLEU FOL LE

LogicLLaMA-7B Trans. 0.912 0.965 0.354 0.826 0.762 0.910
LogicLLaMA-7B Corre. 0.913 0.970 0.368 0.827 0.767 0.910
LogicLLaMA-7B RLHF Corre. 0.923 0.979 0.378 0.841 0.774 0.920

LogicLLaMA-13B Trans. 0.922 0.978 0.361 0.832 0.765 0.916
LogicLLaMA-13B Corre. 0.925 0.982 0.377 0.852 0.769 0.918
LogicLLaMA-13B RLHF Corre. 0.927 0.986 0.384 0.858 0.778 0.924

Table 3: BLEU and LE scores of different LOGI-
CLLAMA variants. Corrections are performed over
GPT3.5 outputs.

Pro, GPT3.5, and GPT4. Apart from LOGI-
CLLAMA, all LLMs are tested with the in-context
learning (ICL) setting with 0-shot, 5-shot, and 10-
shot examples (we skip 0-shot for LLaMA models
because they are not instruction-fine-tuned). We
also include a Chain-of-Thought (CoT) setting:
the LLMs are given three CoT examples, which
decompose the translation into several steps, such
as identifying the predicates, identifying the enti-
ties and variables, and forming the final FOL rules.

Metrics. We use the logical equivalence (LE)
introduced §4.3 as the main metric for FOL rules
evaluation. Apart from this, it is also preferred that
the generated FOL rule has the matching predicate
names, so we measure the FOL BLEU between
the predicted FOL and the ground-truth FOL. Note
that BLEU is a noisy metric: BLEU is computed
over the FOL text tokens and does not recognize
the underlying logic structures, thus can have a
low score even if the rules are equivalent.

5.1 Results

Figure 4 shows the results of LOGICLLAMA
(i.e., LOGICLLAMA-13B RLHF Corre.) and
other LLMs on LogicNLI, FOLIO, and MALLS.
Concerning (Q1), a good translation benchmark
should provide a consistent and challenging eval-
uation of the method. That said, for LogicNLI,
most methods achieve near-perfect results as one
increases the ICL shots. This is because Logic-
NLI is synthetically generated and the rules all
share a similar FOL template, making it a poor
benchmark for this task. On the other hand, FO-
LIO is more challenging. The LE metric indicates
the FOL rules are more diverse. However, the
BLEU metric is significantly worse than its LE
counterpart and other benchmarks. After careful
inspection, we found this is largely due to the NL-
FOL misalignment issue in FOLIO dataset, where
FOL rules omit details in the NL sentence and use
highly simplified predicate names (as shown in Ta-
ble 1). Therefore, we conclude that FOLIO is still
lacking as a translation benchmark. In compari-

6948

LLaMA2-7BLLaMA2-13B Mistral-7B Mixtral Gemini Pro GPT3.5 GPT4
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FO
L

BL
EU

.37
.27

.67
.58

.74

.39

.64

.84 .84 .88 .91 .91

.69
.78

.89 .90 .93 .94 .95

.41

.63

.83 .84 .89 .94 .93

LogicLLaMA 0-shot 5-shot 10-shot CoT

LLaMA2-7BLLaMA2-13B Mistral-7B Mixtral Gemini Pro GPT3.5 GPT4
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FO
L

LE

.27
.18

.73
.59

.86

.41

.67

.89 .92 .94 .92
.99

.75
.84

.94 .97 .97 .97 .98

.56
.67

.88 .94 .91 .96 .99

LogicLLaMA 0-shot 5-shot 10-shot CoT

LogicNLI

LLaMA2-7BLLaMA2-13B Mistral-7B Mixtral Gemini Pro GPT3.5 GPT4
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FO
L

BL
EU

.20
.09

.29 .25
.37

.29 .35 .32 .32 .34 .34 .40
.28

.15

.32 .31 .34 .36 .36

.18 .18 .24 .25 .31 .31 .36

LogicLLaMA 0-shot 5-shot 10-shot CoT

LLaMA2-7BLLaMA2-13B Mistral-7B Mixtral Gemini Pro GPT3.5 GPT4
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FO
L

LE

.34

.15

.70

.43

.80
.65

.75 .72 .74 .78 .77
.85

.63

.36

.72 .74 .79 .80 .82

.56 .59
.67 .61

.73 .78
.85

LogicLLaMA 0-shot 5-shot 10-shot CoT

FOLIO

LLaMA2-7BLLaMA2-13B Mistral-7B Mixtral Gemini Pro GPT3.5 GPT4
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FO
L

BL
EU

.24

.06

.37 .41
.50.46 .42 .40 .44 .42

.50
.59.54

.31

.47 .48 .54 .56
.65

.41 .41
.51 .46

.53 .56 .61

LogicLLaMA 0-shot 5-shot 10-shot CoT

LLaMA2-7BLLaMA2-13B Mistral-7B Mixtral Gemini Pro GPT3.5 GPT4
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FO
L

LE

.23
.07

.45

.14

.69

.51
.58 .52

.61 .58
.65

.79

.59

.39

.64 .64 .65 .71
.84

.32 .35

.55
.48

.57
.68

.79

LogicLLaMA 0-shot 5-shot 10-shot CoT

MALLS

Figure 4: BLEU and LE scores of LLMs. Here, LOGICLLAMA reports the results of LOGICLLAMA-13B RLHF
Correction over GPT3.5 output.

son, MALLS is more balanced in terms of BLEU
and LE metrics and is generally most challenging.
We observe that simply increasing ICL shots has
diminishing returns and the best ICL method be-
sides GPT4 (since it is the model that generates
MALLS) can only achieve 0.71 LE score. This
means MALLS is sufficiently diverse and chal-
lenging, and cannot be solved with simple ICL
settings—This answers the question (Q1).

LOGICLLAMA results. As shown in Figure 4,
LOGICLLAMA outperforms most the ICL meth-
ods and reaches GPT4-level performance for three
benchmarks. Note that LOGICLLAMA is fine-
tuned on MALLS and generalizes well to FOLIO
dataset. This indicates MALLS is a high-quality
dataset for fine-tuning, addressing question (Q2).

Analysis of LOGICLLAMA variants. Table 3
shows the performance of all LOGICLLAMA
variants. We found that translation, correction,
and RLHF correction lead to increasing perfor-
mance, and the 13B one generally outperforms the
7B one on all three benchmarks. This confirms our
intuition in §4.1 and addresses the question (Q3).
More importantly, it suggests a new paradigm of
future LLM development: by training a local LLM
on the output of a more powerful model, one can
customize the model behavior while still leverag-
ing the powerful ones for heavy lifting.

Performance analysis. We further analyze
how the methods perform across different level

sample complexities and logic categories. Fig-
ure 5 shows the LE scores of LOGICLLAMA-
13B RLHF Corre. and other LLMs (5-shot ICL)
over four different splits of MALLS-test: # NL to-
kens, NL perplexity, # FOL tokens, and # FOL
literals. In general, the larger these values, the
more complex the samples are, thus more chal-
lenging for translation. Figure 5 suggests that all
ICL methods’ performance decreases significantly
as the samples become difficult. Remarkably, we
find LOGICLLAMA is more robust to the increase
of sample complexity, indicating that MALLS-dev
is a well-balanced set and the fine-tuning on it is
effective. On the other hand, Figure 6 shows the
LE scores over FOL rules consisting of different
types of logic operators. We find LOGICLLAMA
consistently outperforms other baselines over all
categories. We also observe that baseline LLMs,
especially the open-source ones, tend to perform
worse on operators such as↔ and ⊕. We conjec-
ture that this is because such FOL rules are rarer
in the pretraining corpus as they are not frequently
used in practice and can be subsumed by conjunc-
tion normal forms (CNF). This also highlights the
importance of creating open-source datasets such
as MALLS, which enables insight into such issues.

6 Conclusion

We release MALLS, a high-quality dataset of 28K
verified sentence-level NL-FOL pairs collected

6949

5+ 10+ 15+ 20+ 25+ 30+ 35+ 40+
NL tokens

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FO
L

LE

LLaMA2-7B
LLaMA2-13B
Mistral-7B
Mixtral

Gemini Pro
GPT3.5
GPT4
LogicLLaMA

5+ 15+ 25+ 35+ 45+ 55+
Perplexity

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

LLaMA2-7B
LLaMA2-13B
Mistral-7B
Mixtral

Gemini Pro
GPT3.5
GPT4
LogicLLaMA

10+ 15+ 20+ 25+ 30+ 35+ 40+ 45+
FOL tokens

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FO
L

LE

LLaMA2-7B
LLaMA2-13B
Mistral-7B
Mixtral

Gemini Pro
GPT3.5
GPT4
LogicLLaMA

2 3 4 5 6 7+
FOL Literals

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

LLaMA2-7B
LLaMA2-13B
Mistral-7B
Mixtral

Gemini Pro
GPT3.5
GPT4
LogicLLaMA

Performance vs. # NL Tokens, Perplexity, # FOL Tokens, # Literals

Figure 5: Performance vs 4 types of MALLS-test splits.

¬
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FO
L

LE

LLaMA2-7B
LLaMA2-13B

Mistral-7B
Mixtral

Gemini Pro
GPT3.5

GPT4
LogicLLaMA

Performance by Operator Type

Figure 6: Performance by logic operator types.

from GPT4. During the verification process, we
identify patterns of errors made by GPT4. This
underscores the difficulty in achieving accurate
NL-FOL translation, warranting further research.
We also present LOGICLLAMA, the first spe-
cialized LLMs for the NL-FOL translation task
fine-tuned on MALLS. In experiments, LOGI-
CLLAMA shows competitive performance with
GPT4 on three NL-FOL benchmarks.

7 Limitations

During the creation of MALLS, we used a com-
bined approach of human annotation and auto fil-
tering to create MALLS-test and MALLS-dev re-
spectively. While unlikely, it is possible that
MALLS-dev still contains unaligned, inaccurate
NL-FOL pairs as they are not individually in-
spected by a human annotator.

Also, note that MALLS contains sentence-level
NL-FOL pairs, where the logical rules are in first-
order. This choice has several implications: (1)
NL-FOL pairs are generated independently and
they do not share a common predicate name space,
variable space, or entity space. This means one
cannot use MALLS to train a reasoner to trans-
late a multi-sentence story into a unified logic sys-
tem with shared predicates and entities as those
in FOLIO. (2) FOL rules are encoded with first-

order logic syntax, which is different from other
formats such as SMT-lib. The model trained on
MALLS generate rules only with an FOL format.
Nonetheless, our source code comes with a text
parser that parses raw text FOL rule into a CFG
tree, which makes further conversion to other for-
mats straightforward. (3) The semantics of NL-
FOL pairs are generated by GPT4, meaning it may
or may not reflect factual knowledge. We create
MALLS to evaluate and train LLMs for the NL-
FOL translation task, which could be done in real-
world context where NL statements are all factual,
or in hypothetical scenario where NL statements
are made up. Therefore, we deliberately skip the
factual check on the generated pairs and focus on
the alignment between NL and FOL. This means
the pairs may contain information that is hypothet-
ical or not factual.

8 Ethics Statement

Potential negative impact. Since the NL-FOL
pairs are not created to be always factual, training
on MALLS might introduce misinformation into
an LLM. Also, when used in the intended man-
ner, it is likely the trained models, such as LOG-
ICLLAMA, still produce incorrect FOL rules,
which potentially leads to wrong answers in the
downstream reasoning task.

Artifact statements. We release data, code,
and weights under Apache 2.0 license and they
are intended for research use only. Additionally,
the usage of the LOGICLLAMA model should fol-
low the license agreement of LLaMA and Alpaca.
MALLS is released under CC BY NC 4.0 and the
use of such dataset should follow the policy of
OpenAI, as it is collected from GPT-4.

Human annotation. To create MALLS-test, We
invited 6 graduate students in CS/ECE department
with a background in FOL. The annotators were
provided with detailed instructions regarding the
rating scales, and several examples per rating to
clarify further (details in §A). The annotators were
given 3 hours to finish the rating of 500 examples.
The task is approved by the IRB board of the in-
stitute. The participants are given instructions and
asked for consent to participate in this study at the
beginning of the task and they can opt out at any
time. The final dataset MALLS-test only contains
the aggregated label for each sample and no infor-
mation about the identity, demographic, and ge-
ographic characteristics of the participants is col-

6950

https://openai.com/policies/terms-of-use
https://openai.com/policies/terms-of-use

lected, or stored during the process.

References

Lasha Abzianidze. 2017. LangPro: Natural language
theorem prover. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 115–
120, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Johan Bos and Katja Markert. 2005. Recognising tex-
tual entailment with logical inference. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 628–635, Vancouver,
British Columbia, Canada. Association for Compu-
tational Linguistics.

Ruisheng Cao, Su Zhu, Chen Liu, Jieyu Li, and Kai
Yu. 2019. Semantic parsing with dual learning. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 51–64,
Florence, Italy. Association for Computational Lin-
guistics.

Peter Clark, Oyvind Tafjord, and Kyle Richardson.
2020. Transformers as soft reasoners over language.
arXiv preprint arXiv:2002.05867.

Christopher Hahn, Frederik Schmitt, Julia J Tillman,
Niklas Metzger, Julian Siber, and Bernd Finkbeiner.
2022. Formal specifications from natural language.
arXiv preprint arXiv:2206.01962.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-
terina Zubova, Yujie Qiao, Matthew Burtell, David
Peng, Jonathan Fan, Yixin Liu, Brian Wong, Mal-
colm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai,
Tao Yu, Rui Zhang, Shafiq Joty, Alexander R. Fab-
bri, Wojciech Kryscinski, Xi Victoria Lin, Caiming
Xiong, and Dragomir Radev. 2022. FOLIO: Nat-
ural Language Reasoning with First-Order Logic.
ArXiv:2209.00840 [cs].

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Tom Kwiatkowksi, Luke Zettlemoyer, Sharon Gold-
water, and Mark Steedman. 2010. Inducing proba-
bilistic ccg grammars from logical form with higher-
order unification. In Proceedings of the 2010 con-
ference on empirical methods in natural language
processing, pages 1223–1233.

Oleksii Levkovskyi and Wei Li. 2021. Generating
predicate logic expressions from natural language.
In SoutheastCon 2021, pages 1–8. IEEE.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A
challenge dataset for machine reading compre-
hension with logical reasoning. arXiv preprint
arXiv:2007.08124.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,
Chandra Bhagavatula, and Yejin Choi. 2020. Neu-
rologic decoding:(un) supervised neural text genera-
tion with predicate logic constraints. arXiv preprint
arXiv:2010.12884.

Xuantao Lu, Jingping Liu, Zhouhong Gu, Hanwen
Tong, Chenhao Xie, Junyang Huang, Yanghua Xiao,
and Wenguang Wang. 2022. Parsing natural lan-
guage into propositional and first-order logic with
dual reinforcement learning. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 5419–5431, Gyeongju, Repub-
lic of Korea. International Committee on Computa-
tional Linguistics.

Theo Olausson, Alex Gu, Benjamin Lipkin, Cede-
gao E. Zhang, Armando Solar-Lezama, Joshua B.
Tenenbaum, and Roger Levy. 2023. LINC: A
neurosymbolic approach for logical reasoning by
combining language models with first-order logic
provers. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2023, Singapore, December 6-10,
2023, pages 5153–5176. Association for Computa-
tional Linguistics.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural In-
formation Processing Systems, 35:27730–27744.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023. Logic-lm: Empower-
ing large language models with symbolic solvers
for faithful logical reasoning. arXiv preprint
arXiv:2305.12295.

Gabriel Poesia, Kanishk Gandhi, Eric Zelikman, and
Noah D Goodman. 2023. Certified reasoning with
language models. arXiv preprint arXiv:2306.04031.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy
Liang, Leonardo de Moura, and David L Dill. 2018.
Learning a sat solver from single-bit supervision.
arXiv preprint arXiv:1802.03685.

6951

https://doi.org/10.18653/v1/D17-2020
https://doi.org/10.18653/v1/D17-2020
https://aclanthology.org/H05-1079
https://aclanthology.org/H05-1079
https://doi.org/10.18653/v1/P19-1007
http://arxiv.org/abs/2209.00840
http://arxiv.org/abs/2209.00840
https://aclanthology.org/2022.coling-1.481
https://aclanthology.org/2022.coling-1.481
https://aclanthology.org/2022.coling-1.481
https://aclanthology.org/2023.emnlp-main.313
https://aclanthology.org/2023.emnlp-main.313
https://aclanthology.org/2023.emnlp-main.313
https://aclanthology.org/2023.emnlp-main.313
https://doi.org/10.48550/arXiv.2303.08774

Hrituraj Singh, Milan Aggrawal, and Balaji Krishna-
murthy. 2020. Exploring neural models for pars-
ing natural language into first-order logic. arXiv
preprint arXiv:2002.06544.

Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao,
Hao He, and Yaohui Jin. 2021. Diagnosing the first-
order logical reasoning ability through LogicNLI.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3738–3747, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Siyuan Wang, Wanjun Zhong, Duyu Tang, Zhongyu
Wei, Zhihao Fan, Daxin Jiang, Ming Zhou, and
Nan Duan. 2021. Logic-driven context extension
and data augmentation for logical reasoning of text.
arXiv preprint arXiv:2105.03659.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett.
2023. Satisfiability-aided language models using
declarative prompting. CoRR, abs/2305.09656.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi
Feng. 2020. Reclor: A reading comprehension
dataset requiring logical reasoning. arXiv preprint
arXiv:2002.04326.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In UAI ’05, Proceedings of the 21st Con-
ference in Uncertainty in Artificial Intelligence, Ed-
inburgh, Scotland, July 26-29, 2005, pages 658–666.
AUAI Press.

6952

https://doi.org/10.18653/v1/2021.emnlp-main.303
https://doi.org/10.18653/v1/2021.emnlp-main.303
https://doi.org/10.48550/ARXIV.2305.09656
https://doi.org/10.48550/ARXIV.2305.09656
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1209&proceeding_id=21
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1209&proceeding_id=21
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1209&proceeding_id=21

A MALLS Dataset Creation Details

A.1 Data collection
Prompt table. Table 4 shows the prompt tem-
plates used for prompt generation.

A.2 FOL parsing and verification
FOL CFG grammar. We define the FOL with
the following CFG grammar:
S -> F | Q F
Q -> QUANT VAR | QUANT VAR Q
F -> ‘¬’ ‘(’ F ‘)’ | ‘(’ F ‘)’ | F OP F | L
OP -> ‘⊕’ | ‘∨’ | ‘∧’ | ‘→’ | ‘↔’
L -> ‘¬’ PRED ‘(’ TERMS ‘)’ | PRED ‘(’ TERMS ‘)’
TERMS -> TERM | TERM ‘,’ TERMS
TERM -> CONST | VAR
QUANT -> ‘∀’ | ‘∃’
Note that, for PRED, CONST, and VAR they

have corresponding production rules generated
for each FOL rule example. For example,
for rule “∀x((Person(x) ∧ Drinks(x)) →
DependentOn(x, Caffeine))”, the production
rules are

PRED→ "Person" | "Drinks" | "DependentOn"
CONST→ "Caffeine"

VAR→ "x".

We show two example parse trees in Figure 10
and Figure 11.

A.3 NL-FOL alignment check
We invite 6 graduate students to label 1K samples,
where each sample is annotated by 3 annotators on
a 3-point scale: correct ,partial, and incorrect. We
provide detailed instruction as follows:

You will evaluate how well the FOL rule aligns
with the meaning of the NL sentence on a 3-point
scale: Correct, Partial, and Incorrect. Let’s use
a running example to show you how to rate the
translation:

"""
NL: A turtle has a shell and can swim.
FOL: ∃x(Turtle(x)∧Shell(x)∧CanSwim(x))
"""
Your evaluation involves checking the follow-

ing rubrics:

• Whether the rule has the right predicates, i.e.,
"Turtle", "Shell", and "CanSwim".

– Having a slightly different predicate
name is fine (e.g., "Shell" instead of

"hasShell"); this is still a Correct exam-
ple.

– However, if some important notions in
the NL are missing in the FOL (e.g.,
"Shell" missing in the FOL) or some
predicates in FOL are not present in the
NL (e.g., "CanRun(x)" found in FOL),
it is one Partial error.

• Whether the rule has the right quantifiers.

– You should only examine this item if
the NL explicitly contains the following
phrases: If NL explicitly says "Every A
has sth" or "For all A..." then the FOL
must have "∀". On the other hand, if
it says "Some A has sth" or "There ex-
ists A that...", then the FOL must have
"∃". Failing to have the right quantifiers
is one Partial error.

– If NL does not have these explicit hints,
then using either "∀" or "∃" is fine (e.g.,
the turtle example above can use either
"∀" or "∃")

• Whether the FOL rule has the same logical
meaning as the NL sentence. This involves
comprehending the meaning FOL rule and
comparing it against the NL sentence

– FOL misaligns with the NL meaning
due to a wrong expression being used.
It is one Partial error if the FOL simply
misaligns with but not contradicts the
NL; but if the meaning explicitly con-
tradicts the NL, then it is an Incorrect
example. E.g.:

* Using the wrong logic operators,
e.g., "Turtle(x) ∨ Shell(x) " instead
of "Turtle(x) ∧ Shell(x)", is an In-
correct example as the meaning is
obviously different.

* Having the wrong implication, e.g.,
"A person has legs" translated
into "HasLegs(x) → Person(X)",
where it should be "Person(X) →
HasLegs(x)". This is also an Incor-
rect example.

– Caveat on "→" vs "∧" vs "↔": Some-
times these three operators can be used
interchangeably to express the same
meaning despite they are logically in-
equivalent. For example,

6953

Figure 7: Top 200 frequent FOL term pairs in MALLS. Many terms are associated with a wide range of other
terms, which suggests the rules are semantically and contextually diverse.

* "Turtle(x) → Shell(x) ∧ Can-
Swim(x)", "Turtle(x) ∧ Shell(x) ∧
CanSwim(x)", and “Turtle(x) ↔
Shell(x) ∧ CanSwim(x)” all express
a similar meaning, and should be
considered a Correct case.

* However, there are cases where they
obviously lead to different meanings
and this should be considered one
Partial error.

– Caveat on “∨” vs “⊕”: we know “A ∨
B” includes the case that A and B are
both True, whereas, “A ⊕ B” means ei-
ther A or B is True but not both. So how
to judge which one is better in the align-
ment?

* If NL explicitly says “either A or
B but not both” or something simi-
lar, then FOL must use “⊕”, other-
wise using “∨” is fine even if it does
not reflect the reality. E.g., “wa-
ter is solid or liquid” then it is fine

to have “Water(x) ∨ Solid(x) ∨ liq-
uid(x)” even though we know it can-
not be in two states at the same time.

* If NL does not explicitly say the
above, but FOL contains “⊕”, then
we need to judge with common
sense. For example, “Water(x) →
Solid(x) ⊕ liquid(x)” also aligns
with the above despite no explicit
hints in NL.

– Logic variable issues:

* Associating the wrong logic
variables, e.g.: "if x is greater
than y and y is greater than
z, then x is greater than z"
translated to "GreaterThan(x,
y) ∧ GreaterThan(y, z) →
GreaterThan(z, x)", where it
should be "GreaterThan(x,
y) ∧ GreaterThan(y, z) →
GreaterThan(x, z)". This is one
Partial error.

6954

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
of literals

0

2000

4000

6000

8000
FO

L
Fr

eq
ue

nc
y

Figure 8: Literal frequency distribution (MALLS).

2 × 102 103 1.5 × 1033 × 102 4 × 102 6 × 102

Term Frequency

Device
Fish
Country

ElectronicDevice
Scientist
Car

Library
Doctor
Mountain
Film
Star
Flower
CanFly
Beverage
Computer
Cat
Restaurant
Bicycle
Object
Dog
Painting
Museum
MusicalInstrument
City
Chef

Athlete
Movie

Mammal
Building
Fruit
Tree

Smartphone
Planet
Animal
Student

Vehicle
Plant

Book
Bird

Person

Figure 9: Top 40 frequent FOL terms (MALLS).

* Redefining variables, e.g. “Turtle(x)
∧ Fish(x) ∧ CanSwim(x)”, where
variable x is defined with two unary
predicates (or classes) where one
does not subsume the other one.
This is one Partial error. For cases
like “Animal(x) ∧ Turtle(x)”, it is
a Correct use because Animal sub-
sumes Turtle

* Free/redundant logic variables, e.g.:
· “Person(x) ∧ Has(x, y)” — It has

a free variable/redundant variable
y, which is one Partial error.

· “Person(x) ∧ Has(x, y) →
Ownby(y, x)” — Note that this is
a Correct use of variables: vari-
ables do not need to be defined by
unary predicates (or “classes”) to
be valid, e.g., “Tool(y)”, as long it
appears at least twice in different
literals.

By checking the above rubrics, you will rate the
rule with one of the four ratings:

• Correct:

– The FOL rule aligns with the meaning
of the NL sentence

– Possible slightly different predicate
names or quantifiers.

– Some ambiguities in the usage of "→"
vs "∧" vs "↔", but it does not lead to an
obviously different meaning

• Partial: one and only one of the following er-
rors occur

– The FOL rule does not align with the
NL in some parts but does not explicitly
contradict the NL

– Missing important predicates, or having
obviously irrelevant predicates

– Wrong quantifier when the NL has
explicit hints such as “For all. . . ” or
“Some. . . ”

– Wrong use of variables, such as
free/redundant variables, wrong variable
association, or redefining variables

• Incorrect:

– More than one Partial error was found in
an example

– The FOL rule explicitly contradicts the
NL meaning.

A.4 MALLS statistics
General statistics. Figure 9 and Figure 8 show
the top 40 frequent FOL terms and the literal count
distribution in MALLS.

Frequent FOL term pairs. Figure 7 shows the
top 200 frequent FOL term pairs in MALLS.

B Details on RLHF Correction

B.1 FOL Rule Perturbations
We generate synthetic FOL rules by randomly per-
turbing the FOL rules in MALLS. We consider
three types of atomic perturbations: label change,
insert, and delete. As shown in Table 5, label
change can be conducted on any terms or logic
operators in a FOL rule; insert operation is appli-
cable to term, negation, and formula; and delete
operation can be considered as the inverse of in-
sertion. Note that, we restrict the perturbations to

6955

only produce valid rules. The reasons are two-
fold: (1) the invalid rule space is effectively the
space of all possible strings which is prohibitive
to explore; and (2) we found GPT3.5 rarely gen-
erates syntactically invalid rule, thus, limiting the
synthetic data in the valid rule space will already
cover a wide range of the actual GPT3.5 outputs.

Operation Type Subtypes Original Perturbed

Label Change

Change Predicate P (A) ∧R(B) R(A) ∧R(B)

Change Term ∀x P (x) ∧ P (B)
∀y P (x) ∧ P (B)
∀x P (x) ∧ P (x)

Change Operator ∀x P (x) ∧ P (B) ∀x P (x) ∨ P (B)

Insert
Insert Term ∀x P (x) ∧ P (B)

∀x ∃y P (x) ∧ P (B)
∀x P (x) ∧ P (x, B)

Insert Negation P (A) ∧ P (B) ∧ P (C) P (A) ∧ ¬(P (B) ∧ P (C))
Insert Formula P (A) ∧ P (B) P (A) ∧ P (B)→ R(C)

Delete
Delete Term

∀x ∀y P (x) ∧R(x, y) ∀y P (x) ∧R(x, y)
∀x ∀y P (x) ∧R(x, y) ∀x ∀y P (x) ∧R(y)

Delete Negation ¬(P (A) ∧ P (B)) ¬(P (A) ∧ P (B))
Delete Formula P (A) ∧ P (B) ∧ P (C) P (A) ∧ P (C)

Table 5: The list of all atomic perturbations.

Perturbation process. Given a ground-truth
pair ⟨xNL,xFOL⟩, a parser (§A) will parse xFOL
into an abstract syntax tree (AST). We randomly
perturb the AST with atomic operations in Ta-
ble 5 and for NPerturb times. Here, NPerturb is
also picked randomly from a list of numbers, and
in the experiments, we set it to {0, 1, 2, ..., 10}.
In the case NPerturb = 0, the perturbed rule re-
mains the same as the ground truth and the step
is simply “No changes needed”; this is effectively
a negative example that penalizes the model for
over-correcting. During training, we found LOG-
ICLLAMA still tends to over-correct the samples
as negative samples by default account for around
10% of the data, so we manually set the probabil-
ity of negative sample generation to 0.2.

Perturbed
Text FOL

GPT3.5
Pred. FOL

LogicLLaMA

LE Solver

Reward

Corrected FOL

Critic

Value

Value Loss PPO

(T3) RLHF Correction

Synthetic
Perturbation

GPT3.5

MALLS

Figure 12: Overview of the training for (T3) RLHF
correction.

Data augmentation. For RLHF training, we
generate the synthetic dataset consisting of 150K
examples in the form of ⟨xNL,xFOL, x̂FOL⟩ using
the above method. We then fine-tune the LLaMA-
7B/13B with LoRA again using the standard au-
toregression objective: the input is [xNL, x̂FOL]
and the output is xFOL. The training process is
also illustrated in Figure 12

B.2 Summary of training tasks
We summarize the input, output, and training ob-
jectives of (T1-3) in Table 6. For task (T1) and
(T2), a standard autoregressive loss is used: where
the model is trained to predict the token xt given
the previous tokens x<t with cross-entropy loss

L(θ) = Ex,t[− log pθ(xt,out|x<t,out,xin)], (2)

where the xin and xout are shown in 6.

Task Input Output Objective

(T1)
Translation

xNL xFOL Eq.(2)

(T2)
Correction

[xNL, x̂FOL] xFOL Eq.(2)

(T4)
RLHF Correction

[xNL, x̂FOL] xFOL Eq.(3)

Table 6: Summary of input, output and objectives of
task (T1-T4)

For task (T3), the RLHF objective is used:
we implement a reward model RM(xFOL,x

′
FOL)

that measures the logical equivalence between two
FOL rules and train the model to maximize the
reward with the PPO algorithm (Schulman et al.,
2017). Specifically, the full reward is computed as

R(xFOL,x
′
FOL) = RM(xFOL,x

′
FOL)−

β ∗ log πθ(xFOL|xNL, x̂FOL)

πref(xFOL|xNL, x̂FOL)
, (3)

where the policy πθ is the language model fθ with
learnable parameters θ and πref is the reference
model from (T3) with parameters frozen. The sec-
ond term in Eq.(3) is the KL-divergence between
the learned policy and its original policy from (T3)
and its strength is controlled by a hyperparameter
β.

C Computing Logical Equivalence and
BLEU Score

logical equivalence. To train and evaluate LOG-
ICLLAMA, we compute the logical equivalence

6956

score (LE) that measures the similarity between
two rules R and R′. The computation is done in
three steps: (1) finding the literals of R and R′,
that is P = [p1, p2, ...] and Q = [q1, q2, ...]; (2)
binding the literals in P to those in Q (or vice
versa); and (3) generating the truth tables for the
binding and computing the score.

Finding the literals of a FOL rule is straightfor-
ward after we parse it into a CFG tree: we extract
all the subtrees whose root label is L and remove
possible duplicate literals. In the case where the
parsing fails, we simply skip the rest of the compu-
tation and return a score of zero, as that indicates
the rule is syntactically invalid.

The main challenge here is to determine the
literal binding between P and Q. Using Fig-
ure 3 as the example, R has literals P =
[Country(x), InEU(x), EUCountry(x)] and R′ has
literals Q = [LocatedInEU(y), EUCountry(y)].
We want to find the one-one matching for each
of the literals, such that we can compare the
truth tables. First, we address the case where
|P| ̸= |Q| by adding DUMMY inputs to the shorter
one, and in this example, it is Q which becomes
[LocatedInEU(y), EUCountry(y), DUMMY1]. To
match the literals, we first determine the match-
ing strategy. Note that there are in total !|Q| num-
bers of bindings (permuteQ when keeping P) and
there are many strategies to measure the match:
for example, one can enumerate all bindings and
compute the “average” score of all bindings or
finding the worst case of the binding. Here, we
choose to find the binding that yields the high-
est LE score, that is the “best” case binding. To
do this, we implement a simplistic greedy search
algorithm that iterates over each literal in P and
finds the closest literal in Q in terms of edit dis-
tance. To avoid exponential numbers of bindings,
we limit the search depth to 1000. Finally, given
a binding between P and Q, we compute the LE
score by comparing the rows in their truth tables
as the one shown in Figure 3.

FOL BLEU score. We use a specialized tok-
enizer for computing the FOL BLEU score. This
tokenizer splits every quantifier, operator, and
term into tokens. The split token sequence is the
same as the leave nodes in the CFG parse tree (Fig-
ure 10 and Figure 11) listed in pre-order.

D Experimental Settings

For all training tasks, we fine-tune LOGI-
CLLAMA using LoRA with rank=8, α =
8, and dropout 0.05 on all the linear layers
in decoder blocks “[q_proj,k_proj,v_proj,o_proj,
gate_proj,down_proj,up_proj]”. We use the
AdamW optimizer (Loshchilov and Hutter, 2017)
with lr = 0.0003. For the generation, we use a
cutoff length of 256 For (T1) and (T2), the genera-
tion uses temperature=0.1, top_p=0.75, top_k=40
and num_beams=1. For (T3), we adopt the setting
suggested in the TRL library, which uses top_k =
0.0, top_p = 1.0, do_sample = True and no eos
token; this effectively lets the model sample to-
kens from the logits and always generate to the full
length. This generation configuration is needed to
compute a valid KL divergence score between the
actor model and the reference model (a copy of
the same model before training). Task (T1) and
(T2) generally take about 5 GPU hours to com-
plete with a single GTX 4090. For (T3), we train
it for 50 GPU hours with a single A100. We report
all results from a single experiment run.

6957

https://github.com/lvwerra/trl

Table 4: List of prompt templates used for prompting GPT4 for NL-FOL pairs.

System
prompt

I want to create a dataset for translating natural language (NL) statements into first-order logic (FOL) rules.
You will help me to create a diverse set of NL-FOL pairs.

For natural language (NL) generation, you should:
1. Come up with a statement stating either complex or simple real-world commonsense facts
2. The statements are meaningful, and diverse from each other

For FOL rule generation:
1. You SHOULD USE the following logical operators: ⊕ (either or), ∨ (disjunction),
∧ (conjunction),→ (implication), ∀ (universal), ∃ (existential), ¬ (negation),
↔ (equivalence)
2. You *SHOULD NEVER USE* the following symbols for FOL: "", " ̸=", "%", "="
3. The literals in FOL SHOULD ALWAYS have predicate and entities, e.g., "Rounded(x, y)" or "City(guilin)";
expressions such as "y = a ∨ y = b" or "a ∧ b ∧ c" are NOT ALLOWED
4. The FOL rule SHOULD ACCURATELY reflect the meaning of the NL statement
5. You SHOULD ALWAYS put quantifiers and variables at the beginning of the FOL
6. You SHOULD generate FOL rules with either: (1) no variables; (2) one variable "x"; (3) two variables "x",
"y"; or (4) three variables "x", "y" and "z"

Generation Format: you SHOULD ALWAYS generate the NL and FOL pairs in the following format
"""
— NL:
{your generated NL}
—
— FOL:
{your generated FOL}
—
"""

Initial
FOLIO
Few-shot
examples
prompt

— NL:
If someone is entire, then he is not serious, and vice versa.
— FOL:
∃x entire(x)↔¬serious(x)

— NL:
If there is at least one people who is both not excited and not timid, then Jonathan is elderly.
— FOL:
∀x (¬excited(x) ∧ ¬timid(x))→ elderly(Jonathan)

— NL:
Someone who is eithor not fresh or entire is always not serious.
— FOL:
∀x (¬concerned(x) ∨ fresh(x))→ entire(John)

— NL:
If Nathalie is not blue, then Collier is entire.
— FOL:
¬blue(Nathalie)→ entire(Collier)

— NL:
Someone is courteous and not elderly if and only if he is not excited and not various.
— FOL:
∃x (courteous(x) ∧ ¬elderly(x))↔ (¬excited(x) ∧ ¬various(x))

Negative
N-gram
prompt

They DO NOT involve concepts and terms (and the synonyms) such as "considered","person","either","water",
"if it has","if it is","it has a","is considered a","A person is"

FOL prompts
They are [complex | simple] statements involving at least [1 | 2 | 3] logical variables

The statement involves diverse logical operators such as logical negation, logical xor and disjunction

Break-down
prompt

[IMPORTANT] AVOID making long predicate names like "MoonShinesAtNight","SunShinesDuringDay"

6958

Figure 10: CFG parse tree of FOL rule ∀x(Athlete(x) ∧ WinsGold(x, Olympics)→ OlympicChampion(x)).

Figure 11: CFG parse tree of FOL rule ∀x(Doctor(x)→ HasMedicalDegree(x)).

6959

