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Abstract

Automated Fact-Checking (AFC) is the auto-
mated verification of claim accuracy. AFC is
crucial in discerning truth from misinformation,
especially given the huge amounts of content
are generated online daily. Current research
focuses on predicting claim veracity through
metadata analysis and language scrutiny, with
an emphasis on justifying verdicts. This pa-
per surveys recent methodologies, proposing
a comprehensive taxonomy and presenting the
evolution of research in that landscape. A com-
parative analysis of methodologies and future
directions for improving fact-checking explain-
ability are also discussed.

1 Introduction

The huge increase in both user-generated and au-
tomated content has led to a significant amount of
misinformation. This poses risks to uninformed
readers, highlighting the need for scalable, auto-
mated methods for verification and fact-checking
(Nakov et al., 2021a). While predicting the verac-
ity of claims is essential, relying solely on pre-
dictions without providing explanations can be
counterproductive, potentially reinforcing belief
in false claims and perpetuating misinformation
(Lewandowsky et al., 2012).

Most fact-checking models use neural architec-
tures, but interpreting these models is challenging.
There is a need for fact-checking frameworks pro-
viding justifications to enhance effectiveness and
trustworthiness. This survey presents recent ef-
forts addressing automatic justification production
for claim verification, emphasizing the move to-
wards “Explainable” Automated Fact-Checking
(AFC). Some work refers to the justification pro-
duction process as the explanation generation pro-
cess (Kotonya and Toni, 2020a). In this survey, the
term “‘justification production” is used following
the work of Guo et al. (2022).

This survey’s main contribution is as follows:
Firstly, it introduces a multidimensional taxonomy
for categorizing works based on various criteria.
Secondly, it provides how research is progressing
towards standard justifications. Thirdly, it conducts
a comparative analysis of justification production
approaches, pipeline architectures, input and out-
put types. Lastly, it identifies challenges while
proposing future directions in justification produc-
tion. Appendix A outlines the methodology utilized
for literature compilation, detailing the search strat-
egy and selection criteria employed for the papers
that form the cornerstone of this survey.

2 Related Surveys

Thorne and Vlachos (2018) provided a comprehen-
sive review of early developments in fact-checking,
but they don’t focus on verdicts with justifications.
Other surveys such as Nakov et al. (2021b,a); Guo
et al. (2022); Vladika and Matthes (2023) offer
broad overviews of the entire fact-checking pro-
cess and its various components. In contrast, our
work specifically concentrates on the aspect of justi-
fication production. Moreover, recent multi-modal
fact-checking surveys (Alam et al., 2022; Vladika
and Matthes, 2023) mention that natural language
justification production remains unexplored in the
multi-modal AFC domain. In this survey, we high-
light some of the emergent works in multi-modal
justification production.

The survey by Kotonya and Toni (2020a), focus-
ing on justification production, is closely related
to ours. However, since then, there has been a sig-
nificant progress driven by the rapid development
of transformer-based architectures and Large Lan-
guage Models (LLMs). Vallayil et al. (2023) only
augmented the latter work’s taxonomy with coun-
terfactual justifications. While partially covering
some recent work, they do not provide a compre-
hensive, new, detailed multi-dimensional taxonomy
as proposed in this survey.
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3 Justification Production within AFC

AFC consists of multiple stages forming a pipeline,
as shown in Figure 1. One of these stages is justi-
fication production. In the upcoming subsections,
a brief overview of the general stages in the AFC
pipeline is provided, with a specific focus on the
justification production stage.

3.1 Check-worthy Claims Detection Stage

This initial stage classifies the claims as check-
worthy or not. If they are check-worthy, then
they are selected from the corpus containing them.
Deeming if a claim is check-worthy or not is based
on the importance of the topic of the claim, if it is
verifiable, and if the claim poses potential harm in
case it is misleading (Guo et al., 2022).

3.2 Retrieval and Selection of Most Relevant
Evidence

This stage retrieves data related to the claim from
trustworthy sources and selects the most relevant
information to make a decision, which is termed
the ‘evidence.” In the subsequent stage, this evi-
dence is used to predict the veracity of the claim.
The determination of veracity depends on the
degree of alignment between the claim and the
evidence. For example, the veracity of the claim
‘The director of the film ‘Legend’ is English’ could
depend on the following evidence snippets gath-
ered from multiple trustworthy websites: ‘Brian
Helgeland is the director of the film ‘Legend”, and
‘Brian Helgeland only holds a U.S. citizenship’

3.3 Veracity Prediction of the Claim

This stage classifies claims according to a binary
scheme, true or false, or through fine-grained multi-
class classification including also other verdicts
such as “partially correct”, or “correct but mislead-
ing without extra context”. Following the example
in the previous section, the claim ‘The director of
the film ‘Legend’ is English’ should be determined
as ‘False’ as it is not aligned with the evidence.

3.4 Justification Production

This stage produces justifications to explain the ver-
dict of an AFC model regarding a claim’s veracity.
The process is known as justification production
(Guo et al., 2022).

In the context of the previously discussed claim,
‘The director of the film ‘Legend’ is English,” an
example of a justification for the ‘False’ verdict,

grounded in the evidence, could be ‘Brian Helge-
land, the director of the film ‘Legend,” is American
and not English.” Hence, the inputs for a justifica-
tion production component are the claim and the
selected evidence. The veracity verdict may also be
an input, depending on the pipeline architectures
of the AFC systems that are explained in Section
6.3 and are shown in our proposed classification of
pipelines (see Figure 2).

We propose categorizing the work in justifica-
tion production not only based on these pipeline
architectures but also on additional dimensions (see
Figure 3). A key dimension is the explainability
of the justification production process. The steps of
the process leading to the prediction of the claim’s
veracity and its justification can be self-explainable
or not.

In addition, the input type is an important di-
mension. It can be either multi-modal or text-
only. Another dimension is the nature of the jus-
tification output. It may be natural language
text, or just highlighted parts of the input, like
bold/highlighted words in the claim and evidence,
or specific factual triples in the form Subject, Pred-
icate, Object (SPO) (see Figure 4 for illustrative
examples).

We can also differentiate studies based on the
type of main approaches utilized, which include:
attention based where specific segments of the
input having the highest attention scores are high-
lighted based on the relationship between the ev-
idence and the claim; knowledge graph based
where a graph is used to represent the evidence.
The relevant evidence rationals are selected nodes
in the graph, and the edges represent the relations
between these selected nodes. Symbolic logic is
used to determine if the evidence is aligned with
the claim; summarization based where the rele-
vant evidence rationals are summarized as natural
language text with a focus on whether the claim is
aligned with the evidence or not; multi-hop based
where the claim is decomposed into smaller parts
related to each other and these parts are sequentially
checked if they are aligned with the evidence or
not.; and LLMs Retrieval Augmented Generation
(RAG) or Fine-tuning based approaches where
LLMs are used via prompting to verify the align-
ment between the claim and the evidence rationals
producing the veracity verdict and the justification
for the verdict.

Section 6.5 describes the approaches mentioned

6680



unverified

rue
Claim _\

False
Claim ¥ N

claims 5\ Veracity Prediction
X o— o Y I
@— == o [E Section 3.3
Y oo =S |::> &/
X o ectes | CheCk-worthy @_ E\.]
[ ] Claims -
e SDe;gcti%n1 Retrieval and -
orpus ection 3. Selection of Most
Containing Claims Relevant Evidence
Section 3.2
ection Justification Production
Section 3.4

Figure 1: General AFC Pipeline; courtesy of (Guo et al., 2022).

above in more detail. The quality of the justifica-
tions produced by these approaches is evaluated
based on the presence of certain desired properties,
which will be discussed in Section 4.

4 Progression towards Justifications
Standardization

The aim of justification production is to create a
justification that aligns with specific, agreed-upon
criteria (Sokol and Flach, 2019), which we refer to
as a standard justification. Achieving high-quality
justifications involves considering certain desired
properties known as ‘desiderata’ (Kulesza et al.,
2015). Researchers have collectively agreed upon
these desired properties (Sokol and Flach, 2019).
Producing justifications aligned with these desired
properties is crucial for standardizing justifications
in explainable AFC.

Graves (2018) identifies key desiderata for justifi-
cations, completeness, where the justification must
be valid in full contextuality; coherence, ensuring
the faithfulness/consistency between the veracity
prediction and justification; interactivity, which is
putting into consideration the users’ feedback; ac-
tionability, providing the user with the needed sug-
gestions for modifying the claim to change it from
non-factual to factual; chronology, giving prefer-
ence to the timing of the claim; novelty, ensuring
the justification offers new information; complex-
ity, adjusting the justification’s language based on
the user’s knowledge; parsimony, favouring more
short and concise justifications; causality, where a
comprehensive causal model is used for deducing
causal connections between inputs and the predic-
tions produced. These properties were defined with
further details by Kotonya and Toni (2020a), who
also added the desideratum of unbiased or impar-
tial justifications. In the context of fact-checking,
bias usually manifests as opinions masquerading
as evidence.

Kotonya and Toni (2020b) started the first at-
tempt to provide a standard justification evaluation
process by measuring two different types of co-
herence in the produced justifications: the global
coherence which assesses the relevance of a justi-
fication in relation to both the claim and its label;
and the local coherence which evaluates the cohe-
sion of sentences within a justification. To main-
tain local coherence, there should be no contradic-
tion between any two sentences in the justification.
Atanasova et al. (2022) started the first attempt to
generate standard justifications by adding some de-
sired properties (i.e. faithfulness/coherence, and
data consistency) as additional learning signals
in the loss function of a transformer-based model
(Vaswani et al., 2017). The data consistency evalu-
ates the similarity of justifications for similar input
instances.

5 Datasets in AFC

It’s worth noting that this survey focuses on pro-
viding a new taxonomy, a comparative analysis
of justification production approaches, investigat-
ing pipeline architectures, addressing challenges
encountered, and proposing future directions in
AFC justification production. Comprehensive ex-
aminations of datasets were covered thoroughly in
previous surveys (mentioned in Section 2). How-
ever, some information about datasets in AFC is
also provided in this section.

The dataset might contain the needed content for
all the stages of the fact-checking pipeline: claim
detection, evidence retrieval and selection, verac-
ity verdict production, and justification production.
The following paragraphs will discuss the type
of content representing each stage with example
datasets provided in Table 1.

Textual claims are the most common input for
fact-checking because they are often produced after
the claim detection stage. These claims are usually
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. Veracity
Dataset Name Claims Verdict Notes and
Number . Remarks
Justified
LIAR .
(Wang, 2017) 12836 Yes Political dataset
StatsProperties A knowledge
(Vlachos and Riedel, 2015) 7092 No graph dataset
SCIFACT Dataset in the
(Wadden et al., 2020) 1409 Yes scientific domain
. A multi-domain
MultiFC 36534 | No dataset that
(Augenstein et al., 2019)
also has metadata
PUBHEALTH Dataset in the
. 11832 Y .
(Kotonya and Toni, 2020b) 8 es health domain
X-Fact
3 g,
(Gupta and Srikumar, 2021) 1189 No Multi-lingual dataset
FEVER Artificially generated
(Thorne et al., 2018) 185445 No dataset
HOVER Artificially generated
(Jiang et al., 2020) 26171 No dataset
Artificially generated
FEVEROUS dataset and its
(Aly et al., 2021) 87026 No evidence contains
both text and tables
KLinker A knowledge
. R 1 N
(Ciampaglia et al., 2015) 0000 ° graph dataset
WikiFactCheck Artificially generated
(Sathe et al., 2020) 124821 No dataset
VitaminC Artificially generated
(Schuster et al., 2021) 488904 No dataset

Table 1: Examples of Datasets for AFC

sentence-level statements. Many researchers have
created datasets by collecting real-world claims
from specialized websites like Politifact because
they are easily accessible. Some researchers con-
centrate on obtaining claims from specialized ar-
eas like climate change, science, and public health.
Other sentence-level inputs, such as answers to
questions in forums, have also been investigated.
Some datasets are English, and some are multi-
lingual. Metadata, including information such
as publication date, sources, and user profiles,
is a common type of evidence considered. Al-
though metadata can provide complementary in-
sights when textual sources or structural knowl-
edge are lacking, it does not directly substantiate
the claim.

Text-based sources, such as news articles, aca-
demic publications, and Wikipedia entries, are fre-
quently employed as evidence for fact-checking.
Multi-modal claims and evidence have recently
been researched, and images and videos are consid-
ered more credible than text by most audiences.

Not all the datasets have a binary veracity ver-
dict scheme. Fact-checkers often utilize multi-class
labels to classify different levels of truthfulness, in-
cluding categories such as ‘true,” ‘mostly true,” and
‘mixed.’

From the perspective of justification production,
AFC datasets can be classified into two categories:

those without justifications and those with justi-
fications. Complementing datasets lacking justifi-
cations is important. This was done by Zhu et al.
(2023) on the HOVER dataset. Table 1 includes
datasets from both categories, with some being
synthetically generated and others extracted from
external sources like Wikipedia.

6 Justification Production Taxonomy

Multiple dimensions or criteria for categorizing Ex-
plainable Automated Fact-Checking systems are
outlined in this section. We propose five dimen-
sions (illustrated by the first five levels/columns
of the Taxonomy tree in Figure 3). The Justifica-
tion Process Explainability category (Section 6.1)
indicates whether the process leading to the justifi-
cation production is explainable or not. Then the
Type of Justifications criterion (Section 6.2) indi-
cates whether these are a set of SOP triples, high-
lighted parts of selected rationals from the evidence
input, or natural language textual justifications.
Other discriminatory dimensions are the Pipeline
Architecture of the AFC components (Section 6.3),
the Input Type (Section 6.4), whether it is text or
multi-modal, and the Main Approach (Section
6.5), which is the categorization of the predomi-
nant methods used for justification production. In
the following sections, every dimension in the tax-
onomy is discussed in more details.

6.1 Explainability of Justification Process

The degree of clarity of the process through which
the claim is processed and aligned with evidence
to produce the justification makes the process self-
explanatory. For instance, Multi-hop approaches
using QA pairs exemplify this clarity, decomposing
claims into parts and then checking their alignment
with each evidence snippet. Summarization ap-
proaches lack such clarity. For example, consider
the claim: “The director of Interstellar was born in
1960.” and the corresponding evidence snippets:
“Christopher Nolan was born on 30 July 19707,
“The name of the director of the film Interstellar is
Christopher Nolan.” and “Interstellar is a 2014 epic
science fiction film.” The justification of the multi-
hop approach (self-explainable) is: "Interstellar
is a 2014 science fiction film that was directed by
Christopher Nolan. Christopher Nolan was born
in 1970, not in 1960, so the claim is false." The
justification of the summarization approach (non-
self-explainable) is: "Christopher Nolan - born in
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1970 - is the director of Interstellar."

In the multi-hop approach, the process of jus-
tification production consists of decomposing the
claim into three parts: ’Interstellar’, ’the director
of Interstellar’, and "born in 1960’ checking them
against relevant evidence snippets. This approach
offers clarity by revealing how the input claim is
processed and aligned with evidence. In the non-
self-explainable justifications, this process is not
revealed. This is the case with surveyed summa-
rization approaches. Additionally, the multi-hop
justification example provided a sequential expla-
nation. It starts with evidence (Interstellar is a 2014
science fiction film) to address the first part of the
claim, i.e., 'Interstellar.” It then proceeds to address
the next part of the claim, ’the director of Interstel-
lar’, by stating "that was directed by Christopher
Nolan,". After that, it addresses the last part of
the claim, "born in 1960°, stating that "Christopher
Nolan was born in 1970, not in 1960." It outlines
a sequence of logical steps grounded in the align-
ment of claim-evidence to support the conclusion
that "the claim is false."

6.2 Type of Justification

The type of justification varies depending on the ap-
proach used in the justification production process.
Figure 4 shows examples of different types of out-
put justifications. From Figure 3, we can observe
that Natural Language justifications dominate in
recent research as they are the most comprehen-
sible for the readers compared to SOP triples or
highlighted words in the evidence.

6.3 Justification Production Pipelines
Architectures

We propose to differentiate various pipelines for Ex-
plainable AFC based on the relationship between
the justification production stage (Section 3.4) and
the veracity prediction stage (Section 3.3). These
pipelines can be classified into four types, depicted
in Figure 2.

In the ‘Separated-Veracity-Justification’
pipeline (Figure 2.a), the veracity prediction and
justification production are independent processes.
This architecture was investigated and used by
Atanasova et al. (2020) and Kotonya and Toni
(2020c). It is the earliest pipeline offering simpler
error tracing capabilities but faces challenges with
contradictions between justification and veracity
predictions. Research interest in this pipeline is
diminishing with the emergence of more robust al-

ternative pipelines like Justification-Then-Veracity
and Joint-Veracity-Justification, as discussed later.

In the ‘Veracity-Then-Justification’ pipeline
(Figure 2.d.), the veracity verdict is produced and
then inputted into the justification production mod-
ule to ensure consistency between the output justi-
fication and the verdict in contrast with Separated-
Veracity-Justification. Moreover, this pipeline al-
lows the usage of different models separately. Each
model can handle a different modality; for instance,
Yao et al. (2023) trained a sentence-BERT model
(Reimers and Gurevych, 2019) on the textual in-
put while using CLIP (Radford et al., 2021) on
the visual input ‘images.” This pipeline is flexible,
allowing a modular design while maintaining con-
sistency between justifications and claim veracity
predictions. It should be noted that this pipeline not
only processes multi-modal input but it can also be
employed for textual input.

In the ‘Joint-Veracity-Justification’ pipeline
(Figure 2.c), veracity prediction and justification
production are combined tasks carried out by the
same model. According to Atanasova et al. (2020),
this pipeline under-performed in summarization
compared to the ‘Separated-Veracity-Justification’
pipeline. Yet, it excelled in completeness, incorpo-
rating essential details vital for the fact-checking
process. Moreover, it demonstrated superiority in
the overall quality of the justifications produced.
This pipeline is also used in multi-modal explain-
able AFC through generating justifications by high-
lighting the most salient parts of the input hav-
ing the highest attention scores (Kipf and Welling,
2016; Kou et al., 2020; Wu et al., 2019; Bonettini
et al., 2021; Purwanto et al., 2021) as shown in
Figure 3.

In the ‘Justification-Then-Veracity’ pipeline
(Figure 2.b), a ‘reasoner’ breaks down the claims
into smaller segments. It then evaluates each seg-
ment of the claim, using available evidence to ver-
ify their alignment. Essentially, it employs a logical
‘AND’ operator to determine if all segments of the
claim are factual, leading to the final verdict. The
verdict is reached after the justification is produced.
This pipeline aligns with the most recent research
(Figure 3). Techniques used in this pipeline in-
clude LLMs Chain-of-Thought (CoT) (Pan et al.,
2023b), and Multi-hop approaches (Wang and Shu,
2023). Chakraborty et al. (2023) uses this pipeline
in multi-modal explainable AFC. These approaches
are further detailed in Section 6.5.

6683



Veracity Veracity
Data L Prediction
Internet
Check-worthy ;
Claim Detection Retrieval and
and Extraction I:\,Selectlon of Most Justlﬂcapon Justification
elevant Evidence Production .
Model Production

(a) Separated-Veracity-Justification pipeline, where Justification
Production is separate from the predicted veracity of the text claim.

( Reasoner

Justification
Production

Dat
Internet
Base

Retrieval and
Selection of Most
Relevant Evidence

Check-worthy Claim
Detection and
Extraction

Veracity
Prediction

u

(b) Justification-Then-Veracity pipeline where reasoning and justification
production are done first then veracity prediction happens. This pipeline is used
extensively in many multi-hop based fact-checking systems for text claims

— 5
Joint Veracity
Base veracity Prediction
prediction
and
justification

Model

Check-worthy
Claim Detection
and Extraction

Retrieval and
Selection of Most
Relevant Evidence

Justification
Production

(c) Joint-Veracity-Justification pipeline where Justification Production
and the predicted veracity of the claim are jointly produced for text claims.

Multi-modal <)\ [ Veracity Verad
input that Check - prdiion |- Y
can be: worthy Model rediction
1. Images Claim Retrieval and

2. Tables Detection Selection of —

3. Audios and' MostheIevant JFl’Jst:fcaglon Justfication
4. Videos Extraction Evidence r:\)/I :dc e|Ion Production

_

(d) Veracity-Then-Justification pipeline where the veracity prediction
is inputted to the justification production module. This pipeline is used for
multi-modal input as well.

Figure 2: The proposed classification of existing pipelines for justification production based on the type of input
(text-only/multi-modal) and the relation between the veracity prediction and the justification production stages.

6.4 Input Type

The input type can be text or multi-modal. The text
input is predominant in Explainable AFC. Text-
only datasets are more frequent than their multi-
modal counterpart (Figure 3). Multi-modal ex-
plainable AFC falls under three categories based
on the main approaches dimension: attention based,
multi-hop based and summarized natural language
text (see Figure 3). The attention based approaches
like (Zhang et al., 2023a) have ‘Joint-Veracity-
Justification’ pipeline architecture, where the in-
put data, like the author of the claim and its tim-
ing, are inputted in a fine-tuned transformer based
model. Using the attention mechanism, tokens
of high attention scores in the evidence and the
claim are presented as justification for the verac-
ity verdict. In the new emerging approaches like
(Yao et al., 2023), a sentence-BERT is used to
process text corpus and a CLIP encoder model
is used to present visual features in an image.
All these features are then combined and given
to a classifier for verdict prediction and also to
BART model (Lewis et al., 2020) for justification
production. Chakraborty et al. (2023) has used
the ‘Justification-then-Veracity’ pipeline along with
SOTA T5 (Raffel et al., 2020) for QA pairs gen-

eration during claim decomposition and a CNN
to analyze visual claims and evidence. Figure 3
outlines the works that employ multi-modal input
in Explainable AFC, according to the approach
involved.

6.5 Main Approaches in Explainable AFC

The following sections detail the main approaches
dimension in the taxonomy shown in Figure 3. Ex-
amples of justifications produced with these ap-
proaches are presented in Figure 4.

6.5.1 Attention Based Approaches

These approaches mostly use transformer based ar-
chitectures with attention mechanisms, where jus-
tifications are the input segments with the highest
attention scores, i.e. justifications are the highest
attention score words from the claim and the ev-
idence highlighted in a bold format. As shown
in Figure 3, they are used with multi-modal input
as well as textual input. The advantage of these
approaches is the simplicity of the AFC pipeline
compared to the others, as it doesn’t have a gen-
erator to produce natural language justifications.
Thorne and Vlachos (2021)’s work takes a fur-
ther step by employing a Masked Language Model
(MLM) for correcting false claims by replacing
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Figure 3: Taxonomy for justification production in AFC according to five dimensions detailed in Section 6.

Claim: Earth is Flat.

Evidence:

Greeks calculated the radius of the earth thousands of years ago, and it is
around 6267 kilometers.

Nasa images of the earth prove that it is round.

Boats disappear at large distances, even at sea level and even when we try to
use a microscope.

Claim’s Veracity Verdict: False

Justifications based on the approaches

Attention Based Justification:
Greeks calculated the radius of the earth thousands of years ago and it is
around 6267 kilometers. Nasa images of the earth prove that it is round.

Summarization Based Justification:
Nasa images proves that the Earth is round with a radius of around 6267 km.

SOP from a Knowledge Graph Based Approach:
LengthOf(Earth radius, 6267 km), Prove(Nasa images, round earth)

Multi-hop Based and Counterfactual Justification:

Earth is round as shown by Nasa images. Since it is round, ancient greeks
calculated its radius to be 6267 kms. An interesting fact is that if the Earth
was flat, we would have seen boats even when they are very far using
telescopes. However that does not happen due to the curvature of the Earth.

LLM Prompting Based Approach using QA pairs:

‘What is Earth? Earth is the planet the we live on. Is Earth flat? As per Nasa
images, No Earth is round. What is the radius of Earth? As per ancient
greeks, it is 6267 km. What should happen if Earth is flat? Boats would have
been seen with strong enough telescopes, disregarding the distances.

Figure 4: Illustrative examples of a claim, some evi-
dence snippets that are relevant to the claim, the claim
veracity verdict predicted by the model and justifica-
tions that could be produced according to different ap-
proaches and methodologies.

their salient false parts with appropriate gener-
ated text. However, there are several limitations.
Guo et al. (2022) confirm that removing tokens
with high attention scores doesn’t consistently im-
pact model predictions, questioning the attention
mechanisms reliability. Conversely, lower-scoring
tokens have been found crucial for accurate pre-
dictions. The attention based approaches (Figure
3) are categorized into three distinct groups: (1)
Yang et al. (2019) employ the ‘Separated-Veracity-
Justification’ architecture; (2) Popat et al. (2017,
2018); Shu et al. (2019); Lu and Li (2020); Wu
et al. (2020) adopt the ‘Joint-Veracity-Justification’
architecture. Both groups utilize textual input. (3)
Lourengo and Paes (2022); Bonettini et al. (2021);
Shang et al. (2022); Purwanto et al. (2021); Kou
et al. (2020); Wu et al. (2019); Zhang et al. (2023a)
address multi-modal input by employing the ‘Joint-
Veracity-Justification’ pipeline.

6.5.2 Knowledge Graph Based Approaches

In this approach, justifications are generated based
on a graph with all the needed knowledge regarding
nodes and relations between these nodes. The com-
putational complexity of a knowledge graph cre-
ation from text can limit its scalability. While it pro-
vides a structured framework, knowledge graphs
may not capture all nuances of natural language.
Moreover, they may rely on predefined rules that
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might not cover all possible scenarios. Addition-
ally, the readability of SOP justifications typically
produced with this approach might be difficult for
non-expert users to comprehend. Logic rules are
needed to search for relevant information in such
graphs. For instance, Gad-Elrab et al. (2019) uses
horn rules, which are an implication from an an-
tecedent to a consequent. Ahmadi et al. (2019)
extended the work by adding probabilistic answer
set programming to the horn rules, while Dziri et al.
(2021) used fine-tuned LLMs to traverse the knowl-
edge graphs nodes.

6.5.3 Summarization Based Approaches

This approach can be extractive, providing short
and concise information with less redundancy
like in (Yao et al., 2023; Atanasova et al., 2020;
Shen et al., 2023; Jolly et al., 2022) or extractive-
abstractive where the extractive summary produced
undergoes another process of abstraction. For in-
stance, in the summarization of medical reports,
a lot of medical terminology can confuse non-
technical audiences, so having a holistic, simpler
summary with less technical terminology, such
as an ‘abstractive summary, is important. This
method is implemented in (Kotonya and Toni,
2020c; Russo et al., 2023). Most of the work on
summarization is done using pre-trained models
like when Augenstein et al. (2019) used distilled
BERT (Sanh et al., 2019). Russo et al. (2023)
gave an exhaustive study on enhancing extractive-
abstractive summarization, and Jolly et al. (2022)
improved extractive summarization with unsuper-
vised post-editing. The extractive approach lacks
the existence of desiderata, while the extractive-
abstractive summarization has a higher probability
of producing hallucinations than extractive summa-
rization.

6.5.4 LLMs Reasoning via Prompting and
RAG or Fine-tuning

LLM prompting, RAG and finetuning are being
extensively used as approaches in the domain of
explainable AFC. Stammbach and Ash (2020) was
among the first researchers to use LLM prompt-
ing in explainable AFC. Using LLMs generally
makes reasoning easier to implement. However,
the computational costs are high, and sometimes,
LLMs produce hallucinations. There are many
types of hallucinations in LLMs and, in this survey,
we focus on fact-conflicting hallucinations. As per
Zhang et al. (2023b), fact-conflicting hallucinations

are produced when LLMs generate information or
text that contradicts established world knowledge.

Note that as per Huang et al. (2023), LLMs
can not correct themselves when hallucinating,
therefore Gou et al. (2023) used Chain-of-Thought
(CoT) as a possible solution. CoT -introduced by
(Wei et al., 2022)- along with in-context learning
and external tools -like search engines-, can greatly
reduce hallucinations through reasoning.

6.5.5 Multi-hop Approaches

Multi-hop approaches are always associated with
other methods like graph based methods (Xu et al.,
2023), natural logic theorem (Krishna et al., 2022),
and QA pair generation along with CoT in LLMs.
Multi-hop approaches are being more frequently
used in research works like (Wang and Shu, 2023;
Peng et al., 2023; Pan et al., 2023b; Dhuliawala
et al., 2023; Wang et al., 2023; Pan et al., 2023a).
However, multi-hop fact checking is a complex rea-
soning task. Designing an effective method to gen-
erate justifications in the multi-hop setting requires
consideration of the logical relationships between
the claim and between multiple pieces of evidence.
However, the prompts given to LLMs can be en-
hanced, e.g., using CoT, to exploit more potential
of LLMs. Generally, Multi-hop LLMs reasoning
methods are computationally and financially costly.

7 Challenges and Future Directions

This section outlines the challenges of producing
justifications and highlights promising research ef-
forts to address them, suggesting future directions.

Evaluating and Generating Justifications Ac-
cording to Desiderata One of the main goals of
producing justifications in Explainable AFC is to
align them with specific desiderata (Section 4). De-
veloping quantitative frameworks, or mathemati-
cal formulations, is crucial for measuring desider-
ata in a structured manner. This allows for a sys-
tematic comparison of explainable AFC systems
based on their incorporation of these desiderata.
Furthermore, integrating these measurements into
the model training process can significantly en-
hance justification quality. To date, only Kotonya
and Toni (2020b) has explored modeling and in-
tegrating one particular desired property, coher-
ence/faithfulness, as a learning signal in model
training. This area has seen limited further explo-
ration.

Another promising avenue for achieving several
desiderata, given the recent proliferation of rea-
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soners with LLMs (Section 6.5.4) and Multihop
(Section 6.5.5), could be the production of coun-
terfactual justifications, as suggested by Dai et al.
(2022) and illustrated in Figure 4. Counterfactual
justifications involve imagining scenarios or out-
comes that did not actually occur and exploring
their consequences. They involve alternate sce-
narios — for example, ‘if the Earth were flat, we
would be able to see boats even when they are
very far away using telescopes’ (as shown in Fig-
ure 4). When incorporated into the justifications,
counterfactual reasoning can reinforce some de-
sired properties such as completeness and coher-
ence. Moreover, some desiderata not fully achieved
by current work (Kotonya and Toni, 2020b), like
actionability, could also be realized. For instance,
counterfactual justifications can identify specific
elements in a claim that, if altered, could render it
factual, thus guiding users toward more accurate
statements. By offering alternative perspectives
on a claim, counterfactual justifications can pro-
vide novelty via new information that might not be
apparent through traditional justification methods.
Counterfactual justifications inherently involve un-
derstanding causal relationships, another highly
desired property. The ultimate objective remains to
incorporate most or all of the desiderata presented
in Section 4.

Natural Language Justifications in Multi-
modal AFC The majority of works processing
multi-modal input rely on attention-based ap-
proaches (Section 3). Commonly, these works use
highlighted input segments as justifications. How-
ever, such justifications are less effective in meet-
ing the desired properties compared to valid natural
language. Only a few recent studies have incorpo-
rated multi-modality in the input while producing
natural language justifications: Yao et al. (2023)
and Chakraborty et al. (2023). Yao et al. (2023)
use a ‘Veracity-Then-Justification’ process. How-
ever, this method is less intuitive compared to the
much more popular ‘Justification-Then-Veracity’
pipeline. A key feature of this latter architecture
is the inclusion of a reasoning component, which
attempts to deduce veracity based on justifications
grounded in the evidence. It is, however, predom-
inantly used with text-only inputs. Chakraborty
et al. (2023) are the only researchers so far to use
this architecture with multi-modal input (Section
6.4). There is potential for further research in this
area, especially with the advancements in LLMs

that can process multi-modal inputs and produce
coherent, natural language justifications, similar to
the approach used by Lin et al. (2024) in a different
context of generating explanations for identifying
harmful content in memes.

Non-factual Hallucinations in LLMs in AFC
Nowadays, LLMs are used more frequently in AFC.
The challenge is that they themselves can produce
hallucinations. There are many types of hallucina-
tions; however, the most related type to the domain
of AFC is non-factual hallucinations. Aiming to
address hallucinations, Du et al. (2023) introduced
the Society of Minds (SOM) to improve the fac-
tuality and accuracy of the LLMs output. SOM
is a method where multiple instances of the same
language model produce results for the same query,
and then they debate to unify and improve their an-
swers, correcting hallucinations in multiple rounds.
CoT is also used during these rounds. This method
is based on the hypothesis that hallucinations are
not produced consistently by LLMs. The debate
rounds can also happen between different models
like chatGPT versus BARD (Ahmed et al., 2023).

Complexity of Justification Production Gen-
erally, justification production via Multi-hop or
LLMs reasoning methods are computationally and
financially costly. For instance, employing FOLK
(Pan et al., 2023b) led to an expense of 20 USD for
every 100 examples when using the OpenAl API,
or required 7.5 hours of processing time on locally
deployed llama-30B models with an 8x A5000 clus-
ter. Addressing the computational cost associated
with reasoning methods justification production
is essential, warranting exploration of techniques
such as knowledge distillation (Hinton et al., 2015)
and quantization (Choukroun et al., 2019).

8 Conclusion

In summary, this survey contributes a novel multi-
dimensional taxonomy, comprehensively presents
the architectures employed in justification produc-
tion, explores emergent methodologies, conducts a
comparative analysis of these methodologies, and
proposes prospective avenues for further research.

Limitations

The limitations in this survey can be summarized
in the following points:

1. We have not included work on AFC that fo-
cuses solely on claim verification based on the
language and lexicons used in the claims.
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2. The few related papers that were published be-
fore 2015 were not included in the taxonomy.

3. This survey focused only on the work on En-
glish justification production. Multi-lingual
justification production should also be ex-
plored.

References

Naser Ahmadi, Joohyung Lee, Paolo Papotti, and Mo-
hammed Saeed. 2019. Explainable fact checking
with probabilistic answer set programming. arXiv
preprint arXiv:1906.09198.

Imtiaz Ahmed, Ayon Roy, Mashrafi Kajol, Uzma Hasan,
Partha Protim Datta, and Md Rokonuzzaman Reza.
2023. Chatgpt vs. bard: a comparative study. Au-
thorea Preprints.

Firoj Alam, Stefano Cresci, Tanmoy Chakraborty, Fab-
rizio Silvestri, Dimiter Dimitrov, Giovanni Da San
Martino, Shaden Shaar, Hamed Firooz, and Preslav
Nakov. 2022. A survey on multimodal disinforma-
tion detection. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 6625-6643, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull,
James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit
Mittal. 2021. The fact extraction and VERification
over unstructured and structured information
(FEVEROUS) shared task. In Proceedings of the
Fourth Workshop on Fact Extraction and VERifica-
tion (FEVER), pages 1-13, Dominican Republic.
Association for Computational Linguistics.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. Generating fact
checking explanations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 73527364, Online. Association
for Computational Linguistics.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2022. Diagnostics-
guided explanation generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 10445-10453.

Isabelle Augenstein, Christina Lioma, Dongsheng
Wang, Lucas Chaves Lima, Casper Hansen, Chris-
tian Hansen, and Jakob Grue Simonsen. 2019. Mul-
tiFC: A real-world multi-domain dataset for evidence-
based fact checking of claims. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 4685-4697, Hong Kong,
China. Association for Computational Linguistics.

Nicolo Bonettini, Edoardo Daniele Cannas, Sara Man-
delli, Luca Bondi, Paolo Bestagini, and Stefano
Tubaro. 2021. Video face manipulation detection
through ensemble of cnns. In 2020 25th international
conference on pattern recognition (ICPR), pages
5012-5019. IEEE.

Megha Chakraborty, Khushbu Pahwa, Anku Rani,
Shreyas Chatterjee, Dwip Dalal, Harshit Dave, Ritvik
G, Preethi Gurumurthy, Adarsh Mahor, Samahriti
Mukherjee, Aditya Pakala, Ishan Paul, Janvita Reddy,
Arghya Sarkar, Kinjal Sensharma, Aman Chadha,
Amit Sheth, and Amitava Das. 2023. FACTIFY3M:
A benchmark for multimodal fact verification with ex-
plainability through 5W question-answering. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 15282—
15322, Singapore. Association for Computational
Linguistics.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel
Kisilev. 2019. Low-bit quantization of neural net-
works for efficient inference. In 2019 IEEE/CVF
International Conference on Computer Vision Work-

shop (ICCVW), pages 3009-3018. IEEE.

Giovanni Luca Ciampaglia, Prashant Shiralkar, Luis M
Rocha, Johan Bollen, Filippo Menczer, and
Alessandro Flammini. 2015. Computational fact
checking from knowledge networks. PloS one,
10(6):e0128193.

Shih-Chieh Dai, Yi-Li Hsu, Aiping Xiong, and Lun-Wei
Ku. 2022. Ask to know more: Generating counter-
factual explanations for fake claims. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 2800-2810.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and Ja-
son Weston. 2023. Chain-of-verification reduces hal-

lucination in large language models. arXiv preprint
arXiv:2309.11495.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Nouha Dziri, Andrea Madotto, Osmar Zaiane, and
Avishek Joey Bose. 2021. Neural path hunter: Re-
ducing hallucination in dialogue systems via path
grounding. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2197-2214, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Mohamed H Gad-Elrab, Daria Stepanova, Jacopo Ur-
bani, and Gerhard Weikum. 2019. Exfakt: A frame-
work for explaining facts over knowledge graphs and
text. In Proceedings of the twelfth ACM international
conference on web search and data mining, pages

87-95.

6688


https://aclanthology.org/2022.coling-1.576
https://aclanthology.org/2022.coling-1.576
https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2020.acl-main.656
https://doi.org/10.18653/v1/2020.acl-main.656
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/2023.emnlp-main.945
https://doi.org/10.18653/v1/2023.emnlp-main.945
https://doi.org/10.18653/v1/2023.emnlp-main.945
https://doi.org/10.18653/v1/2021.emnlp-main.168
https://doi.org/10.18653/v1/2021.emnlp-main.168
https://doi.org/10.18653/v1/2021.emnlp-main.168

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-correct

with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

D Graves. 2018. Understanding the promise and limits
of automated fact-checking. Reuters Institute for the
Study of Journalism.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-
chos. 2022. A survey on automated fact-checking.
Transactions of the Association for Computational
Linguistics, 10:178-206.

Ashim Gupta and Vivek Srikumar. 2021. X-fact: A new
benchmark dataset for multilingual fact checking. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 675682,
Online. Association for Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. stat,
1050:9.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Yichen Jiang, Shikha Bordia, Zheng Zhong, Charles
Dognin, Maneesh Singh, and Mohit Bansal. 2020.
HoVer: A dataset for many-hop fact extraction and
claim verification. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3441-3460, Online. Association for Computational
Linguistics.

Shailza Jolly, Pepa Atanasova, and Isabelle Augen-
stein. 2022. Generating fluent fact checking expla-
nations with unsupervised post-editing. Information,
13(10):500.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Neema Kotonya and Francesca Toni. 2020a. Explain-
able automated fact-checking: A survey. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5430-5443, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Neema Kotonya and Francesca Toni. 2020b. Explain-
able automated fact-checking for public health claims.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 77407754, Online. Association for Computa-
tional Linguistics.

Neema Kotonya and Francesca Toni. 2020c. Explain-
able automated fact-checking for public health claims.
arXiv preprint arXiv:2010.09926.

Ziyi Kou, Daniel Yue Zhang, Lanyu Shang, and Dong
Wang. 2020. Exfaux: A weakly supervised approach
to explainable fauxtography detection. In 2020 IEEE
International Conference on Big Data (Big Data),
pages 631-636. IEEE.

Amrith Krishna, Sebastian Riedel, and Andreas Vlachos.
2022. Proofver: Natural logic theorem proving for
fact verification. Transactions of the Association for
Computational Linguistics, 10:1013-1030.

Todd Kulesza, Margaret Burnett, Weng-Keen Wong,
and Simone Stumpf. 2015. Principles of explana-
tory debugging to personalize interactive machine
learning. In Proceedings of the 20th international
conference on intelligent user interfaces, pages 126—
137.

Stephan Lewandowsky, Ullrich KH Ecker, Colleen M
Seifert, Norbert Schwarz, and John Cook. 2012. Mis-
information and its correction: Continued influence

and successful debiasing. Psychological science in
the public interest, 13(3):106-131.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871-7880.

Hongzhan Lin, Ziyang Luo, Wei Gao, Jing Ma,
Bo Wang, and Ruichao Yang. 2024. Towards explain-
able harmful meme detection through multimodal de-
bate between large language models. arXiv preprint
arXiv:2401.13298.

Vitor Lourenco and Aline Paes. 2022. A modality-level
explainable framework for misinformation checking
in social networks. arXiv preprint arXiv:2212.04272.

Yi-Ju Lu and Cheng-Te Li. 2020. GCAN: Graph-aware
co-attention networks for explainable fake news de-
tection on social media. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 505-514, Online. Association for
Computational Linguistics.

P Nakov, D Corney, M Hasanain, F Alam, T Elsayed,
A Barron-Cedeno, P Papotti, S Shaar, G Da San Mar-
tino, et al. 2021a. Automated fact-checking for as-
sisting human fact-checkers. In IJCAI, pages 4551—
4558. International Joint Conferences on Artificial
Intelligence.

Preslav Nakov, David Corney, Maram Hasanain, Firoj
Alam, Tamer Elsayed, Alberto Barrén-Cedefio, Paolo
Papotti, Shaden Shaar, and Giovanni Da San Martino.
2021b. Automated fact-checking for assisting human
fact-checkers. In Proceedings of the Thirtieth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-21, pages 4551-4558. International Joint Con-
ferences on Artificial Intelligence Organization. Sur-
vey Track.

6689


https://doi.org/10.1162/tacl_a_00454
https://doi.org/10.18653/v1/2021.acl-short.86
https://doi.org/10.18653/v1/2021.acl-short.86
https://doi.org/10.18653/v1/2020.findings-emnlp.309
https://doi.org/10.18653/v1/2020.findings-emnlp.309
https://doi.org/10.18653/v1/2020.coling-main.474
https://doi.org/10.18653/v1/2020.coling-main.474
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://doi.org/10.18653/v1/2020.acl-main.48
https://doi.org/10.18653/v1/2020.acl-main.48
https://doi.org/10.18653/v1/2020.acl-main.48
https://doi.org/10.24963/ijcai.2021/619
https://doi.org/10.24963/ijcai.2021/619

Liangming Pan, Xinyuan Lu, Min-Yen Kan, and Preslav
Nakov. 2023a. Qacheck: A demonstration system
for question-guided multi-hop fact-checking. arXiv
preprint arXiv:2310.07609.

Liangming Pan, Xiaobao Wu, Xinyuan Lu, Anh Tuan
Luu, William Yang Wang, Min-Yen Kan, and Preslav
Nakov. 2023b.  Fact-checking complex claims
with program-guided reasoning. arXiv preprint
arXiv:2305.12744.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, et al. 2023. Check your facts and
try again: Improving large language models with
external knowledge and automated feedback. arXiv
preprint arXiv:2302.12813.

Kashyap Popat, Subhabrata Mukherjee, Jannik Strot-
gen, and Gerhard Weikum. 2017. Where the truth
lies: Explaining the credibility of emerging claims
on the web and social media. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 1003-1012.

Kashyap Popat, Subhabrata Mukherjee, Andrew Yates,
and Gerhard Weikum. 2018. Declare: Debunking
fake news and false claims using evidence-aware
deep learning. arXiv preprint arXiv:1809.06416.

Christian Nathaniel Purwanto, Joan Santoso, Po-Ruey
Lei, Hui-Kuo Yang, and Wen-Chih Peng. 2021. Fake-
clip: Multimodal fake caption detection with mixed
languages for explainable visualization. In 2021 In-
ternational Conference on Technologies and Appli-
cations of Artificial Intelligence (TAAI), pages 1-6.
IEEE.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-

former. The Journal of Machine Learning Research,
21(1):5485-5551.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP). Association
for Computational Linguistics.

Daniel Russo, Serra Sinem Tekiroglu, and Marco
Guerini. 2023. Benchmarking the generation of fact
checking explanations. Transactions of the Associa-
tion for Computational Linguistics, 11:1250-1264.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Aalok Sathe, Salar Ather, Tuan Manh Le, Nathan Perry,
and Joonsuk Park. 2020. Automated fact-checking
of claims from wikipedia. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 6874—6882.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin C! robust fact verification with
contrastive evidence. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 624—643, Online. As-
sociation for Computational Linguistics.

Lanyu Shang, Ziyi Kou, Yang Zhang, and Dong Wang.
2022. A duo-generative approach to explainable mul-
timodal covid-19 misinformation detection. In Pro-
ceedings of the ACM Web Conference 2022, pages
3623-3631.

Jiaming Shen, Jialu Liu, Dan Finnie, Negar Rahmati,
Mike Bendersky, and Marc Najork. 2023. “why is
this misleading?”’: Detecting news headline hallucina-
tions with explanations. In Proceedings of the ACM
Web Conference 2023, WWW 23, page 1662-1672,
New York, NY, USA. Association for Computing
Machinery.

Kai Shu, Limeng Cui, Suhang Wang, Dongwon Lee,
and Huan Liu. 2019. defend: Explainable fake news
detection. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery &
data mining, pages 395-405.

Jiasheng Si, Yingjie Zhu, and Deyu Zhou. 2023. Explor-
ing faithful rationale for multi-hop fact verification
via salience-aware graph learning. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 37, pages 13573-13581.

Kacper Sokol and Peter Flach. 2019. Desiderata for
interpretability: explaining decision tree predictions
with counterfactuals. In Proceedings of the AAAI con-

ference on artificial intelligence, volume 33, pages
10035-10036.

Dominik Stammbach and Elliott Ash. 2020. e-fever: Ex-
planations and summaries for automated fact check-
ing. Proceedings of the 2020 Truth and Trust Online
(TTO 2020), pages 32—43.

James Thorne and Andreas Vlachos. 2018. Automated
fact checking: Task formulations, methods and fu-
ture directions. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 3346-3359, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

James Thorne and Andreas Vlachos. 2021. Evidence-
based factual error correction. In Proceedings of the

6690


https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.1145/3543507.3583375
https://doi.org/10.1145/3543507.3583375
https://doi.org/10.1145/3543507.3583375
https://aclanthology.org/C18-1283
https://aclanthology.org/C18-1283
https://aclanthology.org/C18-1283
https://doi.org/10.18653/v1/2021.acl-long.256
https://doi.org/10.18653/v1/2021.acl-long.256

59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 3298-3309, Online. As-
sociation for Computational Linguistics.

James Thorne, Andreas  Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809-819, New Orleans, Louisiana.
Association for Computational Linguistics.

Manju Vallayil, Parma Nand, Wei Qi Yan, and Héc-
tor Allende-Cid. 2023. Explainability of automated
fact verification systems: A comprehensive review.
Applied Sciences, 13(23):12608.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Andreas Vlachos and Sebastian Riedel. 2015. Identifica-
tion and verification of simple claims about statistical
properties. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2596-2601, Lisbon, Portugal. Association
for Computational Linguistics.

Juraj Vladika and Florian Matthes. 2023. Scientific
fact-checking: A survey of resources and approaches.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 6215-6230, Toronto,
Canada. Association for Computational Linguistics.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or fiction: Verifying
scientific claims. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7534-7550, Online. As-
sociation for Computational Linguistics.

Haoran Wang and Kai Shu. 2023. Explainable
claim verification via knowledge-grounded reason-
ing with large language models. arXiv preprint
arXiv:2310.05253.

William Yang Wang. 2017. “liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 422-426, Vancouver, Canada.
Association for Computational Linguistics.

Yuxia Wang, Revanth Gangi Reddy, Zain Muhammad
Mujahid, Arnav Arora, Aleksandr Rubashevskii, Ji-
ahui Geng, Osama Mohammed Afzal, Liangming
Pan, Nadav Borenstein, Aditya Pillai, et al. 2023.

Factcheck-gpt: End-to-end fine-grained document-
level fact-checking and correction of llm output.
arXiv preprint arXiv:2311.09000.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Lianwei Wu, Yuan Rao, Yongqiang Zhao, Hao Liang,
and Ambreen Nazir. 2020. DTCA: Decision tree-
based co-attention networks for explainable claim
verification. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1024-1035, Online. Association for Computa-
tional Linguistics.

Yue Wu, Wael AbdAlmageed, and Premkumar Natara-
jan. 2019. Mantra-net: Manipulation tracing network
for detection and localization of image forgeries with
anomalous features. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-

nition, pages 9543-9552.

Weizhi Xu, Qiang Liu, Shu Wu, and Liang Wang. 2023.
Counterfactual debiasing for fact verification. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 6777-6789, Toronto, Canada.
Association for Computational Linguistics.

Fan Yang, Shiva K Pentyala, Sina Mohseni, Mengnan
Du, Hao Yuan, Rhema Linder, Eric D Ragan, Shui-
wang Ji, and Xia Hu. 2019. Xfake: Explainable fake
news detector with visualizations. In The world wide
web conference, pages 3600-3604.

Barry Menglong Yao, Aditya Shah, Lichao Sun, Jin-Hee
Cho, and Lifu Huang. 2023. End-to-end multimodal
fact-checking and explanation generation: A chal-
lenging dataset and models. In Proceedings of the
46th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,

pages 2733-2743.

Fanrui Zhang, Jiawei Liu, Qiang Zhang, Esther Sun,
Jingyi Xie, and Zheng-Jun Zha. 2023a. Ecenet: Ex-
plainable and context-enhanced network for muti-
modal fact verification. In Proceedings of the 31st

ACM International Conference on Multimedia, pages
1231-1240.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023b. Siren’s song in the ai
ocean: A survey on hallucination in large language
models. arXiv preprint arXiv:2309.01219.

Yingjie Zhu, Jiasheng Si, Yibo Zhao, Haiyang Zhu,
Deyu Zhou, and Yulan He. 2023. Explain, edit, gen-
erate: Rationale-sensitive counterfactual data aug-
mentation for multi-hop fact verification.

6691


https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/D15-1312
https://doi.org/10.18653/v1/D15-1312
https://doi.org/10.18653/v1/D15-1312
https://doi.org/10.18653/v1/2023.findings-acl.387
https://doi.org/10.18653/v1/2023.findings-acl.387
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2020.acl-main.97
https://doi.org/10.18653/v1/2020.acl-main.97
https://doi.org/10.18653/v1/2020.acl-main.97
https://doi.org/10.18653/v1/2023.acl-long.374
http://arxiv.org/abs/2310.14508
http://arxiv.org/abs/2310.14508
http://arxiv.org/abs/2310.14508

A Methodology for Literature
Compilation

This appendix outlines the methodology employed
to compile the content of this survey. It details the
search strategy and selection criteria used to curate
the foundational content for this survey paper.

1. Search Strategy. Initially, we conducted a
comprehensive search in the ACL Anthology,
Google Scholar, and Google Search for re-
lated surveys. Within the ACL Anthology, we
focused on venues such as EMNLP, ACL, and
NAACL. The search involved using keywords
like fact-checking, fact-checking survey, mis-
information detection, explainable facts, and
automatic fact-checking.

Furthermore, we gathered surveys related to
the production of justifications in AFC. Our
goal was to identify the earliest and most fre-
quently cited papers in these surveys, which
we considered as foundational or "pioneer"
papers. Afterward, we tracked all papers that
referenced these pioneer works up until the
date of submission.

2. Selection Criteria. We only selected papers
that were directly relevant to the subject mat-
ter of justification production in AFC. The
selection was based on a careful review of the
abstract, introduction, conclusion, and limita-
tions of each paper. Following the selection
phase, 73 relevant papers were chosen to form
the foundational content of this paper.
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