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Abstract

Multi-modal large language models (MLLMs)
have demonstrated remarkable performance
across various tasks. However, these models
often prioritize capturing global information
and overlook the importance of perceiving lo-
cal information. This limitation hinders their
ability to effectively understand fine-grained
details and handle grounding tasks that ne-
cessitate nuanced comprehension. Although
some recent works have made strides in this,
they have primarily focused on single-modality
inputs. Therefore, we propose Grounding-
GPT, an end-to-end language enhanced multi-
modal grounding model. It is designed to per-
form fine-grained grounding tasks for three
modalities: image, video and audio. To en-
hance the model’s performance, we adopt a
coarse-to-fine training strategy, utilizing a three-
stage training approach to progressively en-
hance the model’s semantic awareness and fine-
grained understanding capabilities. Addition-
ally, we employ a diversified stage-specific
dataset construction pipeline, developing a
multi-modal, multi-granularity dataset tailored
for training the model in different stages. Exten-
sive experiments conducted on multiple multi-
modal benchmarks demonstrate that our model
achieves impressive fine-grained understand-
ing of multi-modal inputs on grounding tasks
while maintaining or improving its global com-
prehension capabilities. Our code, model, and
dataset are available at https://github.
com/lzw—1lzw/GroundingGPT.

1 Introduction

Building upon the capabilities of large language
models (LLMs), research on multi-modal large
language models (MLLMs) has also advanced,
enabling understanding across a broader range
of modalities. Representative models such as
LLaVA (Liu et al., 2023a) and MiniGPT-4 (Zhu
et al., 2023) align visual features obtained from im-
age encoders with LLM embedding space through

visual instruction tuning, facilitating tasks such as
image captioning and visual question answering.

However, existing MLLMs primarily focus
on capturing global information while neglect-
ing the fine-grained local information in multi-
modal inputs. This limitation restricts their ap-
plicability in grounding tasks requiring a more de-
tailed understanding. Shikra (Chen et al., 2023b),
BuboGPT (Zhao et al., 2023) and Ferret (You et al.,
2023) have explored techniques that enable finer
alignment and understanding of inputs. By consid-
ering local-level information, these models exhibit
enhanced performance in grounding or referring
tasks. These methods provide insights into fine-
grained understanding, but they are primarily lim-
ited to a single modality. There is still significant
potential for exploring fine-grained understanding
across other modalities.

To address the aforementioned issue, this paper
proposes GroundingGPT, a language enhanced
multi-modal grounding model, which is an end-
to-end unified large language model designed to
perform multi-modal grounding and understanding
tasks across various modalities, including image,
video, and audio. The comparison between our
model and other models can be found in Table 1.
Specifically, our model employs modality-specific
adapters to map feature representations from indi-
vidual encoders to the embedding space of LLMs.
To incorporate spatial and temporal information,
we directly represent coordinates and timestamps
as textual numbers, eliminating the need for vocab-
ulary expansion. For training GroundingGPT, we
design a three-stage coarse-to-fine training strategy.
In the first stage, we align each pre-trained multi-
modal encoder with the LLM embedding space
using modality-specific adapters. In the second
stage, we aim to enable the model to capture fine-
grained information, including coordinates and
timestamps. In the third stage, we perform multi-
granularity instruction tuning to refine the model’s
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Models

Image Grounding Video Grounding Audio Grounding Multi-turn Dialog E2E

LLaVA X
Video-LLaMA X

Shikra

Ferret

BuboGPT
LLaVA-Grounding

* X X X X X

X

* N % X X X
x % %

GroundingGPT

Table 1: Comparison of multi-modal large language models. "Multi-turn Dialog" refers to the model’s ability
to engage in multi-turn conversations with users. "E2E" refers to the models that are designed to be end-to-end

architecture without the need for external modules.

responses. For each stage, we employed a stage-
specific dataset construction pipeline to generate a
diverse, multi-modal, and multi-granularity train-
ing dataset.

To summarize, our contributions are as follows:

* We propose GroundingGPT, an end-to-end
multi-modal grounding model that accurately
comprehends inputs and possesses robust
grounding capabilities across multi modali-
ties, including image, video and audio. To
the best of our knowledge, GroundingGPT is
the first model to achieve multi-modal fine-
grained understanding and grounding.

* For training GroundingGPT, we employ a
three-stage coarse-to-fine training process that
enables the model to capture high-level se-
mantic information and low-level fine-grained
details simultaneously. To address the issue of
limited data, we construct a diverse and high-
quality multi-modal training dataset, which
comprises a rich collection of multi-modal
data enriched with fine-grained information.

» Extensive experiments conducted on a wide
range of MLLM benchmarks demonstrate the
generality and effectiveness of Grounding-
GPT in multi-modal grounding and under-
standing tasks across various modalities.

2 Related Work

Multi-modal Large Language Models (MLLMs)
Recently, large language models (LLMs) repre-
sented by GPTs (Brown et al., 2020; OpenAl,
2023) and LLaMA (Touvron et al., 2023) have
received extensive attention from researchers for

their remarkable performance in various natural
language processing tasks. Substantial progress
has been made in the field of MLLMs, which ex-
tend the support for multi-modal input and out-
put beyond language. These MLLMs typically
fine-tune pre-trained LLMs with multi-modal in-
structions, to enable understanding across multiple
modalities. Models such as LLaVA, MiniGPT-4,
and mPLUG-OwI (Ye et al., 2023) map image em-
beddings obtained from image encoders into the
LLM space. Similarly, video MLLMs like Video-
Chat (Li et al., 2023b), Video-LLaMA (Zhang
et al., 2023c), Video-Chatgpt (Maaz et al., 2023)
and Valley (Luo et al., 2023), as well as speech
MLLMs like SpeechGPT(Zhang et al., 2023b)
and LLaSM (Shu et al., 2023), acquire multi-
modal understanding capabilities through similar
approaches. In X-LLM (Chen et al., 2023a), each
modality is processed independently through ded-
icated branches for multi-modal input processing.
Pandagpt (Su et al., 2023) employs a unified em-
bedding space trained by ImageBind (Girdhar et al.,
2023) to facilitate joint understanding of various
modal inputs. However, these models often fail to
adequately capture details within inputs.

MLLMs For Grounding Task Recently, there
has been a focus on training visual MLLMs to
achieve fine-grained image understanding and vi-
sual grounding. Approaches such as KOSMOS-
2 (Peng et al., 2023) and Shikra achieve this
by incorporating coordinates into the training
data, enabling MLLMs to understand the location
within images. On the other hand, approaches
like NExT-Chat (Zhang et al., 2023a), LLaVA-
grounding (Zhang et al., 2023d),GlaMM (Rasheed
et al., 2023) and Ferret enhance perception of fine-
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Answer-Video: The baby push
up the glasses and stretch her
body in {0.16, 0.36} (1.6s-3.6s).

Answer-Image: The girl is sitting on
the bed[0.000,0.289,1.000,1.000]
and reading a book[0.024,0.488,

Answer-Audio: The source of this
sound in this scene is a children
laughing[0.388,0.000, 0.885,1.000] .

0.982, 0,505] .
h Large Language Model
+ + +
Text Token Video Token Image Token Audio Token
Adapter
Video Adapter Image Adapter Audio Adapter
Encoder T T T
Text Tokenizer Video Encoder Image Encoder Audio Encoder

Prompt-Video: When did the
baby push up the glasses and
stretch her body in the video?

Prompt-Image: What is this girl

in this image?

Prompt-Audio: What is the source of

doing the sound in this image?

Figure 1: The overall structure of GroundingGPT involves separate encoders and adapters for each modality. Blue
boxes represent video inputs, yellow boxes represent image inputs, and pink boxes represent audio inputs.

grained information by introducing additional re-
gion encoder modules. VTimeLLLM (Huang et al.,
2023) demonstrates the capability to understand
fine-grained video moment and reason with respect
to time boundary. BuboGPT (Zhao et al., 2023)
enables cross-modal interaction between image,
audio, and language, facilitating fine-grained un-
derstanding of different modalities.

3 Methods

We introduce the overall architecture of the Ground-
ingGPT model in this section. Additionally, we
will present our three-stage coarse-to-fine training
strategy and data construction pipeline.

3.1 Model Architecture

Figure 1 illustrates the overall architecture of the
GroundingGPT model. Multi-modal inputs are
processed through modality-specific encoders to
extract features. These features are then mapped
to the LLM embedding space using corresponding
adapters. We will also introduce the representation
of coordinates and timestamps.

3.1.1 Image Branch

We employ the pre-trained CLIP visual encoder
ViT-L/14 (Radford et al., 2021) to extract image
features. The encoded image is represented as a
fixed-length embedding vector I € RErxdr, To
align the image representation with the LLM em-
bedding space, we use an MLP to map the obtained
features to the dimensions of LLMs. The mapped
embeddings are then concatenated with text embed-
dings and used as input to LLMs, similar mapping
methods are adopted for other modalities.

3.1.2 Video Branch

Considering the inherent information redundancy
in videos and memory limitations, we uniformly
sample M frames form the video. Each frame
is processed by the image encoder, resulting in
Vi = [v1,v2,...,vp] where v; € REf*4s repre-
sents the embedding of the ¢-th frame. To preserve
temporal information, we introduce temporal posi-
tion encoding to the representation. The enhanced
representation is then fed into the Video Q-former
with the same structure as the Q-Former in BLIP-
2 (Li et al., 2023a) to aggregate video information,
which generates ky video embedding vectors of
dimensions dy . These vectors form the representa-
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Question Pool

i
1 Q: What part of this image corresponds to a woman in a white tank top eating a salad? ]
! 1
:A: [0.000, 0.136, 0.505, 0.858]. H

1 Q: What is the time when person begins to play on a phone is observed in the footage?
1
iA: In the time period {0.71, 1.0}.

'
! Q: What is producing the sound in this given image?

| A: In this image, the given audio might originates from playing cello[0.397, 0.237, 0.688,

Multi-granularity Instruction Tuning Dataset

Public Dataset System Prompt

© —
T
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In-context GPT Single/Multi-turn
Examples Conversation

000

Ga

Blue)
Filtering

What is the older man[0.424, 0.126, 0.848, 0.872] doing?

He is tending to cooking hotdogs on a backyard grill.

Where is the hotdog[0.180, 0.620, 0.392, 0.814] being grilled?

The hotdogs are being grilled on a backyard grill[0.006, 0.344, 0.490, 0.864].

What happens during the time period{0.01,0.24}?

\
i
A young woman is seen standing in a room and leads into her dancing. ‘
!
: When does the woman start dancing around the room? '

1

|

The woman starts dancing around the room in {0.21,0.74} .

______________________________________________________

Figure 2: The data construction pipeline and examples for the last two training stages. To simplify, the multi-turn
conversation examples only showcase two rounds of question-answer interactions.

tion V € R*v*dv for the entire video.

3.1.3 Audio Branch

The audio branch follows a structure similar to the
video branch. We employ the ImageBind audio en-
coder, which processes 2-second audio clips with a
16kHz sampling rate and converts them into spec-
trograms using 128 mel-spectrogram bins. We sam-
ple N 2-second segments from the original audio
and transform each segment into a vector, resulting
in Ay = [a1,as, ...ay], where a; € R¥s*9s rep-
resents the embedding of the i-th aduio segment.
We incorporate temporal position encoding into As.
Finally, we obtain a fixed-length audio representa-
tion sequence denoted as A € R*4*94 ysing the
audio Q-former like video branch.

3.1.4 Spatial-temporal Representation

We represent the bounding box in an image us-
ing four relative coordinate values: [x1,y1, T2, y2].
These values correspond to the upper left corner
point and the lower right corner point of the bound-
ing box. Each value is rounded to three decimal
places. We concatenate this textual representation
after the description related to the bounding box.
Similarly, for representing timestamps, we use two
two-digit decimals {¢1,¢2} to indicate the relative
values of the start and end times of a time segment
with respect to the total duration. This representa-
tion allows us to train the model without requiring
additional vocabulary expansion or training. Exam-
ples of the training dataset are shown in Figure 2.

3.2 Coarse-to-Fine Training and Dataset

We employ a three-stage coarse-to-fine training
strategy to train the model, while constructing spe-
cific datasets for each stage.

3.21

This stage focus on enabling the model to compre-
hend multi-modal inputs and develop a high-level
semantic perception of the input. During the train-
ing process, the LLM and the encoders for each
modality remain frozen, while only the adapters
for each modality are trained.

Multi-modal Pre-training

Training Dataset We utilize public pretraining
datasets as the primary source of our data. The
training data for the image and video modalities
is LLaVA-Pretrain-595k and Valley-Pretrain-703k,
respectively. To construct the audio data, we adopt
a similar approach as in LLaVA, leveraging the
Wavcaps (Mei et al., 2023) dataset. Each sample is
accompanied by a sampled instruction that requires
the model to provide a concise description of the
audio to construct a single-turn conversation.

3.2.2 Fine-grained Alignment Tuning

The second stage aims to enable the model to com-
prehend more detailed information, including co-
ordinates and timestamps. Through training in this
stage, the model achieves impressive results in var-
ious grounding tasks, establishing a more compre-
hensive and refined understanding ability. During
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the training process, the encoders for each modality
are frozen, while the LLM and adapters are trained.

Training Dataset The training data used in this
stage includes the spatial-temporal representation
mentioned in Section 3.1.4. To address the scarcity
of fine-grained multi-modal data, we construct
a multi-modal dataset specifically designed for
this stage. The dataset is primarily obtained by
converting publicly available datasets. As de-
picted in the left part of Figure 2, task descrip-
tions are provided to GPT-3.5 to generate a task-
specific question pool. For each data sample, a
question is randomly selected from the pool, and
templates are used to convert the sample’s for-
mat, resulting in a single-turn conversation. For
the image modality, we utilize visual grounding
datasets such as RefCOCO (Kazemzadeh et al.,
2014), RefCOCO+ (Kazemzadeh et al., 2014), Ref-
COCOg (Mao et al., 2016) and Visual Genome (K-
ishna et al., 2017b) to construct the datasets. For the
video modality, video temporal grounding datasets
such as DiDeMo (Anne Hendricks et al., 2017),
HiREST (Zala et al., 2023) are utilized for fine-
grained alignment. Regarding the sound local-
ization task, we employ the VGGSS (Chen et al.,
2021) dataset for training. All these datasets are
transformed into single-turn conversation format
following the aforementioned pipeline for training.

3.23

After the training in the first two stages, the model
has acquired a strong understanding and grounding
capability. This stage aims to enable the model
to generate responses that better align with hu-
man preferences and improve multi-modal interac-
tions. We train the model using instruction-tuning
datasets at different granularities. Similar to the
second stage, the encoders for each modality are
frozen, while the LLM and adapters are trained.

Multi-granularity Instruction Tuning

Training Dataset The data utilized in this stage
consists of high-quality fine-grained instruction-
tuning dataset we construct and public instruction-
tuning dataset. As illustrated in the right part of
Figure 2, we select a subset of public datasets for
human annotation to create in-context examples.
It assists in guiding GPT-3.5 to follow similar pat-
terns when generating instruction-tuning dataset.
Subsequently, task-specific system prompts and
randomly selected examples are input to GPT-3.5
to generate single/multi-turn conversations. For
the image modality, we construct fine-grained

datasets using the Flickr30K Entities (Plummer
et al., 2015) dataset, including detailed descrip-
tions and conversations. To enhance the model’s
fine-grained reasoning capability, we utilize the
VCR (Zellers et al., 2019) dataset to construct a
reasoning dataset with coordinates. For the video
modality, we constructed datasets with temporal
information by incorporating datasets from vari-
ous video tasks such as DiDeMo (Anne Hendricks
et al., 2017) and Activitynet Captions (Krishna
et al., 2017a), along with other relevant sources.
The public instruction-tuning datasets we use in-
clude LLaVA-v1.5-mix665k, Valley-Instruct-73k,
Videochat-Instruct-11k, and an audio instruction-
tuning dataset constructed using Clotho (Drossos
et al., 2020) dataset. For more details about the
datasets, please refer to appendix B.

To ensure the quality of the dataset, we carefully
filter the data by eliminating samples that do not
conform to the desired format or criteria. Specifi-
cally, we performed data cleaning on the raw data,
which entailed filtering the downloaded data and re-
moving any damaged instances, particularly videos
with corrupted content. By ensuring data integrity,
we preserved the quality of the dataset. Further-
more, during the data generation process, although
we provided contextual examples, there were in-
stances where the generated samples deviated from
the desired format outlined in Section 3.1.4. For
example, there were cases where the parentheses
in coordinate representations did not match. To
address this issue, we employed a set of predefined
regular expression patterns to filter out samples that
did not conform to the specified format.

During training, in order to prevent catastrophic
forgetting in subsequent training stages, we adopt
a sampling strategy that incorporates training data
from previous stages. The training process employs
a congistent training objective as follows:

L(0) = = E(o )~ Dusren 108 P(y]2)]
—a E(xvy)NDprevious [logp(y’x)L

where D..-rent denotes the dataset in current train-
ing stage, Dprevious denotes the dataset in previous
training stage and o denotes the sampling rate. In
the first training stage, « is set to 0.

4 Experiments

4.1 Experimental Setup

We employ Vicuna-v1.5 (Chiang et al., 2023) as
the language model. Each training stage lasts for
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Models LLM Size RefCOCO RefCOCO+ RefCOCOg

val  testA testB \ val  testA testB \ val test

UNITER - 81.41 87.04 74.17 | 7590 8145 66.70 | 74.02 68.67
MDETR - 86.75 89.58 81.41 | 79.52 84.09 70.62 | 81.64 80.89
UniTAB - 86.32 88.84 80.61 | 78.70 83.22 6948 | 79.96 7997
KOSMOS-2 1.6B 5232 5742 4726 | 4548 50.73 4224 | 60.57 61.65
Shikra 7B 87.01 90.61 80.24 | 81.60 87.36 72.12 | 82.27 82.19
NEXxT-Chat* 7B 85.50 90.00 7790 | 77.20 84.50 68.00 | 80.10 79.80
Ferret* 7B 87.49 9135 8245 | 80.78 87.38 73.14 | 83.93 84.76
GroundingGPT 7B 88.02 91.55 8247 | 81.61 87.18 73.18 ‘ 81.67 81.99

Table 2: Performance comparison on the referring expression comprehension(REC) task.

"*" indicates that the

model employs additional image region perception modules.

Charades-STA

Models R @ TIoU=05) R@I(I0U=07)
Video-LLaMA 3.8 0.9
VideoChat 33 1.3
VideoChatGPT 7.7 1.7
GroundingGPT 29.6 11.9

Table 3: Performance comparison on the temporal
grounding task. All the models have the same LLM
size of 7B.

one epoch. During the training process, all images
were padded to a square shape and resized to a
resolution of 336 x 336. For each video, 64 frames
were sampled, and for each audio, three 2-second
segments were sampled and processed. For more
details on the hyper-parameter settings, please refer
to the appendix A.

4.2 Quantitative Evaluation

We conducted extensive experiments for the effec-
tiveness of GroudingGPT in multi-modal ground-
ing and understanding tasks.

4.2.1

In this section, we demonstrate that our model
achieves impressive fine-grained understanding of
multi-modal inputs on grounding tasks.

Multi-modal Grounding

Image Grounding In the image grounding task,
the model takes an image and textual description
of a region within the image as input, and out-
puts the text along with explicit position informa-
tion, such as bounding boxes or masks. To as-
sess the image grounding capability of the Ground-

ingGPT model, we conduct experiments on the
widely used Reference Expression Understanding
(REC) task. The REC task requires the model to lo-
cate the bounding box corresponding to a given
text reference expression. Our experiments in-
volve three datasets: RefCOCO, RefCOCO+ and
RefCOCOg. The baselines used for comparing
include previous end-to-end multi-modal models
UNITER (Chen et al., 2020), MDETR (Kamath
et al., 2021), UniTAB (Yang et al., 2022), and
the LLM-based multi-modal grounding models
KOSMOS-2, Shikra, NExT-Chat and Ferret. For
GroundingGPT model, we use a unified prompt
like "Output the coordinate of <exp>", where
"<exp>" represents the reference expression. The
results on the REC task is presented in Table
2. GroundingGPT demonstrates remarkable per-
formance across multiple datasets and performs
comparably to specialized fine-tuned models or
MLLMs that incorporate additional image region
perception modules.

Video Grounding Video grounding focuses on
identifying and localizing specific moments or
events in the video based on given descriptions. To
evaluate the video grounding capability of Ground-
ingGPT, we conduct experiments on the tempo-
ral video grounding task. The temporal video
grounding task requires models to pinpoint and
highlight temporal boundaries within videos, that
corresponds accurately to a specified text query.For
the task, we employed datasets from Charades-
STA (Gao et al., 2017). The predicted time seg-
ments are compared with the corresponding ground
truth time segments to calculate the IoU. The eval-
uation metric used is "R@1, IoU = m", which mea-
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Models ~ LLM Size| VQAY GQA VisWiz SQA' VQAT|POPE MME MMB LLaVAY

BLIP-2 13B | 410 41 196 61 425|853 12938 - 38.1
InstructBLIP B - 492 345 605 50.1 - - 36 60.9
InstructBLIP  13B - 495 334 631 507 | 789 12128 - 58.2

Shikra 13B | 774 - - - - - - 588
LLaVA-1.5 7B 785 620 500 668 582|859 1510.7 643 634
GroundingGPT ~ 7B | 78.7 621 551 787 552 | 874 14542 638 709

Table 4: Comparison of MLLMs on image understanding benchmarks. Benchmark names are abbreviated due
to space limits. VQA-v2 (Goyal et al., 2017); GQA (Hudson and Manning, 2019); VisWiz (Gurari et al., 2018);
SQA!:ScienceQA-IMG (Lu et al., 2022); VQAT: TextVQA (Singh et al., 2019); POPE (Li et al., 2023c); MME (Fu

et al., 2023); MMB:MMBench (Liu et al., 2023b); LLaVAY: LLaVA-Bench (In-the-Wild) (Liu et al., 2023a).

Models LLM Size MSVD-QA MSRVTT-QA  ActivityNet-QA
Accuracy Score‘Accuracy Score‘Accuracy Score
VideoChat 7B 56.3 2.8 45.0 2.5 26.5 22
Video-LLaMA 7B 51.6 2.5 29.6 1.8 12.4 1.1
Video-ChatGPT 7B 64.9 33 49.3 2.8 352 2.7
Valley 7B 65.4 34 45.7 2.5 42.9 3.0
GroundingGPT 7B | 67.8 3.7 | 516 3.1 | 447 32

Table 5: Comparison of MLLMs on video understanding benchmarks. We adopt the evaluation methodology in

Video-ChatGPT (Maaz et al., 2023) for evaluation.

. Random Popular Adversarial

Models LLM Size Accuracy F1-Score Yes \Accuracy F1-Score Yes \Accuracy F1-Score Yes
LLaVA 7B 72.16 7822 76.29) 6137  71.52 85.63] 58.67 70.12 88.33
mPLUG-Owl 7B 53.97 6839 95.63] 5090 66.94 98.57| 50.67 66.82 98.67
MiniGPT-4 13B 79.67  80.17 52.53| 69.73  73.02 62.20| 65.17 7042 67.77
InstructBLIP 13B 88.57  89.27 56.57| 82.77 84.66 6237 72.10 77.32 73.03
Shikra 7B 86.90  86.19 43.26| 8397  83.16 4523] 83.10 82.49 46.50
GroundingGPT 7B 89.79 89.22 43.13) 88.23 87.38 43.23| 86.17 85.50 45.43

Table 6: Results on the POPE benchmark for object hallucination evalaution. "Yes" represents the probability of

positive answers to the given question.

sures the percentage of correctly retrieved moments
with an IoU greater than m. We set the values of
m as 0.5, 0.7 to assess different levels of accuracy.
As shown in Table 3, GroundingGPT exhibits ex-
cellent performance in temporal video grounding
task compared to previous video MLLMs, which
primarily focuses on entire video understanding.

4.2.2 Multi-modal Understanding

We validate that GroundingGPT can maintain or
improve the multi-modal understanding ability by
introducing grounding tasks. Especially, it can
effectively suppress object hallucination.

Image Understanding We evaluate the image
understanding capability of GroundingGPT on five
question-answering benchmarks and four recent
proposed benchmarks specifically designed for vi-
sion instruction tuning. These benchmarks provide
a comprehensive assessment of the model’s capa-
bilities using diverse evaluation metrics. The exper-
imental results presented in Table 4 demonstrate
that GroundingGPT achieves state-of-the-art per-
formance on six benchmarks and remains highly
competitive on other three benchmarks. Addition-
ally, GroundingGPT exhibits advanced capabilities
compared to larger-scale grounding MLLMs, such
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Please describe the image and include the
i

object positions in [x0, y0, x1, y1] format.

¢ e Three dogs are sitting on the floor in front

A of three plates of food. They seem to be

begging for food, possibly from their
owners.

What breed is the dog, please tell me @

something about it. i

4 b The dog in the middle is a Shiba Inu.
¢ o Shibas are a Japanese breed of dog,
L characterized by their distinctive, thick
double coat, which comes in various

Write a summary of this video.

In this video, a dog is seen attempting to ride
a skateboard. The dog is initially hesitant and
unsure of how to balance on the skateboard.
However, with determination, the dog
manages to find its balance and starts riding
the skateboard. The dog’s movements are a
bit wobbly at first, but it gradually gains
confidence and starts to ride smoothly. The
dog's excitement is evident as it enjoys the
experience of riding the skateboard. Despite
the initial hesitation, the dog’s perseverance
pays off, and it successfully rides the
skateboard for a short distance. This video
showcases the dog’s determination and
ability to overcome challenges, as well as its
enjoyment of the skateboarding experience.

Please give me the timestamp when the dog turn
around to look at the camera?

The dog turns around to look at the camera in

4.|||||..||u||4.1||||
(An audio of a bird singing.)
g .

[
\e:

:2 Where is the sound's point of emission in this .
! image? Include the object positions in [x0, y0, x1, ?
y1] format. e
The sound’s position of emission is from a small
bird perched on a rcok.
.|||I|I,|||I|I.|||I||
(An audio of a cat meowing.)
M

Where in the image is the sound in the audio =
coming from? Output the coordinates of the ?
I~

I

sound source.

colors such as red, white, or black. They {0.09,0.13}.

are known for their independent and

sometimes aloof nature, but they are

also loyal and affectionate with their

owners. In the image, the Shiba Inu is

sitting next to the other two dogs, which i
are of different breeds, and it is eating v,
food from its plate.

ride the skateboard?

skateboard in {0.42,0.58}.
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When does the dog use its paws to push off and /T8 @

The sound in the audio is coming from the
orange cat wearing sunglasses. The cat is laying
on a float in a pool.

Figure 3: Qualitative results of GroundingGPT on multi-modal grounding tasks.

as Shikra-13B.

Video Understanding In Table 5, we provide a
quantitative assessment of the video question an-
swering capabilities of MLLMs on three datasets:
MSVD-QA (Chen and Dolan, 2011), MSRVTT-
QA (Xuetal., 2016) and ActivityNet-QA (Yu et al.,
2019). GroundingGPT consistently outperforms
other baselines, demonstrating its advanced video
understanding capabilities. Notably, Grounding-
GPT surpasses the powerful baseline of Valley by
2.4%, 6.9% and 1.8% on MSVD-QA, MSRVTT-
QA and ActivityNet-QA, respectively.

Object Hallucination We conduct an evaluation
of MLLMs regarding their object hallucination in
Table 6. GroundingGPT achieves the highest per-
formance across all three sampling subsets. No-
tably, GroundingGPT-7B outperforms larger mod-
els such as InstructBLIP-13B, on the challeng-
ing Adversarial subset, GroundingGPT exhibits
14.07% increase in accuracy and 8.18% increase in
fl-score, while experiencing a 27.60% decrease in
the "Yes" metric. Additionally, on the "unanswer-
able" subset of VisWiz benchmark, GroundingGPT
significantly improves from 67.8% to 84.0% com-
pared to LLaVA-1.5. This improvement reveals

that our model not only acquires a high-level se-
mantic understanding of the overall image but also
develops the ability to comprehend local details.
This comprehensive understanding of the image
enables the model to effectively suppress the occur-
rence of hallucinations.

4.2.3 Qualitative Results

We provide qualitative results to demonstrate the
multi-modal understanding and grounding capabil-
ities of our model. Figure 3 showcases examples
illustrating the performance of GroundingGPT in
multi-modal grounding tasks. More examples are
available in appendix E. These results indicate that
GroundingGPT excels in fine-grained multi-modal
grounding tasks while maintaining a comprehen-
sive understanding of multi-modal inputs.

4.3 Ablation Study

To validate the effectiveness of our approach, we
conducted experiments on the REC task to assess
the impact of training strategy, model architecture,
and size on the results.

Training Strategy As shown in Table 7, it is ev-
ident that including fine-grained training data in
the first stage results in a decline in performance.
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RefCOCO
St 8283 ‘ val  testA testB
C+F F C+F | 8243 86.87 75.37
C F C+F | 84.68 88.88 78.94

Table 7: Ablation studies of the training strategy on
the REC task. The S1 to S3, denoted as stage 1 to
stage 3, represent the training data used in each stage.
"C" represents coarse-grained data, while "F" represents
fine-grained data. To quickly illustrate the performance,
we adopt a simple training setting (224 x 224 simage
resolution and linear adapter) as the toy model.

. RefCOCO
LLM Size Adapter val oSiA tesB
7B Linear | 86.01 90.45 80.43
7B MLP 88.02 91.55 8247
13B MLP 88.26 92.05 82.65

Table 8: Ablation studies of the model architecture,
LLM size on the REC task.

This can be attributed to the model’s limited un-
derstanding of the images at this early stage. The
introduction of fine-grained data during training
may introduce interference and hinder the model’s
learning. This finding further validates the effec-
tiveness of our coarse-to-fine training strategy.

Model Architecture and Size As shown in Ta-
ble 8, the top two rows demonstrates that replacing
the linear layer with an MLP in the adapter leads
to performance enhancement. This improvement
can be attributed to the preservation of more com-
prehensive image information and the improved
mapping of image embeddings to the LLM space.
Besides, increasing the LLM size leads to an im-
provement. This can be attributed to the fact that
larger language model possess richer knowledge
and stronger modeling capabilities.

5 Conclusion

In this paper, we introduce GroundingGPT, a uni-
fied end-to-end multi-modal grounding model. To
the best of our knowledge, this is the first multi-
modal large language model capable of performing
multi-modal grounding and understanding tasks.
We adopt a three-stage coarse-to-fine training strat-
egy, accompanied by the construction of stage-
specific training datasets, to effectively train the
model. Our model demonstrates remarkable perfor-

mance in multi-modal grounding and understand-
ing tasks. Extensive experiments conducted on a
wide range of MLLM benchmarks confirm the ef-
fectiveness and generality of our model. To foster
further advancements in this field, we make our
model, code, and dataset openly accessible.

6 Limitations

Sampling Strategy Due to computational mem-
ory constraints, GroundingGPT adopts a sampling
approach when processing videos and audios. How-
ever, this method inevitably results in some loss of
crucial information, especially when dealing with
longer videos. One future research direction is
to explore better modeling approaches for longer
videos and minimize information loss.

Cross-modal Inputs At present, the majority of
the training data primarily consists of single-modal
inputs. However, further exploration is needed to
address the challenges posed by multi-modal inputs.
In the future, we plan to investigate methods for
accomplishing grounding tasks in the context of
simultaneous multi-modal inputs. For instance, we
aim to simultaneously perform spatial and temporal
grounding on input videos. Additionally, we will
annotate such data to foster advancements in this
field.

Grounding Ability Despite achieving promising
results in multi-modal grounding tasks, Grounding-
GPT currently lacks the capability to output more
fine-grained grounding results such as segmenta-
tion masks. In future work, we plan to expand
the grounding tasks to support a broader range of
grounding requirements.
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A Implementation details

We provide more details of our experiment con-
figuration for reproducing our model. We provide
hyper-parameters for all stages in Table 9.

Settings Stagel Stage?2 Stage3
batch size 64 16 8
learning rate le-3 2e-5 2e-5
learning schedule Cosine decay
warm up ratio 0.03 0.03 0.03

weight decay 0.0 0.0 0.0

epoch 1 1 1

bf16 v v v

tf32 v v v

grad accumulate 1 2 2
DeepSpeed stage ZeRO2
GPUs 8xA100

Table 9: The hyper-parameters for model training.

B Training Dataset Details

In Table 10, we provide a comprehensive list of the
datasets used in constructing our training dataset.
This includes the data utilized in all three stages.
It should be noted that a significant portion of the
data needs to be constructed in the desired format
using publicly available data. Please refer to the
section 3.2 for specific guidance on this matter. Ad-
ditionally, we provide the statistical results of the
training data we constructed in Table 11, including
the number of samples for each stage, whether it
is multi-turn dialogue data, average number of di-
alogue turns, average video duration, and average
audio duration.

C Dataset Construction Templates

Table 12 presents the templates utilized for various
tasks during the first two training stages. For the
sake of demonstration, we provide three examples
of instructions for each task.

D Fine-grained Instruction-tuning
Dataset Generation Prompts

As shown in section 3.2.3, we use GPT-3.5 to gen-
erate the instruction-tuning dataset. For the image
modality, in Figure 4, we provie the prompt we
used to generate the detailed description dataset. In
Figure 5, we provie the prompt we used to generate
the conversation dataset. For the video modality,
we provie the prompt we used to generate the video
grounding instruction-tuning dataset in Figure 6.

E More Visualization

To demonstrate the performance of GroundingGPT
in multi-modal grounding and understanding tasks,
we present more visualizations in this section. Fig-
ure 7 and Figure 8 showcase the capability of the
GroundingGPT model in multi-modal grounding
tasks. Figure 9, Figure 10 and Figure 11 present the
capability of GroundingGPT model in multi-modal
understanding tasks.
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Training Stage Modality Dataset source
Image LLaVA-Pretrain-595k
Stagel Video Valley-Pretrain-703k
Audio Wavcaps
Image RefCOCO, RefCOCOg, RefCOCO+, Visual Genome
Stage2 Video DiDeMo, Charades-STA
Audio VGGSS
Image LLaVA-1.5-mix665k, Flickr30k Entities, VCR
Stage3 Video Valley-Instruct-73k, Videochat-Instruct-11k, Activitynet Captions
Audio Clotho

Table 10: The publicly available dataset sources used for constructing the training data.

Training Stage Modality | Samples Multi-turn Dialog Turns  Video Duration Audio Duration

Image | 595K X 1 - -

Stagel Video 703K X 1 67.59s -
Audio 403K X 1 - 18.22s
Image 4.2M X 1 - -

Stage2 Video 80K X 1 38.03s -
Audio 5K X 1 - 9.97s
Image 925K 4.15 - -

Stage3 Video 83K 2.91 29.45s -
Audio 4K X 1 - 22.44s

Table 11: The statistics of the training data for the model, including the number of samples, whether it is multi-turn
dialogue data, average number of dialogue turns, average video duration, and average audio duration.
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Task Template examples

Provide a brief description of the given image.
Image Captioning Write a terse but informative summary of the picture.

Share a concise interpretation of the image provided.

What object is present within the specified region<region>?
REG Can you identify the item within the region<region>?

Describe the object located within the region<region>.

In this image, where is <exp> located?
REC Can you identify the position of <exp> within this image?

Please describe the location of <exp> in this image.

What color is this <exp>?
Object Attribute How many <exp> are visible within this image?

How mang <exp> are there in the image?

Relay a brief, clear account of the video shown.
Video Captioning Offer a succinct explanation of the footage presented.

Present a compact description of the clip’s key features.

Describe the content shown in the video clip<time> of this video.
Video Dense Captioning | What can you tell me about the video segment<time> in this video?

Can you provide a description of the video snippet<time>?

When did <event> occur in the video?
Temporal Grounding | Tell me the timestamp when <event> happened.

At what time does <event> take place in the video?

Analyze the audio and provide a description of its content.
Audio Captioning Examine the audio and describe the different sounds present.

Provide a detailed summary of the auditory elements in the audio clip.

What is the cause of the sound in this given image?

Sound Localization Can you pinpoint the source of the sound in this image?

Describe the location of the sound’s origin in this image.

Table 12: Instruction templates used to construct the training dataset in the first two stages. The templates include
several placeholders: ’<region>’ represents the coordinates of a region in an image, ’<exp>’ represents the expression
correspond to an image region, ’<time>’ represents a time segment in a video, and ’<event>’ represents an event to
be located in a video. During the dataset construction process, these placeholders are replaced with corresponding
information.
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System Message

You are an Al visual assistant that can analyze a single image. You receive several sentences, each
describing the same image you are observing. In addition, specific object locations within the image
are given, along with detailed coordinates. These coordinates are in the form of bounding
boxes,represented as [x1, y1, x2, y2], with floating numbers ranging from 0 to 1. These values
correspond to the top left x, top left y, bottom right x, and bottom right y.

The task is to create an accurate description related to the image based on the information. The
description should involve mentioning the position of objects in the image. The position can be
represented in the format [x1, y1, X2, y2]. Description should be accurate and concise, limited to 100
words.

Here are some additional requirements about generated descriptions:

1. In description, you need to mention bounding box coordinates to refer to some objects or regions,
instead of directly say the object name or describing the regions in text.

2. Avoid introducing objects that do not exist in the original descriptions and avoid including
excessive subjective perceptions to prevent creating illusions.

3. Only describe what you are certain about, and avoid providing descriptions that may be
ambiguous or inaccurate.

4. The boxes provided in different sentences may have some coordinates that are the same or very
close, which could be because different expressions refer to the same object. You should analyze
and avoid describing a single object within a bounding box as multiple distinct entities.

5. The number of words in the output description should not exceed 100 words. Keep it as concise
as possible. You do not need to include everything in several descriptions. Choose the output you
think is the most important.

In-context Example

User:

{'sentence': 'Two young guys with shaggy hair look at their hands while hanging out in the yard .',
'boxes': {'Two young guys': [[0.474, 0.248, 0.655, 0.668], [0.589, 0.218, 0.781, 0.744]], 'shaggy hair":
[[0.538, 0.248, 0.616, 0.31], [0.592, 0.226, 0.718, 0.29]], 'their hands': [[0.517, 0.366, 0.592, 0.404],
[0.471, 0.394, 0.571, 0.448][}}

{'sentence': 'Two young , White males are outside near many bushes .',
'boxes': {'Two young , White males': [[0.474, 0.248, 0.655, 0.668], [0.589, 0.218, 0.781, 0.744]], 'many
bushes': [[0.0, 0.438, 0.631, 0.944], [0.826, 0.428, 0.994, 0.672]]}}

{'sentence': 'Two men in green shirts are standing in a yard .',
'‘boxes': {Two men': [[0.474, 0.248, 0.655, 0.668], [0.589, 0.218, 0.781, 0.744]], 'green shirts': [[0.619,
0.286, 0.769, 0.486], [0.517, 0.31, 0.649, 0.47]]}}

{'sentence': 'A man in a blue shirt standing in a garden .',
‘boxes': {'A man': [[0.589, 0.218, 0.781, 0.744]], ‘'a blue shirt': [[0.619, 0.286, 0.769, 0.486][}}

{'sentence': 'Two friends enjoy time spent together .',
'boxes': {'Two friends': [[0.474, 0.248, 0.655, 0.668], [0.589, 0.218, 0.781, 0.744]}}

Assistant:

In the image, two young men[0.474, 0.248, 0.655, 0.668][0.589, 0.218, 0.781, 0.744] with shaggy
hair[0.538, 0.248, 0.616, 0.310][0.592, 0.226, 0.718, 0.290] are seen in a yard surrounded by
bushes[0.000, 0.438, 0.631, 0.944][0.826, 0.428, 0.994, 0.672]. They are focused on their hands[0.517,
0.366, 0.592, 0.404][0.471, 0.394, 0.571, 0.448]. It seems that they enjoy time spent together.

Figure 4: The system message and in-context example used for generating detailed description dataset.
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System Message

You are an Al visual assistant that can analyze a single image. You receive several sentences, each
describing the same image you are observing. In addition, specific object locations within the image are
given, along with detailed coordinates. These coordinates are in the form of bounding boxes,represented as
[x1, y1, x2, y2], with floating numbers ranging from O to 1. These values correspond to the top left x, top left
y, bottom right x, and bottom right y.

The task is to create question-answer pairs related to the image based on the information. The conversation
should involve mentioning the position of objects in the image. The position can be represented in the
format [x1, y1, x2, y2]. The questions and answers should be limited to 50 words.

Here are some additional requirements about generated conversations:

1. In conversation , you need to mention bounding box coordinates to refer to some objects or regions,
instead of directly say the object name or describing the regions in text.

2. Avoid introducing objects that do not exist in the original descriptions and refrain from including
excessive subjective perceptions to prevent creating illusions.

3. Only describe what you are certain about, and avoid providing descriptions that may be ambiguous or
inaccurate.

4. The boxes provided in different sentences may have some coordinates that are the same or very close,
which could be because different expressions refer to the same object. You should analyze and avoid
describing a single object within a bounding box as multiple distinct entities.

5. The questions and answers should be limited to 50 words. Keep it as concise as possible.

In-context Example

User:

{'sentence': 'A child in a pink dress is climbing up a set of stairs in an entry way .',

'‘boxes': {'A child': [[0.019, 0.302, 0.285, 0.678]], 'a pink dress': [[0.019, 0.38, 0.227, 0.596]], 'a set of stairs':
[[0.0, 0.636, 0.304, 0.958]], 'an entry way": [[0.099, 0.052, 0.288, 0.614]]}}

{'sentence': 'A little girl in a pink dress going into a wooden cabin .,
'boxes': {'A little girl': [[0.019, 0.302, 0.285, 0.678]], 'a pink dress': [[0.019, 0.38, 0.227, 0.596]]}}

{'sentence': 'A little girl climbing the stairs to her playhouse .',
'‘boxes': {'A little girl': [[0.019, 0.302, 0.285, 0.678]], 'the stairs': [[0.0, 0.636, 0.304, 0.958]], 'her playhouse':
[[0.069, 0.014, 0.997, 0.774]]}}

{'sentence': 'A little girl climbing into a wooden playhouse .,
‘boxes': {'A little girl': [[0.019, 0.302, 0.285, 0.678]], 'a wooden playhouse': [[0.069, 0.014, 0.997, 0.774]]}}

{'sentence': 'A girl going into a wooden building .',
'‘boxes': {'A girl': [[0.019, 0.302, 0.285, 0.678]]}}

Assistant:
{'"question':'What clothes is the girl[0.019, 0.302, 0.285, 0.678] wearing?',
‘answer':'The girl is wearing a pink dress[0.019, 0.380, 0.227, 0.596].'}

{'question':'Where is the little girl[0.019, 0.302, 0.285, 0.678] going?"',
‘answer':'She is climbing into a wooden playhouse[0.069, 0.014, 0.997, 0.774]."}

{'"question':'What is the child[0.019, 0.302, 0.285, 0.678] doing?',
‘answer':'She is climbing up a set of stairs[0.000, 0.636, 0.304, 0.958].'}

{'question':'Why is this girl climbing the stairs?',
‘answer':'She is going to enter hey playhouse[0.069, 0.014, 0.997, 0.774]."}

Figure 5: The system message and in-context example used for generating conversation dataset.
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System Message

You are an Al visual assistant that can analyze a single video. You will receive descriptions of several
segments of this video along with corresponding timestamps for each description, indicating the time
range of the corresponding video segment. These timestamps are in the form of bounding boxes,
represented as {t1,t2} with floating numbers ranging from 0 to 1. These values correspond to the start
time of the video segment is represented by t1, and the end time is represented by t2. Design a
conversation between you and a person asking about this video. Ask three to ten questions and give
corresponding answers. The answers should be in a tone that a visual Al assistant is seeing the video
and answering the question.

Here are some additional requirements about generated questions and answers:

1. Only include questions that have definite answers.

2. Always answer as if you are directly looking at the video.

3. Make the question as diverse as possible. Include questions asking about the visual content of the
video, including the events within the video segments, the order in which different events occur, and
other related details.

4. Avoid introducing objects that do not exist in the original descriptions and refrain from including
excessive subjective perceptions to prevent creating illusions.

5. The number of words in the question and answer should not exceed 50.

In-context Example
User:
{'A young woman is seen standing in a room and leads into her dancing.": '{0.01, 0.24}'}

{'The girl dances around the room while the camera captures her movements.': '{0.21, 0.74}'}

{'She continues dancing around the room and ends by laying on the floor.": '{0.68, 0.96}'}
Assistant:

{'question':'What happens during the time period{0.01,0.24}?',

‘answer':'A young woman is seen standing in a room and leads into her dancing.'}

{'question':'When does the women start dancing around the room?’,
‘answer':'The girl starts dancing around the room in {0.21,0.74}'}

{'question':'How does the girl end her dance routine?',
‘answer':'The girl ends her dance routine by laying on the floor, which occurs in {0.68,0.96}.'}

Figure 6: The system message and in-context example used for generating video grounding dataset.
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Please describe the image and include the object positions in [x0,
y0, x1, y1] format.

v A man in a blue shirt is sitting on a bench next to a in a blue
shirt. They are in front of a store. It seems like they are resting and
enjoying their time together.

What shoes is this woman wearing?

ey The woman is wearing yellow boots.

Are there any cars in this image?

Y Yes, there are cars in the background.

Figure 7: Examples of GroundingGPT’s grounding capability in image modality.

6674



When does the baby push up the glasses and stretch her body in
the video?

The baby push up the glasses and stretch her body in {0.16, 0.36}.

When does the girl turn over the book?

Y The girl turns over the book in {0.39,0.45}.

(An audio of dog barking.)

Where is the sound's point of emission in this image? Include the
object positions in [x0, y0, x1, y1] format.

1 In the image, a dog is running through a grassy field. The dog is
running with its mouth open, creating a sound of running and
barking. The scene is set in a park or a field, with trees in the
background.

Figure 8: Examples of GroundingGPT’s grounding capability in video and audio modality.
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When visiting this picturesque location with a wooden dock
overlooking a calm lake, there are a few things to be cautious
Y about. First, the wooden dock may be slippery, especially if it is
wet or covered in algae, so it is essential to be careful while
walking on it. Second, the lake's calmness may give a false
sense of security, so it is crucial to be aware of the water depth
and any potential hazards, such as submerged rocks or sudden
changes in water currents. Lastly, be mindful of the surroundings,
as there may be other visitors or wildlife in the area, and respect
their space to ensure a safe and enjoyable experience for
everyone.

What is funny within this image?

In the image, a man is ironing clothes while standing on the back
'@ of a moving yellow taxi cab. This is funny because it is an unusual
and unexpected sight, as people typically iron clothes in a more
private setting, such as at home or in a laundry room. Additionally,
the man's actions are not typical for someone riding in a taxi cab,
as they are more focused on reaching their destination or
engaging in conversation with the driver. The combination of
these elements creates a humorous and surprising scene.

Figure 9: Examples of GroundingGPT’s understanding capability in image modality.
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- In this captivating video, a drone takes us on a mesmerizing
journey over the city of Florence, Italy. The aerial footage
showcases the breathtaking beauty of the city, with its iconic
landmarks and stunning architecture. As the drone soars through
the sky, we are treated to a bird's-eye view of the city's famous
bridges, including the Ponte Vecchio and the Ponte Santa Trinita.

Describe this video please.

In this video, a young woman is seen sitting on a hay bale in a field.
[ [ She is wearing a black shirt and there is a backpack next to her. She is
© © reading a book and seems to be enjoying her time in the field, possibly
taking a break from her daily routine. The hay bale provides a
comfortable seating area for her, allowing her to relax and appreciate
the surroundings. The field is filled with tall grass, creating a serene
and peaceful atmosphere. Overall, the video captures a simple yet
beautiful moment of a young woman finding solace in the
peacefulness of a field.

Figure 10: Examples of GroundingGPT’s understanding capability in video modality.
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(An audio of raining.)

What can you hear in this audio?

&— The audio portrays a heavy rainfall, with the sound of raindrops
striking roofs and the ground with intensity. At one point, the noise
of the rain becomes louder, possibly due to someone opening a
door or the varying strength of rainfall on glass. The audio
illustrates a powerful downpour and its changing levels of intensity
amidst the scene.

,|||I|I ,|||I|I.|||l|l,|||l|l,|||l|l

(An audio of a saw cutting through wood.)

Describe the main elements and features of the audio.

b—o This audio captures the distinct sound of a saw being used to cut
through a piece of wood. The saw is being operated at a steady
pace, creating a rhythmic pattern of cutting and sawing. The
sound of the saw in action is prominent, indicating the
woodworking process in progress.

Figure 11: Examples of GroundingGPT’s understanding capability in audio modality.
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