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Abstract

Counterfactual reasoning in narratives requires
predicting how alternative conditions, contrary
to what actually happened, might have resulted
in different outcomes. One major challenge
is to maintain the causality between the coun-
terfactual condition and the generated counter-
factual outcome. In this paper, we propose
a basic VAE module for counterfactual rea-
soning in narratives. We further introduce a
pre-trained classifier and external event com-
monsense to mitigate the posterior collapse
problem in the VAE approach, and improve
the causality between the counterfactual con-
dition and the generated counterfactual out-
come. We evaluate our method on two pub-
lic benchmarks. Experiments show that our
method is effective. Code is available at
https://github.com/mufeiteng/Causal CRN.

1 Introduction

Counterfactual reasoning in narratives (CRN) is
commonly known as predicting how alternative
events, contrary to what actually happened, might
have resulted in different outcomes (Qin et al.,
2019; Ashida and Sugawara, 2022). Specifically,
given the observed narrative S = (¢, x,y), where
¢, x, and y denote the context, condition, and out-
come, respectively, CRN considers how 3’ would
be if keeping the context ¢ unchanged while per-
turbing x to a similar but different /. Figure 1
presents a case of CRN.

Even though it is considered a crucial compo-
nent of intelligent systems (Pearl, 2009; Pearl and
Mackenzie, 2018), only a few resources have been
devoted to CRN. Some of the works (Hao et al.,
2021; Chen et al., 2022; Li et al., 2023b) design
dataset-specific heuristic methods, but they are ac-
tually abusing unique patterns, i.e., the feature of
minimum editing, in the dataset, which limits the
generality of their methods. Other works (Qin
etal., 2019; Zhou et al., 2022) take advantage of the

Story Context (c)
Mary loved flowers.

Observed Condition (x) l
She decided to go to the park

Counterfacutal Condition (/)

| Whar if pox — florist. ——| She decided to go to the ﬂorist}

Observed Outcome ()

Outcome (1)
She smelled all the flowers growing in the field.

She smelled all the flowers growing in the building.
She bought a few flowers and brought them home.
She placed them in a vase.

She picked a few flowers and brought them home.
She placed them in a vase.

Figure 1: An example of counterfactual reasoning in
narratives. The example comes from TimeTravel (Qin
et al., 2019). The colored text in the counterfactual
outcome denotes the modified parts.

progress of pre-trained language models (PLMs),
and fine-tune PLMs for CRN, i.e., learning the con-
ditional distribution p(y’|c, x’, S). Despite the suc-
cess of simulating real examples, the conditional
distribution is notorious for being susceptible to
exploiting artifacts of the dataset, instead of learn-
ing to robustly reason about counterfactuals (Qin
etal., 2019). For example, the models often directly
copy the original y or learn to paraphrase y without
acknowledging the counterfactual condition (Qin
et al., 2019; Hao et al., 2021). As a result, the pre-
dicted counterfactual outcome 3’ usually conflicts
with the counterfactual condition 2.

Generally, CRN relies on the ability to find
causality in narratives (Chen et al., 2022), i.e., v
should express a clear causal relation to 2’ to make
it clear how the perturbation makes the observed
outcome change. This problem naturally fits to be
formulated with a causal mechanism (Pearl et al.,
2016), which requires us to infer the background
knowledge that is compatible with (¢, ', y"). How-
ever, this is non-trivial as it involves estimating
the posterior of the background knowledge. Luck-
ily, with the variational technique (Kingma and
Welling, 2013), we are able to use the background
compatible with the observed S to approximate the
posterior distribution. In fact, the variational pro-
cess provides an approximation of the background
of (¢,2’,4), but it may face the problem of pos-
terior collapse (Razavi et al., 2019). As a result,
the generated v’ may not be the precise effect of
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2/, and the resulting model may be sub-optimal.
To mitigate this problem, we further propose two
intuitive strategies, which introduce a pre-trained
classifier and commonsense causality, to enhance
the causality between (¢, 2’) and the generated y'.

In this work, we propose a causal approach for
CRN. We utilize the variational process to approxi-
mate the implicit background of counterfactual sce-
narios. In addition, we devise two strategies to al-
leviate the posterior collapse problem in this varia-
tional process. First, inspired by research on natural
language inference (Kang et al., 2018; Dziri et al.,
2019), we want to ensure that the generated v/ en-
tails its true condition z’. In other words, the model
should correctly learn the influence of the condi-
tion on the outcome. Therefore, we introduce a pre-
trained classifier that estimates the likelihood of a
text y entails an input (¢, x). We use the Gumbel-
softmax technique (Jang et al., 2016; Hu and Li,
2021) to enable gradient back-propagation. Second,
we exploit COMeT (Hwang et al., 2021) to retrieve
diverse event causality tailored for (¢, z’), which
allows for deducing plausible event sequences and
provides an explicit background for the unobserved
counterfactual outcome 3/.

To summarize, we formulate CRN in a vari-
ational framework and introduce event causality
and a pre-trained classifier to further improve the
causality between x’ and the generated 3’. Our
method is a general approach that is applicable to
multiple tasks. The experiment proves the effective-
ness of our method. We also study the practicality
of the generated counterfactual narratives via a data
augmentation experiment.

2 Related Work

Causality for NLP The research of causality
aims to explore the causal relationships in the data
(Yao et al., 2021). Recently, there has been a strong
interest in utilizing causal inference to enhance cur-
rent natural language understanding and generation.
These works are mainly studied in event detect
(Chen et al., 2021), text classification (Mu and Li,
2023), relation extraction (Liu et al., 2021a), etc.
Another line of research attempts to equip the cur-
rent text generation with counterfactual reasoning
ability. These works involve fields such as dialogue
generation (Ou et al., 2022), machine translation
(Liu et al., 2021b), style transferring (Hu and Li,
2021), etc. Yet there have been few works that
apply causal perspective to counterfactual reason-

ing in narratives. We adapt the ideas of the above
works and propose additional strategies to improve
the causality between the counterfactual condition
and the generated counterfactual outcome.

Counterfactual Story Generation Counterfac-
tual story generation aims to revise an original story
ending guided by a modified condition (Qin et al.,
2019). Previous works (Chen et al., 2022; Li et al.,
2023b) usually utilize a two-stage approach. Gen-
erally, in the first stage, each token in the original
story ending is determined if it requires modifica-
tion. In the second stage, the identified words are
modified to align with the story logic under the
counterfactual condition. However, it is difficult
to migrate this dataset-specific framework to other
datasets (Ashida and Sugawara, 2022). Instead,
motivated by counterfactual reasoning (Pearl and
Mackenzie, 2018), we propose a general frame-
work for counterfactual reasoning in narratives.

Knowledge-Enhanced Narrative Generation
Narrative generation requires models to produce
fluent and coherent stories under predefined con-
ditions. Many studies inject structured knowledge
into the generation process. For example, Ji et al.
(2020) introduces explicit knowledge from Con-
ceptNet, and Mu and Li (2022) introduces struc-
tural event causality to improve narrative genera-
tion. These works prove that external knowledge
helps to enhance the coherence between the input
and output text. Motivated by these works, we
introduce commonsense causality tailored for the
counterfactual condition to improve the causality
between (¢, 2’) and the generated y/'.

3 Methods
3.1 Problem Setting with Causal Mechanism

Figure 2: The proposed structural causal model. The
dashed circle indicates that the variable is latent, while
the solid circle indicates that the variable is observed.

Given a narrative S = (c,z,y), we perturb x
into a counterfactual condition 2’ and want to pre-
dict the new outcome 7’. To solve this problem,
we need to speculate on the background knowl-
edge compatible with (¢, 2’,y’), which allows us
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to predict the precise effect of z/. This problem
is naturally suitable to be expressed with a causal
mechanism. Figure 2 shows the structural causal
model (SCM) (Pearl, 2009) that describes the gener-
ation process of narratives. Here the latent variable
z denotes the unobserved background knowledge.
When people write stories, they usually generate
narrative events one by one based on their knowl-
edge. This is reflected in the graph as z affects
all of (c,x,y). The similar setting can be seen in
(Chen et al., 2022), in which they unify the unob-
served knowledge and the context into one con-
founder variable. On the contrary, we model the
unobserved knowledge independently to directly
infer the information of z.
The SCM thus defines a joint distribution:

p(y;x,¢,2) = p(ylx, ¢, 2)p(x, c|z)p(2), M
where p(z) is a standard Gaussian distribution fol-
lowing common practices. Similarly, conditioned
on the observed S, the joint distribution of the coun-
terfactual scenario is defined as:

p(y',x',c,2|8) =

p(y'[x' e, 2, 8)p(x’, |z, S)p(2]S),

where p(y’|x’,c,z,S) is the decoder model re-
quiring us to infer z from all (S,¢,2’,y') data.
However, the inference of z involves estimating
the posterior distribution of the knowledge, i.e.,
p(z|c,x’,y’, S). We next introduce our basic vari-
ational process to approximate the distribution.

2

3.2 The Basic Variational Objective

3.2.1 Variational Inference

Our basic objective follows the common VAE ap-
proach (Kingma and Welling, 2013). By intro-
ducing the approximate network ¢(z|c,x’,y’,S), a
lower bound of the model’s marginal log-likelihood
(that marginalizes out z) is:

log p(y'|c,x’,8) = log/p(y',z|c,x/,S)
* 3)

p(y’,zlc, %, S)
>ELBO = E, . (sjcx v s | .
2 q(zle,x’,y’,8) 108 q(z|c,x’,y’,S)

For simplicity, we denote q(z|c, x',y’, S) as ¢(z|).
Then, according to Equation 2, we have:
ELBO
=E,q(z)[log %‘T?‘S) —log p(c,x'|S)] @
~ Ezwq(z|.)[logp(y'\z, c,x, S) + logp(c, X/|Z, S)]
— KL{q(2|")[|p(z[S)],
where p(c, x'|S) is a constant for the given dataset
and independent of the parameterized model.

Hence, given the labeled set D which contains all
(S, ¢, 2',y') examples, our basic objective is:
1 / ’
Lvae = _ﬁ ;Ezwq(z\<)[logp(y |Z,C,X 7S) 5)
+ Az logp(e, x|z, 8) + AeKL[g(2])|[p(2]S)].

Az and )y are hyper-parameters. We use the cyclic
schedule (Li et al., 2020) to anneal A\;. from O to 1
to avoid excessive regularization of the KL term.

322 p(y'lz,c,x,S) vs. p(y'|c,x/, S)

Current generative models follow the auto-
regressive paradigm, but suffer from exposure bias.
Note that (¢, z,y) and (¢, 2, ) have similar con-
tent. When performing inference, given the input
(S,¢,2"), p(y'|c,x', S) has no information about
the gold 9/, so it may paraphrase 3. Different from
p(y’le,x/,S), we encode ¥ into ¢(z|-), and use
the KL term to bridge the gap between ¢(z|-) and
p(z|S). When performing inference, we sample
z ~ p(z|S) and feed it into p(y’|z, c,x’, S). This
can somewhat alleviate the issue of exposure bias
and mitigate the problem of paraphrasing y.

3.2.3 Model Implementation

We use PLMs, e.g., BART (Lewis et al., 2019),
as backbone to implement p(y’|z,c,x’,S). We
first encode the input part (S, ¢, z’) into the con-
text vectors Ho = BARTEncoder(S, ¢, z’), where
Hc € R4, [ s the total length of [S; ¢, 2], d is
the hidden size. To fuse z ~ ¢(z|-) into PLMs,
as suggested in (Li et al., 2020), we concatenate z
with H¢, and pass it into the decoder for autore-
gressive learning. The hidden state of ¢-th time step
of the target sequence h,, is computed by:

h,, = BARTDecoder(Y<, [Hc;z]).  (6)

The word distribution of t-th time-step over the
standard vocabulary V is:

P(y¢|Y<;) = softmaxy (Wyhy, +0).  (7)

To implement ¢(z|-) and p(z|S), we approxi-
mate them to Gaussian distributions. We use the
pre-trained BARTEncoder to initialize different
text encoders, which are used to encode S and
(c,2',y',S). Following several linear layers, we
obtain the mean and log-variance of two distribu-
tions, which are used to calculate the KL loss. To
implement P(c,x'|z,S), we adopt the in-batch
contrastive learning. For the positive example
(c,2’,2,9), we collect different 2/ from the mini-
batch and regard (c, 2/, z, S) as negative examples.
This actually matches the z ~ ¢(z|-) with the coun-
terfactual 2/, and differitiates it from negatives.
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Then the representations of examples are projected
into scalar values for binary classification.
Training with the above base objective alone can
lead to posterior collapse, i.e., the KL term tends
to be zero. As a result, the decoder will ignore
the information from ¢(z|-), and the generated text
is not the precise result of /. We next introduce
our two strategies, which introduce the pre-trained
classifier and external event causality to improve
the causality between (¢, 2) and the generated 3/

3.3 Introducing the Pre-trained Classifier

Intuitively, we expect that the generated 3 truly
entails its condition 2’. To achieve this goal, we
pre-train a classifier f([c, x,y]) that estimates the
likelihood of the input (¢, z) entailed by the out-
put y. Motivated by (Chen et al., 2022), we use
the training set of the used datasets to obtain pos-
itive and negative examples. For example, given
the example (¢, x,y, 2’,y'), (¢, 2’) should entail by
y' but contradict with y, and (¢, x) should entail
by y but contradict with . That is, (¢, x,y) and
(¢, 2, y') are positive, and (¢, 2, y) and (¢, z,y’)
are negative. We initialize f(-) with BARTEncoder
to keep the embedding space the same as the gener-
ator. Once the classifier is pre-trained, it is frozen
in the later process of training our generator.
Then, we train the generator so that its predicted
outcome entails the corresponding condition with
a high likelihood measured by the classifier:
Low=— I%I ED: Eonatal)gmp(ylzexsl ®
log f([e, z, 9]) + log(1 = f([e, 2", 9]))],
where S = (¢,2/,y') and p(y|z,c,x,S') is
the mirror of p(y'|z,c,x’,S). Here, we con-
sider p(y|z,c,x,S’) rather than p(y’|z,c,x’,S)
because it has been optimized in Equation 4. Equa-
tion 8 can be explained in more detail as following.
That is, we first use our generator to generate exam-
ples, then we use the frozen classifier to calculate
the coherence of the examples, and then we update
the parameters of the generator to maximize the
coherence. In fact, we use the classifier to restrict
the generated ¢ entails its true condition x but con-
tradicts with z’. As in (Hu et al., 2017; Hu and Li,
2021), we use Gumbel-softmax to enable gradient
backpropagation for the discrete text.

3.4 Utilizing External Event Causalities

The variational process provides an implicit back-
ground for unobserved counterfactual outcomes,

this further motivates us to utilize external event
causalities which allows for introducing diverse
event commonsense and providing an explicit back-
ground for generating counterfactual outcomes.

3.4.1 Retrieving Event Causality

We use COMeT (Hwang et al., 2021) as the event
knowledge base. We first feed the zero-hop events
(¢, ") into COMeT to generate one-hop events with
corresponding relations. The one-hop events are
then fed into COMeT to generate two-hop events.
We leave the details in Appendix A. We next orga-
nize the retrieved knowledge into an event graph
G = (V,E) where V denotes the node set and
FE denotes the edge set. Each node e € V is an
event which is a word sequence. Each edge in E
is a tuple (ep, r, e;) containing a head event ey, a
relation r, and a tail event e;. Then, we perform
reasoning on G to select guided events, which are
the possible effects of (¢, z). We use the selected
events as guidance for generating y/'.

3.4.2 Selecting Guided Events

Motivated by (Ji et al., 2020; Mu and Li, 2022),
we perform multi-hop reasoning on G to select
important event nodes. We iteratively compute the
relevance scores of multi-hop events with respect
to (¢, x’), as shown in Figure 3(a). In each iteration,
we parallelly calculate the scores of events in the
same hop. For the tail event e;, the score s(e;) is
calculated by polymerizing information from its
neighbors N, including pairs of (e, r):
1
s(e) = o Z

(en vT‘)ENet

(s(en) + R(en,r,e)). (9)

At the beginning, zero-hop events, i.e., (¢, z’), are
assigned a score of 1, e.g., s(c) = s(z') = 1, while
other events are assigned a score of 0. R(-) is the
relevance of the edge (e, r, e;) with respect to the
(¢, x"), which is calculated by:

R(en,r,et) = o(hle,y Wi - [he, s hyshe,]),  (10)

where Wj, € R34, [.;.] denotes the concate-
nation, h(. ., € R? is the embedding of (c,z’),
h., ,h;, h., are the embeddings of ey, 7, e;.

We select the top-k events according to their
scores: Ej, = topk,(s(e;)). k is set to 4 af-
ter searching on the dev set. To fuse the guided
E), into the generation, we concatenate (S, ¢, z')
with Ej, and pass them to BARTEncoder to ob-
tain knowledge-enhanced context vectors Hy =
BARTEncoder(S, ¢, 2/, E). Then, we concate-
nate Hx with z ~ ¢(z|-), and feed it into the
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(b) Knowledge-Enhaced Generation of y/

Figure 3: (a) The scores of one-hop and two-hop events are parallelly calculated in each iteration. Color intensity
indicates the score difference. In each iteration, the black arrows denote used edges, while the grey arrows denote
unused edges. (b) We concatenate Ej, with (.9, ¢, 2’) for the auto-regressive decoding.

decoder for autoregressive learning, i.e., y ~

p(y'|z, ¢, x', S, Eg), as shown in Figure 3(b).

3.5 Training and Inference

Similar to (Mu and Li, 2022), we add an additional
object to guide the event selection. We maximize
the probability of selecting positive events by:

|D| > ~lilogp(e) ~(1=4) log(1-p(e.)). (1D

where p(e;) = o(s(e;)) is the probability that the
event e; is selected. [; is the label of e; which is
subject to the overlap between e; and the gold y/'.
The details are in Appendix A. The final object is:

L=Lvag+alcia+ BLE, 12)

where « and 3 are hyper-parameters.

When inference, given input (S, ¢, 2’), we first
sample z ~ p(z|S), then we select guided event
Ej according to (c,z’), at last we generate the
counterfactual outcome ¢’ ~ p(y'|z, ¢, x’, S, Eg).

4 Experiment

4.1 Datasets

We evaluate our method on two datasets.

(1) TimeTravel (Qin et al., 2019) is a counter-
factual story rewriting dataset. It is built on the
ROCStories (Mostafazadeh et al., 2016) corpus,
which consists of a large set of five-sentence sto-
ries S = s1.5. s7 is set as the context ¢, s9 is set as
the condition x, and s3.5 sets up the outcome y. In
TimeTravel, the initial condition z is rewritten by
humans into a counterfactual condition =/, and then
annotators perform minimal edits to the original
ending y to create the counterfactual outcome /'
In TimeTravel, the major challenge is the trade-off
between generating natural stories and modifying
the original y with minimal edits.

(2) PossibleStories (Ashida and Sugawara,
2022), also built on the ROCStories corpus, consid-
ers the problem that: for the same context, if the
current situation is different, the final consequence

may be different. It is originally a multiple-choice
dataset, where each example consists of the original
context ¢, the original ending y, the counterfactual
question z’, and candidate options including the
counterfactual ending 3/. To adapt it to text gener-
ation, we set the original condition x as a simple
text “what’s the most likely story ending?", then we
generate 3’ according to (¢, z,y, z').

The statistics of two datasets are in Appendix B.

4.2 Baselines

We produce the following kinds of baselines:

* Prompting large chat models, e.g., Chat-
GLM2(6B) (Zeng et al., 2022), Llama2Chat(7B)
(Touvron et al., 2023), ChatGPT (OpenAl. ,
2023). We use one-shot prompting for exper-
iments, the used prompts are in Appendix C.

* Supervised fine-tuning. We fine-tune sev-
eral pre-trained language models, including
GPT2(base) (Radford et al., 2019), T5(base)
(Raffel et al., 2020), BART(base) (Lewis et al.,
2019), and Llama2(7B) (Touvron et al., 2023).
We use QLoRA (Dettmers et al., 2023) to adapt
Llama2(7B) on a single 3090 GPU.

For TimeTravel, we additionally compare our
method with some task-specific methods:

* DELOREAN (Qin et al., 2020) and EDUCAT
(Chen et al., 2022) which regard the task as a con-
trollable generation problem, and unsupervised
edit the original y to the counterfactual y.

* CLICK (Li et al., 2023a), a two-stage method,
first detects which words in the original ending
need to be modified, and then implements the
modification.

4.2.1 Implementation Details

We use the train set of the two datasets to train the
classifier. We use the AdamW optimizer and set
Ir to 5e-6. We select checkpoint according to F1
on the dev set. The best checkpoint achieves the
F1 scores of 66.1 and 70.1 in the test set of two
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datasets. When training the counterfactual genera-
tor, we use the AdamW optimizer and set Ir to Se-5.
We linearly decrease [r to zero with a 10% warmup
ratio. We search for the best hyper-parameters ac-
cording to ENTScore on the dev set of each dataset.
The searched parameters are in Appendix D. When
inference, we adopt the multinomial sampling strat-
egy to generate 3’, and we repeat for 5 times to
calculate the average performance.

4.3 Automatic Evaluation

Metrics For Timetravel, we follow the previ-
ous works and use BLEU (Papineni et al., 2002),
BertScore (Zhang et al., 2019), ENTScore (Chen
etal., 2022), and HMean = $PLEUITIEC (Chen
et al., 2022) as metrics. BLEU and BertScore eval-
uate the similarity between the generated 3’ and
the ground truth. ENTScore evaluates the coher-
ence between (c¢,z’) and the generated y'. For
PossibleStories, we use BLEU, BertScore, and

ENTScore as metrics.

4.3.1 Our Method vs. Baselines

TimeTravel
Methods BLEU BertS. ENTS. HMean
Prompting Chat Models
ChatGLM2(6B) 16.5 60.0 66.2 26.4
Llama2Chat(7B) 16.9 58.8 77.8 27.8
ChatGPT 36.4 69.8 82.6 50.6
Unsupervised Editing-based Methods
DELOREAN 23.9 59.9 51.4 32.6
EDUCAT 44.1 74.1 32.3 37.3
Supervised Fine-tuning
CLICK 46.7 73.2 36.7 41.1
GPT2 63.5(0.2) 77.8(0.3) 43.5(1.0) 51.6(0.7)
T5 71.2(0.3) 80.1(0.1) 42.7(0.8) 53.3(0.6)
BART 66.5(0.3) 79.4(0.2) 52.0(1.0) 58.3(0.6)
Llama2(7B) 70.3(0.4) 79.9(0.2) 54.1(0.7) 60.9(0.5)
Ours 67.0(0.1) 79.5(0.1) 56.2(0.4) 61.1(0.2)
Ablation Experiment
w/o Clas 67.5(0.2) 79.8(0.1) 54.6(0.6) 60.4(0.4)
w/o Event 65.6(0.4) 79.0(0.1) 55.2(0.5) 60.0(0.4)
w/ VAE 65.9(0.3) 79.2(0.1) 54.1(0.6) 59.4(0.4)

Table 1: The automatic and ablation-study result on
TimeTravel. We report the mean(std) under 5 random
experiments. Scores with bold denote the best results.

The automatic evaluation result is shown in Ta-
ble 1 and 2. We can see BART generally performs
better than GPT2 and TS5, therefore we use BART
as the backbone. In addition, we observe that:

* In Table 1, unsupervised editing-based methods
have poor performances, indicating that this kind

PossibleStories
Methods BLEU BertScore  ENTScore
Prompting Chat Models
ChatGLM2(6B) 1.9 48.4 38.8
Llama2Chat(7B) 3.0 49.9 43.8
ChatGPT 5.0 53.5 48.5
PLMs-based Finetuning
GPT2 6.0(0.7) 49.4(0.3)  37.3(0.4)
T5 5.7(0.3) 49.2(0.3)  35.8(0.7)
BART 13.2(0.5) 53.8(0.2) 42.9(1.0)
Llama2(7B) 16.3(1.1) 54.4(0.6)  45.1(0.9)
Ours 16.1(0.2) 56.2(0.1) 46.9(1.0)
Ablation Experiment
w/o Clas 15.7(0.4) 55.6(0.3)  45.6(0.7)
w/o Event 15.5(0.4) 55.8(0.2)  46.0(0.5)
w/ VAE 15.5(0.5) 55.9(0.3) 45.0(0.4)

Table 2: The automatic and ablation-study result on Pos-
sibleStories. We report the mean(std) under 5 random
experiments. Scores with bold denote the best results.

of unsupervised approach is unable to produce
qualified counterfactual stories.

e Compared with BART, our method achieves
an obvious improvement, especially in the
ENTScore metric, e.g., obtaining a 4.2/4.0 gain
on two datasets. In addition, our method out-
performs Llama2(7B), which indicates that our
method is effective in improving the causality
between (¢, ') and the generated y/'.

* Due to the extremely large-scale pre-training,
Chat models, e.g., ChatGLM2, Llama2Chat, and
ChatGPT, have a strong ability to generate co-
herent stories. However, chat models get a low
BLEU and BertScore, indicating that they tend
to less consider what has happened.

e On TimeTravel, the ENTScore result of our
method is not as good as the results of chat mod-
els, but our method achieves the best trade-off
between BLEU and ENTScore. On PossibleSto-
ries, our method approximates ChatGPT and sur-
passes ChatGLM?2 by a large margin. This indi-
cates that the small-model-based sophisticated
method is expected to be comparable to LLM-
based prompting, indicating that it still has re-
search value in the era of LLMs.

4.3.2 Ablation Study

Settings To investigate the effectiveness of differ-
ent components, we devise the following ablated
variants to compare with our full model. (1) “w/o
Event" means we do not use event causality. (2)
“w/o Cla" means we remove the pre-trained clas-
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sifier. (3) “w/ VAE" means we ablate both event
causality and the pre-trained classifier. In this case,
this variant degenerates into the basic VAE module.

Result The ablation study result is shown in Ta-

ble 1 and 2. We have the following observations.

* Compared with BART, “w/ VAE" achieves a
2.1/2.1 gain in ENTScore on both datasets. This
demonstrates the effectiveness of the variational
process. The possible reason is that the varia-
tional process learns an approximation of the
latent z, which provides an implicit background
for generating counterfactual outcomes.

* Compared with “w/ VAE", “w/o Clas" and
“w/o Event" achieve higher ENTScore on both
datasets, indicating the two strategies contribute
to improving the causality between 2’ and the
generated 3. This makes sense because (1) exter-
nal event causality provides a causal background
for generating v and (2) the classifier will pun-
ish the unqualified generation. The best result is
achieved when combining two strategies, these
show that two strategies complement each other.
“w/o Clas" performs better than “w/o Event"
on both datasets. This shows that the classifier
is more important than event knowledge. The
possible reason lies in two aspects. (1) Though
retrieved event causality may contain useful in-
formation for generation, unrelated and noisy
knowledge may also be retrieved. (2) The clas-
sifier directly measures the causality between
the condition and the generated outcome, and
penalizes incoherent generation.

TimeTravel PossibleStories
Methods . . N
MinEdits|Coherence|Similarity|Coherence
W L|W L |W L |W L
vs. w/o Clas [14.723.7|28.010.3 [10.09.0 |16.37.0

vs. w/o Event [17.025.3|37.310.0 [13.37.0 |24.36.7
VS. Llama2Chay(7B)|61.0 11.0|24.3 37.7 (32.3 12.7 |41.7 20.7
vs. ChatGPT [52.315.7|/16.747.0 |21.713.0 |23.727.3

Table 3: The manual evaluation result. MinEdits de-
notes Minimal-Edits.

4.4 Manual Evaluation

Setting For TimeTravel, we follow (Chen et al.,
2022) and use Minimal-Edits and Coherence as
manual evaluation metrics. Coherence denotes the
logical consistency between the counterfactual con-
text (c,2’) and generated y'. Minimal-Edits de-
notes the extent of minimal revision between the
original y and the generated 3. For PossibleStories,
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Figure 4: Linearly interpolating z,,;or and Zposterior
for the VAE decoding, i.e., ¥y’ ~ p(y’|z,¢c,x’, S).

we use Similarity and Coherence as metrics, where
Similarity evaluates the similarity between the gen-
erated 3y’ and the ground truth. We carry out pair-
wise comparisons between our method with some
baselines, including Llama2Chat, ChatGPT, and
two ablated models “w/o Event" and “w/o Clas".
We randomly sample 100 cases from the two test
sets for each pair of models, respectively. Three an-
notators are recruited to make a preference among
Win, Tie, and Lose given the input and two outputs
generated by our model and a baseline respectively.
The annotators are research students from the field
of commonsense text generation to make sure they
have a fair judgment of used metrics.

Result The result is shown in Table 3. Com-
pared with the two ablated variants, our full method
shows an increase in Coherence, but a decrease in
Minimal-Edits. This is because both of the two
strategies prevent copying the original ending y.
On TimeTravel, our full model performs better in
Minimal-Edits, but not as well in Coherence as
the chat models. This is consistent with automatic
evaluation. We calculate Fleiss’s kappa reliability
as the inter-rater agreement. For TimeTravel, the
agreement of Minimal-Edits and Coherence is 0.43
and 0.56. For PossibleStories, the agreement of
Similarity and Coherence is 0.50 and 0.52.

4.5 Further Discussion

4.5.1 Analyzing the VAE Module by
Manipulating z

Since the strength of our VAE module lies in its
ability to approximate the posterior distribution,
we are interested in whether the encoded z benefits
counterfactual narrative generation. We conduct a
pilot study on TimeTravel. We first replace z ~
p(z|S) with a random noise zise ~ N (0, 1), and
feed Zy0;se into the VAE decoder p(y’'|z, ¢, X/, S)
for generation. We get a 43.8 ENTScore, which is
significantly worse than the result of BART. This is
reasonable because the random noise disrupts the
model structure and brings about a significant nega-
tive impact. Next, we make a linearly interpolation
Z = Q- Zprior T (1 - 04) * Zposteriors where Zprior ™~
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The number of pseudo examples

(a) (b)

Figure 5: (a): Fine-tuning BART and Llama2(7B) with
a different number of pseudo examples. (b): Fine-tuning
BART via mixing the labeled set D and a different num-
ber of pseudo examples.

p(z|S) and Zposterior ~ q(z|c,x’,y’,S), and feed
z for generation. The result is shown in Figure 4.
The larger the proportion of zy,sterior, that is, the
more posterior information about the gold 3/, the
better the result is achieved. When using zposterior
for generation, we get a 56.5 ENTScore, but the
value is still not satisfactory enough. The possible
reason is that too much information is lost during
the process of encoding the sequence into a vec-
tor z, making it hard for the model to reconstruct
the gold 3’. According to above results, we specu-
late that the more effective solution to this problem
is to introduce more diverse and more large-scale
data. Therefore, we conduct the following data
augmentation experiment.

4.5.2 Generating Counterfactual Stories for
Data Augmentation

(Qin et al., 2019) provides an additional data parti-
tion that only has counterfactual conditions z’ but
no counterfactual outcomes. This partition contains
about 97k examples. We use this partition to study
the practicality of the generated counterfactual sto-
ries via a data augmentation experiment. Specif-
ically, we use our ablated variant “w/o Event" as
the generator since its performance is not signifi-
cantly worse than our full model, and there is no
need for external knowledge, making it easy to use.
For each (.5, ¢, 2’), we use “w/o Event" to generate
60 candidates and keep the one with the highest
ENTScore as the pseudo counterfactual outcome,
denoted as y'. Finally, we obtain the pseudo set
Dp = {(S,c,2’,y")}. We test this set for both
generation and classification tasks.

Testing for the Generation Task First, We only
use Dp to directly fine-tune BART and Llama?2,
i.e., learning p(y’|c,x’, S). The result is shown in
Figure 5(a). When training with about 32k pseudo
examples, BART achieves a 52.0 ENTScore, which
is obtained using the labeled set D. When using
more pseudo examples for training, the result con-

82| — Labeled set
’3 <0 Mixed Set
& 801 3 Pseudo Set

o 78] q
. N
761 | Voo
0k 30k

2

N £ | VIS

N A A A A
40k 50k 60k 70k 80k 90k 97k
The number of pseudo examples

Figure 6: Fine-tuning RoBERTa-large with different
types of training examples.

tinuously improves. We have a similar observation
from the result of Llama2(7B). Because finetun-
ing Llama2(7B) is time-consuming, e.g., it takes
about 1.5 hours to train an epoch with 30k samples,
we use a maximum of 50k samples for fine-tuning.
Next, we mix the labeled set D and a different
number of pseudo examples to fine-tune BART.
The result is shown in Figure 5(b). When mixing
D and all pseudo examples, BART obtained a 70.1
ENTScore, which is better than ChatGLM?2 and
closer to Llama2Chat. However, as the number
of pseudo examples increases, BLEU continues to
decline, but overall the decline is acceptable.

Testing for the Classification Task Motivated
by (Chen et al., 2022), we construct a binary classi-
fication task to test the quality of pseudo examples,
which is the same as training the classifier. We
explore three types of training examples to train
RoBERTa-large (Liu et al., 2019) and then validate
on the test set of TimeTravel: (1) the labeled set
D, (2) the pseudo set Dp in which we randomly
sample a different number of pseudo examples, and
(3) the mixed set in which we mix the label set D
and a different number of pseudo examples. The F1
result on the test set of TimeTravel is shown in Fig-
ure 6. When training with more pseudo examples,
F1 achieves a stable improvement. The F1 under
the mixed set is better than that under the labeled
set, indicating that the pseudo set is an effective
supplement to the labeled set.

Overall, these results demonstrate the practical-
ity of the generated pseudo examples, which further
proves the effectiveness of our method.

4.5.3 Case Study and Error Analysis

Table 4 presents a case study. The counterfactual
ending generated by ChatGPT is coherent, but it
differs significantly from the original ending. Our
model changes the “land" in the original ending
to “fossil" and generates a coherent counterfactual
ending with minimal-edits. Since the context has
changed from “oil" to “fossils", the counterfactual
endings containing fossil-related information better
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A man dug a well on his farm. Instead of water,
Original though, he struck oil. Jubilant, he placed some calls.
Story A large oil company arrived the next day. They bought
the land from the man for a million dollars.

Counterfact-
ual Context

A man dug a well on his farm.
Instead of water, though, he struck fossils.

Jubilant, he placed some calls. A large fossils
company arrived the next day. They bought the land
from the man for a million dollars.

w/o Clas

Jubilant, he placed some calls. A large oil company
arrived the next day. They bought the land from the
man for a million dollars.

w/o Event

Excited, he placed some calls. A paleontology company
arrived the next day. They bought the land from the
man for a large sum of money!

Llama2Chat

Jubilant, he contacted a local museum to share his
discovery. A team of paleontologists arrived the next
day. They offered to buy the fossils from the man
for a substantial amount of money.

ChatGPT

Jubilant, he placed some calls. A large fossil
Ours company arrived the next day. They bought the fossils
from the man for a million dollars.

Table 4: A case study with the generated texts by differ-
ent models. The case is from the test set of TimeTravel.

reflect the causal relationship between the perturba-
tion and story endings. However, we find that the
issue of paraphrasing y still exists in our method,
as shown in Appendix E, Table 5. But this issue
less-likely occurs in large chat models. We specu-
late that there are two reasons: (1) the problem of
exposure bias cannot be completely eliminated; (2)
The used model is small, and the scale and diversity
of data are insufficient. More examples can be seen
in Appendix E, Table 9.

5 Conclusion

In this work, we formulate counterfactual reason-
ing in narratives in a VAE framework. In addi-
tion, we introduce a pre-train classifier and exter-
nal event causality to further improve the causality
between the counterfactual condition and the gen-
erated counterfactual outcome. The experiment
proves the effectiveness of our method. We also
conduct a data augmentation experiment to verify
the practicality of our method.
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Limitations

We construct our method based on small-scale
datasets and the small model, e.g., BART, therefore

our method cannot outperform large language mod-
els. But it is inherently unfair to directly compare
small models with LLMs, as large models are ob-
tained with massive resources, e.g., data, hardware,
funding, etc. Although large models have strong
capabilities, their disadvantage is that once trained,
it is especially difficult to adjust them. Therefore,
LLMs may not be able to meet task-specific con-
straints that have not been seen during training.
However, the problem is that different tasks may
have additional requirements. For example, Time-
Travel requires the generated 3 to exhibit Minimal-
Edits characteristics. However, the output of chat
models conflicts with the requirement, indicating
that chat models still face the problem of precisely
following instructions for generation.

In the experiment, fine-tuned Llama?2 performs
better than fine-tuned BART. This indicates that
constructing our method upon larger models may
have a better performance. In addition, the gener-
ated counterfactual stories are beneficial for coun-
terfactual narrative reasoning. This foreshadows
the future direction, that is, we can transform x into
different z’ through different perturbations, thus
generating diverse counterfactual stories for data
augmentation. In a bootstrapping manner, more
and more qualified examples can be created for
training neural models. Different from predicting
counterfactual outcomes, it is easy to perturb x into
2/, and there have been a lot of related research
works. We leave this in the future work.

In addition, we demonstrate our method using
five-sentences RocStories datasets, but it does not
mean that our method is not applicable for stories of
variable length. Our SCM contains three variables:
the context ¢, the treatment x, and the effect y.
Actually, ¢, x, and y may contain one or several
narrative events. That is, given a narrative story
with variable length, we can divide it into three
parts (¢, x, y) to adapt our approach.

Ethical Considerations

This paper mainly focuses on narrative reasoning.
It describes event relationships in human daily life,
and does not involve sensitive, biased, or harmful
content. The datasets used in this work does not
involve any sensitive data, but only crowd-sourced
datasets released in previous works, including Roc-
Stories (Mostafazadeh et al., 2016), TimeTravel
(Qin et al., 2019), and PossibleStories (Ashida and
Sugawara, 2022). We believe that our research
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work meets the ethics of ACL.
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A Details for Constructing Event
Causality Graph

To obtain event causality knowledge for counterfac-
tual narrative generation, we use COMeT as event
knowledge base. COMeT is a transformer model
trained on ATOMIC (Sap et al., 2019) that gener-
ates nine kinds of inferences of events in natural
language. In our work, we select 8 relations that are
causal related for retrieving event knowledge. They
are xNeed, xIntent, Causes, HasSubEvent, oEffect,
oWant, xEffect, xWant. Given a query event, we
retrieve 5 knowledge tuples for each relation. We
first feed the central events (¢, 2’) into COMeT to
generate one-hop events with corresponding rela-
tions. The one-hop events are then fed into COMeT
to generate two-hop events. After that, we obtain
many event paths. Several heuristic rules are ap-
plied to filter low-quality paths. For example, if
an event in a path contains less than 2 words or
more than 8 words, the path will be discarded. Fi-
nally, we transform the retained event chains into
an event graph that simulates the evolution ten-
dency of events centered on (¢, '), and provides a
explicit background for the unseen counterfactual
outcome. We heuristically use the word-overlap ra-
tio to label event nodes. That is, an event is labeled
as positive if 60% of event tokens are contained by
the gold . The event labels are used as supervi-
sion for selecting guided events.

Megan loved her sock monkey. She took
it to her grandad’s house when she
visited him. Megan got home and

Original Story realized she had left her monkey. I
had to meet grandad halfway to his
house and pick up her monkey.

- . Megan was so happy and she
Original ending was then able to go to bed.
Counterfactual ~ Why was it so important to get the
question: sock monkey back before bedtime?
w/o Clas The monkey needed to be taken back

” before Megan got to play with it.
Megan was so happy and she was
wlo Event then able to go to bed.
Megan needs to play with her

Llama2Chat sock monkey before going to bed.
Megan couldn’t sleep without

ChatGPT her sock monkey by her side.

Ours Megan was so happy and she

was then able to go to bed.

Table 5: An example for error analysis. The case is from
the test set of PossibleStories.

B Statistics of the Used Datasets

Datasets Train Dev Test
TimeTravel 28363 1871 1871
PossibleStories 3404 458 671

Table 6: Statistics of the datasets used in this work.

The statistics of the used datasets are shown in
Table 6.

Datasets bs Ir a 8 Az

5e-5 1.0 05 1.0
5e-5 05 05 05

TimeTravel 8
PossibleStories 8

Table 7: The searched hyper-parameters.

C The Prompts for Different Tasks

Table 8 presents the prompts we used for utilizing
chat models.

D Hyper-Parameters Used in This Work

The searched hyper-parameters on two datasets are
shown in Table 7.

E Supplementary Cases

Table 5 shows a case for error analysis, in which
our method still copies the original . We count the
statistics on the test set of TimeTravel. The number
of our model directly copies the original is approx-
imately 8% of the test set. Table 9 presents some
cases with the generated counterfactual outcome
by different models. The case #1 is from the test
set of TimeTravel, and the case #2 is from the test
set of PossibleStories.
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Tasks

Prompt

Each story contains 5 sentences, where the first two sentences are the story premise, and the last

3 sentences are the story ending. I will apply subtle a perturbation to the second sentence, making
the first two sentences a counterfactual story premise. Due to the slight perturbation, the
counterfactual premise is very similar to the original premise, with only some words being different.
According to the original story and the counterfactual story premise, you are required to predict the
counterfactual story ending. Note that the counterfactual story ending should be similar to the
original story ending, as well as being coherent with the counterfactual story premise.

Here is one example:

HH#

<Original 5-sentences story>

1. Bella wanted to cook some spaghetti and meatballs.

2. She discovered she had no pasta noodles.

3. She found a recipe online that used spaghetti squash instead.

4. Bella luckily had a spaghetti squash on hand.

5. She was surprised to find the spaghetti and meatballs delicious!

<Counterfactual story premise>

TimeTravel 1. Bella wanted to cook some spaghetti and meatballs.
2. She realized she didn’t have the time to make it properly so she changed made an omelette instead.
<Counterfactual story ending >
3. She found a recipe online that used egg whites instead.
4. Bell luckily had many eggs on hand. \\
5. She was surprised to find the egg white omelette delicious!
#iH
Now, given the following example, please write the counterfactual story ending.
There should be only three sentences at the counterfactual story ending.
<Original 5-sentences story>
{original_story}
<Counterfactual story premise>
{counterfactual_premise }
<Counterfactual story ending>
You will observe a story that consists of a context and an ending. Then given the counterfactual
question, please generate a new story ending that is compatible with the question.
Here is an example:
##H#<Observed story context>
Fred and James both claimed they were the best basketball player. One day they decided to find
out who was better. James loved to brag, but Fred was focused on the game. Eventually Fred beat
James by 1 point.
<Observed story ending>
James learned that day to focus on the game, not on bragging.
<Counterfactual question>
What is most likely to happen if Fred has a lot of empathy for others?
<Counterfactual story ending>
PossibleStories Fred felt bad that he won, so the next game he eased up and let James win.

#HHE
Now, given the following example, please write the counterfactual story ending.
You can only generate one sentence, do not add additional content.

<Observed story context>
{original_context}

<Observed story ending>
{original_ending}
<Counterfactual question>

{cf_context}

<Counterfactual story ending>

Table 8: The prompts used for different tasks.
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Original
Story

Myla was asked to be in a play. She a had a leading role.
Myla was struggling to remember her lines.

Her mother began helping her practice daily.

With her mother’s help Myla memorized her lines quickly.

#1  Counterfact-
ual Context

Myla was asked to be in a play.
She declined because she wasn’t interested.

w/o Clas

Myla was struggling to remember her lines.
Her mother began helping her practice daily.
With her mother’s help Myla memorized her lines quickly.

w/o Event

Myla was struggling with her singing.
Her mother began watching her practice daily.
With her mother’s help Myla practiced her singing quickly.

Llama2Chat

She wished she had taken the opportunity when it was offered.
Myla realized her mistake and tried to find another chance.

ChatGPT

Myla’s friend offered to take her place in the play. Her friend’s
mother began helping her practice daily. With her friend’s
mother’s help, Myla’s friend memorized her lines quickly.

Ours

Myla decided to audition for a different play,

and Myla was struggling to remember her lines.

Her mother began helping her practice daily.

With her mother’s help Myla memorized her lines quickly.

Original Story

Anne liked to bake. She bought a new pie pan for baking pies.
She planned on using it a lot this fall.
When it was time to test it out, she couldn’t find it.

Original ending

Her son had taken it and used it in the sandbox!

#2
Counterfactual question:

What is most likely to happen after this if she
was still able to make the pies?

w/o Clas Her son had taken it and used it in the sandbox!
/o Event When she tried to bake them last year, the butter
wio tve burnt off the pan and they all melted.
Llama2Chat She made a delicious pie that everyone loved.
ChatGPT She would have baked a delicious pie using a different pan.
She could try it out a little more time later
Ours

and it gave her better results.

Table 9: Some cases with the generated counterfactual outcomes by different models.
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