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Abstract

Is it possible accurately classify political re-
lations within evolving event ontologies with-
out extensive annotations? This study inves-
tigates zero-shot learning methods that use
expert knowledge from existing annotation
codebook, and evaluates the performance of
advanced ChatGPT (GPT-3.5/4) and a nat-
ural language inference (NLI)-based model
called ZSP. ChatGPT uses codebook’s labeled
summaries as prompts, whereas ZSP breaks
down the classification task into context, event
mode, and class disambiguation to refine task-
specific hypotheses. This decomposition en-
hances interpretability, efficiency, and adapt-
ability to schema changes. The experiments
reveal ChatGPT’s strengths and limitations,
and crucially show ZSP’s outperformance of
dictionary-based methods and its competitive
edge over some supervised models. These find-
ings affirm the value of ZSP for validating event
records and advancing ontology development.
Our study underscores the efficacy of lever-
aging transfer learning and existing domain
expertise to enhance research efficiency and
scalability. The code is publicly available1.

1 Introduction

Event coding is a crucial task in political violence
research for both academic and policy communi-
ties. It transforms unstructured text from news
articles into structured event data, represented as
source-action-target triplets, achieved through en-
tity extraction and relation classification. It pro-
vides a structured record of interactions among
political actors and serves as input for monitoring,
understanding, and forecasting political conflicts
and mediation processes worldwide (Schrodt and
Gerner, 1996; Schrodt et al., 2003, 2004; Schrodt,
1997, 2006a, 2011; Shellman and Stewart, 2007;
Shearer, 2007; Brandt et al., 2011, 2013, 2014).

1https://github.com/snowood1/Zero-Shot-PLOVER

However, manually coding events from extensive
datasets is labor-intensive.

To streamline this, experts have developed
event ontologies and knowledge bases (McClel-
land, 1978; Azar, 1980; Gerner et al., 2002; Bond
et al., 2003; Schrodt, 2006b; Boschee et al., 2016;
Lu and Roy, 2017; Osorio and Beltrán, 2020; Oso-
rio et al., 2019). Yet, traditional pattern-matching
models based on static dictionaries suffer from in-
flexibility, low recall, and high maintenance costs.
Recent advancements in deep learning and pre-
trained language models (PLMs) offer promising
supervised learning solutions (Glavaš et al., 2017;
Büyüköz et al., 2020; Olsson et al., 2020; Örs et al.,
2020; Parolin et al., 2020, 2021, 2022b; Hu et al.,
2022a). Yet, their reliance on extensively anno-
tated datasets introduces significant challenges, es-
pecially for in-depth and subnational studies requir-
ing nuanced categorization and non-exclusive la-
beling within political event ontologies. Moreover,
labeled datasets lack flexibility and may require fre-
quent relabeling as ontologies evolve. Thus, much
of the current PLM-based research in event coding
targets broad, coarse-grained categorizations, of-
ten constrained by limited evaluation sets. Costs,
time, and effort associated with developing train-
ing data have foiled the large-scale adoption and
ready deployment of PLMs by government secu-
rity agencies, researchers, and practitioners in need
of monitoring and understanding rapidly-changing
conflict processes around the world.

In light of these challenges, we pose the follow-
ing questions: (1) Is it possible to leverage existing
expert knowledge to enhance the efficiency of event
coding without extensive annotation of new data?
(2) Is it possible to create an interpretable and adapt-
able system that easily accommodates ontology or
schema changes?

To tackle these questions, our paper focuses on
relation classification, a key aspect of event cod-
ing. The goal is to categorize events in a source-
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CAMEO Root. PLOVER Root. Quad.

01- Make Public Statement dropped
02- Appeal dropped
03- Express Intent to Cooperate AGREE 1. V-Coop.
04- Consult CONSULT 1. V-Coop.
05- Engage in Diplomatic Cooperation SUPPORT 1. V-Coop.
06- Engage in Material Cooperation COOPERATE 2. M-Coop.
07- Provide Aid AID 2. M-Coop.
08- Yield YIELD 2. M-Coop.
09- Investigate ACCUSE 3. V-Conf.
10- Demand REQUEST 3. V-Conf.
11- Disapprove ACCUSE 3. V-Conf.
12- Reject REJECT 3. V-Conf.
13- Threaten THREATEN 3. V-Conf.
14- Protest PROTEST 4. M-Conf.
15- Exhibit Force Posture MOBILIZE 4. M-Conf.
16- Reduce Relations SANCTION 4. M-Conf.
17- Coerce COERCE 4. M-Conf.
18- Assault ASSAULT 4. M-Conf.
20- Unconventional Mass Violence ASSAULT 4. M-Conf.

Table 1: CAMEO/PLOVER’s Rootcodes and Quad-
codes (1-Verbal Cooperation, 2-Material Cooperation,
3-Verbal Conflict, and 4-Material Conflict).

target pair following a predefined event ontology
PLOVER (Open Event Data Alliance, 2018) with-
out external labeled data. We achieved this by
combining the transferred semantic knowledge of
PLMs with expertise derived from annotation code-
books. The codebook, as depicted in Figure 2, con-
tains label descriptions and guidelines for resolving
confusing labels. To unlock this knowledge, we
explore two zero-shot methods: the emerging Chat-
GPT (GPT-3.5/4), and our proposed NLI-based
model called ZSP (Zero-Shot fine-grained relation
classification model for PLOVER ontology).

While GPT-4 showcases notable improvements
over GPT-3.5, it still exhibits instability in fine-
grained tasks, promising further enhancement.
Conversely, ZSP, despite being built upon a smaller
model, offers substantial advantages. It leverages
easily constructed hypotheses from the codebook
and employs a tree-query framework to capture
nuanced semantics and mode distinctions within
a focused set of hypotheses at each level. Addi-
tionally, ZSP’s adaptability allows straightforward
updates by modifying the hypothesis table or class
disambiguation rules to align with evolving ontolo-
gies. This approach proves more cost-effective than
maintaining extensive dictionaries or re-labeling
datasets for event record validation.

In sum, the untapped potential of GPT-4 and the
success of ZSP encourage experts to reevaluate the
value of existing knowledge bases and inspire inno-
vative uses of this knowledge to expedite research
within the political science community.

Obama said he won't provide military aid to Israel.
Source: Obama-USAGOV Target: Israel-ISR
Action: 1222-Reject request for military aid
Root.: 12- REJECT Quad.: 3. V-Conf.

Other event modes -------------------- Root. ----- Quad. -
Obama halted military aid to Israel. SANCTION 4. M-Conf.
Obama provided military aid to Israel. AID 2. M-Coop.
Obama agreed to provide aid to Israel. AGREE 1. V-Coop.

Figure 1: Event coding illustration: How event modes
affect Rootcode and Quadcode labeling for sentences
involving identical entities.

2 Preliminaries

2.1 Event Coding, Ontology, and Mode

The ontology of the event coding system defines
how to code the actors (McClelland, 1978; Azar,
1980; Jones et al., 1996; Bond et al., 2003; Raleigh
et al., 2010; Mitamura and Hovy, 2015; Boschee
et al., 2016). One prominent schema is CAMEO
(Gerner et al., 2002), which incorporates knowl-
edge from the codebook2, action-pattern dictionar-
ies, and actor dictionaries. It categorizes political
interactions into 200+ fine-grained 4-digit codes
(01XX–20XX). These are then aggregated into 20
more frequently utilized Rootcodes (01–20), and
further into 4 high-level Quadcodes: 1-Verbal Co-
operation, 2-Material Cooperation, 3-Verbal Con-
flict, and 4-Material Conflict. Later, the PLOVER
scheme (Open Event Data Alliance, 2018) sim-
plifies CAMEO by removing 4-digit codes, re-
ducing Rootcodes to 16, and enhancing seman-
tic clarity. Rootcode and Quadcode overviews of
CAMEO/PLOVER are presented in Table 1, with a
codebook snippet in Figure 2. Appendix Table 17
and the codebook present the Rootcode in detail.

Figure 1 illustrates an event coding scenario
where the interaction between the source (Obama
representing the USA government) and the target
(Israel, coded as ISR) is classified using lower-
level 4-digit codes as well as higher-level Root-
codes and Quadcodes. However, the classification
is highly sensitive to subtle variations in what we
term event mode—whether Obama has provided,
plans to provide, has stopped, or intends to stop
military aid—resulting in significant adjustments
to Rootcodes and Quadcodes for identical entities.

PLOVER’s codebook3 suggested the concept of
event mode through auxiliary modes—historical,
future, hypothetical, or negated—to flexibly depict

2https://eventdata.parusanalytics.com/cameo.
dir/CAMEO.Manual.1.1b3.pdf

3https://github.com/openeventdata/PLOVER/blob/
master/PLOVER_MANUAL.pdf
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event statuses and assist in labeling. However, it
did so without providing strict definitions or imple-
mentations. Inspired by this, we refine these event
modes and integrate them into our NLI system to
enhance classification accuracy. This refinement
process and its impact on enhancing event coding
precision are detailed in Section 3.2 and further
elaborated in Appendix A.

The shift from the dictionary-based CAMEO
to the more semantically friendly PLOVER aligns
with the domain’s broader trend. Our focus on
PLOVER is the result of careful consideration and
validation with domain experts.

2.2 Related Work

Relation or event extraction has been studied across
various domains (Hendrickx et al., 2019; Zhang
et al., 2017; Han et al., 2018; Du and Cardie, 2020;
Luan et al., 2018; Riedel et al., 2010; Fincke et al.,
2022), with some studies partially overlapping in
entities or categorizations relevant to political sci-
ence (Doddington et al., 2004; Ebner et al., 2020;
Li et al., 2021). However, our work distinguishes
itself by considering event modes, a dimension not
fully explored in existing works.

Our work also relates to zero-shot learning
across various schemes (Huang et al., 2018; Oba-
muyide and Vlachos, 2018; Yin et al., 2019; Meng
et al., 2020; Geng et al., 2021; Lyu et al., 2021;
Sainz et al., 2021), especially socio-political event
classification (Hürriyetoğlu et al., 2021; Radford,
2021; Barker et al., 2021; Haneczok et al., 2021;
Halterman and Radford, 2021). However, many
works focus on sentence-level classification rather
than relations between multiple entity pairs. The
others with complex templates cannot be adapted
to our political ontology easily. Thus, we design
our framework to efficiently integrate with the ex-
isting knowledge base.

Finally, recent large language models (LLMs)
(Brown et al., 2020; Ouyang et al., 2022; OpenAI,
2022, 2023) have greatly advanced zero-shot learn-
ing in reasoning and text generation (Hu et al.,
2022b; Halim et al., 2023; Jin et al., 2024). How-
ever, the application of ChatGPT for zero-shot
event extraction remains underexplored and lags
behind advanced supervised methods (Yuan et al.,
2023; Cai and O’Connor, 2023; Li et al., 2023; Gao
et al., 2023; Aiyappa et al., 2023). We will evaluate
ChatGPT on PLOVER as part of our investigation.

3 Approach

We start by discussing the discovery of NLI as a
potential solution and the construction process of
the NLI-based ZSP framework, followed by the
deployment of ChatGPT.

3.1 Limitations of NLI for Event Coding

NLI measures how likely a premise entails a hy-
pothesis (Bowman et al., 2015; Williams et al.,
2017). Initially, we explores the feasibility of using
NLI to assign PLOVER codes by selecting the most
probable entailed hypothesis from a set of candi-
dates. We designed a tiny experiment with only 18
hypotheses derived from the Rootcode names4.

Table 2 illustrates three example hypotheses,
where <S> and <T> denote the source (Indone-
sian students) and the target (President Suharto’s
government), respectively. The labeled premise
“THREATEN 3” indicates the intention to initi-
ate protests. Notably, NLI accurately recognizes
AID as contradictory and identifies REQUEST
and PROTEST as entailments. Moreover, the tiny
NLI model with only 18 hypotheses surpasses
dictionary-based methods that rely on 81k verb
patterns, with a remarkable macro F1 increase of
17.1% for Quadcode classification, thus comfirm-
ing the NLI potential as a valuable solution.

However, upon closer examination, we find that
NLI models measuring semantic entailment may
not directly suit our classification task, as the best
entailed hypotheses do not always match our de-
sired labels. The adaptation raises two key issues:

First, NLI disregards event mode. In Table 2,
the premise labeled as THREATEN stands for a
hypothetical, verbal protest event. NLI partially
captures the event’s context (PROTEST) but fails to
consider its mode. To address this, we incorporate
mode information to enhance candidate precision.

Second, event category labels lack mutual exclu-
sivity in semantics. In Table 2, the premise cor-
rectly entails both PROTEST and REQUEST with
high scores from the semantic aspect. However,
in CAMEO/PLOVER’s single-label schema, the
context “demonstrate to demand reforms” aligns
with PROTEST, a Material Conflict, rather than RE-
QUEST, a Verbal Conflict. An easy solution is to
prioritize “protest” over “request” when encounter-
ing “protest to request”, following the codebook’s
disambiguation rules illustrated in Figure 2.

4See more details about this “Tiny model” experiment in
Section 4.4, and Rootcode names in Table 1).
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Premise: Thousands of Indonesian students said they would stage
mass demonstrations Saturday, demanding political reforms from
President Suharto’s government.
Source <S>: Indonesian students
Target <T>: President Suharto’s government
Gold Label: THREATEN 3; threaten political dissent.

(a) Basic Hypotheses Label Score

<S> requested <T>. REQUEST 3 92.7
<S> protested against <T>. PROTEST 4 92.5
<S> provided aid to <T>. AID 2 0.8

(b) Adding Mode
<S> threatened to protest against <T>. ✓THREAT. 3 97.3

(c) Adding Class Disambiguation
Override REQUEST if PROTEST exists→((((((REQUEST

Table 2: Entailment scores (%) for hypotheses on a
sentence labeled as “THREATEN 3” (Rootcode text +
Quadcode digit). Adding mode or class disambiguation
to basic hypotheses improves prediction precision.

In summary, we identify three key dimensions
to ensure accurate predictions: Context, Mode, and
Class Disambiguation. Firstly, we narrow down
predictions to the top candidates, PROTEST and
REQUEST. Secondly, we incorporate mode infor-
mation and identify the event as future, verbal, or
hypothetical. Lastly, we apply the class disam-
biguation rule, giving precedence to PROTEST
over REQUEST. By combining these dimensions,
we achieve the final correct answer THREATEN.
These findings motivate our NLI-based framework
in Figure 2. Next, we provide detailed explanations
for each component.

3.2 Enabling NLI to Classify Event Mode

NLI’s inability to accurately determine the event
mode often leads to misclassification. In Table 3,
we present a sentence with reversed labels com-
pared to another in Table 2. Although labeled as
AGREE for Verbal Cooperation, indicating a will-
ingness to mitigate dissent, it incorrectly scores
high (76.4%) for the hypothesis “protested against”.
Semantically, this isn’t entirely wrong, as “agreed
to ease protests” implies prior protests, but it sug-
gests cooperation rather than the implied conflict
of the hypothesis.

To address this, we introduce mode-aware
hypotheses that incorporate four event modess,
adapted from PLOVER’s guidelines: Past (P) for
historical events or events that initiated or are
ongoing, Future (F) for future, verbal, or hypo-
thetical events, Contradict_Past (CP) and Contra-
dict_Future (CF) for their respective contradictions.
See examples in Table 3.

Premise: Thousands of Indonesian students agreed to suspend Sat-
urday’s demonstrations, demanding political reforms from President
Suharto’s government.
Source <S>: Indonesian students
Target <T>: President Suharto’s government
Gold Label: AGREE 1; express intent to ease popular dissent.

Mode Hypotheses for “Protest” Mode Label Score

<S> protested against <T>. - PROTEST 4 92.5

<S> increased protests against <T>. P PROTEST 4 0.1
<S> launched more protests against <T>. P PROTEST 4 0.0
<S> reduced protests against <T>. CP YIELD 2 95.2
<S> threatened to protest against <T>. F THREAT. 3 67.5
<S> promised to reduce protests against <T>. CF AGREE 1 97.1
<S> will reduce protests against <T>. CF AGREE 1 96.3

Table 3: Entailment scores (%) for hypotheses on a sen-
tence labeled as “AGREE 1” (Rootcode text + Quadcode
digit). Adding Mode (P, F, CP, CF) improves prediction
precision compared to mode exclusion (-).

Labels for each mode are directly adopted from
the codebook, requiring no new definitions. For
example, PROTEST’s CF is labeled as AGREE,
mirroring “03- EXPRESS INTENT TO COOPER-
ATE” Rootcode, specifically item “0352- Express
intent to ease popular dissent.” Likewise, the CP
events like “reduced protests against” are labeled
as YIELD, following CAMEO code 0833, which
signifies yielding to demands.

To facilitate this nuanced classification approach,
we have assembled a mode mapping table (Table
7) that clarifies mode transitions and associated
label modifications. This streamlined process not
only simplifies the task of classification but also
significantly reduces the complexity of navigating
the codebook. For an in-depth exploration of these
event modes, please see Appendix A.

The mode-aware hypotheses in Table 3 enable
NLI to accurately dismiss the Past hypotheses and
correctly score the CF mode highest, underscoring
its capability to discern semantic subtleties. Addi-
tionally, NLI’s semantic generalization avoids the
need for exact word matching, unlike the complex
dictionary-based methods. For example, similar
hypotheses such as “increase” and “launch more
protests” receive similar scores, and phrases like
“promised to reduce” are considered similar to “will
reduce”.

Our mode-aware NLI system leverages these
insights, using the codebook to guide hypothesis
construction. This approach enables easy conver-
sion of present-tense label description into different
modes or tenses, even for non-experts. The code-
book also provides contrasting label examples, like
“YIELD: ease protests” and “AGREE: agree to ease
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Figure 2: Two zero-shot approaches for classifying relation labels (Rootcode and Quadcode) in a source - target
pair. ChatGPT employs prompts designed from the codebook’s label summaries, while ZSP utilizes a pretrained
NLI model and a tree-query system. Hypotheses and class disambiguation rules are derived from the codebook
and enhanced with mode considerations (e.g., Past, Future). The tree-query framework reduces query time and
improves precision by filtering candidates, determining modes, and eliminating ambiguity.

protests” for the CP and CF modes for PROTEST,
significantly streamlining the engineering process.
We only need to ensure hypotheses, especially in
Past mode, clearly reflect event trends. For instance,
in Table 3, “protested against” was rephrased to
“increased/launched more protests against” for en-
hanced clarity. Likewise, “imposed bans” can be
modified to “increased/imposed more bans”.

3.3 Class Disambiguation
To address the issue of class ambiguity and overlaps
in CAMEO/PLOVER, experts have documented
instructions and annotation rules in the codebook.
Annotators frequently consult the codebook when
faced with ambiguous cases. In contrast, we can
integrate this information into our machine to re-
duce manual annotation and effectively handling
boundary cases. Note that incorporating excessive
rules goes against our goal of designing a simple
and adaptable system. It can lead to overfitting and
inflexibility, similar to the limitations found in tradi-
tional dictionary-based methods. Therefore, we’ve
chosen to include only the most frequent rules ex-
plicitly outlined in the codebook, considering this
step as supplementary to our system.

One notable rule, referred to as the Conflict
Override, is summarized from the codebook. This
rule gives priority to labels in Material Conflict
over Verbal Conflict, as depicted in Figure 2. If
the top predictions include candidate labels in Ma-
terial Conflict, the labels in Verbal Conflict will
be overridden. For example, we label “protest to
request” as material PROTEST other than verbal

REQUEST, as explained in Section 3.1. Similarly,
we label “convict and arrest” as material COERCE
other than verbal ACCUSE, considering the more
severe actions involved. These rules can be easily
customized and expanded by users to accommo-
date changes in the schema or ontology. Additional
discussions are provided in Appendix B and C.

3.4 Tree-Query NLI Framework
We enhance precision and efficiency by integrat-
ing mode-aware NLI with class disambiguation
into a tree-query framework, as shown in Figure 2.
This contrasts with the “flat-query” method, where
hypotheses are arranged at a single level, by orga-
nizing them hierarchically.

At Level 1 Context, we compare 76 Past hy-
potheses (≈ 5 hypotheses per Rootcode) to classify
the premise’s context. Using a customized thresh-
old, such as selecting the top-3 candidates with
scores higher than the maximum score minus 0.1,
we narrow down the most probable candidates. In
the example, this filtering yields two candidates
related to REQUEST and PROTEST.

At Level 2 Mode, we compare the hypothe-
ses in other modes for the selected candidates to
determine their mode. We focus on two types
of modes in the experiments: Past and Future.
For instance, PROTEST leads to two branches -
the existing PROTEST and a new THREATEN
(PROTEST+future). However, for certain Root-
codes like REQUEST, querying their Future vari-
ants is unnecessary since the labels remain the same
from Past to Future (details in Table 7 and Ap-
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pendix B). This reduces the number of Future hy-
potheses in Level 2 to 58, and only a subset requires
querying per premise. In Figure 2, we collect all
necessary scores for Level 2 analysis by querying
just the new THREATEN hypothesis once.

At Level 3 Class Disambiguation, we apply
specific rules, including the Conflict Override, to
eliminate REQUEST since PROTEST already ex-
ists among the top predictions from Level 2.

ZSP is interpretable, flexible, efficient, and pre-
cise. First, we split the complicated, ambiguous
classification into a simple tree framework that both
computer science and political science researchers
can easily understand. Second, experts can quickly
update ZSP by revising the hypothesis table or class
disambiguation rules according to a evolving on-
tology, which is much cheaper than maintaining
large dictionaries or relabeling a dataset (detailed
in Appendix C). Third, it improves efficiency. For
instance, we only query 76 times in Level 1 + one
time in Level 2 without comparing all 134 hypothe-
ses in Figure 2. Finally, NLI scores within ZSP
accurately capture nuanced entailment relations
within the limited scope of compared hypotheses at
each level. This minimizes potential errors that can
arise from mixed hypotheses in different contexts
and modes. We will validate this in experiments.

3.5 ChatGPT

Besides our proposed NLI-based ZSP model, we
explored the zero-shot performance of LLMs on
this task. We focused on two versions of ChatGPT:
GPT-3.5 and GPT-4. We used the OpenAI API and
designed prompts that incorporate task descriptions
and pre-defined label sets, building upon insights
from previous research (Wei et al., 2023; Li et al.,
2023). The label descriptions were summarized
and refined from the PLOVER codebook’s com-
prehensive Rootcode descriptions. Further insights
are available through exemplified input output in-
stances in Appendix H.

4 Experiments

4.1 Datasets

Since there were limited datasets with fine-grained
annotation, we built a Rootcode-level PLV dataset
from the CAMEO codebook and a balanced coarse-
grained-labeled dataset (Parolin et al., 2022a), re-
sulting in 1050 training examples and 1033 testing
examples. We built three classification tasks with

varying degrees of complexity: Binary (coopera-
tion vs. conflict), Quadcode, and Rootcode.

Besides the political science dataset PLV, we
also explored how event ontology knowledge ben-
efits and generalizes in other NLP datasets. Thus,
we built a binary A/W dataset from ACE (Dodding-
ton et al., 2004) and WikiEvents (Li et al., 2021),
which contain many conflict-related subjects that
overlap the political ontologies. A/W consists of
802 training examples and 805 testing examples.
See more details in Appendix D.

4.2 Setup

Regarding our proposed ZSP, we incorporated a
finetuned NLI model5 into our tree-query system.
For ChatGPT, we used OpenAI’s Chat comple-
tions API to access GPT-3.5 and GPT-4. To assess
the practical usefulness of these zero-shot mod-
els, we compared them with notable baselines, in-
cluding Universal PETRARCH (UP) (Lu and Roy,
2017), a widely-used dictionary-based CAMEO
event coder. We measured UP’s ideal performance
on relation classification by considering incomplete
triplets, as detailed in Appendix E.

Additionally, we examine the performance of
various supervised learning models, including
masking language models (MLM) like BERT-base-
uncased (Devlin et al., 2018) and ConfliBERT-scr-
uncased (CBERT) (Hu et al., 2022a). Notably,
CBERT reports greater effectiveness in the polit-
ical science domain. We also use text generation
models, namely BART (Lewis et al., 2020) and
T5 (Raffel et al., 2020), to generate original label
texts for this classification task. We trained these
supervised models on either the entire training set
or sampled subsets of varying sizes using a single
V-100 GPU with default hyperparameters. Subse-
quently, we evaluated them on the complete testing
dataset. We ran each scenario with five different
seeds and reported average results for reliability.

4.3 Results and Analysis

We summarized the performance of dictionary-
based and zero-shot models, as well as the super-
vised learning models trained on the entire training
datasets, in Table 4. Additionally, in Figure 3, we
compared ZSP with supervised learning models
trained on varying limited datasets. UP and Chat-
GPT were excluded from the analysis due to their
significant performance gap compared to the other

5https://huggingface.co/roberta-large-mnli
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Figure 3: Performance vs. varying sized training datasets.

Type Model PLV
Bin.

PLV
Quad

PLV
Root

A/W
Bin. Avg.

Dict. &
Zero-shot

UP 80.8 51.8 46.3 67.2 61.5
GPT-3.5 90.1 66.2 40.9 76.3 68.4
GPT-4 93.4 76.7 61.5 87.0 79.7
ZSP 96.4 89.6 82.4 88.0 89.1

Super-
vised

BERT 96.6 94.6 84.0 87.4 90.7
CBERT 98.4 96.3 86.7 89.3 92.7

T5 97.8 94.7 81.6 87.2 90.3
BART 97.9 95.9 83.7 89.6 91.8

Table 4: Macro F1 scores of models on diverse dataset-
task combinations and average results.

models, to maintain focus and relevance.

Supervised learning. Among supervised mod-
els, CBERT emerged as the top performer, surpass-
ing BERT with less data required. BART closely
trailed. It outperformed T5 by exhibiting less over-
fitting on small, imbalanced labeled datasets.

ZSP. ZSP consistently outperformed UP and
ChatGPT, and it achieved competitive results with
supervised learning models in most tasks (Fig-
ures 3a, 3c, 3d). Notably, in these scenarios, ZSP
matched BERT and T5, while the stronger models
CBERT and BART still required 25%-50% of the
training data to achieve a slight performance gap
(less than 4.3%) over ZSP. The only exception was
a notable 6.7% performance gap observed between
CBERT and ZSP on PLV-Quadcode (Figure 3b).
This difference can be attributed to the dataset’s
balanced and coarser-grained nature, which favors
supervised learning.

However, supervised models experience a sig-
nificant performance decline in more challenging
fine-grained Rootcode classification (Figure 3c),
emphasizing the need for sufficient and balanced
annotation. Actually, our experience across multi-
ple projects to develop event coding datasets with

approximately 1,000 examples typically extends be-
yond several months. Creating evaluation datasets
like PLV and AW, or even relabeling existing ones,
proves to be far more time-consuming. In con-
trast, designing NLI prompts from the codebook
for ZSP takes just a few days, greatly reducing an-
notation efforts and demonstrating clear advantages
in real-world applications. Furthermore, ZSP’s
lack of a training phase significantly cuts down
on GPU resource needs, enhancing its adaptability
and enabling efficient inference on both CPUs and
GPUs. This efficiency starkly contrasts with super-
vised models, which rely heavily on costly GPU
resources for training.

We further analyzed ZSP’s confusion matrix for
Rootcode classification (see Figure 7 in Appendix
F). The results reveal high ZSP accuracy by cor-
rectly classifying most Rootcodes, yet there are
some misclassifications, particularly for AGREE,
SUPPORT, AID, and YIELD labels. These labels
have subtle semantic differences, with AGREE rep-
resenting a future, verbal, or hypothetical version
of the other three categories. For instance, consider
the sentence labeled as diplomatic SUPPORT “...
<S> had approved an agreement with <T> ...”, ZSP
produces conflicting predictions, with a score of
96.9% for the hypothesis “SUPPORT: approved an
agreement” and 97.0% for “AGREE: agreed to sign
an agreement”. This discrepancy arises due to the
fine distinction between these two labels, which
even human annotators may find challenging.

ChatGPT. We observed notable differences in
the performance of GPT-3.5 and the latest GPT-4
models. Specifically, GPT-3.5 exhibited inconsis-
tent results. Despite excelling in binary tasks, it
struggles with more specific labels and even per-
forms worse than UP in Rootcode classification.
These challenges align with previous research in
similar tasks (Yuan et al., 2023; Cai and O’Connor,
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2023; Li et al., 2023; Gao et al., 2023).
One ongoing challenge is generating formatted

results and avoiding random labels outside the pre-
defined set. To address this, we found that instruct-
ing GPT-3.5 to output digits (01-15) instead of text
labels (AGREE - ASSAULT) partially alleviates
these challenges and improves recall scores.

Another difficulty lies in effectively incorporat-
ing complex task descriptions and predefined label
information into GPT-3.5. While our ZSP model
can utilize class disambiguation rules easily, GPT-
3.5 struggles to retain large amounts of informa-
tion and may forget relevant details after just one
round of chatting. This limitation necessitates the
repetitive input of essential information in every
interaction, which reduces efficiency.

Furthermore, balancing the preservation of nec-
essary information and the compression of prompts
to accommodate actual questions proves challeng-
ing. Continuous refinement of the prompts does not
consistently improve performance, and it is counter-
intuitive that longer label descriptions with more
disambiguation instructions result in performance
decline. The quest for an optimal prompt design
remains an open question for future research.

However, GPT-4 stands out as a significant im-
provement over GPT-3.5. It effectively reduces
formatting errors, with few occasional issues lin-
gering. The most significant enhancement is its
ability to comprehend and process longer input to-
kens, allowing for better use of input information
and finer class distinctions. Interestingly, class dis-
ambiguation notes were found to be effective for
GPT-4 but not for GPT-3.5, further distinguishing
the two models. The success of GPT-4 highlights
the vast potential of LLMs. While extensive API
queries can be costly, and precision may be slightly
lower than ZSP, GPT-4’s effectiveness with fewer
prompts and superior generalization are notable
advantages for future applications.

4.4 Ablation Study

We conducted an ablation study to address the fol-
lowing questions on ZSP: (1) Is a tree-query ap-
proach superior to a flat-query approach, which
compares all hypotheses at single level simultane-
ously? (2) Does having more hypotheses guarantee
better performance?

Table 5 displays the results of other zero-shot
models, UP, GPT-3.5/4, and two variants of our
ZSP models across multiple tasks. For the Flat-

Model PLV
Bin.

PLV
Quad

PLV
Root

A/W
Bin. Avg.

UP 80.8 51.8 46.3 67.2 61.5
GPT-3.5 90.1 66.2 40.9 76.3 68.4
GPT-4 93.4 76.7 61.5 87.0 79.7

ZSP
Flat

Tiny 90.5 69.5 50.8 83.6 73.6
Full 91.0 73.4 55.7 82.4 75.6

ZSP
Tree

l1 96.2 85.8 78.2 87.8 87.0
l1,2 96.5 87.6 79.4 87.8 87.8
l1,2,3 96.4 89.6 82.4 88.0 89.1

Table 5: Macro F1 scores% of ZSP with different set-
tings vs. other zero-shot models in ablation study.

query approaches, the Tiny model uses 18 hypothe-
ses derived from the Rootcode names (See Table
1). The Full model incorporates a complete list
of 222 label descriptions from the codebook. The
Tree-query approach consists of our ZSP model at
different levels: l1, l2, and l3.

The observation that the Tiny model with 18
hypotheses outperforms UP with 81k inflexible
patterns, confirms the effectiveness of generalized
PLM features. Furthermore, Tiny surpasses GPT-
3.5, highlighting the unreliability of GPT-3.5 and
emphasizing the significance of expert knowledge
in achieving superior results.

Despite the Tiny model’s limited capacity to
handle nuanced cases, adding more unorganized
hypotheses does not consistently improve perfor-
mance. The Full model’s improper mixing and
comparison of hypotheses for verbal and material
events at different levels result in arbitrary NLI
scores, leading to poor performance on PLV and in-
ferior results compared to the Tiny model on A/W.

In contrast, the tree-query models outperform
all flat-query models by a large margin at Level
1. Adding additional levels brings stable improve-
ments, primarily for Quadcode and Rootcode. The
tree-query framework effectively delimits the scope
of candidate hypotheses and offers precise NLI
scores that capture semantic differences. This en-
sures a more controllable and accurate result.

5 Conclusion

Future event coding tools should prioritize ease of
interpretation and flexibility, making them more
practical than annotating new datasets for black-
box supervised models. Therefore, we explored
the potential of zero-shot relation classification us-
ing ChatGPT (GPT-3.5/4) and introduced our ZSP
model. While GPT-3.5 struggled with fine-grained
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classification, GPT-4 showed promise in mitigating
instability issues. Our ZSP offers an even more
cheap, precise, and adaptable solution. The key
is structuring the complex problem into an inter-
pretable, three-level tree framework, integrating
mode-aware NLI, and incorporating class disam-
biguation rules from the codebooks. Overall, our
study highlights the value of integrating transferred
knowledge with expert linguistic insights to stream-
line the process of verifying event records for the
political science community.

6 Limitations

Balancing generalization and specificity is a com-
mon challenge across many methods. ZSP was de-
veloped to address the complexities of annotation
codebooks and the inefficiencies in training annota-
tors. This led to streamlined annotation, such as la-
beling an event as PROTEST instead of DEMAND
for a protest related to rights, aided by the Conflict
Override rule which simplifies complex annotation
notes into machine-understandable rules. To main-
tain a balance between complexity and adaptability,
we included only the most frequently used rules
from the codebook.

Our approach’s broader applicability, particu-
larly in political science and related fields where
codebooks are traditionally used to train annotators
(Raleigh et al., 2010; Pavlick et al., 2016; Parolin
et al., 2021), underscores the practicality of our
method in streamlining data labeling. We are op-
timistic that combining established codebooks or
knowledgebases with language models can extend
to other domain-specific data. For instance, in le-
gal studies, this approach can enhance the classifi-
cation of legal documents by leveraging codified
laws and regulations. In healthcare, it can aid in
categorizing patient records and medical literature
using clinical codebooks. In media studies and
communication, it can support media content anal-
ysis by categorizing articles, broadcasts, and social
media posts using thematic or sentiment-related
codebooks.

However, challenges persist in zero-shot mod-
els when classifying semantically non-mutually
exclusive fine-grained labels due to the intensive
hypothesis engineering required. We addressed
these challenges through the codebook’s attainable
expertise, but ZSP may struggle with tasks lack-
ing accessible domain knowledge bases or those
with overly nuanced and ambiguous labels. For

example, classifying subcategories of ASSAULT
(crime vs. attack vs. kidnap) or distinguishing
peace protests from riots may require as many hy-
potheses as keywords (Barker et al., 2021; Radford,
2021). For such tasks, hybrid methods such as
integrating ZSP or ChatGPT with few-shot learn-
ing, pattern-matching, or in-context learning could
effectively address tasks of varying complexity, re-
ducing human efforts. Future work will focus on
exploring these hybrid methods.

Our exploration of ChatGPT models highlights
the trade-off between generalizability and preci-
sion. While ChatGPT can adapt to any task with its
chat-style format, it may sacrifice precision com-
pared to NLI models. Due to time constraints
and cost considerations, we did not investigate
multi-turn interactions to enhance ChatGPT’s preci-
sion, leaving this for future research. Nonetheless,
both zero-shot models show promising potential to
surpass traditional dictionary-based methods and
annotation-driven supervised learning.

In selecting comparative methods, we included
the most pertinent and recent ones that meet the
specific needs of our task. Political event cod-
ing differs significantly from NLP event extraction
tasks, such as those using the popular ACE dataset,
in the availability of directly comparable studies.
The prevailing methodologies in ACE event ex-
traction are predominantly supervised and don’t
easily align with our unique ontology. Our in-
vestigation focuses on exploring the effectiveness
of zero-shot models in event coding rather than
achieving the highest accuracy through supervised
approaches. Adapting existing zero-shot methods,
designed with ACE contexts in mind, to our distinct
requirements presents distinct challenges. Moving
forward, we plan to expand our baseline compar-
isons in future studies.

While we initially considered expanding exper-
iments to include other ontologies, we chose to
focus on CAMEO/PLOVER, deferring broader ex-
plorations to future studies. This decision was in-
fluenced by practical constraints such as time and
API costs, as well as a desire to pioneer within
less-explored research domains. Unlike many
widely-studied ontologies that rely on manually-
created NLI systems and lack mode considerations,
CAMEO/PLOVER presents unique challenges and
opportunities. Its integration of mode features and
codebooks makes it an ideal candidate for explor-
ing PLMs in complex areas like political event
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coding. By converting the complex expertise em-
bedded in the codebooks into practical applications,
we transcend the limits of conventional zero-shot
modeling and showcase how PLMs like NLI and
ChatGPT can be adapted to specialized domains.

7 Ethics Statement

The broad goal of producing accurate event data is
to objectively measure and understand processes of
political conflict and mediation around the world
in order to prevent or mitigate their harm. We aim
to produce a simple, flexible tool to serve this pur-
pose. In particular, the zero-shot approach of this
study largely reduces the costs, effort, and time
to produce highly-quality event data on conflict,
thus helping international and domestic govern-
ment agencies, as well as researchers and practi-
tioners to track, analyze, and mitigate the causes
and effects of political violence. The project relied
exclusively on news-story-like text as second-hand
accounts of conflict events, but did not involve hu-
man research subjects.
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A Mode Design and Mapping

PLOVER suggests auxiliary modes to indicate
whether a reported event is historical, future-
oriented, hypothetical, or negated, as shown in Ta-
ble 6. Some event types can theoretically combine
with an auxiliary mode, such as AGREE becom-
ing SUPPORT + future or THREATEN becoming
ASSAULT + hypothetical. However, PLOVER’s
guidance lacks concrete implementation for annota-
tors, merely assuming that “the coding engine will
be able to resolve these and put that information in
the context.”

Moreover, while there are overlaps between
PLOVER’s auxiliary modes and the field of lin-
guistic modality in NLP (Palmer, 2001; Saurí and
Pustejovsky, 2009; Rudinger et al., 2018; Pyatkin
et al., 2021), notable differences exist. For instance,
Pyatkin et al. (2021) explore modes like event plau-
sibility, which partially echoes aspects of political
actors’ intentions and event factuality in PLOVER.
However, these explorations, though relevant, lack
the precision and simplicity needed for direct appli-
cation in PLOVER’s context. Our focus, therefore,
is on a simplified, practical, and task-specific mode
framework for PLOVER.

Our proposed mode for PLOVER only con-
sider four types: Past (P), Future (F), Contra-
dict_Past (CP), Contradict_Future (CF). These
modes were derived from our examination of the
CAMEO/PLOVER ontology and PLOVER’s auxil-
iary modes from the PLOVER codebook. Within
this framework, we make a clear distinction be-
tween verbal, future or hypothetical events (Future)
and historical or ongoing events (Past). And con-
sidering contradiction, we arrived at a simple 2x2
matrix with four modes outlined in Table 7. The
table simplifies event coding and aids in accurately
assigning Rootcode and Quadcode when an event’s
mode changes.

Specifically, Past covers historically significant

Mode Example

Historical During the decolonization struggle, Angolan
forces...

Future Members of the G-7 will meet in Ottawa
next month...

Hypothetical If Russian forces were to cross the border,
that would represent a major...

Negation Thus far, fighting has not re-emerged in the
tense region.

Table 6: Examples of PLOVER’s auxiliary modes.

P F CP CF

AGREE
1 AGREE 1 REJECT 3 REJECT 3CONSULT

SUPPORT

COOPERATE
2 AGREE 1 SANCTION 4 REJECT 3AID

YIELD

ACCUSE

3

ACCUSE

3 AGREE 1 AGREE 1DEMAND DEMAND
REJECT REJECT

THREATEN THREATEN

PROTEST

4 THREATEN 3 YIELD 2 AGREE 1
MOBILIZE

SANCTION
COERCE

ASSAULT

Table 7: PLOVER’s labels (Rootcode text + Quadcode
digits) w.r.t. our proposed modes: Past (P), Future (F),
Contradict_Past (CP), Contradict_Future (CF).

or ongoing events, often presented in past tense but
not restricted to it. Future includes verbal, hypo-
thetical or future events. We consolidate hypotheti-
cal and future auxiliary modes in Table 6 because
their similar nature in transitions between mate-
rial and verbal events. For instance, THREATEN
(Verbal Conflict, e.g., threatening to attack) can be
considered either hypothetical or future ASSAULT
(Material Conflict). Contradict_Past and Contra-
dict_Future encompass events contradicting Past
or Future occurrences, respectively. As illustrated
in Table 3, CF and CP may include words with
contradictory meanings, not necessarily containing
negation words like “do not.” Here, NLI’s ability
to identify negation allows us to focus on posi-
tive hypotheses with contradictory meanings, align-
ing with PLOVER’s guideline to exclude negated
events from datasets. Moreover, the codebook al-
ready provides mirrored hypotheses, eliminating
the need for manual construction. For example,
“YIELD: reduced protest against” is the CP of
“PROTEST: protested against.”

An additional observation in Table 7 is that ver-
bal actions remain classified as verbal regardless of
mode. In contrast, material actions are categorized
differently based on their contradictory forms. For
instance, the contradiction or negation of AGREE
(e.g., “didn’t agree to help”) is always REJECT,
Verbal Conflict. However, for material actions (e.g.,
“provided aid to”), its CP form (e.g., “stopped pro-
viding aid to”) is SANCTION, Material Conflict,
but its CF form (e.g., “would stop aid to”) is RE-
JECT, Verbal Conflict.

In sum, our task-specific mode concept aligns
with PLOVER’s auxiliary modes but enhances
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Hypothesis Label

<S> increased forces in <T>. MOBILIZE 4
↑ override

<S> increased peace forces in <T>. AID 2

<S> retreated forces from <T>. YIELD 2
↑ override

<S> retreated peace forces from <T>. SANCTION 4

Table 8: Examples of class disambiguation: We override
forces if top predictions contain peace forces.

PLOVER’s functionality, providing a practical,
clear, and unambiguous approach to event coding.

B ZSP’s Hypotheses and Class
Disambiguation Rules

Table 16 shows the mode-aware hypotheses used
in our experiments. We selected a subset of label
descriptions in different Rootcode and Quadcode
from the CAMEO codebook and converted these
sentences to Past and Future modes. Some of them
do not need Future variants as their labels from
Past to Future remain the same, following Table 7.

Crafting disambiguation rules is a smaller part
of our work compared to developing broad event
modes. Event modes have resolved many cases,
with custom rules providing fine-tuning. Our pri-
mary goal is to maintain a simple and generaliz-
able model. Therefore, we only add commonly
encountered rules like Conflict Override, which
is prevalent in the CAMEO codebook and affects
the coding for all conflict events.

Peace Override. As the second frequent case,
classes related to “forces” vary according to ac-
tions and entities. For example, sending peacekeep-
ing forces/workers/observers indicates cooperation,
while sending forces to attack/occupy stands for
conflict. Thus, we add hypotheses with “peace
forces” distinct from normal “forces”, as shown
in Table 8. Predictions with “peace forces” have
higher priority. I.e., we override “forces” if the
top predictions contain “peace forces” because the
latter one is more specified and infrequent. This
simple rule ensures high recall for general forces
and high precision for peace forces.

Consult Penalty. Another common issue found
in CAMEO/PLOVER is the overly general CON-
SULT class (e.g., consult/talk/meet/visit). Many
actions (e.g., sending forces, attacks, and inves-
tigations) entail that the source visited the target.
Likewise, an accusation or threat indicates that the
source talked or met with the target. One simple

Model PLV
Bin.

PLV
Quad

PLV
Root

A/W
Bin. Avg.

ZSP
Flat

Tiny-c 89.7 68.9 49.5 81.0 72.3
Tiny+c 90.5 69.5 50.8 83.6 73.6
Full-c 89.4 70.8 53.1 75.9 72.3
Full+c 91.0 73.4 55.7 82.4 75.6

ZSP
Tree

l1-c 95.6 85.1 77.3 85.4 85.9
l1+c 96.2 85.8 78.2 87.8 87.0
l1,2-c 96.0 87.0 78.7 85.5 86.8
l1,2+c 96.5 87.6 79.4 87.8 87.8
l1,2,3-c 95.9 89.0 81.8 85.5 88.1
l1,2,3+c 96.4 89.6 82.4 88.0 89.1

Table 9: Supplementary ablation study for Table 5.
Macro F1 scores% of ZSP with (+c) or without (−c)
Consult Penalty in different configurations.

solution is to deduct the Consult Penalty, denoted
as c (e.g., 2%), which penalizes the predicted en-
tailment scores for the Rootcode “CONSULT”.

We analyze the impact of c at every level in Ta-
ble 9, with (+c) indicating results with the penalty
and (−c) showing results without it. The effect
of c is evident, with an average increase of 1.6%
in macro F1 for all the tasks. For deeper levels,
c ensures the accuracy of Level 1 predictions to
avoid error propagation. These findings confirm
the importance of preventing overly general and
ambiguous hypotheses. Incorporating c provides a
simple solution to alleviate manual efforts in curat-
ing alternative hypotheses.

Besides the three main disambiguation rules,
users can easily add or tailor less-important rules
for their specific study purposes, as discussed in
Appendix C.

C Flexibility

The ZSP framework is notably flexible, easily ac-
commodating changes in ontology or schema. Ex-
perts can swiftly update the ZSP method by mod-
ifying the hypothesis table or adjusting the class
disambiguation rules to align with an evolving on-
tology. For example, if political scientists reclassify
"arresting someone" from ACCUSE to COERCE
(Table 7), they need only update the hypothesis
label for “<S> arrested person of <T>”. Similarly,
introducing sub-categories within YIELD involves
simple updates to the hypothesis labels.

Disambiguation rules, such as the Conflict Over-
ride rule, which prioritizes PROTEST over RE-
QUEST in certain contexts, can also be refined.
Transitioning to a multi-label approach is straight-
forward by eliminating the Conflict Override rule
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Rootcode: 14-PROTEST
Code 144: Obstruct passage, block, not specified below
Description: Protest by blocking entry/exit into a building
or area.
Usage Notes: Use sub-categories if demands are known.
Use this code for protests disrupting routine proceedings
by blocking roads, buildings, etc. Use code 191 if the
blockade involves military forces.
Rootcode: 19-COERCE
Code 191: Impose blockade, restrict movement
Description: Prevent entry/exit from a territory using
armed forces.
Usage Notes: Different from code 144, which refers to
civilian protests.

Table 10: Examples of CAMEO classes with nuanced
differences. Customized rules can differentiate these
classes based on the actors involved.

to acknowledge both PROTEST and REQUEST as
valid labels.

When should users write their own disambigua-
tion rules? The need for custom rules depends
on specific user requirements and the balance be-
tween manual effort and system precision and re-
call. Custom rules can be particularly beneficial for
fine-grained analysis. For example, the CAMEO
codebook includes similar classes “COERCE- Im-
pose blockade” and “PROTEST- Obstruct passage/
blockade”, as shown in Table 10. The key dif-
ference is whether the source is armed forces or
protestors.

For researchers focusing on in-depth civil protest
studies6, distinguishing between codes 144 (civil-
ian protests) and 191 (military blockades) is cru-
cial for accurate classification. Thus, they can de-
fine a simple rule, Blockade Override, without
additional cost: remove the hypothesis “COERCE-
Impose blockade” if the top predictions contain
PROTEST, indicating that the source is more likely
protestors rather than armed forces. This adaptabil-
ity showcases the model’s flexibility and customiz-
ability in complex political scenarios.

While ChatGPT can be generalized to any task
with their chat-style format, they may sacrifice pre-
cision compared with the ZSP model. Yet, both
zero-shot models show promising applicability to
surpass traditional dictionary-based methods or
annotation-driven supervised learning methods.

D Building PLV and A/W Datasets

We extended existing resources to build our
datasets, which is more efficient and effective than

6https://github.com/emerging-welfare/
glocongold.

Dataset Subset # Docs # S-T pairs Tasks

PLV
CoPED - 1043/698 Binary,

Quadcode,
Rootcode

Codebook - 0/335
Total - 1050/1033

A/W
ACE 337/338 432/451

BinaryWikiEvents 91/92 370/434
Total 428/430 802/805

Table 11: Statistics of the datasets: subsets, No. of
documents and source-target pairs, and train/test splits.

Conflict.attack: <arg1:attacker> attacked <arg2:tar-
get> using <arg3:instrument> at <arg4:place> place.
Justice.arrest: <arg1:jailer> arrested <arg2:detain-
ee> for <arg3:crime> crime at <arg4:place> place.

Figure 4: Examples of templates in the A/W’s original
ontology (Li et al., 2021).

creating a new dataset from scratch. Table 11 sum-
marizes the two datasets’ detailed train and test
split statistics. PLV is constructed from two re-
sources. First, we outlined 335 examples (unique
source-target pairs) with PLOVER Rootcode from
the CAMEO codebook, and the PLOVER repos-
itory. Then we preprocessed a coarse-grained-
labeled dataset from CoPED (Parolin et al., 2022a)
and manually extended its Quadcode labels to 15
Rootcode in the new PLOVER schema. The ma-
jor modification can be seen in Table 1. However,
given that the current PLOVER codebook is in de-
velopment, we leave YIELD without splitting it
to CONCEDE and RETREAT. Finally, Figure 5
visualizes our final dataset’s label distribution.

We built the A/W dataset from the ACE and
WikiEvents datasets. First, the repository of (Li
et al., 2021) provides templates for each event sub-
type of their ontology, enabling us to convert be-
tween different ontologies. For example, Figure 4
shows two frequent event types defined in the on-
tology. In both instances, argument 1 is equivalent
to the source/actor, while argument 2 represents
the target/recipient entities. Besides, the event type
attack and arrest can be approximately mapped to
ASSAULT and COERCE in PLOVER, respectively,
as shown in Table 12.

Therefore, we built labeled source-target pairs
from ACE and WikiEvents. We extracted major
sentences that contained the labeled entities from
each long document in WikiEvents. We also re-
moved entities that only consist of pronouns. Fi-
nally, we got 1258 valid sentences with 1687 la-
beled Source-Target pairs. To prevent label leaking,
we split the dataset by document IDs, ensuring dis-
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Figure 6: A/W dataset’s original event types and its
relabeled binary category.

tinct name entities for training and testing. Figure
6 shows the distribution of the original event types
and the mapped binary class.

The nuanced differences between the two do-
mains necessitate that event types be only “approx-
imately” mapped to PLOVER Rootcodes. And
extensive manual verification is needed to ensure
accuracy. This complexity is rooted in the dis-
tinct focuses of NLP, which emphasizes predi-
cates or topic-centric events, and Political Science,
which concentrates on event status or mode. For
instance, examples in Tables 2 (planned protest)
and Table 3 (agreement to suspend protests) are
both categorized as Conflict.Demonstrate in A/W,
but in PLOVER, they are distinctly classified as
THREATEN (verbal conflict) and AGREE (verbal
cooperation), respectively. The binary labels even
switch from conflict to cooperation in the second
case. Thus, manual checking remains crucial even
at the binary level.

The annotation process was carried out by two
authors, achieving a Kappa score of 0.76, with
discrepancies resolved through discussion.

E UP Experiment Setup

Universal Petrarch (UP) is a popular dictionary-
based event coder (Lu and Roy, 2017). We adapted
UP into our task of relation classification with gold
source and target, i.e., source-target-action triplets.
We found that UP is too strict and often results in

A/W Event Types Approx. Root. Binary

Life.Die/Injure ASSAULT

Confli.Conflict.Attack ASSAULT
Conflict.Demonstrate PROTEST

Justice ACCUSE or COERCE

Personnel.EndPosition YIELD

Coop.Contact CONSULT
Transaction COOPERATE or AID

Business.Merge-Org COOPERATE

Table 12: Mapping A/W’s event types to PLOVER’s
approximate Rootcode and binary class.

incomplete or empty triplets. Thus, we reported
the best possible result by the following methods.
First, we used UP for each sentence to extract all
possible events. Then we ranked the extracted
triplets by the number of matched entities with gold
sources and targets to decide the event code. We
also counted the valid event code when there were
no matched entities but only matched trigger action
verbs. Even so, there are still 10% and 27% invalid
event code results on PLV and A/W datasets, re-
spectively. Finally, we mapped its output four-digit
code to PLOVER Rootcode and Quadcode (similar
to Figure 1).

F ZSP’s Detailed Results Analysis

We examined the confusion matrix for ZSP on Bi-
nary (Figure 8), Quadcode (Figure 9), and Root-
code (Figure 7) classifications. The results show
that ZSP perfectly classifies most contexts, with a
slight degradation in differentiating mode (verbal
vs. material).

In-depth class reports for PLV on Quadcode (Ta-
ble 14) and Rootcode (Table 15) reveal that ZSP
outperforms UP in nearly all metrics, except in the
precision of the Verb-Conflict class (85.5%). How-
ever, UP’s lower recall impacts its overall F1 score,
showcasing the superiority of PLM’s generalized
knowledge over rigid pattern-matching approaches.
Additionally, we noticed a performance trade-off
when using overrides from Level 2 to Level 3. For
instance, recall improves in Material-Conflict but
decreases in Verbal-Conflict. Nevertheless, Level
3 significantly enhances overall F1 scores.

Further, we expand on the ablation study (Sec-
tion 4.4), emphasizing why the tree-query ap-
proach, with fewer hypotheses, surpasses the “Full”
model, which utilizes 222 flat hypotheses. Fig-
ure 10 illustrates the confusion matrix for the Full
model’s Rootcode classification. A comparison be-
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Figure 7: Confusion matrix for ZSP on PLV Rootcode.

Figure 8: Confusion ma-
trix for ZSP on PLV Bi-
nary code. Figure 9: Confusion matrix

for ZSP on PLV Quadcode.

tween this matrix (Figure 10) and the default ZSP
model using tree-query (Figure 7) reveals signifi-
cant differences. The variable nature of NLI scores
is a key factor in these differences. The tree-query
model’s focused approach on controlled hypothesis
groups with consistent entities and predicates, but
varying modes, leads to more accurate hypothe-
sis identification. In contrast, the Full model’s flat
amalgamation of diverse hypotheses results in un-
predictable outcomes and struggles with accurate
mode classification, evident in frequent misclassi-
fications between categories such as AGREE vs.
SUPPORT, YIELD vs. AGREE, and REJECT vs.
SANCTION or ASSAULT.

G NLI Model Selection

We selected RoBERTa-Large-MNLI7 for its ex-
tensive usage in NLI research, with comparable
alternatives like BART-Large-MNLI8 also showing
favorable results. Employing smaller-sized base

7https://huggingface.co/roberta-large-mnli
8https://huggingface.co/facebook/bart-large-mnli

Figure 10: Confusion matrix on PLV Rootcode using
the “Full” model in Section 4.4 Ablation Study.

Model Size PLV
Bin.

PLV
Quad

PLV
Root

A/W
Bin. Avg.

base 125M 95.2 83.0 68.4 81.1 81.9
large 355M 96.4 89.6 82.4 88.0 89.1

Table 13: Macro F1 scores of ZSP models with different
sized RoBERTa NLI models.

models for zero-shot tasks is less common, pri-
marily due to the significant drop in performance.
Consequently, there are limited models specifically
designed and widely accepted for zero-shot classi-
fication tasks.

From an efficiency perspective, employing large
models for zero-shot tasks proves efficient as they
are only required during the inference phase. Con-
versely, training supervise large models can be rel-
atively expensive. Besides, one of our chosen base-
lines, CBERT (Hu et al., 2022a), only has a base
version. Therefore, we conducted supervised ex-
periments using base models while reserving large
models exclusively for zero-shot tasks. This ap-
proach ensures a relatively fair and meaningful
comparison between the two model types.

However, we also considered the possibility that
a more rigorous comparison could have strength-
ened our hypotheses, particularly in demonstrating
the effectiveness of smaller base models for han-
dling fine-grained tasks in zero-shot scenarios. To
explore this, we conducted experiments using an
existing RoBERTa base model9. The results are

9https://huggingface.co/cross-encoder/nli-roberta-base
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Class No. Metrics UP ZSP
l1 l1,2 l1,2,3

V-Coop. 216
Precison 63.1 82.9 82.9 82.6
Recall 68.1 83.3 92.1 92.1

Macro F1 65.5 83.1 87.3 87.1

M-Coop. 200
Precison 52.4 84.1 91.7 91.3
Recall 60.5 84.5 83.0 83.5

Macro F1 56.1 84.3 87.1 87.2

V-Conf. 341
Precison 85.5 85.9 85.9 92.9
Recall 51.9 94.4 94.4 92.7

Macro F1 64.6 89.9 89.9 92.8

M-Conf. 276
Precison 75.7 92.1 93.2 92.6
Recall 69.9 80.1 80.1 90.2

Macro F1 72.7 85.7 86.2 91.4

macro
avg. 1033

Precison 55.3 86.2 88.4 89.8
Recall 50.1 85.6 87.4 89.6

Macro F1 51.8 85.8 87.6 89.6

Table 14: PLV Quadcode performance analysis.

presented in Table 13, offering valuable additional
insights alongside the findings presented in Table
4. While we observed that base models can effec-
tively classify context or topics, they encountered
challenges in distinguishing nuanced differences
in mode. This distinction can lead to a drop in
performance compared to larger models.

H ChatGPT Experiment Setup

Table 17 exemplifies inputs for relation classifica-
tion tasks. Our task is characterized by challenging
fine-grained classification that demands a substan-
tial amount of input information. Due to token
limitations and API costs, inputting one example
at a time with a lengthy prompt is inefficient and
costly. Instead, we used a long prompt followed
by a list of input sentences to stay within the max-
imum token limits and obtain a list of predicted
labels. More specifically, the inputs comprise the
task and label description, a sentence list (usually
limited to less than 50 sentences due to word con-
straints), and the task requirements. The antici-
pated output from the model is the predicted labels.
Despite our repeated emphasis on ChatGPT gener-
ating only predefined labels, certain issues remain.
To mitigate these, we use numerical codes (01-15)
instead of text labels (AGREE - ASSAULT), re-
ducing ChatGPT’s generation of labels outside the
predefined set. Additionally, we’ve noticed that
ChatGPT tends to forget the task description and
predefined label information, necessitating their in-
put each time. Finally, refining the task and label
description doesn’t yield improved results. This

Class Precision Recall Macro F1 No.

AGREE 73.6 82.9 78.0 111
CONSULT 70.0 85.4 76.9 41
SUPPORT 84.8 87.5 86.2 64

COOPERATE 68.2 75.0 71.4 20
AID 82.2 62.7 71.2 59

YIELD 89.7 86.0 87.8 121
ACCUSE 82.1 85.7 83.9 91

REQUEST 96.8 84.7 90.4 72
REJECT 90.8 90.0 90.4 120

THREATEN 71.4 77.6 74.4 58
PROTEST 88.2 90.9 89.6 33

MOBILIZE 66.7 85.7 75.0 14
SANCTION 86.1 93.9 89.9 33

COERCE 82.4 80.6 81.5 93
ASSAULT 96.7 84.5 90.2 103

accuracy 83.8 1033
macro-avg. 82.0 83.5 82.4 1033

Table 15: PLV Rootcode performance analysis.

underscores the complexity of the task, involving
semantically non-mutually exclusive fine-grained
labels, which proves challenging for ChatGPT.
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Root. Quad. Past Future

AGREE V-Coop. <S> agreed to do something for <T> None
AGREE V-Coop. <S> promised to do something for <T> None
CONSULT V-Coop. <S> held a talk with <T> <S> agreed to hold a talk with <T>
CONSULT V-Coop. <S> met with <T> <S> agreed to meet with <T>
CONSULT V-Coop. <S> undertook more negotiation with <T> <S> agreed to undertake negotiation with <T>
SUPPORT V-Coop. <S> apologized to <T> <S> agreed to apologize to <T>
SUPPORT V-Coop. <S> expressed support for <T> <S> agreed to support <T>
SUPPORT V-Coop. <S> granted diplomatic recognition of <T> <S> agreed to grant diplomatic recognition of <T>
SUPPORT V-Coop. <S> improved diplomatic cooperation with <T> <S> agreed to improve diplomatic cooperation with <T>
SUPPORT V-Coop. <S> signed an agreement with <T> <S> agreed to sign an agreement with <T>
AID M-Coop. <S> added aid to <T> <S> agreed to provide aid to <T>
AID M-Coop. <S> added money to <T> <S> agreed to add money to <T>
AID M-Coop. <S> granted asylum to <T> <S> agreed to grant asylum to <T>
AID M-Coop. <S> increased peace forces in <T> <S> agreed to increase peace forces in <T>
COOPERATE M-Coop. <S> cooperated with <T> <S> agreed to cooperate with <T>
COOPERATE M-Coop. <S> extradited person to <T> <S> agreed to extradite person to <T>
COOPERATE M-Coop. <S> shared information with <T> <S> agreed to share information with <T>
YIELD M-Coop. <S> accepted demands of <T> <S> promised to accept demands of <T>
YIELD M-Coop. <S> allowed entry of <T> <S> promised to allow entry of <T>
YIELD M-Coop. <S> declared a ceasefire with <T> <S> promised to a ceasefire with <T>
YIELD M-Coop. <S> eased restrictions on <T> <S> promised to ease restrictions on <T>
YIELD M-Coop. <S> provided rights to <T> <S> promised to provide rights to <T>
YIELD M-Coop. <S> reduced protest against <T> <S> promised to reduce protest for <T>
YIELD M-Coop. <S> released person of <T> <S> promised to release person of <T>
YIELD M-Coop. <S> resigned from the position in <T> <S> promised to resign from the position in <T>
YIELD M-Coop. <S> retreated forces from <T> <S> promised to retreat forces from <T>
YIELD M-Coop. <S> returned property of <T> <S> promised to return property of <T>
YIELD M-Coop. <S> surrendered to <T> <S> promised to surrender to <T>
YIELD M-Coop. <S> undertook reform in <T> <S> promised to undertake reform in <T>
ACCUSE V-Conf. <S> accused <T> of something None
ACCUSE V-Conf. <S> brought lawsuit against <T> None
ACCUSE V-Conf. <S> expressed complaints of <T> None
REQUEST V-Conf. <S> demanded something from <T> None
INVESTIGATE V-Conf. <S> investigated something of <T> <S> planned to investigate something of <T>
INVESTIGATE V-Conf. <S> sent people to investigate <T> <S> planned to send people to investigate <T>
REJECT V-Conf. <S> defied laws of <T> None
REJECT V-Conf. <S> rejected proposals of <T> None
REJECT V-Conf. <S> rejected cooperation with <T> None
REJECT V-Conf. <S> rejected to do something for <T> None
REJECT V-Conf. <S> rejected to stop something against <T> None
REJECT V-Conf. <S> rejected to consult with <T> None
REJECT V-Conf. <S> rejected to yield to <T> None
THREATEN V-Conf. <S> issued a ultimatum to <T> None
THREATEN V-Conf. <S> threatened something against <T> None
COERCE M-Conf. <S> arrested person of <T> <S> threatened to arrest person of <T>
COERCE M-Conf. <S> attacked <T> cybernetically <S> threatened to attack <T> cybernetically
COERCE M-Conf. <S> deported person of <T> <S> threatened to deport person of <T>
COERCE M-Conf. <S> detained person of <T> <S> threatened to detain person of <T>
COERCE M-Conf. <S> imposed blockades in <T> <S> threatened to impose blockades in <T>
COERCE M-Conf. <S> imposed state of emergency in <T> <S> threatened to impose state of emergency in <T>
COERCE M-Conf. <S> imposed more restrictions on <T> <S> threatened to impose restrictions on <T>
COERCE M-Conf. <S> repressed person of <T> <S> threatened to repress person of <T>
COERCE M-Conf. <S> seized property of <T> <S> threatened to seize property of <T>
ASSAULT M-Conf. <S> seized territory of <T> <S> threatened to seize territory of <T>
ASSAULT M-Conf. <S> assaulted person of <T> <S> threatened to assault person of <T>
ASSAULT M-Conf. <S> destropyed property of <T> <S> threatened to destropy property of <T>
ASSAULT M-Conf. <S> killed person of <T> <S> threatened to kill person of <T>
ASSAULT M-Conf. <S> launched military strikes against <T> <S> threatened to launch military strikes against <T>
ASSAULT M-Conf. <S> violated ceasefire with <T> <S> threatened to violate ceasefire with <T>
FIGHT M-Conf. <S> attempted to assassinate <T> None
FIGHT M-Conf. <S> used person of <T> as human shield None
FIGHT M-Conf. Explosives in <S> attacked <T> None
MOBILIZE M-Conf. <S> increased forces in <T> <S> threatened to increase forces in <T>
MOBILIZE M-Conf. <S> kept alert in <T> <S> threatened to keep alert in <T>
MOBILIZE M-Conf. <S> prepared forces against <T> <S> threatened to prepare forces against <T>
PROTEST M-Conf. <S> launched protests against <T> <S> threatened to launch protests against <T>
PROTEST M-Conf. <S> launched protests in <T> <S> threatened to launch protests in <T>
PROTEST M-Conf. <S> protestors obstructed roads against <T> <S> protestors threatened to obstruct roads against <T>
PROTEST M-Conf. <S> undertook boycotts against <T> <S> threatened to undertake boycott against <T>
SANCTION M-Conf. <S> discontinued cooperation with <T> <S> threatened to discontinue cooperation with <T>
SANCTION M-Conf. <S> expelled diplomatic people of <T> <S> threatened to expel diplomatic people of <T>
SANCTION M-Conf. <S> expelled organizations of <T> <S> threatened to expel organizations of <T>
SANCTION M-Conf. <S> expelled peacekeepers of <T> <S> threatened to expel peacekeepers of <T>
SANCTION M-Conf. <S> halted negotiations with <T> <S> threatened to halt negotiate with <T>
SANCTION M-Conf. <S> reduced aid to <T> <S> threatened to reduce aid to <T>
SANCTION M-Conf. <S> retreated peace forces from <T> <S> threatened to retreat peace forces from <T>

Table 16: The mode-aware hypothesis table considering Past and Future modes. <S> and <T> represent the
source and the target entities in practical examples. Some hypotheses do not require Future variants as their labels
(Rootcode and Quadcode) remain unchanged from Past to Future, as indicated in Table 7.
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Relation Extraction (RE) Task is to classify the political relations between a source (indicated by <S></S>) and a target
(indicated by <T></T>) within a given input sentence. The goal is to assign these relations into a predefined set of labels. The
predefined set of relation labels 1-15 is as follows. The relations can be categorized into four quadrants: Q1(Verbal Cooperation),
Q2 (Material Cooperation), Q3 (Verbal Conflict), and Q4 (Material Conflict).

1. AGREE, Q1: Agree to, offer, promise, or otherwise indicate willingness or commitment to cooperate, including promises to
sign or ratify agreements. Cooperative actions (CONSULT, SUPPORT, COOPERATE, AID, YIELD) reported in future tense are
also taken to imply intentions and should be coded as AGREE.
2. CONSULT, Q1: All consultations and meetings, including visiting and hosting visits, meeting at neutral location, and
consultation by phone or other media.
3. SUPPORT, Q1: Initiate, resume, improve, or expand diplomatic, non-material cooperation; express support for, commend,
approve policy, action, or actor, or ratify, sign, or finalize an agreement or treaty.
4. COOPERATE, Q2: Initiate, resume, improve, or expand mutual material cooperation or exchange, including economics,
military, judicial matters, and sharing of intelligence.
5. AID, Q2: All provisions of providing material aid whose material benefits primarily accrue to the recipient, including
monetary, military,humanitarian, asylum etc.
6. YIELD, Q2: yieldings or concessions, such as resignations of government officials, easing of legal restrictions, the release of
prisoners, repatriation of refugees or property, allowing third party access, disarming militarily, implementing a ceasefire, and a
military retreat.
7. REQUEST, Q3: All verbal requests, demands, and orders, which are less forceful than threats and potentially carry less
serious repercussions. Demands that take the form of demonstrations, protests, etc. are coded as PROTEST.
8. ACCUSE, Q3: Express disapprovals, objections, and complaints; condemn, decry a policy or an action; criticize, defame,
denigrate responsible parties. Accuse, allege, or charge, both judicially and informally. Sue or bring to court. Investigations.
9. REJECT, Q3: All rejections and refusals, such as assistance, changes in policy, yielding, or meetings.
10. THREATEN, Q3: All threats, coercive or forceful warnings with serious potential repercussions. Threats are generally verbal
acts except for purely symbolic material actions such as having an unarmed group place a flag on some territory.
11. PROTEST, Q4: All civilian demonstrations and other collective actions carried out as protests against the recipient: Dissent
collectively, publicly show negative feelings or opinions; rally, gather to protest a policy, action, or actor(s).
12. SANCTION, Q4: All reductions in existing, routine, or cooperative relations. For example, withdrawing or discontinuing
diplomatic, commercial, or material exchanges.
13. MOBILIZE, Q4: All military or police moves that fall short of the actual use of force. This category is different from
ASSAULT, which refers to actual uses of force, while military posturing falls short of actual use of force and is typically a
demonstration of military capabilities and readiness. MOBILIZE is also distinct from THREAT in that the latter is typically
verbal, and does not involve any activity that is undertaken to demonstrate military power.
14. COERCE, Q4: Repression, restrictions on rights, or coercive uses of power falling short of violence, such as arresting,
deporting, banning individuals, imposing curfew, imposing restrictions on political freedoms or movement, conducting cyber
attacks, etc.
15. ASSAULT, Q4: Deliberate actions which can potentially result in substantial physical harm.

Note that we give priority to labels in Material Conflict over Verbal Conflict. For example, we label “protest to request” as
material PROTEST other than verbal REQUEST. Similarly, we label “convict and arrest” as material COERCE other than verbal
ACCUSE, considering the more severe actions involved.

Input and Task Requirement:
Perform the RE task for the given input list and print the output with columns (No., Label, Quadrants) split by the tab delimiter.
Use 1-15 to denote the predefined labels above (1. AGREE, 2. CONSULT, 3. SUPPORT, 4. COOPERATE, 5. AID, 6. YIELD,
7. REQUEST, 8. ACCUSE, 9. REJECT, 10. THREATEN, 11. PROTEST, 12. SANCTION, 13. MOBILIZE, 14. COERCE, and
15. ASSAULT).
No. Sentence
1 <S>A Brazilian federal court</S> has rejected a request from <T>jailed former President Luiz Inacio Lula da Silva</T>

to be present at the first debate of presidential candidates for October’s election.
2 <S>Afghan rebels</S> have kidnapped up to 16 <T>Soviet civilian advisers</T> from a town bazaar and exploded a

series of bombs in the capital Kabul, western diplomatic sources in neighboring Pakistan said today.
3 <S>A local Taliban leader and his five associates</S> have given up fighting and surrendered in <T>Afghanistan’s

northern Faryab province</T>, an army source said Tuesday.
4 <S>French National Assembly president Laurent Fabius</S> and a group of deputies held talks with leaders

of<T>Romania’s</T> new government on Tuesday, the first high level Western delegation to visit Bucharest since last
month’s revolution.

Output:
No. Label Quadrants Correct?
1 9 (REJECT) Q3: Verbal Conflict ✓
2 15 (ASSAULT) Q4: Material Conflict ✓
3 6 (YIELD) Q2: Material Cooperation ✓
4 2 (CONSULT) Q1: Verbal Cooperation ✓

Table 17: Input and Output of ChatGPT.
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