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Abstract

A song is a combination of singing voice and
accompaniment. However, existing works fo-
cus on singing voice synthesis and music gen-
eration independently. Little attention was
paid to exploring song synthesis. In this
work, we propose a novel task called Text-to-
Song synthesis which incorporates both vocal
and accompaniment generation. We develop
Melodist, a two-stage text-to-song method
that consists of singing voice synthesis (SVS)
and vocal-to-accompaniment (V2A) synthesis.
Melodist leverages tri-tower contrastive pre-
training to learn more effective text represen-
tation for controllable V2A synthesis. A Chi-
nese song dataset mined from a music web-
site is built to alleviate data scarcity for our
research. The evaluation results on our dataset
demonstrate that Melodist can synthesize songs
with comparable quality and style consistency.
Audio samples' can be found in https://
text2songMelodist.github.io/Sample/.

1 Introduction

Songs, as intricate musical compositions, have al-
ways enjoyed the greatest popularity among music
enthusiasts. It inspires the pursuit of song synthe-
sis by leveraging machine learning and artificial
intelligence algorithms. It makes sense to generate
a song conditioned on text modality (music score,
natural language prompt, etc.). However, there is
little exploratory research on text-to-song synthesis
to our knowledge.

There are two related tasks. The first is singing
voice synthesis, which converts the music score
(lyrics, notes, and duration) to the singing voice.
Existing SVS models have achieved remarkable
achievement regarding quality (Huang et al., 2021;
Liu et al., 2022; Hong et al., 2023; Zhang et al.,
2022a) and zero-shot ability (Qian et al., 2019;
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Figure 1: The comparison of three tasks: singing voice
synthesis, accompaniment generation and text-to-song.
In this work, We investigate on the relationship between
vocal and accompaniment for text-to-song synthesis.

Casanova et al., 2022) but they can only generate
vocals. Another similar task is music accompa-
niment generation (Ren et al., 2020; Dong et al.,
2018), which usually aims at generating multi-track
sequences in the symbolic domain or directly gener-
ating music waveform from text descriptions (Mad-
humani et al., 2020; Yu et al., 2021). As presented
in Figure 1, there are similarities among these three
tasks, while notable distinctions exist. The accom-
paniments are often removed in data preprocessing
to train an SVS model. Existing music genera-
tion models do not take vocals into account as the
condition. Further exploration of text-to-song is
inhibited.

Neither serves as the suitable prior. To ad-
dress this limitation, we propose a novel generative
task, Text-to-Song, which converts the music score
(lyrics, notes, and duration) to the song, that is,
singing voice with accompaniment. However, a
Text-to-Song model is facing several challenges:

1) Process of Synthesis. It is hard to achieve
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end-to-end generation since the song contains
much more information (pitch variation, timbre,
emotion, instruments, etc.) than the music score,
which imposes a large burden on the model.

2) Additional Control. This is far from enough
to model the diverse output while only feeding the
music score to the text-to-song synthesis model.
Some natural language prompts should be included
as the condition to guide and control the accompa-
niment generation.

3) Data Scarcity. To the best of our knowledge,
there is no dataset with pairs of vocal and accom-
paniment audios along with finely annotated music
score (which should at least have lyrics transcrip-
tion). It is the most intractable factor hindering
research in this area.

In this paper, we propose Melodist, the first text-
to-song model to generate music incorporating vo-
cal and accompaniment from music score. To over-
come the challenges mentioned above, we adopt
several techniques: 1) Based on the human per-
ception that the accompaniment complements the
vocal melody, providing harmonic and rhythmic
structure to enhance the overall musical expression,
we introduce a two-stage text-to-song synthesis.
Specifically, Melodist generates singing voice from
the music score in Stage 1, then generates accompa-
niment given vocal in Stage 2. Finally, we mix the
outputs of two stages to obtain the song. It releases
the burden of our model to a large extent; 2) We
utilize the attribute tags (mood, instruments, style,
etc.) of each song segment and construct natural
language prompts to guide the synthesis of the ac-
companiment. We further apply the Tri-Tower Con-
trastive Learning framework to extract better text
representations; 3) We crawled some songs and the
corresponding lyrics and tags related to attributes
from music websites. We evaluate our model un-
der different settings and the results demonstrate
that Melodist can synthesize songs with compara-
ble quality under the control of natural language
prompts.

The main contributions of our work can be sum-
marized as follows:

* We introduce a new task of Text-to-Song synthe-
sis, which aims to convert the music score to
the song incorporating vocal and accompaniment
synthesis. We further propose Melodist, the first
text-to-song model following two-stage song syn-
thesis;

* We adopt natural language prompts to generate

various types of accompaniment;

* We design a tri-tower contrastive learning frame-
work to connect the text context with its corre-
sponding vocal and accompaniment pattern;

* We construct a dataset that provides not only
pairs of vocal and accompaniment but also tran-
scriptions in text format including lyrics and at-
tribute tags.

* We conduct extensive experiments to verify the
effectiveness of Melodist. Experiment results
show that Melodist exhibits high quality and
great adherence.

2 Related Work

2.1 Singing Voice Synthesis

Substantial progress has been made in Singing
Voice Synthesis (SVS). Several works (Huang et al.,
2022b; Kong et al., 2020) have adopted gener-
ative adversarial networks (GANs) (Goodfellow
et al., 2020), while there appear many end-to-end
SVS models (Zhang et al., 2022b; Hong et al.,
2023) based on variational autoencoder (VAE).
DiffSinger (Liu et al., 2022) is built on diffusion
probabilistic models which can generate more high-
fidelity outputs. In the realm of the Large Language
Model recently, there are many emerging methods
(Yang et al., 2023; Huang et al., 2023b) modeling
voice with an auto-regressive transformer in a com-
pact and discrete space. However, these works dis-
carded the accompaniments in data pre-processing,
while we take accompaniment generation into ac-
count and investigate the relationship between vo-
cal and accompaniment.

2.2 Accompaniment Generation

Researchers on accompaniment usually work on
musical symbolic tokens in a seq2seq setting.
MuseGAN (Dong et al., 2018) is the first model
that generates multi-track polyphonic music with
harmonic and rhythmic. There exist several works
(Copet et al., 2023; Agostinelli et al., 2023)trying to
generate melody conditions on chord information
for better music structure. Yang et al. (Yang et al.,
2017) designed MidiNet to generate melodies one
bar after another. PopMAG (Ren et al., 2020)was
proposed to simultaneously generate five instru-
mental tracks in a single sequence. However, these
methods rely highly on symbolic music representa-
tion. Recently, Donahue et al. presented SingSong
(Donahue et al., 2023), a system that generates in-
strumental music to accompany input vocal. But
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Figure 2: The overview of Melodist, the proposed two-stage text-to-song synthesis model. We present the two-stage
pipeline in subfigure (a). In subfigure (b), we present the multi-scale Transformer architecture, in which e and 2
denote <EOS> token and the k-th audio token at t-th frame, respectively.

the limitation remains in the lack of controllability
related to mood, instruments, style, etc. In this
work, we focus on developing a synthesis system
that accepts natural language prompts for guiding
the generation.

2.3 Cross-modal Contrastive Learning

Contrastive learning, which is first applied in the
computer vision domain (Radford et al., 2021;
Oord et al., 2018), achieves high performance in
many downstream tasks such as zero-shot recogni-
tion, image-text retrieval, etc. Along the same line
in the audio domain, Wav2clip (Wu et al., 2022)
and Audioclip (Guzhov et al., 2022) are both de-
rived from CLIP. To achieve more flexibility and
generalization, CLAP (Elizalde et al., 2023; Huang
et al., 2023a) is proposed to learn audio concepts
from natural language supervision instead of class
labels. Recently, an increasing number of works
(Chen et al., 2022; Manco et al., 2022) exploring
contrastive pre-training in the music domain. Mu-
Lan (Huang et al., 2022a) is the first model learn-
ing a joint embedding space for music and natural
language trained with an unprecedented scale of
weakly paired text and audio. In this work, we
also leverage a contrastive learning framework to
extract better text representations.

3 Two-stage Text-to-Song Synthesis

In this section, we first present a formal definition
of text-to-song synthesis task. Then we will give an
overview of the proposed model Melodist. Finally,
we will elaborate on the approaches we adopt for
controllable two-stage text-to-song synthesis.

3.1 Task Definition

In this work, we present a novel task Text-to-Song
and extend it to controllable synthesis. Given the
training set D consists of n data points (s;, p;, ¢;),
1 = 1,...,n, where each element denotes a song,
the description of its accompaniment and music
score of its vocal, we convert the music score to
song conditioned on the natural language prompt,
which can be formulated as a conditional probabil-
ity distribution modeling problem:

T
= [Ip(stls<r,C,P30) (1)

t=0
Given that S = S, +.5,, where S, .S, S, denote
song waveforms, vocal waveforms, and accompa-
niment waveforms respectively, we can redefine
Text-to-Song task as the approximation of joint con-
ditional probability optimization p(.S,, Sq|C, P).

p(S|C, P)

3.2 Overview

In this work, we propose Melodist, the first con-
trollable text-to-song model. As illustrated in Fig-
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ure 2, it is organized in two stages: 1) In the first
stage we follow the common SVS process that gen-
erates a singing voice conditioned on the music
score; 2) In the second stage we generate musi-
cal accompaniment from singing given natural lan-
guage prompt. Instead of directly modeling distri-
butions over vocal and accompaniment waveforms,
we adopt acoustic tokens as the prediction targets.
Finally, we reconstruct waveforms from predicted
vocal acoustic tokens and accompaniment acoustic
tokens and then mix them as the output.

The fundamental ideas behind the two-stage gen-
eration can be summarized as follows: 1) The ac-
companiment and voice signals inside the same
song strongly relate to each other. The vocal and
accompaniment are aligned in melody pattern, tem-
poral dynamics, and emotional variation. 2) It re-
flects the conditional independence assumption that
the attribute control applied on accompaniment is
independent of the vocal and music score; 3) It is
consistent with the dependency that the semantic
and acoustic features of the singing voice depend
on the music score while the harmony and control-
lability of accompaniment are decided on vocal and
prompts, respectively.

3.3 Predicted Target

Acoustic tokens, as the predicted target, are ex-
tracted the acoustic tokens by SoundStream (Zeghi-
dour et al., 2021), a neural codec with an encoder-
decoder architecture and a residual vector quantizer
(RVQ) cascaded n, layers of vector quantizer (VQ).
Assuming y denotes an audio sample, the extracted
acoustic tokens sequence can be represented as
ZTma = encoder(y) where T refers to the number
of frames. These compressed representations can
be used to reconstruct waveforms by the decoder
subsequently that § = decoder(Z).

3.4 Backbone Model

We adopt the multi-scale transformer proposed in
(Yu et al., 2023; Yang et al., 2023) as our backbone
in both two stages for long sequence modeling.
It also presents outstanding performance in terms
of generation and in-context learning capabilities.
Specifically, It introduces a hierarchical design con-
sisting of a global transformer and a local trans-
former, both of which are decoder-only transform-
ers. Specifically, the flattened acoustic token se-
quence is first chunk into patches {xo, z1,...,z7}
of T frames, each containing n, tokens of one
frame. Let H denote the patch representations,

the chunked sequence is passed to the global trans-

former G to predict the target in a frame-by-frame
manner:

. .

Hiz" = G(Hiz" ), )

In contrast, the local model L operates on a sin-

gle patch of size ngy, each of which is the sum of

the output of the global model and the embedding
of the previous tokens.

Hym

_out 1
= L(WHiq—T,LO:nq—l + Hygm,—1)

3

Where W denotes the projection matrix to map
the hidden size of the local transformer.

During training, the model is optimized using
token prediction and cross-entropy loss. In the in-
ference stage, the model autonomously predicts
acoustic tokens in an auto-regressive manner condi-
tioning on prefixed input sequences. Such a design
facilitates the reduction of computational and en-
hances in-context learning for long sequences to a
large extent.

3.5

Stage 1: Singing Voice Synthesis. In the SVS
stage, the model synthesizes acoustic tokens con-
ditioned on lyric phonemes, durations, and pitch.
Specifically, we transform the condition input into
discrete tokens and repeat each for n, times to fill
each patch. The expanded inputs and target acous-
tic tokens are concatenated and embedded into a
unified sequence, subsequently processed by the
multi-scale transformer.

Two-stage Synthesis

Stage 2: Vocal-to-accompaniment Synthesis.
In the vocal-to-accompaniment synthesis stage, the
model synthesizes acoustic tokens of accompani-
ment conditioned on vocal acoustic tokens and nat-
ural language prompts. We leverage a pre-trained
text encoder providing text representation with con-
sistent global characteristics with the vocal and
accompaniment, which we will illustrate in section
4 in detail. It can be incorporated with our back-
bone model to enhance attribute controllability. We
freeze the parameters of the text encoder, utilize
it to extract the non-pooled text representation of
the prompt, and pass it through a linear layer to fit
the dimension of the backbone model. Once we
have obtained "continuous text embeddings", we
also repeated each token for n, times. The inputs
are organized and processed in the same way as in
the previous stage.
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Figure 3: The architecture of the tri-tower contrastive framework. Zp, Zy, Z 4 refer to the representation extracted
by the text encoder, the vocal encoder and the accompaniment encoder, respectively. We use different shapes to
represent different triples, while color is used to distinguish the kinds of inputs. Embeddings of the same triplet are
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3.6 Waveform Reconstruction

Instead of the decoder of Soundstream, we adopt a
unit-based vocoder utilizing GAN-based architec-
ture for waveform generation from acoustic units.
It is derived from BigvGAN and comprises a gener-
ator and two discriminators. Specifically, the gen-
erator is built from a set of look-up tables (LUT)
that embed the discrete units. It is followed by
a series of blocks composed of transposed convo-
Iution for upsampling and a residual block with
dilated layers to expand the receptive field. The
multi-period discriminator (MPD) and the multi-
resolution discriminator (MRD) proposed in Bigv-
GAN are added to distinguish between the gener-
ated audio and ground truth. Note that we train two
neural codecs (the vocoders and encoders used to
extract acoustic tokens) sharing the same architec-
ture but not the same parameters respectively for
vocal and accompaniment. We found that gradi-
ent collapse occurs when training only one neural
codec on all audios. It is mainly attributed to the
distribution discrepancy between the vocal and ac-
companiment. Once we obtain the waveforms of
the vocal and its accompaniment, we mix them in
the waveform domain to get the final output.

4 Tri-Tower Contrastive Pre-training

We introduce a tri-tower training scheme with con-
trastive loss that jointly embeds text, vocal, and
accompaniment into an aligned space. As pre-
sented in Figure 3, it consists of three separate
encoders: text encoder fp(-), vocal encoder fy (-),
and accompaniment encoder f 4 (-), each followed

by a pooling and linear layer. Parallel text prompt,
vocal, and accompaniment make up each triplet
of a mini-batch (zp, x,,z,) and they are passed
through the respective encoder. The text encoder
fp(-): A" — R converts a tokenized text se-
quence of length n over vocabulary A to the text
embedding of dimension d. The Vocal encoder and
the accompaniment encoder fy (+), fa(-): REXT
— R encode log mel spectrograms of the vocal
and accompaniment respectively, which F refers
to the number of mel channels and T refers to the
number of frames. A linear layer is appended in
each branch to project the representations into a
lo-normalized embedding space.

When considering two-tower contrastive learn-
ing, two encoders of different modalities are jointly
trained to maximize the similarity between N pos-
itive pairs while minimizing the similarity for N
x (N —1) negative pairs. We adopt the multi-modal
version of InfoNCE loss (Oord et al., 2018). Tak-
ing pair (text, vocal) as an example, the loss can be
formulated as follows:

eXp(ZPi i Zvi/T)

N
23:1 exp(2p; * 2v;/T)

Lp<_)v - (Lpﬁv + Lv%p)/2 (5)
Where 7 is a temperature parameter. To extend it
into tri-tower contrastive loss, we simply calculate
the contrastive loss over pairs of the representations
in a triplet (text, vocal, accompaniment) that:

Lp~>v = - log

4

L= LpHU + LpHa + Lv<—>a (6)

To verify the effectiveness of the tri-tower con-
trastive pre-training framework, we also compare
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it with CLAP on two related cross-modal retrieval
tasks: text-vocal retrieval and text-accompaniment
retrieval. We report the experimental results in
section 5.4.3, which indicates that including both
vocal and accompaniment helps the model learn to
ground more attribute-related song concepts.

S Experiments

5.1 Dataset

To our knowledge, there are no public datasets
available for controllable text-to-song. We crawl
five thousand Mandarin songs covering around fifty
singers, their lyrics, and some attribute tags (mood,
instruments, style, etc.) from a well-known music
website. There are 180 hours of audio data in total.
In order to get the desired input, we perform some
filtering and processing operations on the data. We
present the details of data analysis and processing
in Appendix B.2.

To alleviate data scarcity, we also leverage
some open-source Mandarin singing voice datasets,
which are listed in Appendix B.1.

5.2 Training and Evaluation

Model Configurations. For the tri-tower con-
trastive learning framework, we adopt the base
version of BERT (Devlin et al., 2018) as the text
encoder and the modified version of Audio Spec-
trogram Transformer (Gong et al., 2021) as the
architecture of vocal encoder and accompaniment
encoder. The [CLS] token from the final layer is
projected into the joint embedding space of size
128. SoundStream (Zeghidour et al., 2021) has 12
quantization levels, each with a codebook of 1024
entries. The first three quantization levels are em-
ployed as acoustic tokens. The generator of the
unit-based vocoder is built from the modified V1
version of BigVGAN (Lee et al., 2022). A com-
prehensive illustration of model hyperparameters
is available in Appendix A.1.

Experimental Setup. We apply Spectrogram
augmentation and text augmentation strategies for
better performance. It takes 30 epochs for tri-tower
pre-training using 8 NVIDIA V100 GPUs with a
batch size of 128. For the training of text-to-song
synthesis, we train the SVS model for 80K steps
and the vocal-to-accompaniment model for 60K
steps, both using 6 NVIDIA V100 GPUs with a
batch size of 5000 tokens for each GPU. Each unit-
based vocoder is trained using 4 NVIDIA V100

Model MOS (1) SMOS (1) FFE (})
GT 4.024+ 0.05 / /

FFT-Singer  3.71+0.08 3.7940.07  0.20
DiffSinger 3.80+£0.06 3.85+0.08  0.18
VISinger 3.82+£0.05 3.86+0.05  0.15
Make-A-Voice 3.86+ 0.04 3.89+0.08  0.11
Melodist 3.90-£0.06 3.87+0.07  0.09

Table 1: Ojective and subjective evaluation for Melodist
and SVS baselines.

GPUs for 150K steps until convergence. The de-
tailed setup is presented in Appendix A.2.

Evaluation. We conduct both subjective and ob-
jective evaluations on generated samples.

Regarding the evaluation of SVS synthesis, we
conduct a crowd-sourced human evaluation via
Amazon Mechanical Turk on the metrics of Mean
Opinion Score (MOS) and Similarity Mean Opin-
ion Score (SMOS) both with 95 % confidence inter-
vals, which measures sample quality and speaker
similarity respectively. We also calculate the FO
Frame Error (FFE) for objective evaluation.

Regarding the evaluation of accompaniment syn-
thesis, we asked the raters to evaluate the audio
samples in terms of overall quality (OVL), rele-
vance to the prompt (REL), and alignment with the
melody (MEL.). For the objective evaluation, we
calculate the Fréchet Audio Distance (FAD), Kull-
back-Leibler Divergence (KLD), and the CLAP
score (CLAP). We have attached the setting of eval-
uation in Appendix C.

5.3 Singing Voice Synthesis

We compare our SVS model with four recent SVS
baselines: 1) FFT-Singer, which generates mel-
spectrograms through stacked feed-forward trans-
former blocks; 2) DiffSinger (Liu et al., 2022),
which was built on diffusion probabilistic models
to generate mel-spectrograms; 3) VISinger (Zhang
et al., 2022b), an end-to-end singing synthesis
model 4) Make-A-Voice (Huang et al., 2023b), a
multimodal spoken large language model for syn-
thesizing and manipulating voice signals. We also
train a BigvGAN vocoder on 16k audios for FFT-
Singer and DiffSinger to reconstruct waveform
from Mel-spectrograms.

As shown in Table 1, our SVS model outper-
forms other baseline models with the highest MOS
score of 3.89, indicating that it enjoys great supe-
riority in sample quality. The SMOS score lags
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behind that of Make-A-Voice by a narrow mar-
gin but is better than other baseline models. The
highest FFE score demonstrates the proficiency of
Melodist in emulating the pitch prompt.

5.4 Vocal-to-accompaniment Synthesis
5.4.1 Comparison to baselines

To our knowledge, SingSong (Donahue et al., 2023)
is the only model with the same experimental setup
as ours. However, its code and dataset are not
available. So we only compare our model with
MUSICGEN (Copet et al., 2023), a controllable
music generation model that can be conditioned
on text and melody. Specifically, we adopt the
vocal track extracted by Demucs as the melody
condition of MUSICGEN. As reported in Table
2, we also investigate the impact of different text
encoders including: 1) TS5 (Raffel et al., 2020),
which is a Transformer architecture using a text-to-
text approach; and 2) CLAP (Elizalde et al., 2023),
a model for learning audio concepts from natural
language supervision.

In general, Melodist surpasses MUSICGEN in
objective and subjective metrics when applying
the same text encoder, indicating the superiority
of flattening prediction compared to the codebook
interleaving strategies proposed in MUSICGEN.
It reaches a trade-off between performance and
computational efficiency.

Melodist presents the highest perceptual qual-
ity with outperformed FAD and OVL evaluation.
When equipped with the text encoder of the tri-
tower framework, the FAD and OVL scores drop
slightly but still present better performance com-
pared to MUSICGEN.

The adherence to the prefix condition can be
witnessed in the evaluation result. Regarding text
prompts, Melodist outperforms MUSICGEN with
the highest CLAP and REL scores and the lowest
KLD score. Regarding melody evaluation, the ex-
perimental results suggest that Melodist scores the
best alignment with the melody of input, indicating
that it can successfully generate accompaniment in
harmony with the singing voice in melody.

5.4.2 Comparison of Different Text Encoder

The evaluation results are reported in Table 2. In
terms of adherence to text prompts, the Tri-tower
framework outperforms other text encoders with
the highest CLAP and REL scores and the low-
est KLLD score. The superiority of the Tri-tower
framework can be witnessed. It indicates that

Melodist is capable of generating accompaniment
that shares similar semantic concepts with the text
prompts while ensuring favorable audio quality.
It can be observed that the text encoders trained
in the contrastive learning paradigm show a bet-
ter alignment between generated audios and text
prompts, which demonstrates that the contrastive
pre-training scheme significantly enhances text-
guided music generation. However, there is a subtle
gap in terms of audio quality, as reflected in the
slightly worse FAD and OVL scores. The discrep-
ancy can be mainly attributed to model capacity
and the pre-training objective.

5.4.3 Cross-modal Retrieval Result

To further verify the effectiveness of the tri-tower
contrastive framework, We conduct experiments
of text-vocal retrieval and text-accompaniment re-
trieval. Specifically, we use 1K recordings as the
pool of candidates and the paired vocal or accom-
paniment as the ground truth. We compare our
tri-tower contrastive framework with three base-
lines: 1) MusCALL (Manco et al., 2022), a con-
trastive audio-language framework for Music; 2)
MULAN (Huang et al., 2022a), a music audio and
natural language joint embedding model; 3) CLAP
(Elizalde et al., 2023), a model for learning audio
concepts from natural language supervision. The
sentence-level retrieval performance is evaluated
by: 1) measuring mean average precision (mAP)
for accuracy evaluation; and 2) Recall at the top k
ranks (Recall@k). We setk to 1, 5, and 10.

As presented in Table 4, a significant superior-
ity can be observed from these recall rates and the
mean average precision, indicating that including
both vocal and accompaniment helps the model
learn to ground more attribute-related song con-
cepts. Jointly learning from vocal and accompani-
ment facilitates the text encoder extracting more
accurate text representations of global characteris-
tics, which greatly assists in subsequent vocal-to-
accompaniment modeling. In addition, it is inter-
esting that better retrieval performance is presented
in text-to-accompaniment retrieval. This is mainly
due to the reason that the text descriptions are more
relevant to the accompaniment.

5.5 Text-to-Song Synthesis

After a stage-by-stage evaluation, we compare the
songs generated by Melodist and MUSICGEN in
general terms. We fix the singing voice synthesis
stage and generate the accompaniment with MU-
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Model FAD(]) KLD(]) CLAP () OVL. (1) REL. (1) MEL (1)

MUSICGEN (T5) 4.8 1.48 0.27 81.124+134  83.06+1.70  67.72+1.23
MUSICGEN (CLAP) 4.97 1.61 0.33 78.644+1.02  85.014+143  61.2940.83
Melodist (T5) 3.69 1.36 0.29 83.87+1.23  83.58+1.61  78.0540.75
Melodist (CLAP) 4.10 1.59 0.34 78754154 85194123  70.3340.92
Melodist (Tri-Tower) 3.80 1.34 0.39 83.15+1.46  86.63+1.27  79.40+0.96

Table 2: Objective and Subjective evaluation of accompaniment samples generated by Melodist and MUSICGEN.

V2AModel  FAD(]) KLD(l) CLAP (1) OVL. (1) REL. (1) MEL (1)
MUSICGEN 3.97 1.39 0.27 82.334+1.05 82924145  65.08+0.74
Melodist 3.81 1.34 0.39 84284170 85724129  75.8641.06

Table 3: Objective and Subjective evaluation of song samples generated by Melodist and MUSICGEN.

SICGEN and Melodist respectively. The only dif-
ference lies in the vocal-to-accompaniment model
used for vocal-to-accompaniment synthesis. As we
can see in Table 3, Melodist presents the highest
perceptual quality and the best adherence to text
prompt. It is identical to the observation of the pre-
vious section that Melodist outperforms MUSIC-
GEN with outperformed scores, which is identical
to the observation of the previous section.

5.6 Ablation

In this section, we investigate the impact of differ-
ent data combinations and different augmentation
strategies. Details and experimental results of the
ablation can be found in the Appendix D.

Data Combination. We consider four combina-
tions of crawled data and open-source data. We
found that the absence of open-source SVS data
leads to worse SVS performance, while a notice-

Model Recall (1) mAP (1)
@1 @5 @10
Text-to-vocal Retrieval
MusCALL 6.5 20.6 31.3 12.2
MULAN 8.2 22.7 34.5 13.0
CLAP 54 17.9 29.6 9.8
Melodist 9.8 25.1 404 16.3
Text-to-accompaniment Retrieval
MusCALL 7.4 23.1 36.0 13.9
MULAN 8.0 223 38.2 15.3
CLAP 6.8 21.5 36.9 13.0
Melodist 11.2 28.0 43.9 194

Table 4: The experimental results of text-vocal retrieval
and text-accompaniment retrieval.

able performance degradation in terms of audio
quality and adherence can be witnessed when ex-
cluding open-resource song data.

Data Augmentation Strategies. We explore the
effectiveness of text augmentation and spectrogram
augmentation. When analyzing the experimental
results, we can see a decline in both recall and mAP
scores. A noticeable gain can be witnessed when
applying data augmentation strategies.

6 Conclusion

In this paper, we introduce a new task called Texz-
to-Song, which incorporates singing voice and ac-
companiment synthesis from music score. We pro-
pose Melodist, the first text-to-song model with
a two-stage generation scheme. Natural language
prompts serve as the condition to control accompa-
niment generation. Melodist leverage a tri-tower
contrastive pre-training framework to align the
prompt with its vocal and accompaniment. We have
collected a Mandarin song dataset from the music
website and leveraged some open-source song and
singing datasets to alleviate the data scarcity. We
have conducted a series of comprehensive evalu-
ations and the results indicate that Melodist out-
performs baselines with comparable audio qual-
ity, temporal correspondence, and consistency with
text concept. We provide extensive experiments to
demonstrate the effectiveness of the tri-tower con-
trastive learning framework as well as the impact
of different data combinations and data augment
strategies. In the future, we will focus on improv-
ing the audio quality and vocal accompaniment
harmonization.
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Limitations

The limitations of Melodist cannot be ignored. The
reliance on a high-quality source separation method
imposes a great challenge. There are some alterna-
tives such as constructing a high-quality dataset or
designing a fully end-to-end text-to-song synthesis
model. Additionally, Melodist treats accompani-
ment as a single track, disregarding the intricate
composition of individual elements. We will in-
clude both intra-track and inter-track modeling in
the future.
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A The Details of Experiment

A.1 Model Configuration

The model hyper-parameters of Melodist are listed
in Table 5.

A.2 Experimental Setup

In Tri-tower contrastive pretraining, each audio is
converted to a log-scaled mel spectrogram with
the FFT size of 1024, hop size of 256, and win-
dow size of 1024. We then chunk the augmented
spectrogram into 16x 16 patches. We limit the
max text sequence length to 77 chars for computa-
tional efficiency. Inspired by (Copet et al., 2023),
text augmentation is applied by concatenating tag
lists to the text description. We limit the max text
sequence length to 77 chars for computational effi-
ciency. A [CLS] token is prepended to the sequence
as a summary of the contextual patch embeddings
in three encoders. We set the temperature 7 to 0.2.

For two-stage text-to-song synthesis, the learn-
ing rate is set to 5e-5. Adam optimizer is used
with 81 = 0.9, B2 = 0.98, and € = 10~°. We use
Top-k sampling for inference, in which k and the
temperature are set to 30 and 0.8.

The unit-based vocoder is trained on 16k audio
data with a segment size of 32000. The learning
rate is set to 5e-5. Adam optimizer is used with
B =0.8, o =0.99,and e = 1076,

B Dataset Analysis

In this section, we describe the details of the dataset
for training.

B.1 Open-Source Datasets

We present the open-source datasets adopted for
training in Table 6.

B.2 The Crawled Song Data
B.2.1 Data processing pipeline

In order to get the desired input, we perform the
following filtering and processing operations on
the data:

Data Filtering. We exclude audios that 1) are
live songs; 2) of silent accompaniment or no vocal;
and 3) are performed by multiple singers. Addi-
tionally, some content (composer, performer, etc.)
irrelevant to text transcriptions is removed from the
lyrics.

Source Separation. We split each song into 10-
second clips from each song and passed each clip
to the Demucs (Défossez et al., 2019) to separate
vocal from the rest of the accompaniment and yield
aligned pairs of waveforms. Finally, we resam-
ple vocal and instrumental clips from 44.1kHz to
16kHz and average all audio files to mono.

Lyrics-to-Singing Alignment. We first reorga-
nize the clips of the separated vocal and restore
them to the original songs. Then we use Montreal
forced alignment (McAuliffe et al., 2017) tool to
extract the phoneme duration. After filtering the
misaligned segments, we segment each song in 6-
10s according to the separation marks in raw lyrics.

Pitch Extraction. We extract FO (fundamental
frequency) from the raw waveform using Parsel-
mouth to provide pitch information. We have quan-
tified FO to its rounded value.

Prompt Generation. We copy the tags of a song
to its segments and then make minor modifications
according to the auditory impression. A tag-to-
pseudo caption generation approach with large lan-
guage models (Doh et al., 2023) is leveraged to
generate natural language prompts.

B.2.2 Examples of Prompt

We provide some examples of attribute tag lists and
the captions generated by (Doh et al., 2023).
There are examples of crawled attribute tag lists:

* pop, bass, guitar, acoustic, beat.

* rock, passionate, vocal, shimmering, bass, guitar,
acoustic, guitar, guitar, emotional, passionate.

* instrumental, melodic, saxophone, acoustic, gui-
tar, soft, mellow, ambient, dreamy.

* cool, vocal, bass, percussion, retro, dance.

* guitar, synth, bass, guitar, electronic, beat, senti-
mental, dance, club

There are examples of generated text descrip-
tions:

e This is a pop music piece. There is a male vocal-
ist singing melodically in the lead. The melody
is being played by the keyboard while the bass
guitar is playing in the background. The rhythm
consists of a slow tempo electronic drum beat.
The atmosphere is easygoing. This piece could
be used in the soundtrack of a romantic com-
edy movie, especially during the scenes where a
character is hesitating to open up to their crush.
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Hyperparameter | Melodist | Number of parameters
Hidden Size 192
Global Layers 20
Transformer Hidden Dim 1152 320.07M
Attention Heads 16
FFN Dim 4608
Hidden Size 192
Local Layers 6
Transformer Hidden Dim 1152 100.14M
Attention Heads 8
FFN Dim 4608
. Upsample Rates [5,4,2,2,2,2]
Upit-based Hop Size 320 121.60M
ocoder Upsample Kernel Sizes [9,8,4,4,4,4]
Layers 6
Hidden Dim 768
Vocal Encoder Attention Heads 3 42.10M
FFN Dim 3072
Table 5: Hyperparameters of Melodist.
Dataset Type Annotation Volume (hrs)
Stage 1: Singing Voice Synthesis
Opencpop (Wang et al., 2022) singing text, duration, MIDI 5.2
M4Singer (Zhang et al., 2022a) singing  text, duration, MIDI 29.8
OpenSinger (Huang et al., 2021) singing  text, duration, MIDI 86.5
PopCS (Liu et al., 2022) singing text, duration 5.9
AISHEELL-3 (Shi et al., 2020) speech text 85
Stage 2: Vocal-to-accompaniment Synthesis
LP-MusicCaps-MSD (Doh et al., 2023)  music text description 7k

Table 6: Statistics of training datasets.

* The low quality recording features a rock song
that consists of a passionatele vocal singing over
punchy kick and snare hits, shimmering hi hats,
soft kick and groovy bass guitar. It sounds addic-
tive, energetic and passionate.

* This music is a Jazz instrumental. The tempo is
slow with a melodic saxophone harmony, key-
board accompaniment and rhythmic acoustic gui-
tar accompaniment. The music is soft, mellow,
pleasant, ambient, dreamy and pleasant.

* A female singer sings this cool melody with
backup singers in vocal harmony. The song is
medium tempo with a steady drumming rhythm,
keyboard accompaniment, percussive bass line
and various percussion hits. The track is a retro
hip hop dance tune.

* This is an amateur recording of a R&B music
piece. There is a male vocalist singing melod-

ically in the lead. The melody is being played
by the electric guitar and the synth bass guitar
while the rhythmic background consists of a slow
tempo electronic drum beat. The atmosphere is
sentimental. This piece could be playing in the
background at a nightclub or a dance club.

C Evaluation
D Ablation Study

D.1 Comparison with MUSICGEN

We report objective metrics on the unbalanced set
of MusicCaps benchmark, while we sample ex-
amples from our crawled dataset. The VGGish,
Patchout and CLAP model used for objective eval-
uation is consistent with (Copet et al., 2023).
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Stage 1 Stage 2
ID | SVS Data | Song Data |~yp6q7 " FFE([) | FAD (1) KLD(]) OVL()  REL()
1 Ve X 3.89+0.08 0.09 3.88 1.46 79.56+1.42 83.02+1.39
2 X v 3.84+0.05 0.13 3.79 1.39 83.10+1.31 86.56+1.80
3 X X 3.8440.05 0.13 3.88 1.46 79.56+1.42 83.02+1.39
4 v v 3.89+0.08 0.09 3.79 1.39 83.10+1.31 86.56+1.80

Table 7: Ablation study on different data combination.

D.2 Subjective Evaluation

We randomly selected 30 audio samples generated
from each stage and each sample was evaluated by
20 raters via Amazon Mechanical Turk. We paid
$8 an hour for participant compensation.

For quality evaluation of generated singing voice,
we conduct the MOS (mean opinion score) tests
and explicitly instruct the raters to “(focus on ex-
amining the audio quality and naturalness, and
ignore the differences of style (timbre, emotion,
and prosody).)”. The testers present and rate the
samples, and each tester is asked to evaluate the
subjective naturalness on a 1-5 Likert scale.

For speaker similarity evaluation, we ask the
raters to focus on the similarity of the speaker
identity (timbre) to the reference and ignore the
differences in content, grammar, or audio quality.
We paired each synthesized utterance with a refer-
ence utterance to evaluate how well the synthesized
speech matched that of the target speaker.

For the evaluation of generated accompaniments,
we follow (Copet et al., 2023; Huang et al.) to eval-

Recall (1)

Model mAP (1)
@1 @5 @10
Text-to-vocal Retrieval
w/o TA 6.7 18.2 34.2 13.7
w/o SA 8.0 20.6 339 12.2
w/o TA&SA 6.3 15.8 323 10.3
TA&SA 9.8 23.7 40.2 15.7
Text-to-accompaniment Retrieval
w/o TA 7.4 21.1 37.0 14.5
w/o SA 8.5 223 39.1 159
w/o TA&SA 6.2 18.5 359 13.1
TA&SA 11.3 27.6 41.1 19.4

Table 8: Ablation study on the impact of data augmen-
tation strategies. We report the experimental results of
text-vocal retrieval and text-accompaniment retrieval.
SA denotes spectrogram augmentation and TA denotes
text augmentation.

uate the overall quality (OVL), and relevance to
the text input (REL). In terms of alignment with
the melody (MEL.), we ask the rates to focus more
on temporal correspondence between accompani-
ment and reference singing voice instead of melody
resemblance.

The Screenshot of subjective evaluation is pre-
sented in Figure 4, 5. A small subset of sam-
ples used in the test is available at https://
text2songmelodist.github.io/Sample/.

Data Combinations. We consider four combi-
nations of crawled data and open-source data.
when training Melodist, including 1) Exclude open-
source SVS data in Stage 1; 2) Exclude song data
in Stage 2; 3) Exclude open-source SVS and song
data; 4) Include open-source SVS and song data as
the original setting.

Data Augmentation. We explore the effective-
ness of text augmentation and spectrogram aug-
mentation.

We report the evaluation results in Table 7
and Table 8. It suggests that leveraging open-
source datasets and augmentation strategies en-
hance the capability of Melodist to generate more
high-fidelity and consistent output.

6260

13


https://text2songmelodist.github.io/Sample/
https://text2songmelodist.github.io/Sample/

» 0:00/0:12

How natural (i.e. human-sounding) s this recording of singing? Please ignore the content and focus on audio quality?

Select an option
Excellent - Completely natural singing - 5
4.5
Good - Mostly natural singing - 4
3.5

Fair - Equally natural and unnatural singing - 3

25
Poor - Mostly unnatural singing - 2
1.5

Bad - Completely unnatural singing - 1

1

9

Figure 4: Screenshot of MOS testing.
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Figure 5: Screenshot of SMOS testing.
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