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Abstract

A pivotal advancement in the progress of large
language models (LLMs) is the emergence of
the Mixture-of-Experts (MoE) LLMs. Com-
pared to traditional LLMs, MoE LLMs can
achieve higher performance with fewer ac-
tive parameters, but it is still hard to deploy
them due to their immense parameter sizes.
Different from previous weight pruning meth-
ods that rely on specifically designed hard-
ware, this paper mainly aims to enhance the
deployment efficiency of MoE LLMs by in-
troducing plug-and-play expert-level sparsifi-
cation techniques. Specifically, we propose,
for the first time to our best knowledge, post-
training approaches for task-agnostic and task-
specific expert pruning and skipping of MoE
LLMs, tailored to improve deployment effi-
ciency while maintaining model performance
across a wide range of tasks. Extensive experi-
ments show that our proposed methods can si-
multaneously reduce model sizes and increase
the inference speed, while maintaining satis-
factory performance. Code will be made avail-
able at https://github.com/Lucky-Lance/
Expert_Sparsity.

1 Introduction

Large language models (LLMs) have shown re-
markable abilities across various domains (Ope-
nAl, 2023; Zhou et al., 2024), as evidenced
by the widespread use of ChatGPT and Gem-
ini (Team et al., 2023). Recent notable advance-
ment in this area is the introduction of the open-
sourced Mixture-of-Experts (MoE) LLM, Mixtral
8x7B (Jiang et al., 2024), which sparsely activates
only a portion of its parameters during the training
and inference process. This model surpasses the
performance of dense Transformer-based LLMs,
such as LLaMA-2 70B (Touvron et al., 2023a,b),
with fewer active parameters (13B) during infer-
ence.
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MOoE LLMs achieve a reduction in on-the-fly
(active) parameters by choosing only top-k experts
for the inference of each token, thereby enhancing
inference speed (Sanseviero et al., 2023). However,
the static parameters, particularly those required
for constructing the MoE architecture, still demand
considerable memory and storage for deployment.
For example, loading the Mixtral 8x7B model in
bf16 format requires at least two A100-80G GPUs.
Notably, in this MoE model, the eight experts con-
stitute around 96% (45B out of 47B) of the total
number of parameters.

On the other hand, not all experts are equal in
the MoE model. Recent studies, such as (Chi et al.,
2022), have demonstrated this discrepancy in ex-
pert training outcomes. The differing levels of train-
ing among each expert highlight the importance
and practicality of identifying and pruning less sig-
nificant experts, thereby improving the deployment
efficiency of MoE models.

Unlike existing post-training weight pruning
schemes for LLMs, which primarily target un-
structured sparsity and N:M semi-structured spar-
sity (Sun et al., 2023; Frantar and Alistarh, 2023),
our approach focuses on expert-level sparsity for
model sparsification. The aforementioned fine-
grained weight pruning techniques are effective in
reducing the total number of parameters. However,
they face challenges in plug-and-play deployment
due to the necessity for specific hardware designs
(e.g., FPGA) (Zhou et al., 2021), which demands
an extensive co-design of hardware and systems.

In this paper, we systematically explore expert-
level sparsity in MoE LLMs and, for the first time
to our best knowledge, introduce hardware-friendly
post-training methods for either permanently re-
moving unimportant experts (expert pruning) or
dynamically skipping experts during inference (dy-
namic expert skipping). Our proposed method
significantly reduces memory usage for deploying
MoE LLMs and enhances their inference speed.
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Figure 1: Memory usage reduction (bf16) and inference speedup illustration of our proposed post-training expert
pruning and dynamic (expert) skipping methods on the Mixtral 8x7B (Jiang et al., 2024) model. Our method greatly
reduces memory consumption and enhances inference speed.

Initially, we investigate how to prune less impor-
tant experts while maintaining satisfactory perfor-
mance, utilizing an efficient post-training approach.
We aim to minimize the token reconstruction loss in
a layer-by-layer manner. Given the limited number
of experts in a single MoE layer of the LLM, we
meticulously enumerate and choose combinations
of experts that yield the lowest token reconstruction
loss, subsequently, concatenating them to obtain
the final pruned MoE model. This strategy signifi-
cantly lowers the memory demands for deploying
MoE LLMs. We examine expert-level pruning for
both task-agnostic and task-specific (first in liter-
ature) models, tailoring our strategies to optimize
performance across a wide range of applications.

Building on this foundation, we further dive into
strategies for accelerating the inference speed of
MoE LLMs without compromising their robust-
ness. Specifically, based on the model’s fixed ex-
pert count, we introduce an online method for dy-
namically skipping certain experts. This approach,
which is complementary to our expert pruning strat-
egy, allows for on-the-fly adjustment of the number
of active experts during inference, thus enhancing
the inference speed. By integrating the dynamic
(expert) skipping approach with expert pruning, we
achieve a more streamlined and efficient deploy-
ment for MoE LLMs.

Experiments on Mixtral 8x7B (Instruct) mod-
els (Jiang et al., 2024) demonstrate that our meth-
ods significantly reduce memory usage and in-
crease inference speed. Take the example of post-
training pruning two experts. As shown in Fig. 1,
we halve the number of GPUs needed, allowing
deployment on a single 80G GPU and achieving a
1.2x inference speedup. The pruning also results
in mild performance loss, specifically, around 2.9
points for task-agnostic and 6.2 points (reducible to

1.6 with task-specific fine-tuning) for task-specific
models. Further combination of dynamic skipping
with expert pruning can lead to the same inference
speedup with dropping 4 experts while achieving
much higher model performances. To the best of
our knowledge, this study is the first to discuss
expert-level sparsity and propose efficient schemes
for expert pruning and skipping for MoE LLMs.

2 Related Works
2.1

First introduced in (Jacobs et al., 1991), a Mixture-
of-Experts (MoE) model contains multiple separate
networks, and each network processes a subset of
the entire dataset. This separation can be viewed
as a modular transformation of a multi-layer net-
work. MoE structure is used for designing Recur-
rent Neural Networks (RNNs) in (Shazeer et al.,
2017) and further extended to encoder-decoder
Transformer-based models (Lepikhin et al., 2020).
With the recent development of decoder-only GPT
family of models (Brown et al., 2020; Touvron
etal.,2023a,b), MoE models based on this structure
gain popularity (Jiang et al., 2024). In this paper,
we focus on post-training expert pruning/skipping
methodologies for MoE LLM:s.

Mixture-of-Experts Models

2.2 Expert Pruning for MoE Models

Expert pruning within MoE models has garnered
attention in the realm of Natural Language Process-
ing, particularly in machine translation tasks. In
these contexts, the translation of specific languages
often renders the expertise of other language spe-
cialists superfluous. The most activated experts
are reserved in (Kim et al., 2021) to prune a ma-
chine translation MoE model, and (Koishekenov
et al., 2022) proposes expert pruning metrics based
on gate statistics collected during decoding. Al-
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though these methods actively deal with expert
pruning for MoE models, they are still limited
to the machine translation domain with linguistic
models. Researchers in (Chen et al., 2022) pro-
vide a dropping-while-training method that pro-
gressively drops the non-professional experts for
target downstream tasks, and experiments are car-
ried out on Switch Transformers models (Fedus
et al., 2022). However, in the LLM era, it is usually
difficult to afford such a training paradigm.

2.3 Post-training Pruning for LLMs

Post-training pruning (Kwon et al., 2022; Hubara
et al., 2021) has become a popular topic for neu-
ral network sparsification in recent years. Given a
trained model, post-training pruning aims at achiev-
ing the optimal model sparsification outcome by
utilizing model parameters together with some cali-
bration data. Recent works extend pruning methods
to LLMs (Sun et al., 2023; Frantar and Alistarh,
2023). However, these pruning methods primarily
focus on sparsifying the weight matrices of linear
layers in the LLMs and require dedicated hardware.
To the best of our knowledge, efficient post-training
expert pruning methods have not been discussed
for decoder-only LLMs with MoE structures.

3 Method

To enhance the deployment efficiency of MoE
LLMs, we concentrate on expert-level model spar-
sity and innovatively propose post-training tech-
niques designed to reduce memory usage and in-
crease inference speed. In this section, we offer a
comprehensive explanation of our proposed meth-
ods for expert pruning (Sec. 3.2) and dynamic (ex-
pert) skipping (Sec. 3.3), considering both memory
consumption and inference speed.

3.1 Preliminary

In the decoder-only sparse MoE Transformer mod-
els, as discussed in (Gale et al., 2023), the Feed-
Forward Network (FFN) sub-layers of the tradi-
tional dense model are replaced with MoE layers,
each containing n experts. Specifically, within the
MOoE layer of the Mixtral 8x7B model, featuring
8 experts as detailed in (Jiang et al., 2024), each
token @ in the input sequence is routed to the top-2
experts based on the routing weights w.

The inference process for each input token x
within the MoE layer of the Mixtral 8x7B decoder
layer is depicted in Fig. 2. Initially, the router com-
putes routing logits I = {lo, . ..,l,—1} and routing
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Figure 2: Illustration of the MoE layer in the Mixtral
8x7B model for per-token inference. The output of the
layer is the weighted sum of the outputs from selected
experts over input token x. w; denotes the normalized
routing weight of each selected expert.

weights w = Softmax(l) for the experts. Then
the top-k experts, where £ = 2 for the Mixtral
8x7B model, are selected based on their routing
weights to process the token. Each of these k se-
lected experts, applying a SwWiGLU transformation
&i() G €{0,1,...,n — 1}), contributes to the fi-
nal output. This output is a weighted sum of the
individual expert outputs, with weights w; being
the normalized values of the corresponding routing
weights for the selected experts. The normalized

weight for expert e; (j € {0,1,...,k — 1} is
calculated as follows:
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yielding the MoE layer’s output for the token z as:
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Aside from these specified mechanisms, the remain-
ing aspects of the MoE network mirror those of a
standard decoder-only Transformer model.

3.2 Post-training Expert Pruning

As demonstrated in the preliminary subsection, the
parameters of experts occupy the major propor-
tion of the whole MoE LLM model. However,
for a single token, only a small subset of these
experts are activated, leading to considerable inef-
ficiencies in parameter utilization. Existing post-
training weight pruning methods for LLMs (e.g.,
Wanda (Sun et al., 2023), SparseGPT (Frantar and
Alistarh, 2023)), while effective in reducing model

lej is the index of the j-th largest element of w, i.e. the

index of the j-th selected expert
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Figure 3: Framework of our proposed expert pruning and dynamic skipping methods. (a) The expert pruning method
evaluates the contributions of experts via a small calibration dataset and then permanently discards those with low
contributions (e.g., experts with a slashed background). (b) The dynamic skipping method discard no experts instead
dynamically decides whether to skip certain experts (e.g., experts with a yellow background) during inference.
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Figure 4: Expert selection comparison between C4 and MATH dataset with » = 6 for Mixtral 8x7B model.
Significant divergence is observed in the selection of experts across these two datasets, and identical expert
combinations are observed in only four specific layers (i.e., layer 2, layer 4, layer16, and layer 31).

parameters, do not support efficient deployment of
MoE LLMs without specialized hardware imple-
mentations (Mishra et al., 2021). Therefore, we
introduce a heuristic search method to prune the
number of experts in a post-training manner.

Task-agnostic Expert Pruning for General
Tasks. Different from existing pruning schemes
leveraging unstructured or semi-structured weight
sparsity (Sun et al., 2023; Frantar and Alistarh,
2023) for LLMs, our proposed post-training expert
pruning method aims at reducing the parameter
numbers of MoE LLMs by permanently discard-
ing less important experts, thereby improve the
inference efficiency. It is a post-training pruning
method and does not require any parameter update.
Fig. 3 (a) illustrates our proposed post-training ex-
pert pruning method. We conduct expert pruning
in a layer-wise manner. Specifically, the pruning
method contains two steps as follows.

Firstly, we set up a small calibration dataset, then
perform inference on the original MoE model with
all experts over the dataset, and cache the input-
output token pairs of each MoE layer. We use
samples from the pre-training dataset C4 (Raffel

et al., 2019) as calibration data, since pre-training
datasets are often more comprehensive and not
dominated by knowledge specific to any particular
domain (Sun et al., 2023).

Secondly, after caching input-output pairs for
each MoE layer, we enumerate expert combina-
tions based on the preset parameter r, denoting the
number of preserved experts. Assume the func-
tion of the MoE layer at layer [ is F(-), with the
cached input represented by x. During each enu-
meration, we maintain r experts and eliminate the
remaining experts along with their associated rout-
ing weights. Subsequently, we employ the pruned
MOoE layer, denoted as (-, C), to recalculate the
corresponding output, where C represents a subset
containing r experts selected from the original n
experts. Inspired by channel pruning in CNNs (He
et al., 2017), the Frobenius norm of the difference
between cached output F(x) and the output of
pruned layer F'(x, C) is used to quantify the dis-
crepancy between the model before and after expert
pruning, and we denote it as reconstruction loss.
The expert subset corresponding to the minimum
reconstruction loss is retained. The n — r experts
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left are considered to contribute least to the origi-
nal MoE model and are thus discarded. The expert
pruning process in layer [ can be formulated as:

mén||]-"’(m,C) — F(x)||F 3)

s.t. C C {expert,, ...,expert, ;},|C| =7
We heuristically search for expert subset C with the
lowest reconstruction loss in each layer separately
and obtain an MoE model with r experts by the
concatenation of each pruned layer. After remov-
ing the insignificant experts, the pruned model can
be easily loaded using existing packages (e.g., Hug-
gingface Transformers (Wolf et al., 2020)) with just
a change of the model configuration. Especially,
with 2 experts pruned, the deployment budget is re-
duced to a single 80G GPU for loading the Mixtral
8x7B (Instruct) model with bf16 data type.
Task-specific Expert Pruning for Domain-
specific Tasks. Previous research on post-training
pruning for LLMs (Sun et al., 2023; Frantar and
Alistarh, 2023) typically considers the performance
over general tasks. For the first time, in our
work, we investigate the task-specific post-training
pruning for MoE LLMs. Our above-proposed
expert pruning strategy is adept at conserving
the knowledge encapsulated by the experts of an
MOoE model for general tasks. However, as a
pre-training dataset, C4 spans a wide array of do-
mains, posing challenges when pruning experts
for domain-specific tasks (e.g., models tailored
for mathematics (Yu et al., 2023; Wang et al.,
2024)). We evaluate the 5-shot performance of
the C4 pruned MoE LLM model with » = 6 on
math tasks (GSMS8K) (Cobbe et al., 2021), result-
ing in a performance degradation plummeting from
58.61 to 41.02 for the Mixtral 8x7B model. To
address this challenge, we propose to shift the
calibration dataset from C4 to the training set of
MATH (Hendrycks et al., 2021), to concentrate the
pruning process on the mathematics domain.

Remark. For a better comparison between gen-
eral tasks and domain-specific tasks, we visualize
the distribution of pruned experts selected by C4
and MATH, as shown in Fig. 4. For both the Mix-
tral 8x7B and Mixtral 8x7B Instruct model, identi-
cal expert combinations are observed in only four
specific layers. This suggests that there are dis-
tinct differences in the distributions of pre-training
datasets and domain-specific datasets. Further de-
tails and discussions are provided in Sec. 4.2.

3.3 Dynamic Skipping During Inference

Our expert pruning strategy effectively reduces
memory consumption during model deployment.
However, each token is still processed by k£ selected
experts, without a reduction in runtime FLOPs. In-
tuitively, not all tokens require the selection of all
top-k experts during the token generation process.
Consequently, we introduce a scheme that dynam-
ically skips certain experts for individual token
inference, to further enhance inference efficiency.

As shown in Fig. 2, during the inference pro-
cess, top-k experts are chosen with routing weights
w = {Wey, We,,-..,We,_,} for each token x in
an MoE layer. For simplicity, we assume k = 2 (as
in Mixtral 8x7B)?. Our proposed dynamic expert
skipping method is illustrated in Fig. 3 (b). With-
out loss of generality, assume experts with indices
eo and e are chosen, and we, < we,. To accel-
erate inference speed, if we, < Swe,, we do not
assign x to expert e1, where (3 is a hyper-parameter
separately set for each MoE layer. In our imple-
mentation, we forward the model over the sampled
calibration data and set 3 as the median value of
Z—Z; for each MoE layer. The dynamic skipping
scheme can be carried out on the fly to speed up
inference, and can be used simultaneously with
expert pruning. In our experiments, we observe a
1.2x to 1.3x inference speedup with r = 6.

4 Experiment

In this section, a series of experiments are carried
out to evaluate our proposed methods. We intro-
duce experiments of expert pruning for general
tasks in Sec. 4.1, domain-specific tasks in Sec. 4.2,
and dynamic expert skipping results in Sec. 4.3.

4.1 Expert Pruning for General Tasks

In this subsection, we evaluate the proposed expert
pruning method on some general tasks, which can
comprehensively reflect the knowledge retention
of the model after expert pruning.

Experiment Setup. Similar to Wanda (Sun et al.,
2023), we choose calibration data from the C4 (Raf-
fel et al., 2019) dataset and combine them into 128
token sequences, each with a length of 2048>. We
perform expert pruning on both Mixtral 8x7B and
Mixtral 8x7B Instruct models, resulting in MoE

“Deeper theoretical insight and a broader application to the
top-k scenario of dynamic skipping can be found in Sec. A.2.

3For more experiments about the influence of the calibra-
tion dataset size, please refer to Sec. A.3.
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Model Method Sparsity ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE WinoGrande Average Mem (MB) Speedup
. Wanda 2:4 42.06 74.16 76.64 53.16 5221  27.00 63.90 70.96 57.51 51,214 0.91x
Mixtral 8x7B
Ours r=4 4889 78.16 81.35 57.66 47.30  29.00 61.37 72.85 59.57 46,879 1.27 %
Mixtral 8x7B Wanda 2:4 48.89 78.70 86.27 56.24 57.84 3040 72.20 71.82 62.80 51,210 0.92x
Instruct  Qyrg r=4 5392 79.88 84.77 60.05 5275 3040 7545 73.80 63.88 46,879 1.27 %

Table 1: Comparison with Wanda (Sun et al., 2023) at the structured 2:4 sparsity pattern. Our proposed expert
pruning method (r = 4) outperforms Wanda in all aspects. Mem stands for memory usage. fThe original average
performance of Mixtral 8x7B and Mixtral 8x7B Instruct model is 67.58 and 69.98, respectively.

Model Method r  ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE WinoGrande Average
None 8 57.17 8401 8535 64.88 67.88 3500  70.40 75.93 67.58
Random 0 4804 7849 8199 50.02 60.77 3340  66.79 75.85 63.04
Mixtral 8x7B 4 3985 6835 7859 53.32 4923 2920 62.82 69.93 56.41
Frequency O 4906 7883 7703 59.38 5518 33.60 57.40 75.69 60.77
quency 4 4386 7361 7697 54.01 4148 2620 57.04 73.48 55.83
Ours 6 5162 8194  83.64 61.60 5872 3300 67.87 75.37 64.22
4 4889 7816 8135 57.66 4730 2900 6137 72.85 59.57
None 8 6220 87.04 8850 67.59 6887 3660 72.20 76.87 69.98
Random O 5452 8304 8725 63.21 6270 3540 72.92 77.19 67.03
Mixtral 8x7B 4 4881 7546 7847 57.48 5368 3180 72.56 70.96 61.15
Instruct Frequency O 5389 8283 8633 63.69 5889  37.00 63.18 76.01 65.48
quency 4 4940 7727 82.97 57.66 4703 3220 66.79 74.03 60.92
Ours 6 5819 8489  87.34 65.24 6247 3560 70.04 75.85 67.45
4 5392 7988  84.77 60.05 5275 3040 7545 73.80 63.88

Table 2: Zero-shot performance evaluation of different expert pruning methods with r set to 6 and 4. Random
stands for randomly choosing experts to discard in each MoE layer. Frequency stands for dropping experts based
on their activation frequency during the inference over calibration data. Our proposed expert pruning method leads
to the least performance drop, with around 2.9 points for dropping 2 experts and 7.1 points for dropping 4 experts.

models with two experts discarded (r = 6) and
four experts discarded (r = 4) in each layer. Prun-
ing a Mixtral 8x7B model takes about 30 minutes
for r = 6 and 90 minutes for r = 4.

After expert pruning, we evaluate the perfor-
mance of the pruned MoE models following
Wanda (Sun et al., 2023). Specifically, we report
zero-shot accuracies of 8 tasks from EleutherAl
LM Harness (Gao et al., 2023). We also test the
token generation speed”, together with the peak
GPU memory usage during model inference.

Comparison with Weight Pruning Methods.
We compare our proposed expert pruning method
with the representative weight pruning algorithm
Wanda. For a fair comparison, we set » = 4 in our
method and test Wanda with the commonly used
structured 2:4 sparsity pattern. This will lead to
around 50% parameter reduction for both methods.
The results are shown in Tab. 1. The inference
speedup of 2:4 structured model relies on specially
designed hardware (Mishra et al., 2021) and scripts.
In our experiments, we even observe a lower infer-
ence speed compared with the dense weight model®.

*We revise the script provided in https://github.com/
AutoGPTQ/AutoGPTQ/ to test token generating speed.

SOur implementation is based on https://pytorch.org/
tutorials/prototype/semi_structured_sparse.html.

Besides, our expert pruning method excels Wanda
with the 2:4 sparsity pattern in both memory usage
and benchmark performance.

Comparison with Other Expert Pruning Base-
lines. We also set up two baseline methods. One
baseline is randomly dropping experts in each layer.
The other method calculates the activation fre-
quency of each expert during forward passes on
the calibration data and discards those with the
lowest activation frequencies in each layer. Com-
parison results are listed in Tab. 2. The method
based on activation frequency gets the worst per-
formance. This phenomenon implies that although
the MoE model might show a tendency for expert
selection during the inference process, simply car-
rying out expert pruning based on activation fre-
quency might not always lead to desirable results.
In contrast, our proposed method achieves better
results. Compared to the origin model with 8 ex-
perts, our model achieves a 2.9-point performance
drop with 24% parameter reduction and a 7.1-point
performance drop with 48% parameter reduction
on average without any extra training.

Memory Usage and Generation Speed. The
memory usage statistics are shown in Fig. 1. It
takes 2 A100-80G GPUs to load and forward the

6164


https://github.com/AutoGPTQ/AutoGPTQ/
https://github.com/AutoGPTQ/AutoGPTQ/
https://pytorch.org/tutorials/prototype/semi_structured_sparse.html
https://pytorch.org/tutorials/prototype/semi_structured_sparse.html

Model Method Sparsity GSMS8K (5-shot) Model Method r GSMS8K MATH
None None 58.61 MetaMath 70B  None N/A 82.30 26.60
Wanda (C4) 2:4 14.10 None 8 81.35 34.86
Mixtral 878 _ 2nda MATH) ~ 2:4 20.39 Mixtral 8x7B  Ours (C4) 6 7953 3248
Random r=4 0.68 Ours (MATH) 6 79.53 33.58
Ours (C4) r=4 24.87 Ours (MATH) 7 81.20 34.40
Ours MATH)  r=4 37.07 None 8 8143 3546
Random r=6 3639 Mixtral 578~ ours (c4) 6 798 3270
Ours (C4) r=6 41.02 Ours (MATH) 6 80.06 34.10
Ours (MATH) r=6 51.25 Ours (MATH) 7 81.50 34.86
None None 0340 Table 4: Zero-shot evaluati Its of GSMSK (Cobb
Wanda (C4) a 26,60 able 4: Zero-shot evaluation results o (Cobbe
Mixtral 8x7B Wanda (MATH) 2.4 31.31 etal., 2021) and MATH (Hendrycks et al., 2021) after
Instruct Random I 076 training .the MOE models on MetaMathQA~ (Yu et al.,
Ours (C4) =4 30.40 2023) with different expert numbers and different cal-
Ours (MATH) r=4 47.01 ibration datasets for expert pruning. Using domain-
Random r—6 39.80 specific data can result in better performance on cor-
Ours (C4) r= 48.52 responding downstream tasks. Model fine-tuning can
Ours (MATH) r==6 58.38

Table 3: 5-shot GSMS8K (Cobbe et al., 2021) accuracy
comparison for sampling calibration data from different
datasets. Random pruning will lead to bad performance
in this case. Compared with pre-training datasets, sam-
pling from domain-specific datasets will significantly
improve the performance on corresponding tasks after
expert pruning. Our expert pruning strategy also outper-
forms Wanda with 2:4 structured sparsity.

original 8-expert model with bf16 data type. Af-
ter pruning 2 and 4 experts, only one 80G GPU is
needed for the inference process. For token gener-
ation speed analysis, during model inference, we
still need to route each token to two experts. How-
ever, reducing the number of GPUs required to load
the model can decrease the time consumed by GPU
intercommunication, resulting in a much higher to-
ken generation speed. We observe a 1.20x token
generation speedup for the model with 2 experts
pruned and a 1.27 x speedup with 4 experts pruned.

4.2 Expert Pruning for Domain-Specific Tasks

Experiment Setup. We investigate on mathemat-
ical reasoning tasks. We randomly sample sen-
tences from the train set of MATH (Hendrycks
et al., 2021) and combine them into 128 token se-
quences, each with a length of 2048. We carry out
expert pruning with » = 6 and r = 4, then test
5-shot GSMS8K (Cobbe et al., 2021) results.
Baselines to Compare. We compare the 5-shot
GSMSK result with randomly pruned models, mod-
els pruned using samples from C4 as calibration
data, the 2:4 structured model obtained by Wanda,
as well as the original MoE model with 8 experts.
Vanilla Wanda uses C4 for data calibration. To test
the influence of the calibration dataset on model

greatly reduce the performance gaps between the pruned
models and the original model.

performance, we also leverage the MATH dataset
for Wanda pruning.

Evaluation Results. Tab. 3 illustrates the 5-shot
evaluation results on the GSM8K dataset. The per-
formance witnesses a significant drop after random
pruning, or pruning with calibration data obtained
from C4. However, this degradation dramatically
reduces after leveraging the MATH dataset for cali-
bration data construction. A similar phenomenon
is also observed with Wanda. This indicates that
when facing domain-specific tasks, using datasets
corresponding to these specific tasks can yield bet-
ter expert pruning results than using pre-training
datasets. It also implies that our proposed method
for changing the calibration dataset for domain-
specific tasks can also be applied to other pruning
algorithms. Besides, our expert pruning strategy
(r = 4) significantly outperforms Wanda with 2:4
structured sparsity.

More Discussion. Using samples from the
MATH dataset can greatly improve the domain-
specific performance on mathematics tasks. How-
ever, as our method follows a post-training manner
without any training, the expert pruning scheme
still leads to a significant performance drop. To re-
duce the performance gap between pruned models
and original models, we fully fine-tune the MoE
models with different expert numbers on the Meta-
MathQA (Yu et al., 2023) dataset and compare their
performances. We fine-tune and compare models
pruned by C4 (r = 6), MATH (r = 6,7 = 7),
and the original 8-expert model. The zero-shot
GSM8K@1 and MATH®@1 accuracies after fine-
tuning different MoE models are shown in Tab. 4.
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Model r  Pruning Skipping LM-eval Speedup
8 67.58 1.00x
8 v 66.37 1.08x
Mixtral 8x7B 6 v 64.22 1.19%
6 v v 62.91 1.23x
4 v 59.57 1.27x
4 v v 57.91 1.31x
8 69.98 1.00x
Mixtral 8x7B  © v 69.03 1.08x
Instruct 6 v 67.45 1.20x
6 v v 66.04 1.27x
4 v 63.88 1.27%
4 v v 62.33 1.33x

Table 5: Evaluation results of combining expert pruning
with dynamic skipping. We carry out expert pruning
using calibration data sampled from C4, then infer the
pruned models with dynamic expert skipping. We set
B as the median value of w,, /w,, of the calibration set.
The dynamic expert skipping method further enhances
inference speed with a slight performance drop.

As can be seen, the fine-tuning process significantly
reduces the performance drop incurred by expert
pruning and leads to comparable results with tun-
ing full-expert models. Specifically, for the Mixtral
8x7B Instruct model, the accuracy of the pruned
7-expert model on the GSMB8K test set exceeds that
of the 8-expert model. This suggests that for cer-
tain practical downstream tasks, a large number of
experts might not be a necessity for achieving good
performance. Also, the pruned models using sam-
ples from MATH as the calibration dataset outper-
form those using C4 after tuning, further highlight-
ing the effectiveness of adopting domain-specific
calibration datasets for task-specific models.

4.3 Dynamic Expert Skipping Results

This subsection assesses the effectiveness of our
proposed dynamic expert skipping approach. Addi-
tionally, we explore the combination of both meth-
ods to further improve inference efficiency.
Experiment Setup. We perform tests on task-
agnostic models for better representativeness. The
setup is similar to Sec. 4.1. We first prune the Mix-
tral 8x7B and Mixtral 8x7B Instruct model using
calibration data sampled from the C4 dataset and
get the pruned models with r = 6 and » = 4. Dur-
ing the testing of different benchmarks, we dynami-
cally skip certain experts. For evaluation, we report
the zero-shot accuracies of 8 tasks from EleutherAl
LM Harness (Gao et al., 2023). Our proposed dy-
namic expert skipping method does not influence
the memory usage for model inference, so we just
report the inference speed in this subsection.
Baselines to Compare. We suggest that our pro-
posed dynamic expert skipping can be seamlessly

Model Method r  LM-eval
Progressive 6 64.48
Mixtral 8x7B  Layer-wise (Ours) 6 64.22
Progressive 4 57.53
Layer-wise (Ours) 4 59.57

Table 6: Comparison between the layer-wise pruning
manner and the progressive pruning manner. The pro-
gressive scheme will lead to more performance degra-
dation with a high expert pruning rate.

integrated with the expert pruning approach. For
setting up baselines, we evaluate zero-shot accura-
cies of the original 8-expert model without dynamic
expert skipping, as well as the accuracies of models
pruned to 7 = 6 and r = 4 without dynamic expert
skipping. Subsequently, we incorporate dynamic
expert skipping into the inference process of these
models, evaluate accuracies over benchmarks, and
measure token generation speedup.

Evaluation Results. The evaluation results are
illustrated in Tab. 5. We show the average accura-
cies of the 8 zero-shot tasks at the “LM-eval” col-
umn, together with the inference speedup ratio com-
pared to the original 8-expert models. As can be
seen, based on expert pruning, the dynamic expert
skipping method can further enhance the inference
speed with just negligible performance drops. We
can achieve nearly 90% performance of the Mixtral
8x7B Instruct model with half parameters and a
1.33x token generation speedup. Another notable
observation is that the Mixtral 8x7B Instruct model
using both expert pruning and dynamic skipping
with 7 = 6 achieves the same inference speedup
as the model using only expert pruning with r = 4
while getting a much higher accuracy over the LM-
eval benchmark. This phenomenon also proves the
efficiency of our dynamic expert skipping approach.
For a more comprehensive evaluation, we perform
dynamic skipping on task-specific models and ob-
serve similar results. Experiment details are shown
in the Appendix (Sec. A.4).

4.4 More Analysis

Discussion about Inference Speed. In Fig. 1,
we also observe a notable inference acceleration
when pruning experts fromr = 6tor = 4, a
phenomenon not attributable to decreased inter-
GPU communication overhead. We think that this
enhancement stems primarily from improved tem-
poral and spatial locality. This includes reduced
cache misses, optimized memory prefetching, and
faster block loading. Readers may refer to papers
related to memory-intensive LLM inference (such
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as (Alizadeh et al., 2023)) to find more explanation.

More Ablations. We carry out efficient layer-
wise expert pruning in this work. Readers may
be curious about the effectiveness compared with
a layer-by-layer progressive searching paradigm,
where the pruning of subsequent layers is aware of
the pruning result of previous layers. To this end,
we compare these two pruning paradigms in Tab. 6,
leveraging the Mixtral 8x7B model and calibration
samples from the C4 dataset. Although the layer-
by-layer progressive manner can get slightly better
results with fewer experts pruned, when it comes to
a high expert pruning rate (e.g., 50% pruning rate
with r = 4), more performance drop is observed.
We attribute this to the possible overfitting of the
small calibration dataset.

5 Conclusion and Discussion

In this paper, based on the structural characteris-
tics of MoE LLMs and the shortcomings of current
weight pruning schemes, we focus on expert-level
model sparsification and, for the first time, provide
post-training expert pruning together with dynamic
(expert) skipping methods to enhance the deploy-
ment efficiency of MoE LLMs. Our methods can
significantly reduce memory usage and enhance
inference speed while maintaining high model per-
formance. Looking ahead, we aim to further refine
our pruning/skipping techniques and incorporate
them with weight pruning or parameter quantiza-
tion strategies, achieving more effective deploying
approaches for MoE LLMs.

Limitations

Our method can reduce memory usage and improve
inference speed for more efficient deployment of
MOoE LLMs. Despite its advancements, there are
still some limitations. Firstly, our method for ex-
pert pruning is based on the enumeration of expert
combinations. This is feasible for pruning currently
popular MoE LLMs with 4 or 8 experts. However,
with the number of experts in each MoE layer in-
creasing (e.g., 32 experts in one MoE layer), it will
be cumbersome to perform our pruning algorithm.
Secondly, we conduct experiments on the open-
sourced Mixtral 8x7B and Mixtral 8x7B Instruct
models as they are by far the most popular MoE
LLMs. With the development of MoE LLMs, we
will carry out experiments on other MoE LLMs in
the future to give a more comprehensive analysis of
the generalizability and scalability of our method.

Ethics Statement

Our research focuses on improving the deployment
efficiency of Mixture-of-Experts (MoE) large lan-
guage models (LLMs) through expert-level sparsi-
fication techniques, aiming to reduce model sizes
and enhance inference speed without compromis-
ing performance. While our methods offer poten-
tial benefits for deploying advanced LLMs more
broadly and efficiently, we acknowledge the im-
portance of considering the ethical implications of
deploying such models. These include ensuring
the responsible use of LLMs, mitigating biases in
model outputs, and addressing privacy concerns.
We commit to making our code available for trans-
parency and encourage the community to use our
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pacts of deploying LLM:s.
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A Appendix

A.1 Expert Selection Tendency in MoE
Models

To investigate the tendency of expert selection dur-
ing model inference, we analyze the Mixtral 8x7B
model using samples from the C4 dataset (Raf-
fel et al.,, 2019) (Fig. 5 (a)) and the MATH
dataset (Hendrycks et al., 2021) (Fig. 5 (b)), re-
spectively. C4 is a pre-training dataset representing
the general relationships between experts, MATH
is a dataset designed for a specific downstream task.
We visualize the probability of different experts be-
ing selected in layer O, layer 15, and layer 31 of
the model during inference. As top-2 experts are
chosen by default, each grid in the plot represents
the frequency of two experts being selected simul-
taneously during the forward pass over the sample
set (the x-axis and the y-axis of the plot each repre-
sent one expert). As can be seen from Fig. 5, the
model exhibits a certain tendency in the selection
of experts, particularly when tailored to specific
downstream tasks.
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Figure 5: Frequency visualization of expert selection
in layer 0, layer 15, and layer 31 for the Mixtral 8x7B
model on samples of (a) C4 (Raffel et al., 2019) and
(b) MATH (Hendrycks et al., 2021) dataset respectively.
The model exhibits certain preferences in the selection
of experts.

A.2 Theoretical Insight and Broader
Application of Dynamic Skipping

Consider a single MoE layer. Suppose in a top-k
setting with a total of n experts, for every single
token x, the routing weights of the n experts are
Wi, ..., Wy, > iy w; = 1. Without loss of gener-
ality, we assume wy > wp > -+ > W > - >
wy,, and the output feature vector of each expert are
fi,..., £, ... £, where f; = &(x).

Without dynamic skipping, the original output

of this layer should be:

z = Z Zwmm

m=1Wm ;—1
Suppose after dynamic skipping, only top-¢ experts
remain (1 < ¢ < k). Then the output is:

z= Zzl Zl:wmfm.

m=1 Wm m=1

As defined above in the main paper, the reconstruc-
tion loss can be calculated by:

L=|z-z|.

Through experiment, we observe that the distribu-
tion of ||f; — £5]]2 is fairly concentrated for Mixtral
8x7b on the C4 calibration set. Thus for simplifica-
tion, we assume ||f,,, — £,,||2(m # n) to be a fixed
value, say D. Therefore,

L=z -z

Zwmm Zwm m”?

mlwmml Zm—l m m=1

_ || Zn:l Zm:l wnwmfm _ Zn:l Zm:l wnwmfm| |2

(Xt W) (e wim)
IS Yy ntmin = Yoy 3y Wawiall2
(Crnt W) (et W)
i1 S Wt (B — £l
(Ciet W) (e wim)
M iis Xy wnwml> - D

(Zjn:l wm)(an:l W)

(= holds if all (f,, — f,,) are of the same direction)

_ Zﬁz:iJrl W D.

an=1 W
We set an upper bound H (H < D) on L (make
L < H) to trade-off between accuracy and infer-
ence speed, then have

k k
m=i+1 m=1

Therefore, in this generalized setting, dynamic skip-
ping should reserve the top-i* experts where

1" = min+

Z Wy < B Zwm

m=i+1
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Specifically, in the top-2 setting, for computational
simplicity (reduce the use of additions), let 5 =
le 77 (alittle abuse of notation), then the dynamic
skipping criteria for top-2 is

we < Pwy.

A.3 Experiments on the Sizes of Calibration
Datasets

We prune the Mixtral 8x7b model with different
sizes of calibration datasets. To be specific, we
randomly sample 1, 2, 4, 16, 64, and 256 se-
quences (each composed of 2048 tokens) from the
C4 dataset to form calibration datasets. Then the
model is pruned to 7 = 6 and evaluated on vari-
ous benchmarks. The average LM-eval results are
reported in Tab. 7.

Number of Sequence LM-eval

1 62.63
2 63.93
4 63.53
16 63.59
64 64.32
128 64.22
256 63.94

Table 7: Performances of expert pruning with different
sizes of calibration datasets.

As can be seen, using 64 and 128 sequences
can result in the highest overall results (> 64).
Using a small set of sequences will possibly lead to
performance degradation (especially for using just
1 sequence), but our method is somewhat robust to
the size of datasets, as seen from the table.

A.4 Dynamic Skipping for Domain-specific
Tasks

We also perform dynamic expert skipping on
domain-specific tasks (mathematical reasoning
tasks). We calibrate 3 for each layer using sam-
ples from the training set of MATH and evaluate
5-shot accuracy on the GSM8K dataset. We also
test and report the token generation speed of each
MOoE model. The results are shown in Tab. 8. In
this case, dynamic expert skipping leads to more
performance drops. But for the Mixtral 8x7B In-
struct model, expert pruning with 2 experts and
combining dynamic skipping also leads to the same
inference speedup with pruning 4 experts, while
achieving higher evaluation accuracy.

A.5 Actual Memory Reduction

A more detailed statistical comparison between our
expert pruning method with baseline methods on

Model r Pruning Skipping GSMSK (5-shot) Speedup
8 58.61 1.00x
8 v 54.28 1.08x
Mixtral 8x7B ¢ v 51.25 1.20%
6 v v 47.16 1.21x%
4 v 37.07 1.29%
4 v v 34.80 1.30x%
8 63.46 1.00%
Mixtral 8x7B 8 v 61.94 1.05x
Instruct © v 58.38 1.20x
6 v v 53.98 1.28x%
4 v 47.01 1.28x%
4 v v 40.33 1.33x%

Table 8: Evaluation results of combining expert pruning
with dynamic skipping for domain-specific tasks. Com-
bining two expert-level sparsification methods will lead
to more efficient deployment.

the Mixtral 8x7B model is shown in Tab. 9.

Method Sparsity Memory (MB)
None None (r =8) 89,926 (100%)

Wanda 2:4 51,214 (57%)
Ours r=06 68,383 (76%)
Ours r=4 46,879 (52%)

Table 9: Memory reduction comparison of our expert
pruning method with baselines on Mixtral 8x7B.

A.6 Relationships with Other Network
Pruning and Parameter Quantization
Methods

As plug-and-play techniques, both our proposed
expert pruning and dynamic skipping methods are
orthogonal to other model light-weighting schemes
(e.g., weight pruning (Frantar and Alistarh, 2023;
Sun et al., 2023), token pruning (Kim et al., 2022;
Ding et al., 2023)) and are compatible with weight
quantization approaches (Frantar et al., 2022; Lin
et al., 2023).

A.7 More Experiment Details

In this part, we give more experimental details for
a better understanding of our proposed methods.
Calibration Set Construction for Expert Prun-
ing. For task-agnostic models, we use the samples
from C4 (Raffel et al., 2019) as the calibration
dataset. Following the setting of Wanda, we sam-
ple from the first part of the training data®. For
task-specific (mathematics) models, we use sam-
ples from the training set of MATH (Hendrycks
et al., 2021). The structure of the MATH dataset is
different from C4, so we reconstruct the dataset in
the format of C4 and randomly sample from it.

6https: //huggingface.co/datasets/allenai/c4/
blob/main/en/c4-train.00000-0f-01024. json.gz

6171


https://huggingface.co/datasets/allenai/c4/blob/main/en/c4-train.00000-of-01024.json.gz
https://huggingface.co/datasets/allenai/c4/blob/main/en/c4-train.00000-of-01024.json.gz

Calibration Set Construction for Dynamic
(Expert) Skipping. To calculate § for dynamic
expert skipping in each MoE layer, we forward
the MoE model over the calibration dataset and set
B as the median value of :Z—: separately for each
layer. We choose to use the median value over
the calibration dataset as in this case, the skipping
will happen with around 50% possibility. Here we
provide the value of 3 for the Mixtral 8x7B model
with calibration data sampled from C4 and MATH
respectively. As can be seen, the parameter in each
layer differs significantly.

C4: 0.402,0.494,0.463,0.484,0.478,0.491,0.523,
0.521,0.544,0.570,0.574,0.489,0.503,0.618,0.568,
0.535,0.559,0.519,0.537,0.487,0.469,0.461,0.461,
0.469,0.458,0.418,0.433,0.418,0.406,0.433,0.447,
0.535

MATH: 0.503,0.586,0.505,0.531,0.509,0.422,
0.511,0.461,0.447,0.478,0.529,0.454,0.472,0.531,
0.499,0.486,0.503,0.491,0.430,0.440,0.402,0.423,
0.386,0.407,0.395,0.354,0.340,0.351,0.334,0.368,
0.365,0.346

Model Fine-tuning. In the part of task-specific
expert pruning for domain-specific tasks, we fine-
tune the Mixtral 8x7B and Mixtral 8x7B Instruct
models with 8 experts, 7 experts, and 6 experts on
the MetaMathQA (Yu et al., 2023) dataset. The
training is conducted on 16 A100-80G GPUs. We
train the model for 900 steps, using a learning rate
of 2e-5 with the cosine learning rate scheduler.
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