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Abstract

LLM has achieved impressive performance on
multi-modal tasks, which have received ever-
increasing research attention. Recent research
focuses on improving prediction performance
and reliability (e.g., addressing the hallucina-
tion problem). They often prepend relevant
external knowledge to the input text as an ex-
tra prompt. However, these methods would
be affected by the noise in the knowledge and
the context length limitation of LLM. In our
work, we focus on making better use of exter-
nal knowledge and propose a method to actively
extract valuable information in the knowledge
to produce the latent vector as a soft prompt,
which is then fused with the image embed-
ding to form a knowledge-enhanced context
to instruct LLM. The experimental results on
knowledge-based VQA benchmarks show that
the proposed method enjoys better utilization
of external knowledge and helps the model
achieve better performance.

1 Introduction

Although LLM-based methods already perform
well on many multi-modal tasks, knowledge-based
VQA remains a challenging task, which requires
outside knowledge beyond the image content to
answer the question. In practice, LLM often gen-
erates factually incorrect responses to the given
questions since the knowledge in the LLM model
may be inaccurate, incomplete, and outdated. Intu-
itively, a straightforward solution is to incorporate
relevant external knowledge to assist LLM in mak-
ing a better prediction. In nature, such a paradigm
is equivalent to using external knowledge as an
additional prompt for LLM.

Related research efforts mainly focus on training
a better retriever to obtain relevant external knowl-
edge (Lin and Byrne, 2022), but the model pas-
sively receives the retrieved result. In fact, even the

*Jing Liu is the corresponding author.

Knowledge-enhanced 
context embedding

Question 
embedding

LLM

Image

Actively
excavate

Our approach

Traditional approach

External knowledge embedding
Visual context 

embedding
Question 

embedding

Adaptively fuse

what is the 
name of the 
trick being 
performed?

grind

rail

Question Image Relevant external knowledge 

rail: the edge of the skateboard, also, plastic 
strips attached to the board‘s underside. air: 
riding with all four wheels off the ground; short 
for aerial backside: when a trick or turn is 
executed with the skater’s back facing the ramp 
or obstacle.  vert ramp: a half-pipe, usually at 
least 8 feet tall, with steep sides that are 
perfectly vertical near the top. grind: the 
skateboarder sliding along a surface. 

Figure 1: Comparison between the traditional approach
and our approach to utilize relevant external knowledge.
Giving the retrieved knowledge, the traditional approach
directly prepends knowledge snippets to the input. In
contrast, our approach dynamically selects and incorpo-
rates valuable information from the knowledge.

best retriever hardly guarantees that the retrieved
results are without distracting information. Firstly,
it is common that the retrieved knowledge might
be irrelevant or part-irrelevant to answer the given
question. Secondly, even if the retrieved knowl-
edge is useful, LLMs often attend to the irrelevant
parts or might completely ignore them, leading to
generate the answer based on their incorrect knowl-
edge. Therefore, it is non-trivial to study how to
better utilize the retrieved knowledge.

As shown in Figure 1, while containing support-
ing content, the external knowledge snippet also
contains distracting content. The precisely support-
ing content renders a solid foundation for a model
to generate the correct output. Various attempts
have been made to filter retrieved snippets based
on rules (Wang et al., 2023), which focus largely on
the NLP tasks and neglect to excavate supporting
information in a fine-grained manner. Currently,
existing models fail to pay sufficient attention to the
supporting content and are prone to be distracted
by surrounding sentences that share similar topics
(Shi et al., 2023).
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Multi-modal LLM (MLLM) has achieved
tremendous success in multi-modal tasks. It lever-
ages a projector to transform images into latent
vectors that provide visual information context to
the LLM. Given relevant external knowledge, prior
approaches often directly prepend it with textual
input to prompt LLM. In fact, the textual knowl-
edge snippets can be analogously transformed into
latent vectors to prompt LLM. Such behavior of-
fers the following advantages: 1) realize the fine-
grained extraction of pivotal information derived
from external knowledge, facilitating the injection
of knowledge into the prediction. 2) refine longer
external knowledge texts into a small number of
vectors, effectively avoiding adding numerous ex-
tra input tokens to LLM, which has a context length
limitation.

Inspired by the empirical evidence mentioned
above, we propose a novel method (coined SKP)
to transform the external knowledge snippet into
the latent vector as a Soft Knowledge Prompt to
better instruct LLM for the knowledge-based VQA
task. Specifically, we extract the pivotal informa-
tion in the external knowledge according to the
visual and question information and transform it
into latent vectors, where the attention mechanism
is introduced to select the informative tokens de-
rived from the external knowledge. Then, knowl-
edge latent vectors are fused with the visual em-
bedding to form a knowledge-enhanced context for
the question. Furthermore, we propose a tailored
training scheme to expedite the process of select-
ing and fusing pivotal knowledge. For implemen-
tation details, please refer to the code at https:
//github.com/BUAAw-ML/SKP.git. The experi-
mental results verify that the proposed method en-
joys better utilization of external knowledge and
helps the model achieve better performance. Our
main contribution can be summarized into three-
fold:

• Different from other works, we dig into the
solution for extracting and utilizing pivotal
information from relevant knowledge to better
instruct LLM, which can suppress distracting
information and elicits knowledge into output.

• Differing from prepending external knowl-
edge to the input, we embed the knowledge
into a soft prompt and fuse it with the visual
embedding, effectively avoiding adding extra
input tokens to LLM.

• Experimental results on outside-knowledge
based VQA datasets demonstrate that the
proposed method achieves promising perfor-
mance, validating the effectiveness of key de-
sign choices.

2 Related Work

2.1 Prompt LLM for Knowledge-based VQA

A huge amount of implicit knowledge is embed-
ded in the parameters of pre-trained models, which
are endowed with powerful knowledge capabilities
when given proper prompts. Yang et al. (Yang et al.,
2022) take image caption as a hard prompt to in-
struct GPT-3 for knowledge-based VQA. However,
the generated captions fail to cover all the neces-
sary information in an image. Some works utilize
additional information to prompt models. For ex-
ample, Rubin et al. (Rubin et al., 2022) retrieve
related training examples as prompts for in-context
learning of LLM. Xenos et al. (Xenos et al., 2023a)
leverage question-informative captions and infor-
mative examples to prompt LLaMA. Shao et al.
(Shao et al., 2023) further induce GPT-3 based on
numerous candidate answers. Unlike hard prompts,
Dai et al. (Dai et al.) project visual features into
latent vectors to help small-scale LLMs perform
better on knowledge-based VQA tasks, verifying
the potential of soft prompts.

2.2 Retrieve Knowledge for Knowledge-based
VQA

As the literature claims, external knowledge bene-
fits answering questions when incorporated into
visual-language models (Gardères et al., 2020;
Zheng et al., 2021). Recently, retrieving textual
knowledge snippets can help to achieve a better
performance (Qu et al., 2021; Gao et al., 2022).
Concretely, Luo et al. (Luo et al., 2021) retrieve
knowledge in a cross-modal way. Gui et al. (Gui
et al., 2022) construct a knowledge retriever on
top of GPT-3. Lin and Byrne (Lin and Byrne,
2022) jointly optimizes T5 and retriever to exca-
vate informative external knowledge. Lin et al.
(Lin et al., 2023a) retrieve external knowledge by a
fine-grained and multi-modal approach. Moreover,
some research efforts construct knowledge embed-
dings for retrieval (Hu et al., 2023), which would in-
cur and accumulate additional errors. Nevertheless,
these methods vastly regard “Pseudo Relevance La-
bels” (Lin and Byrne, 2022) as training signals for
retriever, which fail to retrieve sufficient pivotal
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knowledge for a model to make correct prediction
(Chen et al., 2022; Wang et al., 2024).

2.3 Improve External Knowledge Utilization

Recent research attempts, such as (Luo et al., 2023;
Lin et al., 2023b), focus on better exploiting re-
trieved information based on instruction tuning
LLM in the NLP domain. However, the require-
ments for LLM tuning hinder the wide applica-
tion of such methods. Another research line fo-
cuses more on selecting useful external knowledge
for LLM in the NLP domain. For instance, Ram
et al. (Ram et al., 2023) train a reranker to select
more informative external knowledge. Li et al. (Li
et al., 2023) propose a verifiable generation method
where LLM updates the retrieval result until meet-
ing the supporting fact that the retrieved documents
can benefit answer to the question. Baek et al.
(Baek et al., 2023) fine-tune a small flan model to
judge whether the retrieved knowledge is useful or
not and recalibrate the knowledge engagement in
the output. Some works select external knowledge
to enhance the result generated by the model (Peng
et al., 2023; Zhang et al., 2023). These works fo-
cus on selecting valuable knowledge from multiple
external knowledge candidates. Differently, our
method not only selects valuable knowledge but
also makes more efforts to better extract the pivotal
information from external knowledge.

Recently, Wang et al. (Wang et al., 2023) select
valuable sentences from the knowledge fragment
by matching or entropy mechanism without guar-
anteeing that the selected sentences contribute to
making correct predictions. This work employs a
method of filtering sentences that is coarse-grained,
and it needs to train a filter, which does not guaran-
tee ease of use and generalization. In addition, this
work focuses on NLP tasks rather than multi-modal
tasks. Existing methods struggle to extract pivotal
knowledge in a fine-grained and accurate manner,
especially in the multi-modal domain, rendering
an open problem for the research community. Our
attention-based method can help to mine the valu-
able information in a more fine-grained manner.

3 Method

In the MLLM framework, a projector module is of-
ten used to transform the image content into visual
context vectors for LLM. We focus on extracting
pivotal information from relevant external knowl-
edge and fusing it with the visual context vectors

as a knowledge-enhanced context to prompt LLM.
The framework of the proposed method is illus-

trated in Figure 2. Specifically, the input is well pro-
cessed firstly (Sec. 3.1), and we propose a method
to mine valuable information from relevant exter-
nal knowledge (Sec. 3.2) and fuse it with the visual
vectors to instruct LLM (Sec. 3.3). Further, we
adopt an ensemble-based approach to determine
the final output (Sec. 3.4). Lastly, we design a
tailored optimization scheme for the trainable com-
ponents involved in our framework (Sec. 3.5).

3.1 Input Representations
In our framework, there are three types of inputs:
question, image, and relevant external knowledge.

Question embedding. For the input question
text, we use the embedding function of LLM to
obtain the question embedding vectors: q ∈ Rn×d,
in which n is the total number of tokens, and d
represents the embedded dimension.

Image embedding. For an image, we adopt
ViT (Fang et al., 2023) to encode the image into
visual embeddings. Further, following the com-
mon practice, the Q-Former module and the linear
layer are used to transform visual embeddings into
the latent space of LLM, in which t query tokens
are implemented to extract visual information most
relevant to the question. The output query represen-
tation serves as the visual representation, denoted
as V ∈ Rt×d, which includes the visual informa-
tion of interest to the question.

Knowledge embedding. In practice, external
knowledge is often fed to the model as a text snip-
pet. Therefore, we leverage the embedding func-
tion of LLM to obtain the knowledge snippet em-
bedding S ∈ Rl×d, in which l is the token number
of knowledge snippet text.

3.2 Knowledge Mining
This section proposes a method to extract piv-
otal knowledge information from relevant exter-
nal knowledge. Firstly, our method selects top-k
most valuable knowledge snippets from k

′
rele-

vant external knowledge snippets (k ≤ k
′
). To

obtain k
′

knowledge snippets per data sample, a
public retriever Vector Index Retriever based on
LlamaIndex (Liu, 2022) can be used. Then, re-
garding each selected knowledge, we extract the
valuable information to produce the latent vector
as a soft knowledge prompt.

Specifically, we use the visual representation V ,
which contains the visual information of interest
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Figure 2: The framework of our method. Given relevant external knowledge, our method selects top-k valuable
knowledge snippets and transforms them into vectors, which are fused with visual vectors to prompt LLM.

to the question, to help select valuable information
in the external knowledge snippet. Firstly, we cal-
culate the following value as a query for selecting
valuable information:

v =
1

t

t∑

i=1

Vi (1)

where v ∈ Rd. Because all the embeddings are
in the latent space of LLM, we can directly mea-
sure the similarity between v and each token em-
bedding Si(i ∈ [0, l]) of the external knowledge
snippet. To capture more detailed relations, we
calculate the multi-head similarity between v and
Si. Specifically, v and Si are firstly multiplied with
the parameter matrices W1 and W2 respectively:

v
′
= W1v

S
′
i = W2Si

(2)

where W1 ∈ Rd×d and W2 ∈ Rd×d. Then, for the
two projected vectors v

′
and S

′
i , the last dimension

of the vectors is split from (..., d) to (..., h, d/h).
Thus, we can transform each vector into h vectors:

v
′ → {v′

1, . . . , v
′
h}

S
′
i → {S′

i1, . . . , S
′
ih}

(3)

where h is the number of heads. Note that we set its
value equal to the number of query tokens t (h = t).
Lastly, for each pair (e.g. v

′
1 and S

′
i1), we calculate

the dot product similarity ϕdot between them, and
we can obtain h similarity values:

{ϕdot(v
′
1, S

′
i1), ..., ϕ

dot(v
′
h, S

′
ih)} (4)

For l tokens in an external knowledge snippet,
we calculate the multi-head similarity of each to-
ken according to the above process individually.
Therefore, the dimension of the similarity value of
an external knowledge is l×h. And we denote this
similarity value as R ∈ Rl×h. Further, to obtain
a score representing the external knowledge sim-
ilarity, we take the mean of the similarity values
of the l tokens as the final similarity score of an
external knowledge text, which can be denoted as
the following equation:

r =
1

l

l∑

i

[
1

h

h∑

j

(Rij)] (5)

Based on the similarity score r, we select top-k
knowledge snippets from k

′
knowledge snippets.

After acquiring the selected knowledge snippet,
we propose an attention-based method to extract
pivotal information and form a knowledge represen-
tation. Specifically, based on the relevance matrix
R ∈ Rl×h, we calculate the relevance score of each
token for h heads respectively, where the SoftMax
function is introduced to obtain the normalized rel-
evance score for each head R

′
j ∈ Rl(j ∈ [1, h]).

Then, according to the attention-based mechanism,
we use the normalized relevance score R

′
j as the

weight vector and compute the weighted sum of the
knowledge tokens through the following equation:
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Pj =
1

l

l∑

i=1

R
′
jiSi (6)

where Pj ∈ Rd(j ∈ [1, h]).
Last, the knowledge representations of all heads

are concatenated together as a soft knowledge
prompt:

P = [P1; ...;Ph] (7)

where [.; .] denotes the concatenation operation,
and the soft knowledge prompt is denoted as P ∈
Rh×d.

3.3 Dynamic Fusion
The assumption hardly holds that the retriever al-
ways acquires useful knowledge. Besides, the im-
portance of images and external knowledge for
answering the question stochastically fluctuates for
various samples. Therefore, after obtaining the
soft knowledge prompt P , we introduce an adap-
tive fusion mechanism to dynamically fuse P with
the visual representation V to obtain a knowledge-
enhanced context to better instruct LLM.

To balance the proportion of external knowledge
information and visual information, we concatenate
V and P to predict scalars for fusion. Specifically,
we use a gate-like structure with a Softmax function
to dynamically calculate the weight value:

[σ1, σ2] = Softmax([FFN1(V); FFN2(P)]) (8)

where σ1 ∈ Rt×1 and σ2 ∈ Rh×1. Note that
t = h. Then, based on the fusion weights, we
employ the weighted sum of V and P to generate
the knowledge-enhanced context C ∈ Rt×d:

C = σ1V + σ2P (9)

3.4 Answer Generation
Conditioned on k relevant external knowledge snip-
pets, we can obtain k knowledge-enhanced con-
texts. Then, we concatenate each knowledge-
enhanced context with the input question text and
feed it into LLM to produce an answer output o.
Then, majority voting is performed over the k out-
put answers to determine the answer res:

res = argmax (count(o1, . . . , ok)) (10)

where the function count() records occurrences of
each answer in the k outputs.

3.5 Optimization

In our design, the visual encoder and LLM param-
eters are frozen, and other parameters are trained
to help better excavate pivotal information from ex-
ternal knowledge. Hence, the optimization scheme
should encourage the occurrence of knowledge-
enhanced contexts that are truly useful for predic-
tion, and avoid knowledge-enhanced contexts with-
out any contribution to the model’s prediction.

Firstly, we need to identify which knowledge-
enhanced contexts are truly useful. Intelligibly, the
positive knowledge-enhanced context should help
the model make correct predictions when the model
predicts incorrectly without using the knowledge.
To achieve this goal, the input using only the im-
age and question is fed into LLM and the output
is denoted as ok+1. Then, a knowledge-enhanced
context can be judged as positive when the LLM
output using this knowledge-enhanced context is
true and the output ok+1 is wrong. In summary, we
identify three subsets of the knowledge-enhanced
context based on whether they can correct the an-
swer:

RP = {i ∈ [1, k] : oi = o∗ ∧ ok+1 ̸= o∗}
RN = {i ∈ [1, k] : oi ̸= o∗ ∧ ok+1 = o∗}
RI = {i ∈ [1, k] : i /∈ RP ∧ i /∈ RN}

(11)

where o∗ denotes the ground truth answer, RP

denotes the set including the positive knowledge-
enhanced context, and RN denotes the set covering
the negative knowledge-enhanced context that con-
fuses answer generation. Furthermore, we denote
RI as the set that belongs to neither RP nor RN ,
which is absent from calculating loss during train-
ing. Here our goal is to decrease the similarity
scores of snippets in RN , and increase the similar-
ity scores of snippets in RP . Mathematically, the
model optimization is constricted by the following
loss:
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−
∑

(x,o∗)∈TrainSet

[
∑

i

logp(o∗|x,Ci)

+
∑

i∈RP

logp(Ci|x)−
∑

i∈RN

logp(Ci|x)]

(12)
where x denotes the input sample. The first term

improves the answer generation performance. The
second and last terms affect the external knowledge
utilizing.

4 Experiments

4.1 Datasets
OK-VQA. The OK-VQA dataset (Marino et al.,
2019) is a widely-used dataset for the outside-
knowledge based VQA task, evaluating related
knowledge-enhanced models. The questions in
this dataset are crowd-sourced from Amazon Me-
chanical Turkers (AMT) 1. The dataset consists
of 14,055 questions, of which 9, 009 questions are
held out for training and 5, 046 questions are held
out for testing. In addition, GS knowledge corpus
(Luo et al., 2021) is used by the retriever to obtain
the relevant knowledge in our experiments, which
is a benchmark knowledge source for OK-VQA.

A-OKVQA. The A-OKVQA dataset (Schwenk
et al., 2022) is a crowd-sourced dataset, which re-
quires a wide range of world and commonsense
knowledge to answer the questions. This dataset
contains about 25K questions, in which 17K ques-
tions are used for training, and each sample on the
training and validation sets is supplied with three
relevant external knowledge snippets.

4.2 Experimental Setup
To thoroughly compare our results against existing
methods, various evaluation metrics are adopted
to measure the model performance. Specifically,
VQA Score is the most used metric in VQA task,
which is calculated with pre-processed human an-
notations A:

V QAScore(y,A) = min(
#A(y)

3
, 1) (13)

in which #A(y) denotes the number of annotators
who answered y.

Exact Match (EM) is also adopted as the eval-
uation metric in our work, which treats annotated
answers equally:

1https://www.mturk.com

EM(y,A) = min(#A(y), 1) (14)

4.3 Implementation Details
We optimize the proposed model in the Pytorch
framework with AdamW optimizer, a batch size
of 1, gradient accumulation step of 8, and we use
NVIDIA A6000 GPUs. The initial learning rate
is set to 1e-5, and the weight decay is set to 0.05;
the warm-up learning rate and steps are set to 1e-
8 and 1000, respectively. In our method, t is set
to 32, and h is also set to 32. In addition, k

′
is

set to 10 in experiments of OK-VQA and set to
3 in experiments of A-OKVQA. The experiment
of each method is repeated 5 times, and the final
result is calculated via the average over the 5 runs.

4.4 Comparison Methods
On the OK-VQA dataset, we compare the pro-
posed method with a wide range of public ap-
proaches. Wherein, ConceptBERT (Gardères et al.,
2020), KRISP (Marino et al., 2021), UnifER (Guo
et al., 2022), VRR (Luo et al., 2021), KAT-T5
(Gui et al., 2022), TRiG-Ensemble (Gao et al.,
2022), RA-VQA (Lin and Byrne, 2022), MAVEx
(Wu et al., 2022), RA-VQA-v2 (Lin et al., 2023a),
VLC-BERT (Ravi et al., 2023) and TRiG (En-
semble) (Gao et al., 2022) are relatively small in
model size (<10B), MM-Reasoner (Khademi et al.,
2023), PICa (Yang et al., 2022), KAT (Gui et al.,
2022), Prophet (Shao et al., 2023), PromptCap (Hu
et al., 2022), REVIVE (Lin et al., 2022), Flamingo
(Alayrac et al., 2022), and TwO (Si et al., 2023)
use very large models such as GPT-3 (175B). Note
that (Sun et al., 2023) and (Xenos et al., 2023b) do
not offer the name of the proposed method.

On the A-OKVQA dataset, we compare with
various methods, including ViLBERT (Lu et al.,
2019), LXMERT (Tan and Bansal, 2019), ClipCap
(Mokady et al., 2021), KRISP, GPV-2 (Kamath
et al., 2022), Prophet (Shao et al., 2023).

4.5 Main Results
Table 1 reports the comparison results on the OK-
VQA dataset. One can figure out the following
observations. Firstly, compared with the methods
(e.g., KAT-T5, RA-VQA) retrieving textual knowl-
edge snippets, knowledge graph-based methods
(e.g., ConceptBERT, KRISP) perform less satisfac-
torily. The reason may be that knowledge graph-
based methods fail to gain enough knowledge for
the outside-knowledge question-answering task.
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Method Base Models k EM VQAScore

ConceptBERT (Gardères et al., 2020) 33.7
KRISP (Marino et al., 2021) 38.4
Visual Retriever-Reader (Luo et al., 2021) 100 39.2
MAVEx (Wu et al., 2022) 39.4
UnifER (Guo et al., 2022) 42.1
VLC-BERT (Ravi et al., 2023) 43.1
KAT-T5 (Gui et al., 2022) T5-large(770M) 40 44.3
(Sun et al., 2023) 49.4
TRiG (Gao et al., 2022) T5-large(770M) 100 54.7 50.5
RA-VQA (Lin and Byrne, 2022) T5-large(770M) 50 59.4 54.5
RA-VQA-v2 (Lin et al., 2023a) T5-XL(3B) 5 62.0 62.1
Method based on large-scale model (>10B parameters)
PICa (Yang et al., 2022) GPT-3 (175B) 48.0
KAT (Single) (Gui et al., 2022) T5-large (770M)+ GPT-3 (175B) 53.1
KAT (Ensemble) (Gui et al., 2022) T5-large (770M)+ GPT-3 (175B) 40 54.4
REVIVE (Single) (Lin et al., 2022) GPT-3 (175B) 56.6
Flamingo (Alayrac et al., 2022) Flamingo(80B) 57.8
REVIVE (Ensemble) (Lin et al., 2022) GPT-3 (175B) 58.0
TwO (Si et al., 2023) GPT-3 (175B) 58.7
PromptCap (Hu et al., 2022) GPT-3 (175B) 60.4
MM-Reasoner (Khademi et al., 2023) GPT-4 + i-Code v2 60.4
Prophet (Shao et al., 2023) GPT-3 (175B) +MCAN 61.1
(Xenos et al., 2023b) LLaMA 2 (13B) +MCAN 61.2
Our proposed method and ablation versions
SKP (FlanT5) FlanT5-XXL 3 61.1 56.4

w/ traditional knowledge incorporation approach FlanT5-XXL 3 59.7 54.9
SKP (vicunna) vicunna-7b 3 68.9 63.3

w/ traditional knowledge incorporation approach vicunna-7b 3 67.0 61.2
w/o dynamic fusion vicunna-7b 3 67.6 62.4
w/o knowledge supervision signal vicunna-7b 3 68.3 62.9
w/o ensemble-based prediction vicunna-7b 68.7 63.0

Table 1: Performance on OK-VQA dataset. k denotes the number of knowledge snippets used for prediction. The
best performance is bolded. Given the same model and knowledge, our method performs better than the traditional
knowledge incorporation approach, indicating that it can better mine the information in external knowledge.

Secondly, the methods based on the large-scale
LLM (e.g., GPT-3) can achieve good performance.
And we can find the methods using better prompts
(e.g., Prophet) that can induce the same LLM to
achieve better performance. Lastly, our method,
transforming the external knowledge into embed-
dings as a soft prompt, achieves decent perfor-
mance even with a small-scale LLM.

We further conduct ablation studies on OK-VQA.
As listed in Table 1, with regard to the traditional
knowledge incorporation approach, we observe a
significant drop in performance, which indicates
that transforming the external knowledge into a
soft prompt improves the instruction of LLM. As
for the variant without dynamic fusion, denoted as
SKP (w/o dynamic fusion), we see that the perfor-
mance degrades from 63.3 to 62.4. We conjecture
that dynamic fusion adaptively attends to external

knowledge, mitigating the influence of cases where
all knowledge snippets are irrelevant. Moreover,
we perform an experiment without the knowledge
supervision signal, denoted as SKP (w/o knowl-
edge supervision signal), and a performance de-
cline is observed, which manifests the effective-
ness of the proposed training method in terms of
knowledge utilization. And this supervision signal
can play a more important role as more knowl-
edge snippets are selected for answer generation
because it inevitably introduces more noise and
increases the need for extracting pivotal informa-
tion. In addition, when the variant work without
an ensemble-based prediction mechanism, denoted
as SKP (w/o ensemble-based prediction), we no-
tice a drop in performance, which validates the
necessity of multiple external knowledge. We also
verified the significance of design choices with

6138



Model VQAScore
ViLBERT (Lu et al., 2019) 30.6
LXMERT (Tan and Bansal, 2019) 30.7
ClipCap (Mokady et al., 2021) 30.9
KRISP (Marino et al., 2021) 33.7
GPV-2 (Kamath et al., 2022) 48.6
Prophet (Shao et al., 2023) 58.2
SKP (vicunna-7b) 65.3

w/ traditional knowledge
incorporation approach 63.8

Table 2: Experimental results on A-OKVQA.
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Figure 3: Analysis of the parameter k.

scipy.stats.ttest_ind(p < 0.05).
On the other hand, we conduct experiments on

the A-OKVQA dataset, and k is set to 3. The re-
sults are obtained based on the direct answer evalua-
tion setting, which is more challenging and realistic.
In addition, because our work aims to better uti-
lize relevant knowledge and A-OKVQA provides
the relevant knowledge on the training and valida-
tion sets, we provide the comparison results on the
validation set. As summarized in Table 2, it can
be seen that our method performs better than the
others on the A-OKVQA dataset. Notably, the per-
formance drops dramatically when engaged with
the traditional knowledge incorporation approach.
We attribute this to the fact that our design choice
endows our model with the robust capability to
handle external knowledge.

4.6 Effects of k

This section investigates how our method behaves
using a different number of knowledge snippets
k on the OK-VQA dataset. Firstly, we set k =
{1, 2, 3, 4, 5, 6, 7} to evaluate model performance
respectively. As Figure 3 shows, the prediction per-
formance fluctuates as k varies and saturates with
k = 3. We conjecture that the prediction under the
consideration of multiple external knowledge has a
positive effect, but when too much relevant knowl-
edge is involved (k gradually approaches k

′
), the

knowledge choice space for the proposed method
greatly shrinks, and more distracting information
messes pivotal knowledge up, leading to the lim-
ited performance. Therefore, we empirically set
k = 3 and k

′
= 10 in our experiments.

4.7 Case Studies
Figure 4 exhibits two samples of prediction. Specif-
ically, in the first question, “what type of apples
is the woman using in this recipe?”, it is obvious
that the question needs the help of external knowl-
edge to make an accurate answer (instead of a su-
perficial answer), in which using only the implicit
knowledge of LLM does not perform well. Besides,
conditioned on the traditional knowledge incorpo-
ration method, it remains challenging to generate a
correct answer. We conjecture that the traditional
approach fails to capture the information derived
from external knowledge accurately. In the second
question, “which type of metal is used for making
this toilet? ”, the answer obtained conditioned on
LLM only deviates from the essence of the actual
situation. That is, the toilet itself cannot be made of
aluminum. So, the wrong answer is caused by the
incomplete knowledge contained in LLM, or the ac-
curate knowledge of LLM is not induced. Further,
the answer obtained by the traditional knowledge-
enhanced method is still not accurate enough, indi-
cating that this paradigm lacks the ability to handle
external knowledge accurately.

4.8 Discussions
The prompt method is crucial for eliciting the
knowledge of large language models in the out-
put. In our experiments, the proposed prompt
method outperforms the ‘SKP(vicunna) w/ tradi-
tional knowledge incorporation approach’, which
concatenates external knowledge text and image
embedding based on projector. This demonstrates
that our prompt method can better stimulate the
performance of LLM on downstream tasks. Ad-
ditionally, we conducted an experiment on OK-
VQA using a typical prompt method that converts
the image into textual descriptions instead of us-
ing Q-former to transform them into embeddings.
The results were very poor (below 50) because this
prompt method cannot ensure that all image in-
formation is captured and may miss visual details
relevant to the question.

Compared to the outside-knowledge based
datasets OK-VQA and A-OKVQA, FVQA requires
basic factual knowledge to answer questions. We
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Question:  what type of apples is the woman using in this recipe?  (ground-truth answer: granny smith) 

Answer without using external knowledge: green
Answer using external knowledge based on the traditional method: green
Answer using external knowledge based on the proposed method: granny smith 

the  granny  smith  apple  variety  is  unique  in  the  apple
 world  with  its  green  colour  and  very  sour  taste ,
 making  it  the  exact  counter  part  to  the  golden  delicious

some  kind  of  lavatory  flushed  with  water  is  believed  to
 have  been  used  by  residents  of  the  indus  valley  by
 around 2000  b.c  .  toilet  seats  are  generally  made  from
 one  of  two  materials  .  the  metal  tank  fixtures are
 made  of  stainless  steel  or  copper  ,  and  the  joints
 that  hold  the  seat  to  the  bowl  are  usually  a
 rubber  -  like  plastic  .  or  used  it  as  a
 urinal  and  then  the  ""  slop  jar  ""  was  emptied
 into  the  outhouse

Question:  which type of metal is used for making this toilet?  (ground-truth answer: stainless steel) 
Answer without using external knowledge: aluminum
Answer using external knowledge based on the traditional method: stainless
Answer using external knowledge based on our method: stainless steel

Demonstration of words with the attention weights in one external knowledge using our method:

Demonstration of words with the attention weights in one external knowledge using our method:

Figure 4: Two samples on OK-VQA. Based on the same model, the results without using external knowledge, using
external knowledge based on the traditional method, and using external knowledge based on our method are given.

conducted an experiment on this dataset and found
that our method, given the same external knowl-
edge, enables the model to achieve higher perfor-
mance than traditional methods. However, because
the questions in FVQA often require relatively sim-
ple external knowledge, the implicit knowledge in
LLMs is already sufficient to handle these ques-
tions. As a result, utilizing external knowledge
does not significantly improve performance.

5 Conclusion

This work proposes a method to extract the pivotal
information from the relevant external knowledge,
which is then fused with the visual information
to form a knowledge-enhanced context. This ap-
proach protects LLM from being misled by dis-
tracting information, and avoids adding extra in-
put tokens to LLM. The experimental results on
knowledge-based VQA benchmarks demonstrate
that the proposed method enjoys better utilization
of external knowledge and is conducive to more
accurate answers. In addition, compared with
constructing a large and complex knowledge min-
ing model, which requires lots of labeled training
data and faces the problem of generalization, our
method enjoys the characteristics of good inter-
pretability, and simplicity of use.

Different from most recent works, we do not
focus on constructing a better retriever to obtain
more beneficial knowledge. Given a relevant exter-
nal knowledge, our work focuses on how to better
utilize it to improve the prediction performance.

We try our best to excavate its value, but the ben-
eficial information within an external knowledge
is limited. In future work, we will study how to
combine our method and the retriever construction
method to obtain a better performance improve-
ment. In addition, we will also investigate the
potential to improve the complementary between
external knowledge and model implicit knowledge.

Limitations

Our method focuses on improving the prediction
performance of LLM by mining external knowl-
edge, but there is vast implicit knowledge embed-
ded in LLM. Therefore, the problem of how exter-
nal knowledge and implicit knowledge supplement
each other mutually remains tricky. In the case
where external knowledge and implicit knowledge
conflict, it is necessary for a model to infer the qual-
ity of knowledge. The above problems are beyond
the scope of this paper and left for research efforts
in the future.
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Sharifzadeh, Mikoł aj Bińkowski, Ricardo Barreira,
Oriol Vinyals, Andrew Zisserman, and Karén Si-
monyan. 2022. Flamingo: a visual language model
for few-shot learning. In Advances in Neural Infor-
mation Processing Systems, volume 35, pages 23716–
23736. Curran Associates, Inc.

Jinheon Baek, Soyeong Jeong, Minki Kang, Jong C
Park, and Sung Ju Hwang. 2023. Knowledge-
augmented language model verification. In The 2023
Conference on Empirical Methods in Natural Lan-
guage Processing.

Chongqing Chen, Dezhi Han, and Chin-Chen Chang.
2022. Caan: Context-aware attention network for
visual question answering. Pattern Recognition,
132:108980.

W Dai, J Li, D Li, AMH Tiong, J Zhao, W Wang, B Li,
P Fung, and S Hoi. Instructblip: Towards general-
purpose vision-language models with instruction tun-
ing. arxiv 2023. arXiv preprint arXiv:2305.06500.

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell
Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang,
and Yue Cao. 2023. Eva: Exploring the limits of
masked visual representation learning at scale. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 19358–
19369.

Feng Gao, Qing Ping, Govind Thattai, Aishwarya Re-
ganti, Ying Nian Wu, and Prem Natarajan. 2022.
Transform-retrieve-generate: Natural language-
centric outside-knowledge visual question answer-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
5067–5077.

François Gardères, Maryam Ziaeefard, Baptiste Abe-
loos, and Freddy Lecue. 2020. Conceptbert:
Concept-aware representation for visual question an-
swering. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, pages 489–498.

Liangke Gui, Borui Wang, Qiuyuan Huang, Alexan-
der G Hauptmann, Yonatan Bisk, and Jianfeng Gao.
2022. Kat: A knowledge augmented transformer
for vision-and-language. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 956–968.

Yangyang Guo, Liqiang Nie, Yongkang Wong, Yibing
Liu, Zhiyong Cheng, and Mohan Kankanhalli. 2022.
A unified end-to-end retriever-reader framework for
knowledge-based vqa. In Proceedings of the 30th

ACM International Conference on Multimedia, pages
2061–2069.

Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi,
Noah A Smith, and Jiebo Luo. 2022. Promptcap:
Prompt-guided task-aware image captioning. arXiv
preprint arXiv:2211.09699.

Ziniu Hu, Ahmet Iscen, Chen Sun, Zirui Wang, Kai-
Wei Chang, Yizhou Sun, Cordelia Schmid, David A
Ross, and Alireza Fathi. 2023. Reveal: Retrieval-
augmented visual-language pre-training with multi-
source multimodal knowledge memory. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 23369–23379.

Amita Kamath, Christopher Clark, Tanmay Gupta, Eric
Kolve, Derek Hoiem, and Aniruddha Kembhavi.
2022. Webly supervised concept expansion for gen-
eral purpose vision models. In European Conference
on Computer Vision, pages 662–681. Springer.

Mahmoud Khademi, Ziyi Yang, Felipe Frujeri, and
Chenguang Zhu. 2023. Mm-reasoner: A multi-
modal knowledge-aware framework for knowledge-
based visual question answering. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 6571–6581.

Xiaonan Li, Changtai Zhu, Linyang Li, Zhangyue Yin,
Tianxiang Sun, and Xipeng Qiu. 2023. Llatrieval:
Llm-verified retrieval for verifiable generation. arXiv
preprint arXiv:2311.07838.

Weizhe Lin and Bill Byrne. 2022. Retrieval augmented
visual question answering with outside knowledge.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
11238–11254.

Weizhe Lin, Jinghong Chen, Jingbiao Mei, Alexandru
Coca, and Bill Byrne. 2023a. Fine-grained late-
interaction multi-modal retrieval for retrieval aug-
mented visual question answering. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi,
Maria Lomeli, Rich James, Pedro Rodriguez, Jacob
Kahn, Gergely Szilvasy, Mike Lewis, et al. 2023b.
Ra-dit: Retrieval-augmented dual instruction tuning.
arXiv preprint arXiv:2310.01352.

Yuanze Lin, Yujia Xie, Dongdong Chen, Yichong Xu,
Chenguang Zhu, and Lu Yuan. 2022. Revive: Re-
gional visual representation matters in knowledge-
based visual question answering. Advances in Neural
Information Processing Systems, 35:10560–10571.

Jerry Liu. 2022. LlamaIndex.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Vilbert: Pretraining task-agnostic visiolinguis-
tic representations for vision-and-language tasks. Ad-
vances in neural information processing systems, 32.

6141

https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://doi.org/10.5281/zenodo.1234


Hongyin Luo, Yung-Sung Chuang, Yuan Gong, Tian-
hua Zhang, Yoon Kim, Xixin Wu, Danny Fox, He-
len Meng, and James Glass. 2023. Sail: Search-
augmented instruction learning. arXiv preprint
arXiv:2305.15225.

Man Luo, Yankai Zeng, Pratyay Banerjee, and Chitta
Baral. 2021. Weakly-supervised visual-retriever-
reader for knowledge-based question answering. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
6417–6431.

Kenneth Marino, Xinlei Chen, Devi Parikh, Abhinav
Gupta, and Marcus Rohrbach. 2021. Krisp: Inte-
grating implicit and symbolic knowledge for open-
domain knowledge-based vqa. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14111–14121.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual ques-
tion answering benchmark requiring external knowl-
edge. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
3195–3204.

Ron Mokady, Amir Hertz, and Amit H Bermano. 2021.
Clipcap: Clip prefix for image captioning. arXiv
preprint arXiv:2111.09734.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, et al. 2023. Check your facts and
try again: Improving large language models with
external knowledge and automated feedback. arXiv
preprint arXiv:2302.12813.

Chen Qu, Hamed Zamani, Liu Yang, W Bruce Croft,
and Erik Learned-Miller. 2021. Passage retrieval for
outside-knowledge visual question answering. In
Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1753–1757.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. arXiv preprint arXiv:2302.00083.

Sahithya Ravi, Aditya Chinchure, Leonid Sigal, Renjie
Liao, and Vered Shwartz. 2023. Vlc-bert: visual
question answering with contextualized common-
sense knowledge. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion, pages 1155–1165.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2655–2671.

Dustin Schwenk, Apoorv Khandelwal, Christopher
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.

A-okvqa: A benchmark for visual question answer-
ing using world knowledge. In European Conference
on Computer Vision, pages 146–162. Springer.

Zhenwei Shao, Zhou Yu, Meng Wang, and Jun Yu. 2023.
Prompting large language models with answer heuris-
tics for knowledge-based visual question answering.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14974–
14983.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H Chi, Nathanael Schärli,
and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Inter-
national Conference on Machine Learning, pages
31210–31227. PMLR.

Qingyi Si, Yuchen Mo, Zheng Lin, Huishan Ji, and
Weiping Wang. 2023. Combo of thinking and ob-
serving for outside-knowledge VQA. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
10959–10975. Association for Computational Lin-
guistics.

Zhongfan Sun, Yongli Hu, Qingqing Gao, Huajie Jiang,
Junbin Gao, Yanfeng Sun, and Baocai Yin. 2023.
Breaking the barrier between pre-training and fine-
tuning: A hybrid prompting model for knowledge-
based vqa. In Proceedings of the 31st ACM Interna-
tional Conference on Multimedia, pages 4065–4073.

Hao Tan and Mohit Bansal. 2019. Lxmert: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing, pages 5100–5111.

Qunbo Wang, Jing Liu, and Wenjun Wu. 2024.
Coordinating explicit and implicit knowledge for
knowledge-based vqa. Pattern Recognition, page
110368.

Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan
Parvez, and Graham Neubig. 2023. Learning to filter
context for retrieval-augmented generation. arXiv
preprint arXiv:2311.08377.

Jialin Wu, Jiasen Lu, Ashish Sabharwal, and Roozbeh
Mottaghi. 2022. Multi-modal answer validation for
knowledge-based vqa. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36,
pages 2712–2721.

Alexandros Xenos, Themos Stafylakis, Ioannis Patras,
and Georgios Tzimiropoulos. 2023a. A simple base-
line for knowledge-based visual question answering.
arXiv preprint arXiv:2310.13570.

Alexandros Xenos, Themos Stafylakis, Ioannis Patras,
and Georgios Tzimiropoulos. 2023b. A simple base-
line for knowledge-based visual question answering.

6142

https://doi.org/10.18653/V1/2023.ACL-LONG.614
https://doi.org/10.18653/V1/2023.ACL-LONG.614
https://aclanthology.org/2023.emnlp-main.919
https://aclanthology.org/2023.emnlp-main.919


In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
14871–14877, Singapore. Association for Computa-
tional Linguistics.

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei
Hu, Yumao Lu, Zicheng Liu, and Lijuan Wang. 2022.
An empirical study of gpt-3 for few-shot knowledge-
based vqa. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 3081–
3089.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Lo-
geswaran, Moontae Lee, Honglak Lee, and Lu Wang.
2023. Merging generated and retrieved knowledge
for open-domain qa. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4710–4728.

Wenfeng Zheng, Lirong Yin, Xiaobing Chen, Zhiyang
Ma, Shan Liu, and Bo Yang. 2021. Knowledge base
graph embedding module design for visual question
answering model. Pattern recognition, 120:108153.

6143


