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Abstract

Language Models (LMs) excel in understand-
ing textual descriptions of proteins, as evident
in biomedical question-answering tasks. How-
ever, their capability falters with raw protein
data, such as amino acid sequences, due to
a deficit in pretraining on such data. Con-
versely, Protein Language Models (PLMs) can
understand and convert protein data into high-
quality representations, but struggle to process
texts. To address their limitations, we intro-
duce ProtT3, a framework for Protein-to-Text
Generation for Text-based Protein Understand-
ing. ProtT3 empowers an LM to understand
protein sequences of amino acids by incorpo-
rating a PLM as its protein understanding mod-
ule, enabling effective protein-to-text gener-
ation. This collaboration between PLM and
LM is facilitated by a cross-modal projector
(i.e., Q-Former) that bridges the modality gap
between the PLM’s representation space and
the LM’s input space. Unlike previous stud-
ies focusing on protein property prediction and
protein-text retrieval, we delve into the largely
unexplored field of protein-to-text generation.
To facilitate comprehensive benchmarks and
promote future research, we establish quan-
titative evaluations for protein-text modeling
tasks, including protein captioning, protein
question-answering, and protein-text retrieval.
Our experiments show that ProtT3 substan-
tially surpasses current baselines, with abla-
tion studies further highlighting the efficacy of
its core components. Our code is available at
https://github.com/acharkq/ProtT3.

1 Introduction

Language Models (LMs) have achieved impressive
successes across diverse domains (Brown et al.,
2020; Touvron et al., 2023; Liu et al., 2023c). Re-
markably, the extensive biological literature in their
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Protein sequence: DIELTQSPSSLSASLG 
GKVTITCKASQDIKKYIGWYQHKP…….
What is the category of polymer entity 
composition for this protein?

Heteromeric protein.

Protein Question Answering

Protein sequence: MIGASKLIRIWINARVY 
PAIAGAEIINDAVIVAKEGRLTFVGPASALS
IDDRDAETIDCGGRLITPGLVD……
Describe this protein’s functions.

Catalyze the hydrolytic cleavage of the carbon-
nitrogen bond in imidazolone-5-propanoate to 
yield N-formimidoyl-L-glutamate ……

Protein Captioning

Figure 1: Examples of protein-to-text generation tasks.
Proteins are represented by sequences of amino acids.

P2T Generation Prot-Text
RetrievalMethods Caption QA

ProteinCLAP (Liu et al., 2023b) ✗ ✗ ?
ProtST (Xu et al., 2023) ✗ ✗ ?
Galactica (Taylor et al., 2022) ✓ ? ✗

ProteinChat (Guo et al., 2023) ? ? ✗
Ours, ProtT3 ✓ ✓ ✓

Table 1: Comparing the abilities of protein-text model-
ing methods. ? denotes missing quantitative evaluation.

training data has enabled LMs to excel in text-based
protein understanding tasks, such as biological and
medical question-answering (QA) (Taylor et al.,
2022; OpenAI, 2023). These results show the po-
tential of using LMs as the natural language inter-
face for biomedical tasks. It further accentuates the
importance of harnessing LMs to drive advance-
ments in areas like drug discovery and protein prop-
erty prediction (Kim et al., 2021; Fan et al., 2023).

Here we focus on LM’s capability in text-based
protein understanding, which enables textual inter-
pretations of proteins. It can be assessed through di-
verse downstream tasks, particularly protein-to-text
generation (Guo et al., 2023) and retrieval (Xu et al.,
2023). Specifically, the retrieval task is finding an
existing text description best matching a particular
protein, while the generation task is delineated into
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(b) ProtT3’s two training stages.

Figure 2: Overview of the ProtT3 framework.

two problems, as illustrated in Figure 1: 1) protein
captioning, where the LM generates a description
of a specific protein’s functions, and 2) protein QA,
where the LM answers questions about a protein.
Table 1 overviews prior efforts (Liu et al., 2023b;
Xu et al., 2023; Taylor et al., 2022; Guo et al., 2023)
in this field. Delving into these previous studies,
we identify two research gaps:

• Lack of Exploration for Protein-to-Text Gen-
eration. Protein-to-text generation is a condi-
tional generation task (Keskar et al., 2019), re-
quiring the LM to perceive proteins as the gen-
eration condition. Previous studies (Xu et al.,
2023; Liu et al., 2023b) based on cross-modal
contrastive learning (Radford et al., 2021) hardly
interpret proteins as the direct inputs to the LM.
While notably two studies, Galactica and Protein-
Chat, have paid certain explorations, they unfor-
tunately appear to be quite constrained by key
limitations. Specifically, Galactica (Taylor et al.,
2022) incorporates only a limited set of protein
sequences in its pretraining data, thereby poten-
tially restricting its capacity for comprehensive
protein understanding; ProteinChat (Guo et al.,
2023) seeks to project protein representations to
text space by training a linear projector, which
might prove inadequate in capturing the intricate
relations between proteins and texts.

• Missing Quantitative Evaluation. The progress
in protein-text modeling is difficult to track with-
out proper benchmarks. As Table 1 illustrates,
the quantitative evaluations for these models are
mostly missing, posing a challenge to further
advancement in this field.

To bridge these research gaps, we propose
ProtT3: Protein-to-Text Generation for Text-
based Protein Understanding. As Figure 2a il-
lustrates, ProtT3 empowers an LM to understand
protein sequences of amino acids by incorporat-
ing a Protein Language Model (PLM) as its pro-
tein understanding module, thereby effectively con-
ditioning the protein-to-text generation process.

PLMs (Madani et al., 2023) are specialized LMs
pretrained solely on protein sequences. They can
generate powerful protein representations that are
instrumental in presenting the proteins’ 3D struc-
tures and indicating their potential properties (Chen
et al., 2023). To enable the LM to understand
the PLM’s protein representations, ProtT3 inte-
grates an expressive cross-modal projector – Q-
Former (Li et al., 2023a) – to map protein repre-
sentations into the text space of the LM. This de-
sign enables the LM to consume proteins as inputs.
However, working with a large LM with billions of
parameters raises a new challenge of maintaining
the efficiency of downstream adaptation. Therefore,
we incorporate a LoRA (Hu et al., 2022) adapter
into the LM for efficient fine-tuning purposes.

To facilitate effective protein-text modeling,
ProtT3 employs a two-stage training process to
enhance protein-text modeling, as outlined in Fig-
ure 2b. The first stage involves protein-text re-
trieval training with three cross-modal tasks (Li
et al., 2022a): protein-text contrasting, protein-text
matching, and protein captioning. This stage not
only empowers the cross-modal projector with the
capability of protein-text retrieval, but also serves
as a “warmup” before the second stage by encour-
aging the extraction of text-relevant protein fea-
tures. In the second stage, we connect the cross-
modal projector to the LM and conduct protein-to-
text generation training.

Our key contributions are summarized as:

• We introduce ProtT3, a new framework aiming
to bridge the modality gap between texts and pro-
teins. Through a cross-modal projector, ProtT3
jointly uses a PLM for protein understanding and
an LM for text processing, enabling effective
protein-to-text generation.

• To set benchmarks and promote future research,
we establish quantitative evaluations for protein-
text modeling tasks, including protein caption-
ing, protein QA, and protein-text retrieval. The
datasets, evaluation scripts, and our pretrained
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checkpoints will be made available online.

• ProtT3 achieves state-of-the-art performances
across various tasks. For protein captioning,
ProtT3 surpasses the baseline by over 10 BLEU-
2 scores in the Swiss-Prot (Bairoch and Apweiler,
2000) and the ProteinKG25 (Zhang et al., 2022)
datasets. For protein-text retrieval, ProtT3 out-
performs baselines by over 14% in retrieval accu-
racy on the Swiss-Prot and ProteinKG25 datasets.
Lastly, ProtT3 achieves 2.5% improvement of ex-
act match performance for protein QA on the
PDB-QA (Guo et al., 2023) dataset.

2 Related Works

Here we briefly review relevant fields of PLMs,
protein-text modeling, and multi-modal LMs.

Protein Language Models (PLMs). PLMs are
transformer-based LMs pretrained on large corpora
of protein sequences for protein understanding and
protein generation (Lin et al., 2022; Madani et al.,
2023; Nijkamp et al., 2022; Chen et al., 2023; El-
naggar et al., 2021; Rives et al., 2021a; Meier et al.,
2021). Similar to LMs for texts, PLMs are pre-
trained by the objective of masked language mod-
eling (Lin et al., 2022) or auto-regressive model-
ing (Madani et al., 2023). PLMs have demonstrated
promising performances on downstream tasks of
3D structure prediction and protein property predic-
tion (Lin et al., 2022; Chen et al., 2023). However,
they cannot process texts due to the absence of text
in their pretraining data.

Protein-Text Modeling. The pioneering study,
Galactica (Taylor et al., 2022), is an LM pretrained
on a text corpus that includes a small amount of
protein sequences. Its protein understanding abil-
ity can be suboptimal compared to PLMs due to
insufficient protein pretraining data. To mitigate
this gap, subsequent works (Xu et al., 2023; Liu
et al., 2023b) jointly leverage a PLM and an LM
by cross-modal contrastive learning (Radford et al.,
2021). However, cross-modal contrastive learning
is insufficient for protein-to-text generation. This is
because protein-to-text generation is a conditional
generation task. It demands the LM to understand
proteins as the generation condition, which con-
trastive learning cannot achieve. Further, Protein-
Chat (Guo et al., 2023) attempts to enable an LM
to understand proteins by training a linear projec-
tor between a PLM and an LM. Considering both
the PLM and LM are kept frozen during training,
this approach struggles to capture the nonlinear re-

lations between proteins and texts. In a different
approach, OntoProtein (Zhang et al., 2022) fine-
tunes a PLM using a biology knowledge graph,
focusing more on protein property prediction and
less on text-related tasks.

Multi-modal LMs. Enabling LMs to understand
another modality, such as image (Li et al., 2022a;
Tsimpoukelli et al., 2021), video (Zhang et al.,
2023), audio (Lyu et al., 2023), user-items (Liao
et al., 2024), and molecule (Liu et al., 2023c; Shi
et al., 2023; Li et al., 2024; Fang et al., 2024b; Ed-
wards et al., 2022), has been an activate research di-
rection. Notably, the research of multi-modal LMs
is pioneered by vision-language modeling (VLM).
VLM has been successfully applied for few-shot
image classification, image captioning, and image
QA (Li et al., 2022a; Alayrac et al., 2022). Specif-
ically, to enable LMs to understand images, the
leading VLM methods employ either 1) nonlinear
and expressive cross-modal projectors (Li et al.,
2023a; Alayrac et al., 2022), or 2) fine-tuned visual
encoders and LMs on multi-modal datasets (Driess
et al., 2023), while such studies are missing for
protein-text modeling. Our work takes the initia-
tive to explore this direction.

3 Model Architecture
Here we introduce ProtT3’s three key components:
a PLM for protein understanding, an LM for text
processing, and a cross-modal projector to bridge
the modality gap between the first two components.

Protein Language Model (PLM). We utilize
ESM-2 (Lin et al., 2022) to encode protein se-
quences of amino acids. ESM-2 is an encoder-only
transformer LM (Vaswani et al., 2017) pretrained
on 60M protein sequences by masked language
modeling (Devlin et al., 2019). PLMs have shown
promising performances for protein folding (Lin
et al., 2022), multiple sequence alignment (Rives
et al., 2021b), and protein property prediction (Xu
et al., 2023), demonstrating their effectiveness for
capturing protein characteristics. For efficiency, we
freeze ESM-2’s weights in our training process.

Language Model (LM). We choose Galac-
tica (Taylor et al., 2022) as the base LM. Galactica
is a decoder-only transformer LM pretrained on a
large collection of scientific papers, spanning disci-
plines like biology and medicine. Notably, Galac-
tica has demonstrated a high-level understanding
of protein concepts through its promising perfor-
mances in biomedical QA benchmarks (Jin et al.,
2019; Hendrycks et al., 2021). Furthermore, Galac-
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Figure 3: The training stage 1 of ProtT3. (a): Cross-Model Projector: Q-Former’s architecture and the three training
tasks. (b): The self-attention module uses different masking strategies for different tasks.

tica includes a small set of protein sequences in
its pretraining data, and shows a capability for un-
derstanding protein sequences through the task of
protein keyword prediction (Taylor et al., 2022).
Therefore, we also leverage Galactica as a baseline
for protein-to-text generation to ablate the effec-
tiveness of incorporating an additional PLM for
protein understanding.

Cross-Modal Projector. We employ a cross-
modal projector based on Q-Former (Li et al.,
2023a) to bridge the modality gap between the
PLM and the LM. Q-Former has demonstrated
promising performances in vision-language tasks.
As Figure 3a illustrates, Q-Former consists of two
transformers: one for protein encoding and an-
other for text processing. Specifically, the pro-
tein transformer maintains Nq learnable query to-
kens {qi ∈ Rd}Nq

i=1 as inputs. These query to-
kens can interact with the PLM through the cross-
attention modules, in order to extract protein fea-
tures. We denote the protein transformer’s output
as Z ∈ RNq×d, containing protein features. For
text input, the text transformer adds a [CLS] token
at the beginning, and uses the [CLS] token’s output
as the text representation. Both transformers share
the self-attention to enable interactions between
proteins and texts. Details are in Section 4.1.

Q-Former’s weights are initialized from
PubMedBERT-Abstract (Gu et al., 2022), a BERT
LM pretrained on paper abstracts from the PubMed
database1. It has shown promising performances
in understanding biomedical concepts under
the BLURB benchmark (Gu et al., 2022). The
cross-attention module is added into the Q-Former
every two layers and is randomly initialized.

4 Training Method

In this section, we introduce ProtT3’s two train-
ing stages: protein-text retrieval and protein-to-text

1https://pubmed.ncbi.nlm.nih.gov/

generation. The training process leverages a dataset
of protein-text pairs D = {(p1, t1), (p2, t2), ...},
where pi is a protein sequence and ti is the corre-
sponding text sequence.

4.1 Stage 1: Protein-Text Retrieval Training

Inspired by BLIP (Li et al., 2022a, 2023a), we
jointly employ three objectives for protein-text re-
trieval training: protein-text contrasting, protein-
text matching, and protein captioning. These ob-
jectives are tailored for Q-Former’s architecture,
training it to extract protein features that are rele-
vant to the text descriptions. This stage empowers
the cross-modal projector with retrieval ability, and
also serves as a “warmup” before the next stage.

Protein-Text Contrasting (PTC). We employ
cross-modal contrastive learning (Radford et al.,
2021) to align the protein representation and text
representation from the Q-Former. As illustrated in
Figure 3b, Q-Former’s self-attention module sepa-
rately processes the query tokens and text tokens
without any interaction. This enforces the query
tokens to extract protein features from the PLM,
in order to generate protein representations that
align with the corresponding text representations
in contrastive learning.

Formally, let {(p1, t1), ...(pB, tB)} be a batch
of protein-text pairs. We denote the protein repre-
sentations as {Zi ∈ RNq×d}Bi=1, where Zij ∈ Rd is
the reprentation of the protein pi’s j-th query token;
and denote text ti’s representation as mi ∈ Rd,
which is the [CLS] token’s output. Protein-text
similarity is measured by the maximum similarity
between m and each row of Z. The contrastive
learning loss LPTC can then be written as:

Lp2t =
1

B

B∑

i=1

log
exp(maxk cos(Zik,mi)/τ)∑B
j=1 exp(maxk cos(Zik,mj)/τ)

,

Lt2p =
1

B

B∑

i=1

log
exp(maxk cos(Zik,mi)/τ)∑B
j=1 exp(maxk cos(Zjk,mi)/τ)

,

LPTC = −Lp2t − Lt2p, (1)
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where cos(·, ·) is the cosine similarity; Temperature
τ is empirically set to 0.1.

Protein-Text Matching (PTM). PTM is a bi-
nary classification objective aiming to discriminate
whether a protein-text pair matches or not. Un-
like PTC which computes protein-text similarity
by applying cosine similarity on their output rep-
resentations, PTM can obtain more fine-grained
protein-text similarity. As illustrated in Figure 3b,
PTM feeds the query tokens and text tokens into the
same self-attention module, allowing them to inter-
act at the Q-Former’s early layers. In this way, the
query tokens can capture information on both pro-
teins and texts. The mean pooling of query tokens’
representations is then fed into a linear classifier
for PTM prediction. During training, for each pos-
itive protein-text pair (pi, ti), we randomly sam-
ple two negative pairs: (pi, ti′) and (pi′′ , ti). Let
f(p, t) ∈ [0, 1] be the Q-Former’s predicted prob-
ability that (p, t) is a matched pair, the PTM loss
function LPTM can be written as:

LPTC =
1

B

B∑

i=1

[− log f(pi, ti) + log f(pi′ , ti)

+ log f(pi, ti′′)]. (2)

In experiments, we find that PTM surpasses
PTC for protein-text retrieval. However, PTM in-
curs a higher computational cost for encoding ev-
ery protein-text pair. To balance performance and
speed, we use PTC to obtain the top k ranked can-
didates, and then use PTM for re-ranking.

Protein Captioning (PCap). Protein captioning
trains the Q-Former to generate text descriptions of
given proteins. As shown in Figure 3b, we apply
a special masking strategy for this objective: 1)
Bi-directional attention mask is applied to query
tokens, enabling them to interact with each other
but not text tokens; 2) Causal attention mask is
used for text tokens, allowing them to attend query
tokens and the preceding text tokens, but not the
following text tokens. This design ensures the text
tokens extract protein features exclusively from the
query tokens, because they cannot directly interact
with the proteins. Meanwhile, the query tokens are
enforced to extract protein features through cross-
attentions, satisfying the informational needs of
protein captioning. Let P (t|p) be the probability
that Q-Former generate text t given protein p. The

Size Avg Protein Len Avg Text Len

Train 430595 336 48
Valid 10000 358 59
Test 10000 357 60

(a) Swiss-Prot dataset of proteins and their text descriptions.

Size Avg Protein Len Avg Text Len

Train 422315 338 101
Valid 10000 360 104
Test 10000 360 107

(b) ProteinKG25 dataset of proteins and their text descriptions.

#Protein #QA Pair Avg Protein Len Avg Text Len

Train 114690 3359693 291 10
Valid 10000 291795 257 10
Test 10000 291779 259 10

(c) PDB-QA dataset. Each protein is acompanied by multiple QA
pairs, therefore proteins and QA pairs have different numbers.

Table 2: Statistics of our used protein-text datasets. Text
lengths are counted by splitting at spaces.

protein captioning loss LPCap can be written as:

LPCap = − 1

B

B∑

i=1

logP (ti|pi). (3)

4.2 Stage 2: Protein-to-Text Generation
Training

In this stage, we train ProtT3 for protein-to-text
generation. As Figure 2a illustrates, we connect
the cross-modal projector to the LM, feeding the
protein representations Z into the LM, so as to
condition the text generation process by protein
information. Note that, we use a linear layer to
project Z to the same dimension of the LM’s input.

We train ProtT3 for each generation dataset sep-
arately, and append different text prompts after the
protein representations to further control the gener-
ation process. For example, we use the text prompt
of “Describe this protein’s function” for protein
captioning, and “Question: Does this protein con-
tain polymer entities? Answer:” for protein QA.
For training, we use the same loss as the protein
captioning task in the previous section.

For training efficiency, we incorporate Low-
Rank Adaptation (LoRA) (Hu et al., 2022) adapters
into the LM. LoRA adds pairs of trainable rank de-
composition matrices into the selected weights of
the LM. For example, LoRA modifies a pretrained
weight W0 ∈ Rd1×d2 by adding a pair of matrices
B ∈ Rd1×r and A ∈ Rr×d2 :

W = W0 + BA, (4)

5953



QA Pair Type

Q: Does this protein contain polymer entities? A: Yes String structure/property

Q: What are the software programs reported in connection with the production
of this protein? A: CNS, REFMAC, SCALEPACK

String supplementary information

Q: How many polymer monomers does this protein have? A: 891 Number structure/property

Q: When is this protein first published? A: 2005 Number supplementary information

Table 3: Sampled QA pairs from the PDB-QA dataset. The sampled protein’s PDB id is 1xf2.

Model Base LM Exact Match BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

LoRA fine-tune Galac1.3B 13.49 42.48 37.79 44.42 34.73 42.46 48.27
ProtT3 w/ MLP Proj. Galac1.3B 20.60 48.96 44.59 57.28 50.17 56.89 57.30
ProtT3 w/o stage 1 Galac1.3B 22.88 50.21 46.76 58.64 51.63 57.17 58.62
ProtT3 Galac1.3B 25.74 55.03 51.47 63.67 56.59 62.16 63.63

(a) Performances (%) on the Swiss-Prot (Bairoch and Apweiler, 2000) dataset.

Model Base LM Exact Match BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

LoRA fine-tune Galac1.3B 2.67 64.97 56.96 68.20 59.71 62.51 65.17
ProtT3 w/ MLP Proj. Galac1.3B 4.07 71.88 63.30 74.15 66.59 68.05 72.39
ProtT3 w/o stage 1 Galac1.3B 4.85 72.33 64.79 75.67 68.21 69.34 73.00
ProtT3 Galac1.3B 5.48 76.53 68.67 78.29 70.50 71.40 76.76

(b) Performances (%) on the ProteinKG25 (Zhang et al., 2022) dataset.

Table 4: Protein captioning performances on Swiss-Prot and ProteinKG25. Bold indicates the best performance.

where W0 is kept frozen and only the newly
added BA is tuned. By using a small rank r ≪
min(d1, d2), LoRA can adapt an LM to a new task
while requiring little memory for storing gradients.
This method has shown comparable performances
to full-parameter fine-tuning (Hu et al., 2022).

5 Experiments

We begin by introducing the datasets of protein-text
pairs, followed by the experimental results. De-
tails on experimental settings, such as hyperparam-
eters and baseline implementations, are provided
in Appendix C. In the experiments, ProtT3 utilizes
Galactica1.3B as the base LM and ESM-2150M as
the PLM.

5.1 Protein-Text Dataset Collection
In this section, we detail the protein-text pair
datasets and the data processing procedure em-
ployed in our study. For all the used datasets, we
discard protein sequences longer than 1022 tokens,
and carefully split the datasets to ensure no overlap
between train/valid/test sets. Dataset statistics are
available in Table 2, and details are in Appendix A.

Swiss-Prot (Bairoch and Apweiler, 2000) is a
protein sequence database with text annotations.
We process the dataset following (Xu et al., 2023),
but excluding protein names from the text annota-
tions to prevent information leakage. The resulting

text descriptions concatenate the annotations of
protein functions, locations, and families.

ProteinKG25 (Zhang et al., 2022) is a knowl-
edge graph derived from the Gene Ontology (Alek-
sander et al., 2023) database. We transform its
triples into free texts by first aggregating the triples
of the same protein, and then filling the protein
information into a pre-defined text template.

PDB-QA (Guo et al., 2023) is a protein single-
turn QA dataset derived from RCSB PDB2. It in-
cludes 30 question templates about proteins’ struc-
tures, properties, and supplementary information.
As shown in Table 3, to enable a fine-grained eval-
uation, we categorize the questions into four types,
based on the answer’s format (string or number)
and content focus (structure/property or supplemen-
tary information). It is worth noting that supple-
mentary information is hard to predict given the
protein sequence alone.

Training Pipeline. In training stage 1, we train
ProtT3 on the combination of the Swiss-Prot and
ProteinKG25 datasets for protein-text retrieval. In
training stage 2, we load the checkpoint from stage
1 and conduct separate fine-tuning on the three
datasets for protein-to-text generation tasks.

2https://www.rcsb.org
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Retrieval in batch Retrieval in test set

P2T T2P P2T T2P

Model Acc R@20 Acc R@20 Acc R@20 Acc R@20

ProtST 81.4 99.4 79.6 99.4 15.9 56.6 17.8 63.5
ProteinCLAP 95.5 99.3 95.7 99.3 44.1 94.2 46.6 94.1
ProtT3 w/o PCap 97.2 99.9 97.1 99.9 66.4 95.3 66.2 95.2
ProtT3 w/o PTM 96.9 99.5 96.7 99.5 66.0 95.2 66.5 94.9
ProtT3 97.7 99.9 97.5 99.9 68.3 96.0 68.1 95.8

(a) Performances (%) on the Swiss-Prot (Bairoch and Apweiler, 2000) dataset.

Retrieval in batch Retrieval in test set

P2T T2P P2T T2P

Model Acc R@20 Acc R@20 Acc R@20 Acc R@20

ProtST 70.8 98.5 70.9 98.2 5.5 41.6 5.8 43.3
ProteinCLAP 93.2 99.2 93.2 99.3 39.0 89.4 39.3 89.7
ProtT3 w/o PCap 95.1 99.8 95.0 99.9 53.4 91.2 53.0 91.2
ProtT3 w/o PTM 94.8 99.4 94.7 99.3 53.8 91.3 54.1 91.3
ProtT3 95.1 99.9 95.3 99.9 55.8 91.7 55.6 91.7

(b) Performances (%) on the ProteinKG25 (Zhang et al., 2022) dataset.

Table 5: Protein-text retrieval performances. Bold indicates the best performance and underline indicates the second
best performance. We report performances of protein-to-text retrieval (P2T) and text-to-protein (T2P) retrieval.

5.2 Protein Captioning

We evaluate protein captioning performances on
the Swiss-Prot and ProteinKG25 datasets. Fol-
lowing (Edwards et al., 2022), we use the eval-
uation metrics of BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and METEOR (Banerjee and
Lavie, 2005). Additionally, we report the per-
centage that the prediction exactly matches the
ground truth annotation. For comparison and abla-
tion study purposes, we report the performances of
LoRA fine-tuned Galactica1.3B, and ProtT3’s two
variants: 1) ProtT3 w/ MLP Proj., which replaces
ProtT3’s cross-modal projector by an MLP, follow-
ing (Liu et al., 2023a); and 2) ProtT3 w/o stage
1, which skips ProtT3’s training stage 1. We do
not compare with ProteinChat (Guo et al., 2023)
because it requires 3D protein structures, which are
unavailable for these two datasets.

Table 4 presents the results. We observe the fol-
lowing: 1) ProtT3 and its variants substantially out-
perform the LoRA fine-tuned Galactica1.3B, with
ProtT3 showing a 10-point improvement in BLEU-
2 scores. This underscores the significance of in-
corporating a PLM for protein understanding and
ProtT3’s effectiveness in undertanding protein in-
puts. 2) ProtT3 consistently surpasses its two vari-
ants on both datasets, highlighting the advantages
of using a Q-Former projector and training stage 1.

5.3 Protein-Text Retrieval
We evaluate protein-text retrieval performances on
the Swiss-Prot and ProteinKG25 datasets. Fol-

String Number

Model Base LM SP SI SP SI Overall

LoRA ft Galac1.3B 82.2 65.7 45.5 38.0 62.5
LoRA ft, Q-only Galac1.3B 76.0 66.4 44.7 40.4 60.2
ProteinChat Vicuna13B 7.2 10.3 28.9 19.2 15.5
ProtT3 w/o stage 1 Galac1.3B 84.3 67.8 46.2 39.0 63.8
ProtT3 Galac1.3B 85.4 69.8 47.2 39.4 65.0

Table 6: Exact match performances (%) for protein
QA on the PDB-QA dataset (Guo et al., 2023). We
categorize the QA pairs by their types. SP stands for
structure/property, SI stands for supplementary infor-
mation, and ft stands for fine-tuning. ProteinChat is
evaluated using a checkpoint shared by the authors.

lowing (Su et al., 2022), our evaluation includes
protein-text retrieval in a batch of 64 random sam-
ples and retrieval in the entire test set. We use
Accuracy and Recall@20 as the evaluation met-
rics. For retrieval, ProtT3 first retrieves the top
128 candidates by PTC, and then uses PTM for re-
ranking. For comparison, we employ ProtST (Xu
et al., 2023) and ProteinCLAP (Liu et al., 2023b) as
baselines, and present ProtT3 w/o PTM and ProtT3
w/o PCap for ablation studies.

Table 5 shows the results. We observe that: 1)
ProtT3 outperforms baselines by over 14% accu-
racy for retrieval in the test set, highlighting its
capability in aligning proteins with corresponding
text descriptions. 2) PTM improves ProtT3’s re-
trieval accuracy in test set by 1 ∼ 2% on both
datasets. This is because PTM allows protein
and text information to interact at the Q-Former’s
early layers, achieving more fine-grained protein-
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Retrieval in batch Retrieval in test set

P2T (%) T2P (%) P2T (%) T2P (%)

PLM Acc R@20 Acc R@20 Acc R@20 Acc R@20

ESM-28M 96.6 99.9 96.2 99.8 64.8 94.1 64.4 93.7
ESM-235M 96.8 99.9 96.7 99.9 66.4 94.7 66.1 94.6
ESM-2150M 97.7 99.9 97.5 99.9 68.3 96.0 68.1 95.8

(a) Performances (%) on the Swiss-Prot (Bairoch and Apweiler, 2000) dataset.

Retrieval in batch Retrieval in test set
P2T (%) T2P (%) P2T (%) T2P (%)

PLM Acc R@20 Acc R@20 Acc R@20 Acc R@20

ESM-28M 93.1 99.8 93.5 99.7 51.9 88.6 51.7 89.0
ESM-235M 94.0 99.8 94.3 99.8 54.1 89.8 54.0 90.1
ESM-2150M 95.1 99.9 95.3 99.9 55.8 91.7 55.6 91.7

(b) Performances (%) on the ProteinKG25 (Zhang et al., 2022) dataset.

Table 7: Ablation studies of PLMs for molecule-text retrieval.

Base LM Exact Match BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

Phi-1.51.3B 1.13 71.71 63.65 68.62 60.29 61.52 69.28
Galac1.3B 5.48 76.53 68.67 78.29 70.50 71.40 76.76

Table 8: Ablation studies of textual LMs for protein captioning on the ProteinKG25 (Zhang et al., 2022) dataset.

text similarity measurements. 3) PCap improves
ProtT3’s retrieval accuracy by ∼ 2%. This is be-
cause PCap encourages the query tokens to extract
protein information most relevant to the text input,
therefore aiding in protein-text alignment.

5.4 Protein Question-Answering

We evaluate protein QA performances on the PDB-
QA dataset. Considering that the answers in PDB-
QA typically consist of 1 ∼ 2 words, we select
exact match as the evaluation metric. For compar-
ison, we employ ProteinChat (Guo et al., 2023)
and LoRA fine-tuned Galactica1.3B as baselines.
We also assess a Galactica1.3B that consumes only
questions without proteins during training and pre-
diction (i.e., LoRA ft, Q-only). This baseline mea-
sures the dataset’s uni-modal bias (Cadène et al.,
2019): the proportion of questions that can be cor-
rectly answered without looking at proteins.

The results are shown in Table 6. We observe
that: 1) ProtT3 surpasses baselines by 2.5% over-
all, and consistently outperforms them in predict-
ing protein structures and properties. This demon-
strates ProtT3’s multi-modal understanding ability
for the proteins and the textual questions. 2) The
baseline consuming question only (i.e., LoRA ft,
Q-only) presents comparable performance, indi-
cating that the dataset has a substantial uni-modal
bias. This finding suggests an opportunity to ex-

plore debias techniques (Mahabadi et al., 2020) in
future studies. 3) ProteinChat underperforms other
methods, possibly because it only trains a linear
layer between the frozen PLM and LM. The linear
layer is insufficient to map the protein representa-
tions into the text space of the LM, and adapt the
LM to QA. 4) Models perform worse on questions
about numbers or supplementary information. This
observation suggests the potential benefit of aug-
menting these models with external tools (Schick
et al., 2023) like calculators and search engines.

5.5 Ablation Studies on Pretrained Models

Here we conduct ablation studies on the pretrained
models used in our method. Specifically, we ablate
the impact of different PLMs in training stage 1,
and ablate different LMs in training stage 2.

Ablating PLMs. In training stage 1, we replace
the ESM-2150M protein encoder with its smaller
variants, namely ESM-28M and ESM-235M, to eval-
uate their performances for protein-text retrieval.
As shown in Table 7, we can observe that retrieval
performance increases monotonically with model
size, a trend consistent with previous observations
in the LM domain.

Ablating LMs. In training stage 2, we replace
Galactica1.3B to Phi-1.51.3B (Li et al., 2023c). Un-
like Galactica, Phi-1.51.3B is pretrained on general
domain data but not focusing on scientific liter-
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Ground truth ProtT3 Galactica

FUNCTION: This protein binds directly 
to 23S ribosomal RNA. SUBCELLULAR 
LOCATION: Plastid, chloroplast. 
SIMILARITY: Belongs to the universal 
ribosomal protein uL1 family.

SUBCELLULAR LOCATION: 
Plastid, chloroplast. SIMILARITY: 
Belongs to the universal 
ribosomal protein uL1 family.

FUNCTION: Binds directly to 23S 
rRNA. SUBCELLULAR LOCATION: 
Plastid, chloroplast. SIMILARITY: 
Belongs to the universal ribosomal 
protein uL1 family.

SUBCELLULAR LOCATION: 
Nucleus. SIMILARITY: Belongs to 
the DMRT family.

FUNCTION: Orphan nuclear receptor. 
SUBCELLU-LAR LOCATION: 
Nucleus. SIMILARITY: Belongs to the 
nuclear hormone receptor family.

FUNCTION: May be involved in 
sexual development. 
SUBCELLULAR LOCATION: 
Nucleus. SIMILARITY: Belongs to 
the DMRT family.

FUNCTION: Appears to play a 
central role in the parasite 
detoxification system. SIMILARITY: 
Belongs to the GST superfamily. Pi 
family.

FUNCTION: Conjugation of reduced 
glutathion-e to a wide number of 
exogenous and endog-enous hydrophobic 
electrophiles. SIMILARITY: Belongs to the 
GST superfamily. Pi family.

FUNCTION: Conjugation of reduced 
glutathione to a wide number of 
exogenous and endogenous hydrophobic 
electrophiles. SIMILARITY: Belongs to 
the GST superfamily. Theta family.

Q9LY66

UniProt ID

Q8CFG4

P46427

Figure 4: Protein captioning examples from Swiss-Prot. We highlight sentences that exactly match the ground truth.
Figures of protein structures are generated by AlphaFold2 (Jumper et al., 2021).

QA Pair ProtT3 Galactica

Q: What are the terms characterizing 
the protein? A:TRANSPORT PROTEIN.

TRANSPOR
TPROTEIN.

TRANSPORT 
PROTEIN.

Q: What are the bound nonpolymer 
components for this protein A: MG. MG. MG.

ProteinChat

Q: How many assemblies does this 
protein have? A: 2. 1. 0.

1.

2F2, ATP.

0.

Figure 5: Examples of protein QA results in the PDB-
QA dataset. We highlight the correct predictions.

ature. Table 8 shows protein captioning perfor-
mance on the ProteinKG25 (Zhang et al., 2022)
dataset. We can observe that Galactica1.3B signifi-
cantly outperforms Phi-1.51.3B for protein caption-
ing, although they have similar sizes. We attribute
this performance gap to their pretraining corpus,
with Galactica1.3B performing better for pretraining
on more scientific literature.

5.6 Examples of Protein-to-Text Generation

Figure 4 shows three examples of protein caption-
ing. In the first example, ProtT3’s caption is more
accurate by correctly identifying the DMRT family,
while Galactica does not. In the second example,
both models fail to identify the protein’s function.
Nevertheless, ProtT3’s prediction regarding the pro-
tein family is more accurate. The third example
shows that both models successfully predict the
subcellular location and protein family. ProtT3
goes a step further by predicting the protein’s func-
tion, which is closer to the ground truth description.

Figure 5 shows three examples of protein QA.
We can observe that both ProtT3 and Galactica
answer the first two questions about protein prop-
erty/structure correctly, and fail on the third ques-
tion, which requires a numerical answer. On the
other hand, ProteinChat struggles with all three
questions, failing to answer each of them.

6 Conclusion and Future Works

In this work, we propose ProtT3, a new protein-
text modeling framework. ProtT3 aims to facilitate
text-based protein understanding via protein-to-text
generation and protein-text retrieval. To achieve
this, ProtT3 integrates a PLM into an LM to en-
hance the LM’s protein understanding ability. A
cross-modal projector enables this integration by
bridging the modality gap between the two mod-
ules. To promote future research, we set bench-
marks for protein-text modeling tasks, including
protein captioning, protein QA, and protein-text
retrieval, where ProtT3 significantly outperforms
existing baselines.

Looking ahead, we plan to explore enabling LMs
to understand 3D protein structures (Li et al., 2024)
and apply this understanding to more tasks of drug
discovery, property prediction (Liu et al., 2023d;
Li et al., 2022b, 2023b), molecule generation (Luo
et al., 2024), and OOD generalization (Fang et al.,
2023, 2024a).

Limitations

On Representing Proteins by 1D Sequences. Pro-
teins can be represented by either 1D sequences of
amino acids or 3D coordinates of their atoms. In
this study, we represent proteins by 1D sequences
considering their abundance compared to 3D struc-
tures. As of 2023, the Protein Data Bank con-
tains 220K 3D structures 3, whereas the UniProt
database houses 227M 1D sequences (Consortium,
2023). This abundance of 1D sequences enables
us to collect a larger dataset. In Section 5.1, we
collect a total of 1M protein-text pairs, a signif-
icant increase from the 143K pairs in the earlier
work (Guo et al., 2023) using 3D structures.

3https://www.wwpdb.org/stats/deposition
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While it is feasible to predict the 3D structures
of protein sequences by running protein folding
algorithms (Jumper et al., 2021; Lin et al., 2022),
this prediction process is notably time-consuming.
For example, predicting the 3D structures of the
440k protein sequences in the ProteinKG25 (Zhang
et al., 2022) dataset would take approximately four
months when using an A100 80GB GPU. Due to
this computational demand, we choose to focus
on 1D sequences, leaving the exploration of 3D
structures for future research.

On Dynamic Protein Structures. Proteins have
dynamic structures, and natural language is limited
in fully depicting protein dynamics. Nonetheless,
similar to video-to-text generation (Aafaq et al.,
2020), where language partially describes dynamic
videos, our work on protein-to-text generation is a
crucial step towards encapsulating complex biolog-
ical phenomena in a human-readable form.

Potential Ethics Impact

In this study, the proposed method and dataset fo-
cus on proteins and their properties, and include
no human subjects. Consequently, we believe this
study presents no direct ethical concerns. How-
ever, the proposed LMs can be abused to generate
biased or toxic information, and can generate inac-
curate description of protein properties and struc-
tures. Therefore, the ethical implications of our
work align with those common to LM research.
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A Details of Protein-Text Dataset
Collection

Swiss-Prot (Bairoch and Apweiler, 2000). Dataset
samples are provided in Table 11. We largely fol-
low the instructions in (Xu et al., 2023) for data
processing. We first download the lastest dump
of Swiss-Prot from the UniProt website4, and then
select three annotation fields: Function, which de-
scribes protein’s roles such as catalysis and trans-
port; Subcellular Location, indicating where a pro-
tein is typically found within a cell; Similarity,
which details the protein’s family. These three
annotation fields are then concatenated to form the
text description of proteins. Different from (Xu
et al., 2023), we do not include the annotation of
Protein Name in the text description. This is be-
cause Protein Name can be potential information
leakage for the protein-text retrieval task.

ProteinKG25 (Zhang et al., 2022). Dataset sam-
ples are shown in Table 13. ProteinKG25 is orig-
inally a knowledge graph derived from the Gene
Ontology database (Aleksander et al., 2023). Pro-
teinKG25 is stored as triples in the format of (pro-
tein sequence, relation, property), such as (pro-
tein 1, enables, structural constituent of ribosome),
(protein 2, is involved in metabolic process, rRNA
processing), and (protein 3, is located in, cyto-
plasm). To synthetic text descriptions using such
triples, we perform the following steps:

• Group triples by protein sequences. Each result-
ing group has triples of the same protein.

• Further group triples by relation types. Each
resulting group has triples of the same protein
and the same relation type. For example, a group
can include triples of (protein 1, is involved in
lipid metabolic process, fatty acid biosynthetic
process), (protein 1, is involved in lipid metabolic
process, lipid catabolic process), and (protein 1,
is involved in lipid metabolic process, fatty acid
metabolic process).

• Transform the triples in each group into a sen-
tence by filling the information into a text tem-
plate. For example, the three triples in the previ-
ous step will be transformed into: This protein is
involved in the following lipid metabolic process:
fatty acid biosynthetic process, lipid catabolic
process, and fatty acid metabolic process.

4https://www.uniprot.org/

• Concatenate the sentences of the same protein
together to form the final text description.

Note that, we do not include the protein sequence
information in the text description to avoid informa-
tion leakage. The Python script for data processing
and the text templates will be made available online
to facilitate future research.

PDB-QA (Guo et al., 2023). The categoriza-
tion of all 30 question templates is detailed in Ta-
ble 14. The original PDB-QA dataset provides only
3D structures of proteins. To retrieve their 1D se-
quences, we call the web API of the RCSB PDB
website5 using the proteins’ PDB IDs.

B Error Analysis

Questions of Structures/Properties. Table 9
presents the statistics of sampled questions in this
category. We can observe a strong correlation be-
tween accuracy and the number of candidate an-
swers. This observation is intuitive, as questions
become more challenging with an expanded answer
pool. Further, questions that have a large number of
candidate answers are those that require numerical
outputs. This highlights the potential of improving
the ability of counting substructures and processing
numbers in future studies.

Questions of Supplementary Information. Ta-
ble 10 shows the sampled questions of supplemen-
tary information and the candidate answers. We
can observe that the questions and answers are not
directly relevant to protein structures or functions.
Therefore, we infer that the success of these ques-
tions often relies on exploiting the dataset’s inher-
ent biases rather than understanding protein struc-
tures and properties. This realization prompts a
concern that the model’s performance could signif-
icantly diminish when applied to datasets without
similar biases, indicating a potential area for im-
provement using retrieval augmentation.

C Experimental Details

Following MolT5 (Edwards et al., 2022) and Pro-
teinCLAP (Liu et al., 2023b), we use a single same
random seed for experiments. Using multiple ran-
dom seeds is cost-prohibitive for tuning large LMs.

The number of parameters of ProtT3 and key-
baseline are summarized in Table 12. All the ex-
periments are conducted on either two A100-40GB
GPUs or four V100-32GB GPUs. We have used

5https://www.rcsb.org/
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Question Accuracy Number of candi-
date answers

Does this protein contain RNA polymer entities? 0.9871 2
Does this protein contain DNA polymer entities? 0.9790 2
How many nucleic acid polymer entities(DNA or RNA) does this
protein have?

0.9644 7

Does this protein contain branched entities? 0.9509 2
What is the polymer entity type for this protein? 0.9192 4
How many model structures deposited for this protein? 0.9036 39
What are the software programs reported in connection with the
production of this protein?

0.0733 3611

What is the molecular mass (KDa) of polymer and non-polymer
entities (exclusive of solvent) for this protein?

0.0037 7367

How many heavy atom coordinates records does this protein have? 0.0010 6550

Table 9: Sampled questions of structures/properties and the corresponding accuracies and numbers of candidate
answers.

Question Candidate answers

How many model structures de-
posited for this protein?

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...}

What experimental method(s) were
used to determine the structure of
this protein?

{’NMR’, ’X-ray’, ’EM’, ’Other’, ’Multiple methods’, ’Neutron’}

When is this protein first published? {1975, 1976, 1977, 1979, 1980, 1981, 1982, 1983, 1984, 1985 ...}

Table 10: Sampled questions of supplementary information and the candidate answers.

Entry Name Description

ENO1_CHLTE FUNCTION: Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyru-
vate. It is essential for the degradation of carbohydrates via glycolysis. SUBCELLULAR
LOCATION: Cytoplasm Secreted Cell surface Note=Fractions of enolase are present in both
the cytoplasm and on the cell surface. The export of enolase possibly depends on the covalent
binding to the substrate; once secreted, it remains attached to the cell surface. SIMILARITY:
Belongs to the enolase family.

6PGD_AGGAC FUNCTION: Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-
phosphate and CO(2), with concomitant reduction of NADP to NADPH. SIMILARITY: Belongs
to the 6-phosphogluconate dehydrogenase family.

RIMP_ACAM1 FUNCTION: Required for maturation of 30S ribosomal subunits. SUBCELLULAR LOCATION:
Cytoplasm. SIMILARITY: Belongs to the RimP family.

Table 11: Examples of protein descriptions in the Swiss-Prot dataset. Entry name is the protein index in the original
database.

FlashAttention-2 (Dao, 2023) to speedup the ESM-
2 and Galactica model.

C.1 Experimental Details of ProtT3

Hyperparameters. The training stage 1 has 50
epochs and stage 2 has 10 epochs. The batch size
is 128 for both stage 1 and stage 2. Q-Former
has 8 query tokens (Nq = 8). The optimizer is
configured following (Li et al., 2023a). We use
an AdamW optimizer and a learning rate sched-
uler that is a combination of linear warmup and
cosine decay. The peak learning rate is 1e − 4
and the warmup has 1000 steps. Weight-decay is
set to 0.05. For all experiments that involve fine-

tuning the Galactica1.3B LM, we set LoRA’s rank
r to 8 and apply LoRA to Galactica’s weights of
[q_proj, v_proj, k_proj, out_proj, fc1,
fc2]. This configuration yields LoRA adapters
with 7M parameters, constituting merely 0.54% of
the parameters in the Galactica1.3B. LoRA is im-
plemented using the OpenDelta (Ding et al., 2022)
library. For the text generation training, we truncate
all the texts to at most 128 tokens.

Case Studies. The examples in Figure 4 are sam-
pled from the predictions of models in Table 4a.
The examples in Figure 5 are sampled from the
predictions of models in Table 4b. Specifically, the
Galactica model in Figure 4 and Figure 5 refers to
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Retrieval Task Generation Task

Model #Parameters Model #Parameters

ProtST 786M ProteinChat 13.6B
ProteinCLAP 530M Galactica1.3B 1.3B
ProtT3 stage 1 326M ProtT3 stage 2 1.6B

Table 12: Number of parameters of ProtT3 and key baselines.

the LoRA fine-tuned Galactica on the correspond-
ing dataset.

C.2 Experimental Details of Baselines and
ProtT3 Variants.

LoRA fine-tune Galactica1.3B. We use LoRA fine-
tune Galactica1.3B as a baseline to verify the effec-
tiveness of using a PLM for protein understanding.
The hyperparameters are the same as ProtT3: they
use the same optimizer, learning rate, batch size,
epochs, and LoRA configuration. This baseline is
applied directly for training stage 2 without training
stage 1 because of its incapability of protein-text
retrieval.

ProtT3 w/ MLP Proj. This ProtT3 variant re-
places ProtT3’s Q-Former projector with a two-
layer MLP following (Liu et al., 2023a). Hyper-
parameters are the same as ProtT3. This variant
includes training stage 2 without stage 1, because
the MLP projector cannot process multi-modal in-
puts, therefore cannot be applied in stage 1.

ProtT3 w/o Stage 1. This ProtT3 variant is
to verify the effectiveness of training stage 1 for
downstream generation tasks. Hyperparameters are
the same as ProtT3.

ProtT3 w/o PTM. This is a variant of ProtT3’s
stage 1 model that removes the PTM objective func-
tion. Without the PTM objective, ProtT3 relies on
retrieval ability of the PTC objective for protein-
text retrieval.

ProtT3 w/o PCap. This is a variant of ProtT3’s
stage 1 model that removes the PCap objective
function.

ProtST (Xu et al., 2023). We re-implement
their method on our datasets, using their released
codes and the original hyperparameters in their
paper. Specifically, we have implemented their
ProtST-ESM-2 model and their multi-modal pre-
training stage. Following their original paper, we
adopt ESM-2650M as the protein encoder and adopt
PubMedBERT-abs109M (Gu et al., 2022) as the text
encoder. The model is trained on the combina-
tion of the Swiss-Prot and ProteinKG25 datasets,
which is the same as ProtT3’s training stage 1. The

pretrained model is then applied for protein-text
retrieval directly.

ProteinCLAP (Liu et al., 2023b). We re-
implement their method from scratch for their
source codes are not publicly available. Our im-
plementation largely follows the description in
their paper: using SciBERT (Beltagy et al., 2019)
for text encoding and ProtBERT (Elnaggar et al.,
2021) for protein encoding, learning rate 1e − 5.
We have trained the model on the combination of
the Swiss-Prot and ProteinKG25 datasets for 50
epochs, which is the same as ProtT3’s training
stage 1. The pretrained model is then applied for
protein-text retrieval.

ProteinChat. ProteinChat (Guo et al., 2023) is
developed using the base LM of Vicuna13B (Zheng
et al., 2023). We did not evaluate ProteinChat for
the Swiss-Prot and ProteinKG25 datasets because
these two datasets do not include proteins’ 3D struc-
tures, which is required by ProteinChat’s protein
encoder. For the PDB-QA dataset, we evaluate
a checkpoint shared by the authors, which is the
checkpoint used in their original paper.

D Further Discussions

D.1 Intuitions on Q-Former’s Capabilities
For clarity, we briefly summarize Q-Former’s capa-
bility in the two stages:
Stage 1: Protein-Text Retrieval Training.

• Protein-Text Retrieval with Protein-Text Con-
trasting (PTC) and Protein-Text Matching
(PTM). Both of these two pretraining tasks are
designed for retrieval: PTC is faster for using co-
sine similarity to model sequence-level similarity
between proteins and texts; PTM is slower but
more accurate for using self-attention to model
the token-level similarity. The other pretraining
task, Protein Captioning, although cannot be ap-
plied for retrieval directly, improves Q-Former’s
representation learning ability, so as to improve
the retrieval performance.

• Warmup before stage 2. The three pretraining
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Protein ID Description

B1VNN9 This protein is involved in the following process: nitrogen compound metabolic process. This
protein is located in the following component: cytoplasm. This protein is involved in metabolic
process: nitrogen compound metabolic process. This protein enables metal ion binding: nickel
cation binding. This protein enables the following function: nickel cation binding.

Q01644 This protein is part of the following component: cellular component. This protein is involved in
the following process: multicellular organism development, cell differentiation, sperm axoneme
assembly, and spermatogenesis. This protein enables the following function: molecular function.

Q32AB9 This protein is involved in metabolic process: tricarboxylic acid cycle, carbon fixation, and
oxaloacetate metabolic process. This protein enables metal ion binding: magnesium ion binding.
This protein enables catalytic activity: hosphoenolpyruvate carboxylase activity, catalytic activity,
and lyase activity. This protein enables the following functions: lyase activity, magnesium ion
binding, catalytic activity, and phosphoenolpyruvate carboxylase activity.

Table 13: Examples of protein descriptions in the ProteinKG25 dataset. Protein ID is the protein index in the
original dataset.

Question Type Question Type

What is the nucleic acid polymer
entity type for this protein?

String struc-
ture/property

How many heavy atom coordinates
records does this protein have?

Number supplemen-
tary information

When is this protein first pub-
lished?

Number supplemen-
tary information

How many intermolecular metalic
bonds does this protein have?

Number struc-
ture/property

How many polymer monomers
does this protein have?

Number struc-
ture/property

Does this protein have hybrid nu-
cleic acid polymer entities?

String struc-
ture/property

How many assemblies does this
protein have?

Number struc-
ture/property

What is the molecular mass (KDa)
of polymer and non-polymer enti-
ties (exclusive of solvent) for this
protein?

Number struc-
ture/property

How many heavy solvent atom
coordinates records does this
protein have?

Number supplemen-
tary information

Is this protein determined by experi-
mental or computational methods?

String supplemen-
tary information

Does this protein have cis-
peptide linkages?

String struc-
ture/property

What is the radiation wavelength in
angstroms for this protein?

Number struc-
ture/property

Does this protein contain
branched entities?

String struc-
ture/property

Does this protein have unmodeled
polymer monomers?

String supplemen-
tary information

How many entities does this pro-
tein have?

Number struc-
ture/property

How many intermolecular covalent
bonds does this protein have?

Number struc-
ture/property

Does this protein contain sol-
vent entities?

String struc-
ture/property

How many model structures de-
posited for this protein?

Number supplemen-
tary information

What is the polymer entity type
for this protein?

String struc-
ture/property

What are the software programs re-
ported in connection with the pro-
duction of this protein?

String supplemen-
tary information

How many nucleic acid polymer
entities (DNA or RNA) does this
protein have?

Number struc-
ture/property

How many hydrogen atom coordi-
nates records does this protein have?

Number supplemen-
tary information

What is the polymer entity com-
position for this protein?

String struc-
ture/property

What experimental method(s) were
used to determine the structure of
this protein?

String supplemen-
tary information

Does this protein contain DNA
polymer entities?

String struc-
ture/property

Does this protein contain polymer
entities?

String struc-
ture/property

Does this protein contain non-
polymer entities?

String struc-
ture/property

Does this protein contain RNA poly-
mer entities?

String struc-
ture/property

What are the terms characteriz-
ing the protein?

String struc-
ture/property

What are the bound nonpolymer
components for this protein

String struc-
ture/property

Table 14: Categorization of the 30 questions in the PDB-QA dataset (Guo et al., 2023).
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tasks pretrain Q-Former to have multi-modal rep-
resentation ability of texts and proteins, acting as
a warmup training before stage 2.

Stage 2: Protein-to-Text Generation Training.

• Nonlinear Mapping from Protein Space to
Text Space. Q-Former maps the protein en-
coder’s output to the input space of an LM. This
innovative approach allows the LM to leverage
pre-existing knowledge from the protein encoder,
facilitating a deeper understanding of protein
structures and functions.

D.2 Discussion on Linear Mapping

Proteins and texts inherently exist within high-
dimensional spaces, exhibiting intricate and non-
linear semantic relationships. The utilization of
a mere linear layer to map between protein and
text domains often proves insufficient, potentially
resulting in a loss of critical structural details of
proteins or inaccuracies in text representatio. This
claim is supported by the observation in Table 6,
where a baseline using a linear projector signifi-
cantly underpforms the others.

It is important to note, however, that applying
a linear layer between the protein encoder and the
LM does not necessarily produce a strictly linear
mapping from proteins to texts. Should either the
protein encoder or the LM undergo fine-tuning —
as opposed to remaining frozen — their weights
can adapt to facilitate a nonlinear mapping between
protein and text. Thus, our critique is not directed
at the use of a linear layer per se, but rather at
its employment in conjunction with frozen protein
encoders and LMs.

E Discussion on Licensing

Pretrained Models and Codes. The Galac-
tica (Taylor et al., 2022) model is under the CC BY-
NC 4.0 license, ESM-2 (Lin et al., 2022) under the
MIT License, and Sci-BERT (Beltagy et al., 2019)
under the Apache License. Collectively, these li-
censes permit non-commercial use and redistribu-
tion of the models.

Datasets. The Swiss-Prot (Bairoch and Ap-
weiler, 2000) dataset is distributed under the CC
BY 4.0 License. ProteinKG25 (Zhang et al., 2022)
dataset is released under the MIT License, its
original source GeneOntology (Aleksander et al.,
2023) is under the CC BY 4.0 License. The PDB-
QA (Guo et al., 2023) dataset is released under

the BSD 3-Clause License, its original source
RCSB-PDB is under the CC0 1.0 Universal Li-
cense. These licenses collectively allow the use
and redistribution of the datasets.

Our Licensing Approach. In line with the li-
censing terms of the codes, models, and datasets
we utilized, we will release our pretrained models
and codes under the CC BY-NC 4.0 License. For
our datasets, we will apply the CC BY 4.0 License.
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