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Abstract

Incorporating every annotator’s perspective is
crucial for unbiased data modeling. Annotator
fatigue and changing opinions over time can
distort dataset annotations. To combat this, we
propose to learn a more accurate representation
of diverse opinions by utilizing multitask learn-
ing in conjunction with loss-based label correc-
tion. We show that using our novel formulation,
we can cleanly separate agreeing and disagree-
ing annotations. Furthermore, this method pro-
vides a controllable way to encourage or dis-
courage disagreement. We demonstrate that
this modification can improve prediction per-
formance in a single or multi-annotator setting.
Lastly, we show that this method remains ro-
bust to additional label noise that is applied to
subjective data.

1 Introduction

The practice of enhancing label accuracy in datasets
through the use of multiple annotations per sample
is found in works such as Snow et al. (2008). This
method capitalizes on the collective expertise of
annotators to improve data quality. The reason is
due to the assumption that individual annotators
make mistakes and a collection of annotators can
provide better-quality labels. Traditional methods
for reconciling differences are to use techniques
such as majority voting, averaging, or expert opin-
ions (Waseem and Hovy, 2016). These methods
are designed to arrive at a single ‘ground truth’ for
training supervised learning models. However, in
tasks of a subjective nature where a single ‘correct’
answer may not exist, these practices can compro-
mise the diverse perspectives of individual annota-
tors. These issues are found across many domains
such as in medical (Cheplygina and Pluim, 2018),
social (Ding et al., 2022), and others (Uma et al.,
2021).

To improve the fair representation of annotators’
opinions, datasets have been built to include indi-

vidual annotations. These datasets contain labels
that are not aggregated through majority voting.
This enables the capturing of opinions of annota-
tors who would otherwise have been removed due
to the aggregation function. Multitask learning is
one way to model this data as demonstrated by
Mostafazadeh Davani et al. (2022), where each
task is to predict an annotator’s individual label.
However, these methods do not account for possi-
ble mistakes that individual annotators might make
during the annotation process. Datasets such as
the GabHateCorpus by Kennedy et al. (2018) and
GoEmotions by Demszky et al. (2020) can con-
tain thousands of annotations by a single annotator.
Mistakes such as misidentifying emotions due to
annotation exhaustion would not be surprising. Fur-
thermore, annotation of a large number of samples
may occur over multiple days and introduce tem-
poral distribution shifts of opinion.

We propose to address this problem by intro-
ducing loss-based label correction into a multitask
learning setting. A fundamental property of loss-
based label correction works by exploiting the net-
work memorization effect by Arpit et al. (2017).
They found that networks tended to learn simple
patterns before learning more complex ones. This
has been used extensively within the noisy learning
community such as in Arazo et al. (2019). These
methods first utilize the memorization effect to de-
tect mislabeled instances. Then they correct these
possible sources of mislabeling using techniques
such as incorporation of a network’s own guess.

Motivated by this, we propose a novel formu-
lation of multitask learning with label correction.
However, a main challenge we try to overcome is
that naive applications of these methods can erase
the diverse perspectives of annotators. This is be-
cause the original technique makes use of a sam-
ple’s loss to determine whether it is correctly or
incorrectly labeled. On a dataset with subjective
labels, we find that higher loss samples are asso-
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ciated with minority opinions which complicates
the noisy sample detection process. We propose a
novel method to address this by strengthening or
weakening a model’s guess of the true label. We
find that our method is robust to added noise while
also maintaining diverse opinions. We show that
this is useful when modeling subjective datasets
with differing agreement properties. We highlight
our contributions as follows:

• We present a novel formulation of multitask
learning with loss-based noise correction.

• We demonstrate that we can separate agreeing
and disagreeing annotations to detect noise
and disagreement.

• We demonstrate that this modification can
improve prediction performance in a single
or multi-annotator setting. Additionally, this
method remains robust to additional label
noise that is applied to subjective data.

• We introduce a hyperparameter to control the
degree of label correction due to variability in
label properties for different annotation tasks.
We show that this has a noticeable effect on
performance.

2 Background

2.1 Multitask Learning for Disagreement
Disagreement among annotators, a common occur-
rence in the annotation process, signifies differing
opinions or interpretations when labeling a specific
task. Addressing annotator disagreement is a funda-
mental part of enhancing machine learning model
accuracy. Traditionally, reliability has been used
as a measure of dataset quality, however, this mea-
sure emphasizes having a single ground truth. This
is problematic for capturing diverse opinions. To
address these problems, researchers have studied
various underlying sources of such disagreements,
focusing on two primary types: random variation
and systematic disagreement (Krippendorff, 2011;
Dumitrache, 2015; Aroyo and Welty, 2013).

In many real-life scenarios, obtaining the true
label for training—considered the gold standard or
objective ground truth—is impractical, too costly,
or tedious. We often rely on labels from multiple
sources, which may introduce noise and significant
variation. This variation underlines the challenge
of applying supervised learning algorithms without
a definitive gold standard, especially when label

sources vary in reliability and accuracy (Raykar
et al., 2010).

Random variation encompasses the inherent un-
predictability in human judgments, which can intro-
duce randomness into machine learning algorithms,
impacting their outcomes (Fernandes et al., 2023).
This type of disagreement might stem from individ-
ual biases or the subjective nature of a task such as
due to demographic properties (Ding et al., 2022).

On the other hand, systematic disagreement is
more nuanced, arising from consistent inaccuracies
or biases in the machine learning models them-
selves. Systematic disagreement can also arise
from multiple sources or due to multiple reasons.
As demonstrated by Krippendorff, this can result
from systematic factors that skew the models, lead-
ing to persistent errors in interpretation (Krippen-
dorff, 2008).

Understanding both types of disagreement is cru-
cial for developing robust machine learning models,
as it improves the reliability of annotations. Clas-
sifier performance and resilience are influenced
by the level of annotators’ agreement, which is
important when selecting training and test data
(Leonardelli et al., 2021). Ongoing research contin-
ues to enhance methods for identifying and model-
ing disagreements, thereby improving the quality
and representativeness of annotated data.

2.2 Annotator Noise
Noise correction refers to the systematic process of
identifying and rectifying errors or inconsistencies
within a dataset, often termed error correction. Its
primary objective is to enhance both the quality
and reliability of the data by either eliminating
or minimizing the influence of noise (Zhan et al.,
2019).

This noise may include random errors, artifacts,
or inaccuracies that can significantly distort the
underlying patterns and relationships within the
data. By employing various correction techniques
tailored to the specific type and source of the noise,
researchers can obtain a cleaner, more accurate
representation of the information.

Traditional categorical cross-entropy loss is not
well-suited for this task as it tends to fit the noise
rather than the underlying data distribution (Zhang
et al., 2016). The hard bootstrapping loss intro-
duced by Reed et al. (2015) offers a solution by
augmenting the standard cross-entropy loss with
a perceptual term. This addition helps adjust the
training objective, making it more robust to label
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noise.

Deep neural networks demonstrate a two-phase
learning process when trained on datasets with
noisy labels. In the "early learning" phase, they
tend to pick up correct and general patterns. As
training continues, they start to memorize incor-
rectly labeled examples. This behavior reflects
their initial ability to capture generalizable data
patterns before gradually fitting to noise, which
challenges their generalization capability on new
data. This property has been used by many works
to improve representation learning under noisy con-
ditions (Arazo et al., 2019; Liu et al., 2020; Li et al.,
2020; Nishi et al., 2021).

Effective noise correction is essential in data pre-
processing, especially in machine learning, where
data quality significantly impacts model perfor-
mance and interpretability. This ongoing challenge
involves carefully eliminating genuine noise with-
out losing critical variations or introducing new
biases (Arazo et al., 2019).

2.3 Uncertainty Quantification

Machine learning models’ uncertainty is particu-
larly useful in subjective areas, helping to deter-
mine when human oversight is needed, such as in
content moderation, where uncertain predictions
trigger human review to maintain content standards.
(Ghandeharioun et al., 2019) (Chandrasekharan
et al., 2019)

Estimating uncertainty in machine learning is
crucial but challenging. The simplest method
uses Softmax probabilities (Hendrycks and Gimpel,
2017), but it can yield overconfident predictions
for novel inputs, unlike the training data.

Gal’s Monte Carlo dropout technique, high-
lighted in Gal and Ghahramani (2016), improves
uncertainty estimation by applying dropout not
only during training but also during testing. This
method calculates output variances to offer a more
accurate assessment of prediction uncertainty than
single-label probabilities.

Klas and Vollmer (2018) argues that relying
solely on single label probabilities overlooks many
elements influencing predictive uncertainty. In-
stead, employing a range of predicted annotations
provides a more refined and thorough assessment
of uncertainty in machine learning models.

3 Methods

We are given dataset denoted as D, comprising
text samples X , and an annotation matrix Y ∈
R2×A. Here, X represents individual text entries,
A signifies the number of annotators, and Y is a
matrix where each cell yi stores one hot value of
a label class. Due to the non-uniform distribution
of annotator input across text instances, missing
values in Y are prevalent. Our goal is to deduce a
consensus label for each text instance.

3.1 Baseline
A standard way for optimizing a model for multi-
class classification is to utilize the cross entropy
loss function. For an input sample x, the cross
entropy loss is given by:

LCE = −
M∑

m=1

ym · log(pm(x, θ)) (1)

where m represents the number of classes and the
yi represents the truth for the ith class. θ signifies
some model.

3.2 Multi-task learning to account for
different opinions

Individual annotators’ opinions can be incorpo-
rated into learning the model via multi-task learn-
ing. Suppose there are A annotators, we can create
A different task heads (fully connected layers) to
predict each of the individual annotations. This
changes the cross-entropy loss to a summation of
the individual outputs for each task head:

LMT = − 1

A

A∑

a=1

M∑

m=1

ya,m · log(pa,m(x, θ)). (2)

Here, the ground truth values for each sample form
a A ×M matrix y. The model will also output a
prediction distribution for each annotator. Note that
MT loss reduces to the CE loss when the number
of annotators is 1.

3.3 Noise Correction via Loss Modeling
Arazo et al. (2019) found that a sample’s loss can
be used to separate correctly and incorrectly anno-
tated samples. That is, when learning with imper-
fect data, lower losses corresponded to the correct
samples, and higher losses correlated with incor-
rect annotations. This leads to a two-step algorithm.
First, the loss distribution was modeled using a two-
component mixture model to generate a weight w.
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The weight indicates how likely a particular sam-
ple, based on its loss, is likely to be mislabeled.
The intuition is that a model’s guess should be inte-
grated for possibly mislabeled data. This gives us
a loss function which scaled by this weight:

LLC = −((1− w)
M∑

m=1

yi · log(pm(x, θ))+

w
M∑

m=1

z · log(pm(x, θ)))

The new label is re-parameterized as a weighted
sum of a network’s guesses with its ground truth.
Here, z = pm(x, θ), and represents a network’s
prediction based on a single round of evaluation
and is detached during a training cycle of the net-
work.

3.4 Multi-task learning with loss-based noise
correction

We can now combine equations LMT and LLC
from above to create a multi-task label correction
loss:

LMLC =
1

A

A∑

a

−((1− w)
M∑

m=1

yi · log(pa,m(x, θ))+

w
M∑

m=1

za,m · log(pa,m(x, θ)))

LMLC = − 1

A

A∑

a=1

M∑

m=1

(1− w)ya,m · log(pa,m(x, θ))−

1

A

A∑

a=1

M∑

m=1

wza,m · log(pa,m(x, θ))

LMLC = (1− w) ∗ (LMT ) + (ψ ∗ w ∗ LG)

Additionally, we propose to introduce a subjec-
tivity parameter ψ parameter to tune the impact of
a network’s self-guess loss term ψ ·LG. Intuitively,
as shown in Figure 1, higher values would push
more disagreeing labels to the majority class. This
can be tuned as a way to balance agreement with
disagreement and noise based on dataset properties.

3.5 Manifold Mixup
Integrating the manifold mixup technique into our
baseline and multitask loss correction scenarios, as
delineated by Verma et al. (2018), involved strate-
gically selecting a random layer from the BERT
model. This choice facilitated the application of
mixup at the embedding level, addressing the chal-
lenges of working with textual data which inher-
ently limits direct input interpolations. Manifold
mixup alters the representations linked to layers
preceding and succeeding the mixing procedures.

(a) GabHateCorpus loss distribution for a single annota-
tor.

(b) GoEmotions loss distribution for a single annotator.

Figure 1: Modeling the loss distribution for annotators
in multitask learning for a given epoch of training. Arpit
et al. (2017) demonstrated that networks tended to learn
correct samples first before memorizing the incorrect
samples. In our problem, the semantics of this changes
to agreeing versus disagreeing samples. As can be seen,
there is a clear separation of samples based on loss. For
the dataset depicted in Figure 1a, the average proportion
of samples in the "Agree" category is 54.57%, while
the "Disagree" category averages 45.43%. Within the
"Agree" distribution, 55.43% of the samples conform
to the baseline majority. In contrast, within the "Dis-
agree" distribution, 48.94% of the samples align with
the majority view. For the dataset illustrated in Fig-
ure 1b, the "Agree" category comprises an average of
51.69% of the samples, whereas the "Disagree" category
averages 48.31%. Within the "Agree" distribution of the
GoEmotions sample, 52.84% of the samples align with
the baseline majority. Conversely, in the "Disagree"
distribution, 48.65% represent the majority view. Addi-
tionally, this demonstrates that our method can preserve
diverse opinions. This also conforms with the previous
understanding that networks tend to be over-confident
with predictions since the lower losses are more aligned
than higher losses with the majority case.

4 Experimental Setup

We evaluate each of the four different optimization
methods above in these experiments.

• Baseline corresponds to a network with a sin-
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gle output head optimized to the majority label
using LCE .

• Baseline + Loss Correction injects our loss
correction technique onto the majority label
optimization method (LLC). The manifold
mixup method was adopted.

• Multitask involves adding A fully-connected
layers to the last layer of the network. Each
output is trying to predict the annotations of
a unique annotator. Since the datasets we are
using are missing annotators, these loss terms
are zero-ed out and not back-propagated. This
corresponds to the (LMT ) loss.

• Multitask + Loss Correction is our pro-
posed method for integrating loss correction
(LMLC) into a multitask setting. Just like the
baseline loss correction scenario, we applied
the manifold mixup to this as well.

4.1 Datasets
In our experiments, we made use of GoEmotions
and GabHateCorpus datasets to annotate our sub-
jective tasks.

GoEmotions (Demszky et al., 2020) is a large-
scale dataset consisting of 58K Reddit comments
annotated with 27 different emotion categories, in-
cluding neutral labels. The dataset is annotated by
82 crowdsourced workers and label noise is mini-
mized by removing labels that have fewer than one
annotator. The dataset is designed for multi-class
and multi-label emotion classification, however,
83% of examples have a single label. The dataset
is pre-split into a training set with 43,410 entries, a
validation set containing 5,426 entries, and a test-
ing set comprised of 5,427 entries. We evaluate the
six basic Ekman emotion labels in this work.

GabHateCorpus (GHC): The Gab Hate Corpus
(GHC) hate speech dataset developed by Kennedy
et al. (2018), and consists of 27,665 text entries
collected from Gab.com. This public dataset was
annotated by 18 specialized annotators, with each
entry evaluated by at least 3 different experts. This
rigorous process ensures a high level of accuracy
and consistency within the GHC. This property is
unique due to its emphasis on label quality when
given label diversity.

4.2 Implementation Details
The classification models were built using the Hug-
gingFace transformers library (version 4.38) (Wolf

et al., 2019). Our experimental setup closely re-
sembled that of Mostafazadeh Davani et al. (2022).
For the GabHateCorpus experiments, we trained
the models for five epochs using a learning rate of
1e-7. As for the GoEmotions dataset, we utilized
a learning rate of 5e-6 and trained the models for
five epochs. We used this to obtain the baseline and
multitask for each of the datasets and then we in-
troduced the label correction similar to how Arazo
et al. (2019) was implemented. We used the pre-
trained Bert base-uncased model as the underlying
architecture. As we do not have access to the origi-
nal multi-task code some results are different than
Mostafazadeh Davani et al. (2022). Optimization
was conducted using Stochastic Gradient Descent
(SGD) with a momentum of 0.9, weight decay of
0.01, and a batch size of 64.

Additionally, we integrate some components that
are necessary to train for loss correction. A warm-
up period using an entropy-based penalty on the
confidence term has been found useful to prevent
noise overfitting during warm-up periods (Pereyra
et al., 2017). We designated a warm-up period of
2 epochs for the GoEmotions and GabHateCorpus
datasets. This was necessary to stabilize the train-
ing, mitigate poor initialization, and make it start
with a smaller learning rate and gradually increase
it. We utilized regularization following Tanaka et al.
(2018) and Arazo et al. (2019) aiming to deter the
allocation of all samples to a singular class. We
did not implement the full Arazo et al. (2019) to
minimize possible confounding effects of auxiliary
techniques. Unless otherwise specified, ψ is set to
0.5.

4.3 Noise Injection

The datasets used in the evaluation are for binary
classification. Therefore, we simply flip the labels
by sampling for a subset of data. In this paper, we
used 20% noise rate for the noise experiments. For
samples where the labels are from multiple annota-
tors, e.g. 4 votes for true and 1 vote for false, we
swap the labels for the samples where we are inject-
ing noise. This is similar to how labels are injected
in popular noisy labels literature. Not all annotators
annotated every sample. We ignored these anno-
tators when injecting noise and thus these did not
have an impact on the loss.
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Text Annotator Rating Majority Agree With Majority? Multitask

Yeah, OK then, get your nurse to give you some
more of those nice tablets that make you sleep.

Not Hate Not Hate Yes Not Hate(100%)

This creature was predicated his actions were pre-
dicted etc etc etc now the media are outraged as
predicted.... this is proof that the level of evil we
are dealing with is not a person but a large and well
financed group

Not Hate Not Hate Yes Not Hate(100%)

Farcebook? Should have tanked a long time ago. Not Hate Not Hate Yes Not Hate(67.67%)

IDK, my favorite was "Icelandic Women are
Whores" Happy New Year and Hail Victory

Not Hate Not Hate Yes Not Hate(100%)

Christian cake baker who won SCOTUS case is now
being harassed by demented Satanist homosexuals,
backed by the state of Colorado.

Not Hate Hate No Hate(50%)

Table 1: Samples from the GabHateCorpus Dataset which shows the text, the annotation on the text given a specific
annotator, agreement with the majority based on the Agree and Disagree distribution in Figure 1, the baseline
majority with the percentage of Hate in the annotation. The samples show instances where the baseline differs
removes minority opinions that multitask captures.

Text Emotion Annotator Rating Majority Agree With Majority? Multitask

But also: fuck the daily mail. Anger Anger Anger Yes Anger(100%)

You blew it. They played you like a fiddle Disgust Not Disgust Not Disgust Yes Not Disgust(80%)

The sin was refusing to impregnate his brother Disgust Not Disgust Disgust No Disgust(66.67%)

Ok now that was epic! Fear Not Fear Not Fear Yes Not Fear(100%)

I can see why! I would totally be offended too! Sadness Sadness Not Sadness No Not Sadness(66.67%)

I’ve been abused enough by the Knicks today. Sadness Sadness Sadness Yes Sadness(100%)

I just can’t believe she had the nerve to call. Surprise Surprise Surprise Yes Surprise(100%)

Table 2: Samples from the GoEmotion Dataset which shows the text, the annotation on the text by a specific
annotator compared to the baseline majority with the percentage of the emotion, and if it agrees with the majority
based on the Agree and Disagree distribution in Figure 1. The samples show instances where the baseline distribution
is different than the multitask setting.

5 Results

Due to the nature of this problem, it is important
to consider these results within the context of data
collection processes. GoEmotions annotators were
crowdworkers who spoke English from India. GHC
annotation was a two-step process that involved ex-
pert opinions. The annotators of GHC were trained
and the annotation process was much more con-
trolled. Furthermore, the annotator population was
recruited from a smaller sample and consisted of
undergraduate students. These processes would
cause GHC to be less variable, due to likely similar
backgrounds of annotators. On the other hand, us-
ing untrained crowdworkers from a foreign country
would likely lead to more variability.

With this in mind, we first discuss the compari-
son of performance metrics in evaluated methods.
We then examine the effect of injecting additional
noise. Lastly, we examine the effect of adjusting
the subjectivity parameter and its effect on results.

5.1 Comparison of techniques

We present the GabHateCorpus results in Table 3
and the results of GoEmotions in Table 4. All met-
rics reported are compared to the majority label
on the ground truth. As can be seen in the GHC
results, our method demonstrates improvements
across all metrics when compared against the base-
lines. Additionally, we see that baseline methods
based on the majority also perform worse than base-
line + label correction. These results indicate that
regardless of the number of annotators, it may be
beneficial to incorporate label correction.

For GoEmotions results, we see that for Multi-
task+LC, all six cases exceed the multitask results.
This indicates that the loss correction is having
some effect. Most notably, there is a significant
improvement in performance between the majority
and annotator (multitask) conditions. We hypothe-
size that this is due to two factors. One plausible
explanation for this phenomenon may be the incon-
sistency in the number of annotators who labeled
each text instance in the dataset. This pattern was
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No Noise 20% Noise

Method Precision Recall F1 Precision Recall F1

Baseline 46.09 ± 2.9 49.96 ± 5.7 47.95 ± 5.4 49.87 ± 5.6 49.78 ± 5.6 41.67 ± 4.7
Baseline + Label Correction 50.11±3.2 51.32±3.3 49.34±5.6 50.50±3.2 50.12±3.2 45.97 ±5.2

Multitask 49.56±5.6 49.86 ± 5.0 45.57±2.9 47.70±3.0 47.95±3.1 45.62±2.9
Multitask + Label Correction 51.54 ±3.3 51.71±2.8 50.3 ±3.2 52.32 ±3.3 51.12±2.5 51.55±2.3

Table 3: Performance comparison on the GabHateCorpus dataset when compared to majority based ground-truth.
Our proposed method of incorporating label correction into multitask learning had the highest score. Our method is
also robust to label noise under conditions of label subjectivity. This experiment is run with 5 different seeds and we
report the averages.

also noted by Mostafazadeh Davani et al. (2022).
Such variance could introduce an additional layer
of complexity or uncertainty into the model, af-
fecting its ability to efficiently generalize from the
data. This opens up avenues for future research
to understand how the number of annotators, and
the possible divergence in their annotations, influ-
ences the effectiveness of loss correction methods
in multi-task learning setups. While we observed
an improvement in the multitask scenario, we be-
lieve the application of manifold mixup is also con-
tributory to this, our multitask results exceed the
results presented in the previous work. Secondly,
additional investigation is warranted for the effect
of the initial model which further confounds the
results.

5.2 Classification of Subjective Labels in the
Presence of Noise

We compare the effect of noise for each classifi-
cation task on GHC as well as GoEmotions. In
this paper, we conduct experiments with a 20%
noise rate injected based on the process discussed
in 4.3. As can be seen in Table 3 our method is
robust to noise injection even when accounting for
multiple annotators. It is also interesting to note
that both the majority-based methods for aggregat-
ing labels (Baseline Majority and Baseline + Label
Correction), showed a large drop in performance.
This highlights the importance of training multiple
annotators as a way to mitigate the effect of noise.

We see that for the results of GoEmotions in
Table 5, there is a significant drop in the majority
label annotations. However, the multitask cases all
showcase a smaller drop in performance than the
majority label techniques. This highlights the need
to account for multiple annotator opinions.

5.3 Effect of Subjectivity Parameter

We present the results exploring the subjectivity
parameter ψ in Table 6. A higher ψ will lead to
more conforming predictions, while a lower ψ will
lead to less conforming predictions. Our investi-
gation into the optimal setting for the subjectiv-
ity parameter (ψ) across GHC and GoEmotions
datasets demonstrates that a ψ value of 0.5 consis-
tently achieves the highest performance (relative to
the majority vote) for our experimental setup. This
result highlights the importance of a balanced ap-
proach to noise correction across diverse datasets,
showing that a ψ value of 0.5 effectively manages
label disagreements and boosts model accuracy. In
addition to the majority-based patterns we see in
Table 6 we present annotator-level results in Table
7. As can be seen, there is a direct correlation be-
tween the annotator-level labeling variance and the
ψ parameter. This appears to be more visible in the
dataset GHC as it is more balanced than GoEmo-
tions. To calculate variance across all annotations,
we follow the same formula as previous work:

σ2(ȳi) =

∑
[yij = 1]

∑
[yij = 0]

|ȳi2
.

The inherent noise in the dataset suggests that some
correction of annotation mistakes is necessary, but
it will compromise prediction diversity. The results
reported are averaged over two runs.

While this value may change depending on hy-
perparameters, dataset, architecture, and other prop-
erties; it highlights the need to take a balanced
approach when adjusting for noise correction on
the dataset with subjective annotations. Setting the
value too high may lead the network to make in-
correct guesses and may lead to increased variance
and inaccuracies. Setting it to an ‘optimal’ value
may cause the dataset to predict the majority cases
more, however, this may not be desirable in all sit-
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No Noise

Emotion Baseline Baseline + LC Multitask Multitask + LC

Anger 42.21 ± 3.7 43.35±3.6 56.31±3.6 66.68±4.6
Disgust 32.4±6.1 34.18±3.1 58.16±2.4 64.65±0.5
Fear 44.45±6.0 49.09±5.7 58.96±5.5 69.80±6.1
Joy 52.17±5.3 54.63±5.0 60.91±5.2 66.97±4.4
Sadness 50.29±5.7 51.84±3.8 62.16±5.8 67.86±3.9
Surprise 44.32±5.1 46.86±6.1 61.63±5.0 68.93±3.5

Table 4: Performance comparison on the GoEmotions
dataset. Binary classification accuracy is reported for
each emotion. For each emotion considered, we demon-
strate improved performance when ψ is fixed to 0.5.

20% Noise

Emotion Baseline Baseline + LC Multitask Multitask + LC

Anger 46.58±5.9 49.93±3.0 44.28±5.0 48.26±3.0
Disgust 44.3±3.3 48.94±4.9 43.89±1.1 46.27±4.9
Fear 44.38±3.6 49.08±3.5 44.11±4.8 47.05±3.1
Joy 46.61±4.9 50.35±6.1 43.62±5.2 48.83±3.6
Sadness 45.51±3.6 49.47±4.9 43.58±3.8 47.77±1.9
Surprise 44.53±1.2 49.24±2.9 43.83±3.6 49.01±3.4

Table 5: Performance comparison on the GoEmotions
dataset when injected with 20% label noise. Our method
shows robustness to noise injection as well. The ob-
served performance reduction in multitask and multi-
task+LC models, compared to the baseline and base-
line+LC, upon noise injection might be attributed to
the specific method of integrating noise, the number of
annotators of the GoEmotion dataset, and other inherent
characteristics of the GoEmotion dataset. This suggests
exploring alternative noise simulation techniques might
mitigate the impact on model performance, particularly
in datasets with complex attributes.

uations and thus our ψ parameter provides a way
to control for this property.

5.4 Loss Separation

We showcase a clear bimodal distribution to illus-
trate the challenge of separating noise and opinion
in Figure 1. We see that for a specific annotator,
there are peaks for agreeing and disagreeing sam-
ples. Note that these are semantically different than
the noisy label’s definition of correct and incorrect.
In this paper, we refer to incorrect annotations as
a label that the annotator would not typically as-
cribe to a sample due to the dataset properties. We
assume that incorrect answers are more likely to
fall in the distribution of disagreeing labels. We
calculate the proportion of labels within each mode
to see how many of them agree with the majority
annotation and how many disagree. Our proposed
technique attempts to control the level of noise cor-
rection to account for these added complications.

5.5 Model Uncertainty

In our empirical evaluations, we observed an in-
crease in the agreement between model predictions
and majority labels upon applying the loss correc-
tion strategy to multitask scenarios. The provided
graphs in Figure 2 illustrate the effect of the loss
correction method on the variance of predictions
for two multitask models across different values of
ψ.

For the GHC Multitask model depicted on the
left of Figure 2, there is a visible trend where the
variance decreases to its lowest point at ψ = 0.5.
This represents an 18% increase in the agreement
between the model’s predictions and the majority
labels. The GoEmotion Multitask model shown on
the right shows a corresponding improvement of
approximately 14% improvement in prediction con-
sistency. The other points on the graph for GoEmo-
tion vary more significantly, with some psi values
leading to higher variances, which suggests greater
fluctuation in agreement levels at those points.

Both graphs highlight the optimal setting of
ψ to 0.5 for achieving the most reliable predic-
tions, as indicated by the minimum variance values
at this point, suggesting the effectiveness of the
loss correction strategy in enhancing model relia-
bility. This process quantifies the consistency of
model predictions where a lower variance suggests
a higher agreement with majority. This highlights
the technique’s effectiveness in boosting the mod-
els’ reliability and applicability, especially in sce-
narios characterized by subjective judgment and
high uncertainty.

6 Discussion

Noisy-label tolerant techniques make the assump-
tion that there is a single ground truth. Many of
these techniques, e.g. Arazo et al. (2019), utilize a
label’s loss to determine whether a sample is cor-
rectly labeled or not. That is higher loss is generally
incorrectly labeled. However, when opinion is in-
volved, we cannot naively do this. As we show in
our results on Figure 1, the semantics of a samples’
loss changes to majority or minority opinions. That
is, higher loss is associated with minority opinions
while lower loss is associated with majority ones.

At a per-annotator level, there are still mistakes
being made. Thus we need to find a way to utilize
these loss properties when learning representations.
To do so, we propose a novel loss function (Sec-
tion 3.4) which models the predictions for each
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No Noise 20% Noise

Label type ψ = 1 ψ = 0.5 ψ = 0.25 ψ = 1 ψ = 0.5 ψ = 0.25

GHC 47.86 50.3 48.13 45.8 51.55 48.71

Anger 55.05 66.68 56.96 45.40 48.26 45.49
Disgust 56.74 64.65 55.5 44.64 46.27 44.82
Fear 57.55 69.80 57.55 44.80 47.05 43.67
Joy 55.57 66.97 57.83 44.45 48.83 44.53
Sadness 53.42 67.86 53.41 44.68 47.77 44.73
Surprise 55.39 68.93 60.77 45.36 49.01 43.74

Table 6: Comparison of accuracy for GHC and GoEmotions for different parameters of ψ. Adjusting ψ has a clear
effect on GHC and GoEmotions. Both GHC and GoEmotions appear to perform the best in general for ψ = 0.5.
We believe the application of the manifold mixup to the training has some effects on this. This indicates a difference
in the label patterns for subjectivity and noise.

Figure 2: The variance in model predictions against majority labels for the GHC Multitask and GoEmotion
Multitask models. Notably, at a ψ value of 0.5, variance reaches its minimum, indicating the highest agreement
among annotators. This point reflects the optimal balance in the loss correction strategy, enhancing model alignment
with consensus sentiment.

Dataset Metric ψ = 0.25 ψ = 0.5 ψ = 1

GHC Anno. Acc. 59.48 63.82 58.67
GHC Pred. Var. 14.38 13.59 13.01

GoEmo Anno. Acc. 49.92 50.11 49.85
GoEmo Pred. Var. 17.74 17.53 17.46

Table 7: Annotator-level accuracy and variance when
adjusting for ψ reported as percentages. Lower ψ en-
courages diversity of annotation while higher ψ encour-
ages agreement. As can be seen, prediction variance is
highest when the ψ value is lowest. The annotator-level
accuracy is also the highest when the ψ=0.5 and reflects
the same patterns seen in majority vote results shown
in Figure 2. These results demonstrate that we can tune
for opinion and noise properties in a controllable way.

annotator which factorizes out nicely. We then
introduce an additional parameter to control the
strength of this noise correction process to balance
noise with disagreeing opinions. This methodol-
ogy is particularly relevant for subjective tasks like
online hate speech detection on platforms such as
Reddit and Twitter, striving for models that effec-

tively reduce noise and enhanced opinion modeling.
Our experimental outcomes underscore the signif-
icance of adopting a balanced strategy for noise
correction across varied datasets (Table 7). It also
shows cases that annotator-level mistakes exist and
can be corrected for (Tables 3, 4, 5). Accounting
for these factors leads to an improvement in per-
formance metrics at both annotator and aggregate
levels while maintaining prediction diversity.

7 Conclusion

In this study, we developed a method for loss-based
label correction for a multitask setting. Specifi-
cally, this is applied to subjective datasets from
multiple annotators. We show that our approach
preserves disagreeing labels and that the perfor-
mance increases under some conditions. We also
demonstrated that it is robust to added noise. Lastly,
we demonstrate that adjusting the degree of loss
correction is important and has a large impact on
performance. This is beneficial for future work in
collecting subjective labels at scale.
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8 Limitations

Although ψ significantly affects performance, par-
ticularly at 0.5, identifying the optimal value re-
mains complex without a clear selection strategy.
The parameter reduced variance and improved per-
formance, as evidenced in the GoEmotions dataset,
but interpreting these gains is difficult due to the
GoEmotions dataset imbalance. Yet, our results
still show an improvement over previous studies
(Mostafazadeh Davani et al., 2022). This under-
scores the need for further research to develop a
systematic approach for determining ψ, crucial for
the method’s adaptability and precision across dif-
ferent datasets. Additionally, the typical way to an-
alyze the noise patterns of less subjective datasets
is to annotate a subset of the test set at scale. This
gives insight into the noise profile and can enable
the creation of a label noise transition matrix. To
fully evaluate the noise patterns of subjective an-
notations is much more costly. Annotation sub-
jectivity can vary through time, and with demo-
graphic properties. These properties make building
a noise transition matrix almost impossible due to
the number of factors that can influence the under-
lying label distribution. Thus, understanding noise
for subjective annotation tasks remains an exciting
challenge we leave for future work.

9 Ethics Statement

In data annotation, capturing the full spectrum of
annotator perspectives is important for achieving
equitable outcomes. Challenges such as annota-
tor fatigue and variability in judgment over time
can obscure the true diversity of opinions within
large datasets. To address these issues, our method
introduces a novel combination of multi-task learn-
ing and loss-based label correction. This method
effectively separates matching and mismatching
annotations while improving prediction accuracy
for both individual and multi-annotator settings.
Similar to the use of multi-annotator models in
affect detection (Alm, 2011), our method models
diverse opinions for a deeper insight into subjec-
tive data. Additionally, our technique adapts to the
intrinsic label noise in subjective annotations, en-
hancing robustness similar to methods in sarcasm
detection that consider annotator-specific thresh-
olds (Rakov and Rosenberg, 2013). This refined
approach captures the complexity of human judg-
ment, promoting fairer data interpretation in digital
annotation.
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