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Abstract

This paper reveals a novel linear characteristic
exclusive to transformer decoders, including
models such as GPT, LLaMA, OPT, BLOOM
and others. We analyze embedding transfor-
mations between sequential layers, uncovering
a near-perfect linear relationship (Procrustes
similarity score of 0.99). However, linearity
decreases when the residual component is re-
moved due to a consistently low output norm
of the transformer layer. Our experiments show
that removing or linearly approximating some
of the most linear blocks of transformers does
not affect significantly the loss or model per-
formance. Moreover, in our pretraining ex-
periments on smaller models we introduce a
cosine-similarity-based regularization, aimed
at reducing layer linearity. This regularization
improves performance metrics on benchmarks
like Tiny Stories and SuperGLUE and as well
successfully decreases the linearity of the mod-
els. This study challenges the existing under-
standing of transformer architectures, suggest-
ing that their operation may be more linear than
previously assumed. 1

1 Introduction

Transformers have revolutionized the field of natu-
ral language processing, offering unprecedented ad-
vances in a wide range of applications (Islam et al.,
2023). However, despite their widespread adoption
and success, the complex work of these models
remains an area of active research (Lin et al., 2021).
One aspect that has received less attention is the
inherent linearity of intermediate embedding trans-
formations within these architectures. In this study,
we embark on an in-depth analysis of the linearity
properties of transformers, specifically focusing on
decoders, and explore its implications during the
pretraining and fine-tuning phases.

1https://github.com/AIRI-Institute/
LLM-Microscope

Our investigation reveals a surprising discovery:
the embedding transformations between sequen-
tial layers in transformer decoders exhibit almost
linear properties. This observation is quantified
using Procrustes similarity analysis, demonstrat-
ing a near-perfect linearity score of 0.99. Such a
discovery not only challenges the traditional un-
derstanding of transformer architectures but also
opens new opportunities for model optimization
and efficiency.

Based on this insight, we introduce several new
contributions to the field:

• Extensive analysis of the linearity properties
of transformer decoders and its dynamics at
the pretraining and fine-tuning stages.

• The development of new algorithms for depth
pruning of transformer decoders, allowing to
remove the most linear layers without a sig-
nificant loss in performance.

• A novel distillation technique that involves
pruning, replacing certain layers with linear
approximations, and then distilling layer-wise
embeddings to preserve model performance.

• Introducing a new regularization approach for
pretraining based on the cosine similarity, de-
signed to decrease the layer linearity. This
method not only enhances the performance
of transformer models on benchmark datasets
such as SuperGLUE and TinyStories Eldan
and Li (2023), but also improves the expres-
siveness of embeddings, as evidenced by lin-
ear probing tasks.

With our findings, we are paving the way for
more computationally efficient transformer archi-
tectures without sacrificing their effectiveness,
thereby addressing one of the critical challenges in
deploying these models.

5376

mailto:razzhigaev@skol.tech
https://github.com/AIRI-Institute/LLM-Microscope
https://github.com/AIRI-Institute/LLM-Microscope


Figure 1: Linearity profiles for different open source models. Normalized depth is the layer index divided by the
total depth.

2 Related Work

Research on evaluating and leveraging sparsity for
model pruning has become one of the most signifi-
cant topics within the machine learning community.
Molchanov et al. (2016) explored the sparsity of
convolutional neural networks through backpropa-
gation and fine-tuning, laying the groundwork for
understanding the potential applications of sparsity
in resource-efficient inference. The verification ap-
proach utilized in a more recent DejaVu (Borse
et al., 2023) paper is based on Molchanov’s re-
search.

Previous work (Kurtic et al., 2023) has addressed
the challenges associated with naive sparse fine-
tuning in the context of LLMs. Issues such as train-
ing instability, poor recovery, and overfitting have
prompted an exploration for alternative approaches.
The study introduced SquareHead distillation, a
method that consistently addresses the challenges
in naive sparse fine-tuning, demonstrating accurate
recovery even at high sparsity levels.

In a more recent study WANDA (Sun et al.,
2023), the authors present a technique for pruning
LLMs to high degrees of sparsity without modi-
fying the remaining weights. Unlike SparseGPT
(Frantar and Alistarh, 2023), WANDA seamlessly
implements pruning in a single forward pass, lever-
aging feature norm statistics for efficient pruning.
This method achieves noticeable sparsity without
the need for a sophisticated iterative weight update
procedure, differentiating itself from other pruning
techniques.

Contextual sparsity introduced by Borse et al.
(2023) involves sparsifying MLP and attention
blocks in LLMs to reduce generation latency. The
study identifies essential attention heads and MLP

neurons for computation, maintaining performance
across in-context learning and language modeling
tasks.

Recent work by Ashkboos et al. (2024) shows
that LLMs can be sparsified post hoc. Their ap-
proach introduces a scheme to replace each weight
matrix with a smaller dense matrix, thereby re-
ducing the dimensionality of the networks. Their
results show that models of different sizes can be
reduced with varying degrees of success. For ex-
ample, LLAMA-2 70B and OPT 66B can maintain
99% zero-shot accuracy while reducing 25% of the
parameters reduced while performing LLM evalu-
ation tasks. In contrast, the smaller Phi-2 is more
sensitive to pruning, experiencing a 10% drop com-
pared to its dense version.

The inner structure of transformer models has
captured significant attention among researchers
(Nostalgebraist, 2020; Xu et al., 2021; Belrose
et al., 2023; Din et al., 2023). Primarily, in “logit
lens” (Nostalgebraist, 2020) and subsequently in
(Belrose et al., 2023), the authors have focused
on analyzing how hidden representations evolve
across different layers of transformer architecture,
aiming to elucidate their impact on final model out-
puts. Complementing these findings, the Anthropic
team’s research into small transformer-based mod-
els (Elhage et al., 2021) uncovers a profound linear
structure inherent in this architecture. Their work
demonstrates the effectiveness of decomposing op-
erations into individual sum components and mul-
tiplying chains of matrices, thus highlighting the
linear complexity within these sophisticated neural
architectures.

Structure-based pruning Topological features
that analyze the structure of inner embeddings in
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transformer-based models are also useful in LLM
pruning and distillation. Previous research ex-
amined the intrinsic dimensionality of neural net-
works to evaluate their capacity and effectiveness
in the fine-tuning process (Ansuini et al., 2019;
Aghajanyan et al., 2020; Razzhigaev et al., 2023).
Decoder-based models are shown to achieve a high
level of anisotropy, especially in their middle lay-
ers, and have low intrinsic dimensionality (Raz-
zhigaev et al., 2023). Recent popular approaches
include low-rank approximation, which replaces
or adjusts the weight matrix with the product of
two matrices with a smaller inner dimension. This
approach typically requires a fine-tuning procedure
that adjusts the matrix representations. For exam-
ple, LoRA (Hu et al., 2021) was inspired by the
previous work (Aghajanyan et al., 2020) showing
that neural networks can be successively trained in
lower-dimensional subspaces. The research also
shows that there it is not necessary to update mil-
lions of parameters on small fine-tuning datasets.
Our results are on par with the results of this re-
search, showing that via fine-tuning, the lineariza-
tion of models grows steadily.

The Bonsai model (Dery et al., 2024) tends to
prune the LLMs relying only on the inference step,
while they achieve performance comparable to half-
sized semistructured sparsity with WANDA 2:4
and outperforms the LLM-Pruner (Ma et al., 2023)
and LoRAPrune (Zhang et al., 2023) on 4 out of 6
evaluation settings in the experiments conducted.

In this paper, we investigate several techniques
for pruning LLMs, leveraging the linearity of the
decoder-based layers. Our techniques offer effi-
cient yet lightweight methods, maintaining high
model performance on the evaluated benchmarks.

3 Analysis of Pretrained Architectures

In our study of the embedding properties of various
layers of transformer decoders, we focus on under-
standing the degree of linearity and smoothness of
transformations between sequential layers.

3.1 Linearity Score

To determine the degree of linear dependence of
two sets of vectors, we used a metric obtained
by generalizing the Procrustes similarity (Gower,
1975) to the case of arbitrary linear transformations.

Let X,Y ∈ Rn×d represent the centered sets of
embeddings, to calculate linearity score we use nor-
malized matrices X̃ = X/||X||2, Ỹ = Y/||Y ||2

Figure 2: Linearity score (averaged across layers) at
different pretraining steps of open source models.

(where || · ||2 denotes the Frobenius norm of the
matrix) and defined

linearity_score := 1− min
A∈Rd×d

||X̃A− Ỹ ||22

This is almost the same formula as in Procrustes
similarity, the only difference is that, instead of
considering the minimum among orthogonal trans-
formations, we use the minimum among all lin-
ear transformations to find the optimal mapping in
terms of squared errors.

We chose such approach for its robustness in
evaluating the linearity of embeddings, especially
considering the scale variance across transformer
layers. Unlike L2 norm, which lacks scale invari-
ance, Procrustes normalization offers a bounded
metric in the range [0,1].

Surprisingly, the linearity scores of layers in all
tested transformer decoders were found to be close
to 1, indicating a high degree of linearity in embed-
ding transformations (Figure 1).

This phenomenon can be partly explained by
the observation that the norm of each block’s con-
tribution to the residual stream is remarkably low
(Figure 3). Moreover, when assessing the linearity
of the main stream (embeddings w/o residual com-
ponent) by subtracting the embedding values of
each layer from the previous layer, one can notice
that the degree of linearity significantly decreases
(Figure 1). This suggests that the inherent linearity
is not as straightforward as it is initially estimated.
Moreover, the low norm contribution of individual
blocks resulted in embeddings from adjacent layers
being closely aligned in terms of cosine similarity.

One more insight is that the combination of
seemingly linear blocks can lead to non-linear out-
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Figure 3: The relationship between transformer block output norm and resulted residual stream embedding norm.

comes. Elhage et al. (2022) suggests that com-
plex features can be encoded across components
of neural networks, applicable to attention heads
in transformers. This indicates that the cumulative
effect of linear transformations might enable the
encoding of intricate non-linear representations.

Furthermore, our feature triggering regime hy-
pothesis proposes that rare specific features on a
few tokens with high non-linearity significantly in-
fluence model behavior — in the Figure 9 one can
see that some layers of OPT-1.3B have the long
tailed distribution of L2 errors, which means that
there are still sparse spikes of non-linearity.

Borse et al. (2023) explored how a sparse sub-
set of model parameters can be dynamically acti-
vated for efficient inference, supporting the idea
that within predominantly linear architectures, cer-
tain non-linear interactions are crucial for model
functionality.

3.2 Linearity Dynamics at Pretraining and
Fine-tuning

Our exploration extends to examining the linearity
dynamics of both open-source models with pub-
licly available intermediate checkpoints and our
custom models trained on small datasets. Through
this analysis, we aimed to understand the dynamics
of linearity, especially in the main stream (contex-
tualized embeddings including the residual compo-
nent), across different stages of model training.

As illustrated in the Figure 2, the analysis reveals
a notable trend: as the models undergo pretraining,
the linearity of the main stream gradually decreases

on average. This phenomenon is consistently ob-
served in all models examined, indicating a fun-
damental aspect of transformer-decoder learning
dynamics.

In our analysis of the fine-tuning phase across
diverse tasks, including those in the SuperGLUE
benchmark (Wang et al., 2019) and the reward-
modeling task on the Anthropic-Helpful dataset
(Bai et al., 2022), we notice an interesting change.
Contrary to the decreasing trend of linearity ob-
served during the pretraining phase, all models
under study show an increase in linearity during
fine-tuning. This finding indicates that task-specific
fine-tuning tends to reinforce and amplify the linear
characteristics of transformer models, as shown in
Table 1.

In fine-tuning, we train models on three NLI
tasks from the SuperGLUE benchmark: MultiRC,
BoolQ, and CB, treating them as binary text classi-
fication challenges. In the BoolQ task, for instance,
we combine the question and the passage into a sin-
gle text, marking them with "question:" and "pas-
sage:" respectively, and consider the binary answer
as the classification label.

Reward models trained on text pairs with con-
trastive loss (Ouyang et al., 2022) demonstrate a
similar trend in linearity scores, proving even more
stability across different seed values.
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Model Name Super_Glue/MultiRC Super_Glue/BoolQ Super_Glue/CB Reward Modeling
OPT-125M 0.085 ± 0.008 0.217 ± 0.038 0.048 ± 0.009 0.060 ± 0.008
OPT-1.3B 0.055 ± 0.021 0.382 ± 0.004 0.088 ± 0.010 0.062 ± 0.007
OPT-2.7B 0.061 ± 0.025 0.356 ± 0.005 0.066 ± 0.029 0.054 ± 0.003
Llama2-7B 0.141 ± 0.006 0.051 ± 0.024 0.081 ± 0.070 0.194 ± 0.027
GPT2 0.085 ± 0.021 0.048 ± 0.016 0.004 ± 0.003 0.092 ± 0.013
GPT2-Large 0.049 ± 0.003 0.023 ± 0.008 0.025 ± 0.014 0.085 ± 0.008
GPT2-XL 0.040 ± 0.007 0.037 ± 0.007 0.028 ± 0.019 0.038 ± 0.008

Table 1: Delta of linearity score w/o residuals after fine-tuning various tasks. Note that all values are strictly positive,
which means that linearity always increases during fine-tuning.

Model/Task boolq cb-acc cb-f1 copa multirc record-f1 record-em rte wic xstorycloze-en mean
Mistral 650M 48.50 42.86 21.96 56.0 56.97 21.80 21.05 51.26 51.10 61.75 43.33
Mistral 650M + cosine (0.5) 57.50 41.07 28.57 61.0 57.10 23.20 22.54 55.23 50.00 64.39 46.06

Mistral 150M 38.84 42.86 27.39 56.0 44.16 20.07 19.42 51.26 51.10 59.89 41.10
Mistral 150M + MSE (0.5) 38.84 39.29 19.30 60.0 57.59 20.46 19.77 53.07 50.47 57.64 41.64
Mistral 150M + MSE (2.0) 39.39 41.07 19.41 57.0 46.53 22.62 21.89 51.99 50.00 56.52 40.64
Mistral 150M + cosine (0.5) 44.16 37.50 24.18 62.0 54.54 21.67 20.99 50.90 50.47 61.35 42.78

Table 2: SuperGLUE results.

4 Improving Linearity with Regularized
Pretraining

Aiming to understand the impact of linearity on
transformer models, we embark on pretraining ex-
periments using the Mistral architecture with model
sizes of 150M, and 650M. These models are pre-
trained on carefully selected clean datasets, TinyS-
tories (Eldan and Li, 2023) and Tiny-textbooks (Li
et al., 2023), chosen for their diverse and rich con-
tent, which has been proven to be suitable for fast
training of the small models (Zhao et al., 2023)
and architecture experiments (Sharifnassab et al.,
2024).

We introduce specific loss terms to adjust the
relations between embeddings within transformer
layers:

• MSE regularization term: Experimentation
with mean squared error (MSE) loss between
embeddings of consecutive layers, designed to
minimize the distance between these embed-
dings, thereby promoting consistency across
the layers.

LMSE = λ
∑

(∥embi − embi−1∥2).

• Cosine Similarity regularization term: The
application of a cosine-based regularization
that encourages contextualized embeddings
from sequential layers to align closer to each
other, effectively reducing their angular differ-
ence to zero on average.

Lcosine = λ
∑

(1− cos(embi, embi−1)).

Figure 4: Linearity score of different layers with and
without cosine regularization used at pretraining.

The most promising results are achieved using a
cosine-based approach that encourages the embed-
dings of sequential layers to converge, effectively
making the cosine similarity between them closer
to 1 on average. This method shows significant per-
spectives in the enhancing model performance. We
evaluate the effectiveness of our approach through
validation using GPT-4 on TinyStories prompts ac-
cording to the Eldan and Li (2023) methodology,
linear probing techniques, and evaluation on Super-
GLUE benchmarks. The results are presented in
the Table 2 and Table 3. As it can be seen in the Fig-
ure 5, linearity scores are lower at each layer of the
model after pretraining with such regularization.

To further assess the expressiveness of embed-
dings across different layers, we conducted linear
probing on outputs of all the layers of the Mistral-
650M model, both pretrained with and without
cosine regularization, on the xstorycloze-en task
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Figure 5: Linear probing of embeddings from different
layers of Mistral-650M pretrained with and without
suggested cosine regularization.

Mistral config Grammar Creativity Consistency Plot Mean
650M 5.47 6.60 4.81 4.67 5.39
650M + cosine (0.5) 6.07 7.02 5.74 5.48 6.08

150M 4.88 6.51 4.16 3.88 4.86
150M + MSE (0.5) 5.19 6.70 4.47 4.20 5.14
150M + MSE (2.0) 5.00 6.81 4.56 4.29 5.17
150M + cosine (0.5) 5.14 6.91 4.77 4.95 5.44

Table 3: TinyStories prompts completions evaluation
via GPT-4

from SuperGLUE. The results clearly indicate that
embeddings from the model pretrained with regu-
larization exhibit better performance compared to
those from the standard model (Figure 4).

This contradictory outcome, where the term ap-
pears to draw embeddings from neighbouring lay-
ers closer together, making them more similar in
terms of cosine similarity, has prompted a deeper
investigation. Our observations suggest that as em-
beddings become more similar across layers, the
model may compensate for the reduction in vari-
ability by amplifying non-linear processing capa-
bilities in the residual stream. Although this hy-
pothesis requires further exploration, it offers a
fascinating insight into the adaptive mechanisms of
transformer models in response to altered internal
dynamics.

5 Exploiting Linearity for Pruning

Leveraging the inherent linearity of transformer lay-
ers, we explore a pruning strategy that sequentially
removes the most linear layers. This approach al-
lows you to reduce the size of the model slightly
by removing just a few layers without significantly
compromising performance. Further enhancement
of this strategy involves replacing the pruned lay-
ers with linear approximation and incorporating
a distillation loss (specifically MSE layerwise) to

Figure 6: Perplexity on WikiText for various pruning
and distillation methods (lower is better).

Figure 7: Perplexity on WikiText for various pruning
and distillation methods (lower is better).

minimize performance degradation. The training
focuses on these linear replacements, fine-tuning
them to effectively mimic the original layers’ func-
tion. The effectiveness and the impact of these
methods are detailed in the Figure 8. We use
TinyStories for linear approximation and distilla-
tion training stage. As it can be seen in the Figure 7,
perplexity is less affected by pruning with linear
replacements and following distillation compared
to just removing transformer layers.

6 Conclusion

In our study we provide an in-depth exploration
of linearity within transformer decoders, reveal-
ing their inherent near-linear behavior in various
models. We discover that while pretraining tends
to increase nonlinearity within layers, fine-tuning
on specific tasks can paradoxically reduce it. We
propose new pruning and distillation techniques
inspired by previous observations, demonstrating
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Figure 8: OPT-1.3B results on ARC-easy dataset with
suggested pruning techniques.

that it is possible to refine and optimize trans-
former models without compromising their perfor-
mance. The suggested cosine-based regularization
approach during pretraining further contributes to
model efficiency and performance on benchmarks
such as SuperGLUE and TinyStories, while reduc-
ing the linearity of its layers (w/o residual compo-
nents).

Our study highlights the significant relationship
between linearity and performance of transformer
decoders, offering strategic guidance for future de-
velopments in the efficiency and flexibility of these
models.

7 Limitations

Despite the promising advancements presented in
this study, it is essential to acknowledge its limita-
tions. Firstly, our analysis predominantly focuses
on transformer decoders, thus the generalizability
of our findings to encoder-only or encoder-decoder
architectures may be limited.

Secondly, the depth pruning and distillation tech-
niques, while being effective in our experiments,
were evaluated within a specific set of conditions
and models. The scalability of these methods to
larger, more complex models or different domains
is yet to be fully ascertained.

Moreover, the new regularization approach
aimed at pretraining demonstrates potential, yet
its effectiveness across a broader spectrum of tasks
requires further validation.

8 Ethics Statement

We are committed to ethical principles for AI re-
search, focusing on transparency and responsible

experimentation. Our research, while suggesting
efficiency improvements, prompts consideration of
implications such as privacy and fairness.
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Figure 9: L2 error distribution of linear approximation across different layers of OPT-1.3B.

A Error Distribution by Layers

In the Figure 9 we present a visualization of L2

error distribution across several layers of OPT-1.3B
decoder architecture.
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