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Abstract

Large language models have demonstrated im-
pressive performance on commonsense tasks;
however, these tasks are often posed as
multiple-choice questions, allowing models to
exploit systematic biases (Li et al., 2022). Com-
monsense is also inherently probabilistic with
multiple correct answers. The purpose of “boil-
ing water” could be making tea, cooking but
also could be killing germs. Existing tasks do
not capture the probabilistic nature of common
sense. To this end, we present commonsense
frame completion (CFC), a new generative task
that evaluates common sense via multiple open-
ended generations 1. We also propose a method
of probabilistic evaluation that strongly corre-
lates with human judgments. Humans drasti-
cally outperform strong language model base-
lines on our dataset, indicating this approach
is both a challenging and useful evaluation of
machine common sense.

1 Introduction

Most existing commonsense evaluations uti-
lize multiple-choice question-answering (MCQA)
tasks (Talmor et al., 2019; Sap et al., 2019a; Huang
et al., 2019; Bhagavatula et al., 2020; Feng et al.,
2022). This format offers a limited view of com-
mon sense. MCQA tasks simplify the problem
with unrealistically small answer sets, and making
the options challenging is difficult (Zellers et al.,
2018, 2019). More crucially, common sense is
implicit – understanding assumptions that are un-
spoken precisely because they are common knowl-
edge. MCQA, by evaluating common sense ex-
plicitly, fails to capture a model’s ability to utilize
this knowledge in unprompted, generative contexts.
MCQA is also fundamentally at-odds with the fact

*Now at Google DeepMind, Eightfold.ai, Thorn, and Meta
respectively.

1Dataset and PROBEVAL available at: https://github.
com/qxc101/PROBEVAL_CFC/

Figure 1: Typical evaluations only compare human and
model performance for their top choices (top). We pro-
pose to evaluate multiple plausible answer choices by
clustering similar answers, denoted by color, to form cat-
egorical distributions, and evaluating probabilistically
(bottom). This more accurately captures the probabilis-
tic nature of common sense, and allows us to provide a
more nuanced analysis of model capabilities.

that common sense is inherently probabilistic, and
should be evaluated as such.

In order to avoid the issues in MCQA, many
recent benchmarks have proposed generative com-
monsense evaluations. (Lin et al., 2020; Chen et al.,
2023). While generative evaluation avoids the dif-
ficulty of generating hard negatives, it does not
reflect the fact that there are often multiple correct
answers, especially for commonsense questions.
For example, in the phrase "they boiled the water",
we can infer using our common sense that the most
likely reason for this action is cooking or making
tea. However, people in areas with limited clean
water access may view this as a way to remove
germs and ensure it’s safe to drink. This aspect
is, unfortunately, frequently overlooked during the
benchmark creation process. To ensure that the
model can serve diverse populations, it is impor-
tant to gather multiple responses. By focusing on
collecting implicit information from larger popu-
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lation, this provides a more accurate evaluation of
common sense required in real-world settings.

In this setting, it is crucial to address the com-
monsense questions with multiple correct answers.
While some previous works have proposed a
clustering-and-ranking evaluation (Boratko* et al.,
2020), we demonstrate that such an approach can
lack nuance. Instead, we embrace the probabilistic
nature of common sense and evaluate the model’s
ability to capture a probability distribution over an-
swer clusters sampled from the population. This
ensures that the model not only captures common
sense, but does so in a calibrated way.

To this end, we propose commonsense frame
completion (CFC), a task focused on inferring miss-
ing information in a context sentence. This empha-
sizes the implicit nature of common sense in a given
context and is tightly connected to downstream ap-
plications, such as home assistants, where inferring
such information about a user’s query is key. In
CFC, the questions are generated by identifying
missing information from a given context sentence
about daily scenarios. For each context-question
pair, we collected a large number of diverse an-
swers from human annotators.

In order to evaluate multiple responses effec-
tively, we additionally propose a new evaluation
method. Responses from different individuals often
vary, and common sense is typically defined as the
knowledge shared by nearly all people. To make
every answer count, we consider the annotators’ an-
swers from a probabilistic viewpoint and evaluate
models using probabilistic measures (Moss, 2018;
Pavese, 2020; Chater et al., 2006). Specifically,
given raw string answers, we cluster them and con-
sider the categorical distribution over these clusters
based on the number of answers contained in each.
We propose automated clustering and alignment
mechanisms which allow models to be evaluated
directly by comparing the KL divergence between
distributions. The task format and evaluation met-
ric are shown in Figure 1. We evaluate the proposed
metric with two datasets, CFC and ProtoQA (Bo-
ratko* et al., 2020), and show high correlations
with human judgments for both datasets.

Finally, we report multiple LLMs’ performance
on CFC measured by the proposed probabilistic
metrics. We identify a large performance gap be-
tween existing large models and humans, indicating
the limitations of current LLMs.

2 Related Work

Commonsense Evaluation Creating common-
sense benchmarks to evaluate model performance
is a long-standing research topic (Sakaguchi et al.,
2020; Lin et al., 2020; Sap et al., 2019b; Zhou et al.,
2020). However, most benchmarks are created us-
ing a multiple-choice selection paradigm, which
is simpler to evaluate but misaligned with the real-
world use-case of commonsense knowledge, and
most egregiously ignores the existence of multi-
ple correct answers. We are not the first ones to
gather multiple human answers to facilitate robust
evaluations, however. Aydin et al. (2014) and Bo-
ratko* et al. (2020) also collected multiple human
responses for each question to get aggregated hu-
man ground-truth answer sets.

Our work differs from these due to our empha-
sis on commonsense as implicit and probabilis-
tic. We don’t treat each answer equally; rather,
we aim to match the answer distribution given by
human responses. For this purpose, we propose a
novel probabilistic evaluation for open-ended gen-
eration tasks with multiple correct answers. A sim-
ilar probabilistic evaluation was studied from a
language model generation point of view (Pillutla
et al., 2021). They proposed a KL-based evaluation
to measure language model generations, while our
focus is on the implicit answer distribution.

Among the previous work, our proposed dataset
CFC is most similar to ProtoQA (Boratko* et al.,
2020) as they share a similar task format (one ques-
tion, multiple answers). However, there are sev-
eral key differences. CFC is designed to uncover
implicit commonsense information in various con-
texts, making it a more generalized variant of Pro-
toQA. Consequently, the question format in CFC is
significantly more diverse than that of ProtoQA. In
addition, the number of answers collected for CFC
is rigorously justified through the Neyman-Pearson
lemma, guaranteeing a sufficient and representative
sample.

Commonsense as Probabilistic Knowledge In
most knowledge evaluation benchmarks, common-
sense knowledge is defined as absolute facts (Bian
et al., 2023; Chen et al., 2023). We relax this ab-
solute intersection between human knowledge us-
ing a probabilistic approach. The probabilistic no-
tion of knowledge is well supported. Moss (2018)
stated human beliefs or credences, inherently prob-
abilistic, should be regarded as legitimate forms of
knowledge. The growing trend towards building
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Missing Slot Definition Examples

Arg0 Who/what does the event? Sentence: putting cheese on the pizza. Arg0?
Answers: person, cook

Purpose What is the goal for doing the event? Sentence: putting cheese on the pizza. Purpose?
Answers: get nutrition, stop being hungry

Instrument What kind of tools are used to accomplish the event? Sentence: putting cheese on the pizza. Instrument?
Answers: hands, spoon

Time What is a particular time (time of day, season, etc.)
for doing the event?

Sentence: putting cheese on the pizza. Time?
Answers: lunch time, dinner time

Location Where would the event usually happen? Sentence: putting cheese on the pizza. Location?
Answers: kitchen, restaurant

Table 1: Examples for different missing slot types in CFC

probabilistic models in cognitive studies reinforces
the idea of human cognition and memory function-
ing as probabilistic processors (Chater et al., 2006).
This collective body of work supports the view that
common sense serves as probabilistic assumption
instead of definite judgements in human mind.

3 CFC Task Description

In this section we motivate and describe the task
of "commonsense frame completion" (CFC). We
aim to create a task which evaluates implicit com-
mon sense with multiple correct answers. Given
a direction such as “put the water on the burner
to boil”, it is common sense which allows us to
understand that the water is likely in a kettle and
not simply dumped on the burner. Unlike factual
question answering tasks, there is no single correct
answer. In this example, the water could be placed
in a “kettle”, “pot”, “cup”, or “glass”, although the
former answers are more probable.

It is necessary for any machine learning model
which claims to capture common sense to correctly
predict all the possible answers and have some
sense of the distribution over the implicit informa-
tion. To assess a model’s ability in this regard, we
view the context sentence as a structured semantic
frame, identify a missing slot, and ask the model
to provide a distribution of potential slot fillers.

4 Dataset Creation and Analysis

We now describe the dataset creation process of
CFC. We first need to collect reasonable context
sentences which contain natural element of com-
mon sense. CommonGen (Lin et al., 2020) is a
commonsense dataset which contains many short
sentences describing basic information about daily
life, and so we choose this dataset as the source for
potential context sentences.

Given a short sentence, we then identify implicit
information. To this end, we perform semantic
parsing on the sentence, and identify missing slots.
We use AMR (Banarescu et al., 2013) for seman-
tic parsing based on its ability to provide a rich
representation of the sentence with a pre-defined
fixed schema for the predicate roles. If a predicate
is found, AMR parsing will match it to a schema
and fill in the values for any identified slots. Any
slots marked with amr-unkown indicate potential
items of missing information, enabling us to obtain
human annotations for the missing slot values.

We uniformly sampled 63,788 sentences from
the CommonGen dev dataset, and parsed them us-
ing the AMR parser from Cai and Lam (2020),
generating 228,170 pairs of context questions with
missing slots. From this, we randomly sampled 101
(sentence, missing slot) pairs for crowd workers to
annotate, such that we had a balanced distribution
of missing slot types, as detailed in Section 4.2.
We present the context sentence and missing slot to
crowdworkers, who were also provided with train-
ing examples and descriptions of the meaning of
each slot type (see Table 1). The number of answers
is chosen such that the resulting answer distribu-
tion is stable (see Section 4.2). Each element of the
raw dataset therefore includes a context sentence,
missing slot value, and a collection of slot fillers.

4.1 Probability Distribution

In an open-ended task where multiple humans are
asked to provide answers as raw strings of text there
are a multitude of answers which may essentially
capture the same underlying idea. Ultimately we
are not interested in the different variations of the
surface form, but rather in capturing the essence of
the underlying concept. In the boiling water exam-
ple, we may want to treat "kettle" and "teapot" as
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though they were representative of the same gen-
eral concept. As originally proposed in Boratko*
et al. (2020), we consider clustering the responses,
converting a set of answer strings into a categorical
distribution over answer clusters, where the proba-
bility of obtaining an answer from a given cluster
is proportional to the number of answer strings con-
tained within it. We explore both manual clustering
and automated clustering methods (see Section 5).

4.2 Analysis
Number of Answers The number of potential
slot fillers might be very large, and we want to
ensure we sample enough to approximate the true
distribution over answer concepts. An essential
question is how many samples are enough to ap-
proximate the true distribution with reasonable er-
ror rate? This is a classic problem in statistics, for
which the Neyman-Pearson lemma proves that the
uniformly most powerful test is to consider the KL
divergence DKL(g∥f) =

∑
x g(x) log

g(x)
f(x) where

g is the empirical distribution and f is the true
distribution (Harremoës and Tusnády, 2012). The
recent work from Mardia et al. (2020) showed that
this can be bounded by the following equation

P(DKL(gn,k∥f) ≥ ϵ) ≤ e−nϵ

[
3c1
c2

k−2∑

i=0

Ki−1(
e
√
n

2π
)i
]

where c1 and c2 are constant values, n is the
number of samples, and k is the number of cate-
gories in the categorical distribution.

In our setting, we manually clustered 50 ques-
tions, and found that the number of categories is
not more than 8. To get a bound on the number
of answers we should collect, we set ϵ = 0.2,
k = 8, and solve e−nϵ

[
3c1
c2

∑k−2
i=0 Ki−1(

e
√
n

2π )i
]

for n. Figure 2 (a) shows the value of this bound on
the y-axis for increasing numbers of samples n on
the x-axis. As we can see from the graph, for 100
samples, the error rate is less than 0.05, allowing
us to approximate the true answer distribution with
95% confidence if there are fewer than 8 categories
in the categorical distribution.

Question Types We collected 101 (context, miss-
ing slot) pairs, and obtained 100 slot fillers for each
from crowdworkers, resulting in 10,100 annota-
tions overall. The data collection page we used
on Amazon MTurk is shown in Fig 72. We create

2The annotators are paid 0.15 per answer, and they are all
anonymous English speakers who are based in the US.
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35%
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31%
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Purpose Arg0 Time Instrument Location

(b)

Figure 2: (a) The relationship between the number of
examples (x-axis), and the approximation error rate
(y-axis) calculated using the bound from Mardia et al.
(2020). (b) Question type distribution in CFC.

a dev set with 55 examples and a test set with 46
examples. The distribution of missing slot types
are shown in Figure 2 (b). Each question type is
associated with a different type of commonsense
reasoning, e.g time represents temporal common-
sense reasoning.

5 Probabilistic Evaluation

In this section, we detail the method of evaluating
multiple correct answers. As we relaxed common-
sense to be probabilistic knowledge, a rigorous
probabilistic evaluation is required; however the
task is presented (both to humans and models) as
a generative question answering task. Therefore,
we need a way to compare two large sets of answer
strings. We will start by how human evaluators
may compare the similarity of there sets of answers
and then describe the various ways by which this
process can be automated.

5.1 General Framework

Given a question, the ground truth answer set G
and the model generated answers H, the goal is to
evaluate the similarity between these two answer
sets. This is a difficult task even for a human, es-
pecially if the answer sets are large and diverse,
however, we cares more about concepts being cap-
tured rather than unique surface forms. So we start
with clustering the answer strings in G to form
meaningful concept level clusters.3 We could then
match the answers in H to the proposed ground-
truth clusters in G. Upon having the clusters, we
could define categorical probability distributions
over the clusters, Pg and Ph, where the probability
assigned to a given cluster is proportional to the

3When clustering, a new category "wrong" is added to the
answer set to account for the wrong answers for a question.
These will then be discarded prior to model evaluation.
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Figure 3: Given a question, the ground truth answer set
G from human, and the model predicted answers set H .
The first step is to form clusters of G with concept-level
meaningful clusters. The clusters could form categorical
distribution of G. We then would match each answer
in H into created clusters of G. After matching, we
would form a categorical distribution of H . Finally, we
calculate the KL score between these two distributions.

number of answer strings assigned to it.4 Finally,
the similarity between G and H can be inferred
by calculating the KL divergence of the two dis-
tributions, DKL(P̂g||P̂h). The overall evaluation
framework is depicted in Figure 3.

5.2 Automatic Evaluation
Based on the general framework, we propose an
automatic metric, PROBEVAL. The key steps are:
1. Embed ground-truth answers from G into vector
space. 2. Automatically cluster the embeddings
to obtain ground-truth clusters of G. 3. Match
elements of H to clusters of G by assignment func-
tion score. Each step presents a number of options,
which we detail in the following sections.

Embedding We first embed the discrete word
tokens in G and H as word vectors. We experi-
mented with various word embedding models, both
without context(Word2Vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014) and FastText (Bo-
janowski et al., 2017)) and with context (BERT (De-
vlin et al., 2019), and RoBERTa (Liu et al., 2019))
We found FastText to perform best, and use it for all

4To eliminate zero probabilities, we use Laplace smoothing
on all categories before calculating the probabilities, — adding
one dummy answer to all categories.

future embedding components. For answers with
multiple tokens, we use the average of the FastText
embeddings to represent those answer.

Clustering Given the vector representation of
the word answers, we experimented with various
clustering algorithms including X-means (Pelleg
et al., 2000), G-means (Zhao et al., 2008) and hier-
archical agglomerative clustering (HAC) (Murtagh
and Legendre, 2014). We used the implementation
from pyclustering (Novikov, 2019). The parame-
ters used by these clustering algorithms are treated
as hyper-parameters and are tuned based on the
correlation score as we discuss in section 5.3.

Matching Given the predicted answers, we aim
to match the answers to one or multiple ground
truth answer clusters. This was also a requirement
for ProtoQA (Boratko* et al., 2020), so we lever-
age the best-performing WordNet matching func-
tion from there. We also have embeddings for our
answers, we consider embedding-based similarity
matching functions. We train a Gaussian regression
model for each cluster in the ground-truth answers.
The regression takes one answer representation as
input, and output is the label of whether the answer
belongs to one particular cluster. We also experi-
mented with cosine similarity as a alternative for
Gaussin regression model. If an answer matches
with multiple clusters we divide the weight evenly
among all matching clusters.

5.3 Validation of the CFC Evaluator
In order to validate PROBEVAL’s performance, we
compared it with the human evaluation results on
two generative datasets, ProtoQA (Boratko* et al.,
2020) and CFC. A robust automatic evaluation
method should align well with human judgment
when given different model predicted answers.

We started by taking a linear combination of the
ground-truth distribution P̂g and a uniform distri-
bution P̂u to create diverse distributions that in-
terpolates between the ideal ground truth answers
to random noise, details in Appendix A.1.1. How-
ever, arguably, the most important area to assess the
quality of the evaluator is around answers which
are likely to be returned from a model. We thus
extend the above distribution by taking a linear
combination of the answer distributions of a given
baseline model P̂h, the ground-truth distribution
P̂g, and a uniform distribution P̂u, with most of
the weight assigned to the answers from a base-
line model. This method predominantly features
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model-generated answers and is defined by the
equation: p = zP̂h + w′

1P̂g + w′
2P̂u, where w′

1

and w′
2 are coefficients obtained from uniform dis-

tributions, emphasizing the blend of model insights
with controlled randomness. The intuition behind
this equation is that we want to define a new dis-
tribution p , which is a weighted combination of
distributions P̂h, P̂g and a uniform distribution P̂u.
We want these weights to be independent but still
place most of the weight on the predicted distribu-
tion hatPh. We achieve this by first sampling z in
(0.5, 1), and then sampling two other values w1 and
w2 in (0, 1). We then computer w′

1 =
w′

1(1−z)
w1+w2

, and

w′
2 =

w′
2(1−z)
w1+w2

. The coefficients are normalized in
this process so that z + w′

1 + w′
2 = 1.

5.3.1 Dataset
We experimented with two datasets, the first one
being ProtoQA (Boratko* et al., 2020). Both Pro-
toQA and CFC dev sets have 100 ground-truth an-
swers and 30 additional human responses that were
collected to measure human performance. For each
question, in addition to the 130 human responses,
we also use the 300 generated answers from the
fine-tuned GPT2 model. All of these answers are
annotated by expert annotators with cluster match-
ing to the ground-truth clusters (details in Section
5.3.2). We use the GPT2 answers as the predic-
tion set, H. We sample 50 answer sets for each
question from H and G according to the sampling
procedure mentioned above. ProtoQA dev has 102
questions and CFC dev has 55 questions.

5.3.2 Gold Evaluator Annotation
An essential component in validation is to get hu-
man annotations for both clustering and match-
ing. We requested two expert annotators to cluster
100 crowd-worker answers into 8 to 10 clusters
independently as ground truth clusters. The inner-
annotator agreement reached 0.76 when measured
by BLANC (Recasens and Hovy, 2011). For model
prediction matching in CFC, we take one of the
baseline model predictions and employ GPT4 as
silver annotation for matching. Two human annota-
tors then verified the GPT4 matching, and reached
0.94 BLANC agreement. For ProtoQA, we used
the human-annotated cluster and matching results
in the paper (Boratko* et al., 2020)

We use automatic clustering and matching to get
DKL(P̂g||P̂h). We can also evaluate the KL for
manual clustering and matching, as all answers in
ProtoQA have been annotated by human experts

Clustering ProtoQA CFC

ProtoQA
Evaluator

Human 0.193 0.257

Gmeans 0.167 0.239
Xmeans 0.190 0.252

HAC 0.193 0.252

PROBEVAL

Human 0.752 0.788

Gmeans 0.681 0.721
Xmeans 0.669 0.728

HAC 0.698 0.728

Table 2: Average Spearman correlation of ProtoQA eval-
uator and PROBEVAL compared with gold scores for
ProtoQA and CFC dev questions. All entries use Word-
Net as matching function. PROBEVAL achieved much
higher correlation compared to baseline evaluators.

with clusters and assignments. After getting the hu-
man and automatic KL values for various sampled
answer sets, we use the Spearman correlation coef-
ficients across questions to measure the alignment
between automatic and human evaluation.

5.3.3 Experiment Setup
Baseline To compare PROBEVAL with other met-
rics, we assess the correlation between ProtoQA
evaluator and human annotation. ProtoQA Evalua-
tor evaluates multiple answer output as well, and
it evaluates model predictions via ranked list of
answers. The higher the score it, the better model
prediction is. To accommodate ProtoQA score,
The correlation is measured between 1 - ProtoQA
scores (MaxAnswer@10) and KL divergence with
gold clustering/matching annotations.

5.3.4 Results
Our findings, detailed in Table 2 and 3 5, indi-
cate strong correlations between human evaluation
and PROBEVAL. Table 2 illustrates the correlation
when using WordNet as the matching function with
various automatic clustering algorithms. PROBE-
VAL demonstrates a stronger correlation with hu-
man scores when compared to the baseline, Pro-
toQA evaluator. Table 3 presents the results by
using other matching functions that are not imple-
mented in the ProtoQA evaluator in combination
with different clustering algorithms. The result
showed that whenever humans are involved in the
evaluation process, whether in clustering or match-

5Scores are averaged cross 10 runs for setting with human
clustering.
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Clustering Matching ProtoQA CFC

Human Cosine 0.715 0.552
Human GR 0.708 0.565

Gmeans Cosine 0.528 0.561
Gmeans GR 0.525 0.541
Xmeans Cosine 0.525 0.503
Xmeans GR 0.512 0.505
HAC Cosine 0.585 0.558
HAC GR 0.593 0.564

Table 3: Average Spearman correlation for PROBEVAL
when compared with gold scores. GR stands for Gaus-
sian Regression. Correlation is generally higher when
human is involved in the evaluation process (top two
rows), but fully automatic evaluator PROBEVAL still
achieves decent correlation.

ing, the correlation is consistently higher. However,
it is worth noting that a fully automatic evaluator
with HAC as the clustering algorithm and Word-
Net as the matching function achieves around 0.7
correlation score that is nearly as good as humans.

Efficiency Analysis We also report the running
time of PROBEVAL. When using pre-trained
word embeddings to calculate the similarity score,
PROBEVAL requires approximately 0.319 seconds
per question. When using WordNet as the similar-
ity score, PROBEVAL takes about 49.47 seconds
per question. The longer evaluation time associ-
ated with WordNet is a direct result of its multi-
step process. This process becomes particularly
time-consuming when the model predictions are
long, as it involves the tokenization of the sentence
followed by matching each token to ground truth to-
kens. Our main goal, however, was to come up with
an automated evaluation to allow for efficient ex-
ploration, and our proposed approach is still much
more efficient than human evaluation, which could
take up to 10 minutes to perform clustering alone
for a single question. Furthermore, human evalu-
ation is expensive and not always feasible. There-
fore, PROBEVAL offers an efficient and automated
metric for the probabilistic evaluation of diverse
answers.

5.4 Qualitative Analysis

5.4.1 Visualization
In order to qualitatively understand the correlation
score gap between ProtoQA evaluator and PROBE-
VAL shown in table 2, we plotted KL values when

(a) ProtoQA Score on CFC (b) PROBEVAL on CFC

(c) ProtoQA Score on ProtoQA (d) PROBEVAL on ProtoQA

Figure 4: Scatter plots of ProtoQA evaluator and
PROBEVAL for two datasets. The X-axis is gold KL
score with human annotations, and the y-axis is auto-
matic score with human cluster and WordNet match-
ing. (a) and (b) show for 1-ProtoQA Max-10 score
and PROBEVAL on CFC dev. (c) and (d) are the same
score methods on ProtoQA dev. Sampled five different
questions are annotated with different colors. In both
datasets, we see positive correlated trend with PROBE-
VAL, while ProtoQA evaluator barely correlates with
gold scores.

using human clustering and wordnet matching func-
tion, shown in figure 4. It is evident from figures
(b) and (d) that PROBEVAL exhibits a clear positive
correlation with the gold KL score. In contrast,
the ProtoQA score tends to be a horizontal line,
showing minimal correlation with the gold scores.
We hypothesize that ProtoQA is less sensitive to
subtle changes in the answer distribution, and we
will verify in the next section.

5.4.2 Prediction Error Types
We designed three sampling techniques to mimic
common errors in model predictions when the
model is tasked to predict multiple correct answers
with accurate probability calibration. These sam-
pling methods aim to reveal the performance differ-
ence between evaluators when given varying error
types ranging from easy to hard to identify. Exam-
ple samplings can be seen in Figure 5. A list of
answer examples are shown in section A.2 in the
Appendix.

Missing Answers The first type of error is one
of the most common and easily made errors when
predicting multiple correct answers, i.e missing
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Clustering MA WR WS

ProtoQA
Evaluator

Human 0.733 0.320 -.025

Gmeans 0.744 0.465 0.033
Xmeans 0.721 0.409 0.035

HAC 0.678 0.4 -.018

PROBEVAL

Human 0.875 0.791 0.245

Gmeans 0.745 0.706 0.187
Xmeans 0.782 0.68 0.231

HAC 0.711 0.642 0.188

Table 4: Average Spearman correlation between human
evaluation and automatic evaluation when model predic-
tion includes different error types, MA - missing answer,
WR - wrong ranking, and WS - wrong score for CFC
dev questions. The matching function for all the entries
in this table is WordNet (see Table 8 for the correlation
using other matching functions).

one or more correct answers in prediction. In the
implementation, we intentionally delete a random
number of categorical probabilities of the ground
truth distribution, Pg, from Ph.

Wrong Ranking If the model did not miss any
correct answers, we ask the next question of
whether it gives the correct ranking. For wrong
ranking sampling, the probabilities of categories
of the ground truth distribution, PG, are randomly
switched so that the answer ranking is wrong.

Wrong Score The last error type assumes the
model predicts all correct answers with the correct
ranking, however, the scores are not well calibrated.
This could be the hardest task but can also be ex-
tremely important for high steak domains where
the model needs to be well calibrated. For this
sampling, the categorical ranking is kept the same
but the categorical probabilities of the ground truth
distribution, PG, are varied to a random degree.

The results are shown in Table 4. For missing an-
swers, both evaluators achieved correlation scores
over 0.7, indicating a consistent alignment with
human scores. However, PROBEVAL significantly
outperforms the ProtoQA evaluator when the pre-
diction includes incorrectly ranked responses. This
demonstrates that the primary discrepancy between
the ProtoQA and CFC evaluators arises from the
ProtoQA evaluator’s inaccurate judgment when the
prediction includes wrong rankings. A particularly
notable finding emerges from the wrong score er-
rors, given this error type is extremely hard to iden-

Set Dev Test

Shot ZS FS ZS FS

GPT2-L 1.67 1.07 1.49 1.12
GPT2-XL 1.32 1.03 1.14 0.85

ProtoQA FT 0.80 0.79 0.61 0.70
GPT2-L FT 0.76 0.70 0.68 0.71

GPT 3.5 turbo 0.66 0.64 0.67 0.61
GPT 4 0.67 0.59 0.66 0.68

LLAMA2 0.85 0.87 0.82 0.85
Human 0.18 0.06

Table 5: Model performance on CFC (lower is better).
ZS means zero-shot, and FS means one-shot prediction.
GPT2-L and GPT2-XL is the GPT2 large and XL model
respectively, ProtoQA FT is the ProtoQA fine-tuned,
while GPT2-L FT is our own fined-tuned model.

tify, even for humans, PROBEVAL achieves positive
correlation scores, while the ProtoQA evaluator ex-
hibits nearly zero correlation. This performance
gap can be attributed to the ProtoQA max-10’s
limitation of considering only the first 10 correct
answers. In contrast, PROBEVAL considers all an-
swers and is able to capture these finer changes,
resulting in its ability to evaluate more nuanced
differences between model predictions.

6 CFC Results

Given the high correlation of PROBEVAL with hu-
man gold KL scores, we employ PROBEVAL in
evaluating CFC model performance. All the evalu-
ator parameter are tuned on CFC dev data, then fix
the parameters to report results on CFC test data.

Baseline Models In order to generate different
answers for the same prompt, we use Nucleus Sam-
pling (Holtzman et al., 2019). We generate 200
sampled answers from the GPT2Large model and
100 answers for the GPT2XL model for each ques-
tion and treat them as the model prediction. We
experimented with temperatures from 0.1 to 1.0,
and chose the model parameters with the best dev
performance, then reported the test performance.

We conducted experiments using various large
language models, employing Hugging Face’s Py-
Torch GPT2 Large and XL models (Wolf et al.,
2019; Radford et al., 2019) and OpenAI’s API for
versions 3.5-turbo and 4 (Bian et al., 2023; OpenAI,
2023). Our tests spanned zero-shot, one-shot, and
fine-tuning scenarios using the ProtoQA dataset.

In one-shot experiments, we reformatted CFC
questions as "[Q]: context, question, [A]" and in-
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cluded a sample Q&A pair from the CFC dev set
to familiarize the model with the format. For fine-
tuning, we used the ProtoQA pre-trained model and
also trained GPT2 Large with a similar task format
for 3 epochs on an Nvidia M40 GPU, denoted as
GPT2-L FT in our results.

Human Performance In order to get a human
performance on this task, we collected 30 addi-
tional human responses and evaluated them the
same way as a model prediction.

Discussion As shown in Table 5, the best per-
forming model are large models, i.e GPT3.5/GPT4,
or fine-tuned GPT2 model. Large models showed
significant performance improvement compared to
other models, even without fine-tuning data. How-
ever, all the model performances still have a large
gap compared to human. This indicates the pro-
posed benchmark combined with the probabilistic
measurement PROBEVAL is able to identify the
performance gap between LLMs and humans, and
leaves us ample space to improve the model.

7 Conclusion

In this paper, we assert that commonsense is an
implicit probability distribution over missing infor-
mation, and propose a dataset that aims to evaluate
commonsense in this setting via a generative ques-
tion answering task; moreover, we embrace the
probabilistic nature of commonsense knowledge
in both the dataset creation and the metric design.
We propose a probabilistic automatic evaluation
PROBEVAL for evaluating answer distributions that
is highly correlated to human judgment. Using this
metric, we observe that model performance on our
new dataset is significantly worse than human per-
formance, indicating that the task is sufficiently
challenging. In the future, we aim to further extend
the size of the dataset, both in number of instances
as well as answer length.

8 Limitation

We acknowledge that our collected answers are not
nearly as perfect for populations around the world
and coule be biased towards populations from cer-
tain regions, in this case, English speakers in the
US. But we argue this framework is one step in
the right direction, and we leave the collection for
broader cultures for future work.

The collected data also only included a limited
scope of commonsense. We believe that extend-

ing the CFC to other commonsense domains, like
temporal and social understanding, is important.
For example, the social outcome of a particular
event could vary significantly depending on cul-
ture, and each outcome is valid. The size of the
proposed dataset is also limited; however, consid-
ering the number of annotations we collected for
each question, the size is decent. We also proposed
a probabilistic measurement PROBEVAL, which
is needed in the era of LLMs to identify model
limitations.

We also acknowledge that the proposed evalua-
tor PROBEVAL could be susceptible to adversarial
attacks due to the automation and flexibility nature
of the evaluation module. It is possible to have
a model that achieves high scores but performs
poorly for the task. We will explore the combina-
tion of symbolic and neural methods to increase
the robustness of the evaluator in future work.
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A Appendix

A.1 Validation of the CFC Evaluator

A.1.1 Diverse Sampling
We employed a naive sampling stragegy called di-
verse sampling to emulate the a noisy scenario
where the prediction set is a linear combination
of the ground-truth distribution P̂g and a uniform

ProtoQA
Dataset

CFC
Dataset

ProtoQA
Evaluator

Human 0.111 -0.082
Gmeans 0.471 0.391
Xmeans 0.375 0.3

HAC 0.309 0.27

CFC
Evaluator

Human 0.829 0.855
Gmeans 0.881 0.773
Xmeans 0.718 0.765

HAC 0.748 0.785

Table 6: Average Spearman correlation between human
evaluation and automatic evaluation under diverse sam-
pling strategy for CFC dev questions with matching
function being WordNet (see Table 7 for the evaluation
score using other matching function).

ProtoQA
Dataset

CFC
Dataset

Clustering Matching Diverse Diverse

Human Cosine 0.886 0.754
Human GR 0.891 0.752

Gmeans Cosine 0.616 0.661
Gmeans GR 0.607 0.682
Xmeans Cosine 0.674 0.646
Xmeans GR 0.665 0.646
HAC Cosine 0.696 0.701
HAC GR 0.699 0.673

Table 7: Average Spearman correlation for CFC evalua-
tor between human evaluation and automatic evaluation
under diverse sampling strategy for ProtoQA dev and
CFC dev questions with matching functions being hu-
man annotation, Cosine similarity function, or Gaussian
Regression.
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distribution P̂u. The formulation of diverse sam-
pling is p = αP̂g + (1 − α)P̂u where α is drawn
from a uniform distribution between 0 and 1. The
comparison result between CFC evaluator and pro-
toQA evaluator using diverse sampling are shown
in Table 6 and comparison of CFC evaluator under
different automatic clustering and matching are in
Table 7.

A.2 Examples of sampling methods

Question : A helicopter is being used to tackle
the disaster. Who will use helicopters to tackle the
disaster?

Ground Truth Answers A selection of ground
truth answers and their probability are:

• Cluster 1: “pilot”, p (C1) = 0.5

• Cluster 2: "disaster management team", p(C2)
= 0.3

• Cluster 3: "people" p(C3) = 0.2.

In terms of probabilistic distribution, p(cluster 1) >
p(cluster 2) > p(cluster 3) for the ground truth.

Wrong Score Sampling The distribution could
be:

• Cluster 1: “pilot”, p(C1) = 0.7

• Cluster 2: "disaster management team", p(C2)
= 0.2

• Cluster 3: "people", p(C3) = 0.1

The ranking of distribution is kept the same but
the actual probabilities of the clusters are much
different than that of the ground truth clusters.

Wrong Ranking Sampling The distribution
could be:

• Cluster 1: “pilot”, p(C1) = 0.2

• Cluster 2: "disaster management team", p(C2)
= 0.3

• Cluster 3: "people" p(C3) = 0.5

The ranking of distribution is now cluster 3 > clus-
ter 2 > cluster 1 which is different from the ground
truth ranking.

Clustering Matching MA WR WS

Human Cosine 0.740 0.501 0.141
Human GR 0.765 0.499 0.125

Gmeans Cosine 0.763 0.599 0.086
Gmeans GR 0.787 0.556 0.051
Xmeans Cosine 0.773 0.519 0.090
Xmeans GR 0.759 0.504 0.096

HAC Cosine 0.694 0.593 0.143
HAC GR 0.698 0.580 0.162

Table 8: Average Spearman correlation between human
evaluation and automatic evaluation under MA - miss-
ing answer, WR - wrong ranking, and WS - wrong score
sampling strategies for CFC dev questions with match-
ing functions being human annotation, Cosine similarity
function, or Gaussian Regression.

missing answer sampling The distribution could
be:

• Cluster 1: “pilot”, p(C1)=0.7

• Cluster 3: "people", p(C3)=0.3.

Note that Cluster 2 (disaster management team) is
missing from the sampled distribution.
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Figure 5: Example sampling step for missing answer sampling (left), wrong ranking sampling (middle), and wrong
score sampling (right).

Figure 6: Comparison of correlation between ProtoQA evaluator and CFC evaluator for Wrong Score sampled
questions in ProtoQA with ground-truth clusters. The X-axis is the evaluaotr score with human assignment, and the
y-axis is the KL value with WordNet assignment. The figure on the left is the correlation for ProtoQA Max-10 with
human clustering and WordNet matching. The figure on the right is the correlation for CFC evaluator with human
clustering and WordNet matching. These corresponds to the ProtoQA Evaluator / Human / WordNet row and the
CFC Evaluator / Human / WordNet row with column being WS in Table 4. Different questions are annotated with
different colors.
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Figure 7: The screen shot for the the dataset collection page in Amazon MTurk.
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