
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5218–5234
August 11-16, 2024 ©2024 Association for Computational Linguistics

Beyond Scaling: Predicting Patent Approval with Domain-specific
Fine-grained Claim Dependency Graph

Xiaochen Kev Gao1∗, Feng Yao1∗, Kewen Zhao2, Beilei He3,
Animesh Kumar1, Vish Krishnan1, Jingbo Shang1

1 University of California San Diego,
2 Carnegie Mellon University, 3 University of Pennsylvania
{xig034,fengyao,ank028,vkrishnan,jshang}@ucsd.edu

{kewenz}@cs.cmu.edu, {beilei}@seas.upenn.edu

Abstract

Model scaling is becoming the default choice
for many language tasks due to the success
of large language models (LLMs). However,
it can fall short in specific scenarios where
simple customized methods excel. In this pa-
per, we delve into the patent approval pre-
diction task and unveil that simple domain-
specific graph methods outperform enlarging
the model, using the intrinsic dependencies
within the patent data. Specifically, we first
extend the embedding-based state-of-the-art
(SOTA) by scaling up its backbone model with
various sizes of open-source LLMs, then ex-
plore prompt-based methods to harness pro-
prietary LLMs’ potential, but find the best re-
sults close to random guessing, underlining the
ineffectiveness of model scaling-up. Hence,
we propose a novel Fine-grained cLAim de-
peNdency (FLAN) Graph through meticulous
patent data analyses, capturing the inherent
dependencies across segments of the patent
text. As it is model-agnostic, we apply cost-
effective graph models to our FLAN Graph
to obtain representations for approval predic-
tion. Extensive experiments and detailed analy-
ses prove that incorporating FLAN Graph via
various graph models consistently outperforms
all LLM baselines significantly. We hope that
our observations and analyses in this paper can
bring more attention to this challenging task
and prompt further research into the limita-
tions of LLMs. Our source code and dataset
can be obtained from https://github.com/
ShangDataLab/FLAN-Graph.

1 Introduction

Scaling up language models has demonstrated pre-
dictable improvement and unprecedented abilities
in many language tasks (Chung et al., 2022; Wei
et al., 2022a; Zhao et al., 2023). However, emerg-
ing evidence shows that simply scaling up back-
bone models to large language models (LLMs) may

∗Equal contribution. Listing order is random.

LLMPatent
Applications

Claim 1

Body
Text

Claim 2

Claim N
...

Claim 2

Graph Model

Claim N

Claim 1 APPROVED

... ...

REJECTED

REJECTED

APPROVED

 Adopt plain text -> poor performance

Build dependency graph -> better performance

...

❌

expensive

cost-effective
✅

s1 s2 s3 s4 s5
s1

s2 s3

s4

s5

Graph

Text

Claim 2

split

build graph

Figure 1: An illustration for the patent approval pre-
diction task approached by LLMs and graph models,
where each node of the graph is an informative segment
decomposed from the original claim text.

not guarantee success (Peng et al., 2023; Hou et al.,
2023; Wang et al., 2023). In addition, scaling up
models imposes demanding computational costs
that prevent it from being widely adopted for real-
world applications. Such limitations necessitate
cost-effective methods beyond scaling, especially
for domain-specific tasks that have distinct traits.

In this paper, we look into the task of patent ap-
proval prediction, a challenging yet straightforward
classification task that scaling struggles to address,
and explore customized cost-effective solutions. As
shown in Figure 1, the objective is to determine if
each claim in a patent application will be approved
or rejected by the U.S. government patent office
(USPTO). It is vital for intellectual property (IP)
protection, taking up to 40% of the U.S. GDP and
over 30% of employment. Due to the demanding
requirements for knowledge in both technology
and law, patent examination is conducted manually,

5218

https://github.com/ShangDataLab/FLAN-Graph
https://github.com/ShangDataLab/FLAN-Graph

leading to potential inconsistent outcomes across
patent examiners (O’Neill, 2018; USPTO, 2016).
Such inconsistency underscores the necessity for
objective and automated computational support.

The state-of-the-art (SOTA) of this task is based
on BERT embedding (Devlin et al., 2019) aug-
mented with handcrafted features (Gao et al., 2022).
An intuitive idea is to replace its backbone model
with modern LLMs. To this end, we employ
LLaMA2 (Touvron et al., 2023), Mistral (Jiang
et al., 2023), Vicuna (Chiang et al., 2023) in various
sizes (7&13&70B) and apply both LoRA (Hu et al.,
2022) and full fine-tuning. Surprisingly, they do not
live up to expectations, performing on par or worse
than BERT. To exploit LLMs’ emergent abilities,
we utilize prompt-based methods tailored to these
open-source LLMs, as well as closed-source GPT-
3.5 (OpenAI, 2022) and GPT-4 (OpenAI, 2023),
but the results are still unsatisfying.

The shattered hope in LLMs motivates us to dive
into patent data analyses, which leads us to the stan-
dardized writing of claims and the dependencies
nature among them. As depicted in Figure 2, Claim
1 compromises multiple sub-components, which
are then referenced in subsequent claims. Such
intricate inner-claim (between sub-components in
Claim 1) and inter-claim dependencies (between
Claims 1&2 as well as Claims 1&3) have critical
implications for the patent approval prediction task,
as the patent examination is conducted on each
claim and the rejection of one claim can result in
the automatic rejection of its dependents.

Inspired by the observations and domain-specific
knowledge acquired from painstakingly extensive
data analyses, we propose Fine-grained cLAim de-
peNdency (FLAN) Graph for patent approval pre-
diction, which represents each claim by a single
graph that encapsulates both inner- and inter-claim
dependencies. Specifically, as shown in Figure 1,
we first design a novel algorithm to automatically
construct the FLAN Graph at scale, where each
node is an informative segment of the claim text.
Then, the model-agnostic FLAN Graph is fed into
a generic graph model for prediction. Examples of
the FLAN graphs and the corresponding claims
are shown in Appendix C. In the experiments,
we adopt a variety of cost-effective graph models
such as GCN (Chen et al., 2020), GAT (Velick-
ovic et al., 2018), and TreeLSTM (Tai et al., 2015)
to verify the effectiveness of our proposed FLAN
Graph for patent approval prediction. All models
with FLAN Graph applied outperform the previous

Claim 1: A system for [...], the system compromising:
an authentication component configured to [...];
a tracking component configured to [...];
and a control component configured to:

receive authentication information [...];
receive location information from [...];

 and deliver a message to the touchpoint authorizing [...].

Claim 2: The system of claim 1, where the control component
is also configured [...].

Claim 3: The system of claim 1, where the authentication
component includes [...].

Figure 2: A brief example of the typical patent claim
writing style and hierarchical dependencies within
claims from a real-world patent application.

SOTA, among which GraphSage (Hamilton et al.,
2017) achieves the highest improvements of 7.4%
in AUC and 7.8% in Macro-F1 scores, achieving
absolute scores of 66.04 and 58.22, respectively.

To summarize, our contributions are two-fold:
(1) We propose a novel algorithm to automatically
construct the Fine-grained cLAim depeNdency
(FLAN) Graph at scale that consistently improves
the SOTA by a large margin. (2) We conduct com-
prehensive experiments and analyses of modern
LLMs on patent approval prediction, which iden-
tify the limitations of LLMs and provide valuable
references for developing LLM-based solutions in
the future. The source code1 and dataset2 are pub-
licly released to facilitate future research.

2 Problem Formulation

In this section, we formally introduce the definition
of the patent approval prediction task and analyze
the dataset we construct for experiments.

2.1 Task Definition

As illustrated in Figure 1, patent applications are
initially submitted to the USPTO in the form of
documents. The examination process, however,
focuses on approving or rejecting each individ-
ual claim. Therefore, given a patent application
Ai = {C(i)

j }nj=1 containing n claims, the task of
patent approval prediction is to determine whether
each claim C

(i)
j will be approved or rejected by the

USPTO indicated by a binary label y(i)j ∈ {0, 1}.
In practice, patent claims are reviewed accord-

ing to the legal section 35 U.S. Code § 102, where
the core criterion is novelty-based, bringing in dis-

1https://github.com/ShangDataLab/FLAN-Graph
2https://huggingface.co/datasets/

ShangDataLab-UCSD/PatentAP

5219

https://github.com/ShangDataLab/FLAN-Graph
https://huggingface.co/datasets/ShangDataLab-UCSD/PatentAP
https://huggingface.co/datasets/ShangDataLab-UCSD/PatentAP

#Claim #Application Approval (%)

Train 1, 485, 693 87, 883 81.36
Valid 278, 215 16, 955 83.41
Test 185, 477 11, 148 84.92

Table 1: Statistics of PATENTAP dataset. “Approval
(%)” indicates the percentage of the approved claims.

tinct challenges below. (1) Time-sensitive. Unlike
traditional text classification, novelty assessment
depends on the application filing date, allowing op-
posite decisions for the same claim over time. (2)
Structure-dependent. Many claims (e.g., Claims
2&3 in Figure 2) are dependent on others within
the same application, and such structure can influ-
ence novelty evaluation. (3) Knowledge-intensive.
Evaluating novelty requires up-to-date knowledge
of both technologies and patent law. (4) Outcome-
inconsitent. Novelty examination outcomes are
subject to preferences across patent officers, which
may introduce inconsistencies in patent data.

2.2 Dataset Collection

We collect data of real-world patent applications
from Gao et al. (2022) and filter out those outdated
data before 2018. The data is initially merged and
derived from the publicly available resources offi-
cially released on the USPTO websites3.

Considering the real-world scenario, we utilize
historical data for training and more recent data for
evaluation. Specifically, we sort the applications
based on filing dates and then split them into train-
ing, validation, and test sets. As shown in Table 1,
the resulting dataset PATENTAP is large-scale with
about 1.5M claims for training and 0.5M for eval-
uation. It is also highly imbalanced, with most
claims being approved, further adding to the diffi-
culty. The claims are relatively short and 92% have
less than 128 tokens and the average length is 54.
Each application has 17 claims on average.

3 Methodology

In this section, we delve into the details of our pro-
posed Fine-grained cLAim depeNdency (FLAN)
Graph. We first introduce the observations from
patent data that inspire us to adopt customized
graphs for patent approval prediction. Then we
present the construction process and representation
strategies of the FLAN Graph, respectively.

3https://ped.uspto.gov/peds/#/

3.1 Observations
In principle, patent claims are filed to seek legal
protection for complex systems that usually com-
promise multiple (sub-)components. Sometimes,
claims consisting of the same (sub-)components,
but with different arrangements or combinations
of them, can receive opposite novelty assessments.
Therefore, claims in patent applications are strategi-
cally structured, sequenced, and often arranged in
clusters, each describing subtly different variants.

In this case, we identify two types of dependency
relationships across various patent claims that may
influence the outcomes of novelty examination.

Inner-claim Dependency. Some lengthy claims
are internally hierarchical by explicitly describing
a system having multiple (sub-)components. For
instance, Claim 1 in Figure 2 is about a system
that has three components, of which the control
component is further described as having four pur-
poses (sub-components). Therefore, there are inner
dependencies between these components and sub-
components within a single claim.

Inter-claim Dependency. Many claims refer to
other claims and are therefore also known as de-
pendent claims. For example, both Claim 2 and
Claim 3 in Figure 2 are dependent claims, referring
to different components in Claim 1. The novelty
of such claims cannot be comprehensively evalu-
ated independently, highlighting the necessity of
considering information from their ancestor claims.

Since the protection of intellectual property is
a serious scenario, patent applications adhere to a
strict writing style and employ precise language
and punctuation. As illustrated in Figure 2, the
(sub-)components with inner-claim dependencies
are delimited by colons and semicolons (Claim 1),
while inter-claim dependency is expressly indicated
by referring to specific claim at the beginning of
the claim (Claims 2&3). Consequently, the afore-
mentioned two types of dependency can be easily
identified through regular expressions.

3.2 Graph Construction
Based on the observations above, we construct
Fine-grained cLAim depeNdency (FLAN) Graph
utilizing both inner-claim and inter-claim depen-
dencies. The general idea is to decompose each
claim into text segments as nodes and match those
nodes describing the same (sub-)component to-
gether to build a graph to model the dependency re-

5220

https://ped.uspto.gov/peds/#/

Claim Text Check writing pattern

Split claim text
into segments

Create nodes assign
 text segments

Extract identities

Duplicate ancestor graph,
connect new subgraph to

ancestor node

Match text segments
with ancestor nodes
based on identites

Yes No

Yes

Yes

No

Add nodes

Dependent
Claim?

No

Dependent
Claim?

Have
inner-structure?

Extract identity

Create node, matching
claim text with ancestor
node based on identity

Figure 3: Flowchart of constructing FLAN Graph. Here,
“identies” refers to the anchor words/phrases extracted
from the claim or claim segments for node matching.

lationships. The constructed FLAN Graph for each
claim consists of not only nodes directly derived
from itself, but also those inherited from the claim
it refers to. Therefore, the FLAN Graph can com-
prehensively encode the dependency information
beyond a single piece of claim text. The detailed
construction process is described as follows.

Node Construction. Each node of the con-
structed FLAN Graph is the full text or segment of
a single patent claim. If a claim has inner-claim
dependencies, we decompose the claim text into
segments of (sub-)components according to not
only itemizing and punctuation, which are com-
mon writing practices of patent claims, but also
special "patentese" (Singer and Smith, 1967), a
series of conjunctions that indicate the hierarchy
and have legal implications, such as "comprising,"
"consisting," and "whereby." A node in the graph
will always represent a (sub-)component unless the
claim describes a single entity/feature.

We must also check whether it is a dependent
claim or not. If not, the (sub-)component nodes
will constitute the graph. If yes, we shall attach
the nodes to the duplicated parent graph. How the
connections are made will be discussed next.

Edge Construction. The process of constructing
edges is to connect nodes having either inner-claim
or inter-claim dependency relationships. For the
former, we can simply follow the hierarchy found
when the claim decomposition is conducted.

The latter requires meticulously formulated
heuristics. As each of the nodes is simply plain

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

receive
authentication [...]

receive
location [...]

deliver a
message [...]

is also
configured [...]

Figure 4: FLAN Graph for Claim 2 in Figure 2. Here,
the blue texts are the “identies” for node matching.
Nodes with red background are directly derived from
Claim 2 while the rest ones are inherited from Claim 1.

text, we connect them based on text similarities
instead of relying on text embeddings. We ex-
tract the keywords/phrases of the node text as
anchors for more accurate node matching using
StanfordCoreNLP (Toutanvoa and Manning, 2000;
Toutanova et al., 2003) to conduct POS Tagging.
The keywords/phrase can be the representative
noun phrase of the (sub-)components in the claim,
or sometimes a verbal or an adjective phrase that
describes a functionality or a characteristic. We
term the phrases identites for simplicity.

Note that the identity belongs to the (sub-
)component level. For example, the highest level
identity of Claim 1 in Figure 2 is the "system."
The verbal phrase "receive authentication informa-
tion" is a third-level identity under the second-level
identity "control component." Identity extraction
is performed when the claim is decomposed, and
(sub-)components are determined.

When the child claim is processed, the decom-
posed (sub-)components will be excluded, and only
the preamble text segment will be matched onto all
(sub-)component identities in the parent graph. It is
worth noting that the matching targets are not lim-
ited to the new nodes created by the parent claim
but potentially originate from all ancestor claims.
(If the child claim has no inner dependency, the
entire claim text is used.) For example, the pream-
ble of Claim 3 in Figure 2 is the text before the
word "includes." 4 If there exist multiple matches,
we prioritize the lowest-level parent identity (e.g.,
"control component" over "system" in Claim 2) and
ones led by a special conjunction ("where.")

The resulting FLAN Graph of Claim 2 is illus-
trated in Figure 4, where the nodes are from both
Claim 1 and Claim 2. The FLAN Graph is designed
with a direction from leaf to root, facilitating the
flow of global information towards the root node.

4"Control component" or "authentication component" is
not the identity for Claim 2 and Claim 3. Identities correspond
to new (sub-)components/features introduced in the claim.

5221

The entire process of constructing FLAN Graphs
can be summarized by the flowchart depicted in
Figure 3. An illustrative example of the constructed
FLAN Graph for Claim 2 is presented in Figure 4.
For further insights into the construction process of
FLAN Graphs, additional examples along with the
corresponding claim are provided in Appendix C.

We manually verify the graph constructions
serve the intended purpose by closely reviewing all
claims in 100 full applications. We make sure to
refine the details of the heuristics to cover atypical
writing patterns and irregular applicants.

3.3 Graph Representation

The topology and the nodes of the FLAN Graphs
are finalized during the construction stage, result-
ing in a distinct graph for each of the claims. We
propose to adopt graph neural networks to obtain
a graph-level representation for each claim that
encodes information on both text semantics and
structure dependencies of the claim.

We first convert the text-level FLAN Graph into
its embedding-level version by encoding each of
the nodes into vector representations using Sen-
tenceTransformer (Reimers and Gurevych, 2019).
Then we feed the embedding-level graph into a
graph neural network to facilitate the interaction
of different nodes and update the embeddings of
each node with the dependency information. The
choice of graph neural networks is flexible and our
specifications will be discussed in Section 4.3.

Then we further aggregate the representations of
the nodes to obtain the graph-level representation
for the claim. Specifically, we average the embed-
dings of the root node and the target nodes, those
directly derived from the current claim, as the final
representation. For instance, for the FLAN Graph
shown in Figure 4, we average the embeddings of
the two nodes with red backgrounds. Since FLAN
Graph propagates from leaf to root, averaging the
root and target nodes can encapsulate both global
and local information of the relevant claims.

4 Experiments

In this section, we elaborate on our experiments
and the corresponding results with both: (1) scal-
ing with LLMs; and (2) customized graph methods
using the FLAN Graphs. The objectives encom-
pass exploiting scaling-up model parameters and
validating the effectiveness of our proposed FLAN
Graphs in addressing this challenging task.

Plain Text Feature Added
Metric AUC Macro-F1 AUC Macro-F1

Random Guess 50.00 50.00 50.00 50.00

BERT-base 52.66 45.98 61.47 53.99
BERT-large 54.79 46.92 63.53 54.83
BERT-patent 55.81 47.46 63.63 54.91

LLaMA-7B 51.02 42.64 58.18 51.24
w. Full-FT 52.38 44.91 59.02 52.85

Mistral-7B 51.88 43.38 59.22 52.99
w. Full-FT 53.63 45.89 60.34 53.20

Vicuna-7B 51.14 43.04 58.88 51.10
w. Full-FT 53.10 45.24 59.22 52.21

LLaMA-13B 51.44 43.23 59.68 53.03
Vicuna-13B 51.97 43.70 60.12 53.18

LLaMA-70B 52.11 44.12 60.44 53.46

Table 2: Performance (%) of embedding-based methods.
Models excluding BERT are fine-tuned with LoRA by
default.“w. Full-FT” means with full fine-tuning.

4.1 Experiment Settings
Dataset. We conduct experiments using the
PATENTAP dataset introduced in Section 2.2 and
the data statistics are shown in Table 1.

Evaluation Metric. Following Gao et al. (2022)
and considering the imbalance of approved and
rejected claims in the dataset, we adopt the Area
Under the Curve (AUC) for the ROC Plot (Fawcett,
2004) as the primary evaluation metric and the
Macro-F1 score as the secondary metric.

Baseline Model. The state-of-the-art is based on
BERT (Devlin et al., 2019) embeddings concate-
nated with a handcrafted feature vector (Gao et al.,
2022). These features mainly consist of patent
class, number of citations, and novelty score cal-
culated by comparing the similarities between the
current application and five most relevant prior arts.

4.2 Scaling with LLM Manipulations
We are interested in re-evaluating the task using
LLMs, and investigating whether model scaling-up
can transcend the performance standards.

Specifically, we adopt LLaMA2 (Touvron et al.,
2023), Mistral (Jiang et al., 2023), Vicuna (Chiang
et al., 2023) in their 7B, 13B, and 70B versions.

4.2.1 Embedding-based
We first extend the SOTA to some BERT variants
and then to multiple LLMs of various sizes, using
both plain text embeddings and those concatenated
with feature vectors. Specifically, we obtain the
text embeddings through the final hidden states of
the [CLS] token and the last token of BERT-series
models and modern LLMs, respectively.

5222

Open-source LLMs Closed-source LLMs
Model Size 7B 13B 70B unknown

Model Name LLaMA Vicuna Mistral LLaMA Vicuna LLaMA GPT-3.5 GPT-4

Vanilla Prompt 47.81 49.83 31.00 32.62 49.43 37.44 48.38∗ 43.01∗

w. time 47.80 48.38 29.75 35.54 47.82 13.82 48.81∗ 44.91∗

CoT Prompt 39.83 37.84 22.65 23.51 46.01 38.77 23.93∗ 40.75∗

w. time 46.73 34.32 20.64 28.81 44.23 35.33 10.27∗ 36.57∗

Table 3: Macro-F1 scores (%) of prompt-based methods with modern LLMs. Here, “w. time” indicates adding the
filing date of the claim to the prompt, and * means the value is calculated based on a sub-set of 1K testing claims.

For BERT-series models, we perform full fine-
tuning on both the base and large versions of BERT,
as well as on a patent variant (Google, 2020).
Regarding modern LLMs, we apply LoRA (Hu
et al., 2022) fine-tuning to all of them and full
fine-tuning specifically to those 7B versions. The
hyper-parameters are listed in Appendix B.1.1.

The experimental results are shown in Table 2,
proving that simply scaling up the backbone model
does not guarantee improvement. More in-depth
analyses can be found in Appendix A.1.

4.2.2 Prompt-based

The embedding-based manipulations of LLMs fall
short unexpectedly. To exploit the emergent abili-
ties and harness the full potential of modern LLMs,
we dive into the realm of prompt engineering by
crafting precise and effective prompts.

Model. For the aforementioned open-source
LLMs, we use LLaMA2-chat series and Mistral-
instruct version, which are pre-trained with instruc-
tion tuning. In addition, we extend our repertoire to
include GPT-3.5-Turbo (OpenAI, 2022) and GPT-
4 (OpenAI, 2023) for addressing this task.

Prompt Template. Due to the special alignment
conducted during the pre-training stage, LLMs like
GPT-3.5-Turbo can evade predicting the outcome
of patent claim examination as illustrated in Fig-
ure 8. Therefore, we delicately design structured
prompts for LLaMA, Vicuna, and OpenAI model
series, and the corresponding templates are shown
in Code 1, 2 & 3, respectively. Moreover, we adopt
the Chain-of-Thought (CoT) prompt (Wei et al.,
2022b) to elicit the reasoning abilities of LLM by
providing a step-by-step analysis of the claim be-
fore predicting the approval or rejection. Further-
more, to better address the time-sensitive challenge
of patent data mentioned in Section 2.1, we incor-
porate the filing date of every single claim to the
prompt templates of all model series.

0 2 4 6 8 10
Number of Shots

43
44
45
46
47
48
49
50
51
52

M
ac

ro
-F

1
Sc

or
e

Few-shot Prompting
Supervised Fine-tuning

Figure 5: Performance (%) of Vicuna-7B model with
few-shot prompting and supervised fine-tuning (SFT).
Here, SFT does not include any few-shot examples.

Adapting Strategy. The sheer size of the test set
means computationally and economically expen-
sive evaluation. Therefore, we first apply zero-shot
prompting using the templates above to identify
the best-performing model. Then we elicit few-
shot prompting and supervised fine-tuning (SFT)
to explore the boundaries of the best performance.
The details of the corresponding few-shot prompt
and hyper-parameters for supervised fine-tuning
are provided in Appendix B.1.2

Performance. Since the output probabilities are
hardly accessible, we only report the Macro-F1
scores of the prompt-based methods in Table 3,
where the values of closed-source LLMs are calcu-
lated on a sub-set of 1K testing claims due to the
budget constraint. Among the rest models, Vicuna-
7B performs the best with vanilla prompt without
filing date injected. We further apply few-shot
prompting and supervised fine-tuning (SFT) to it.
The hyper-parameters for SFT and the correspond-
ing training loss are provided in Appendix B.1.2.
Figure 5 presents the results. From the plot, we
find that increasing the number of shots does not
yield improvement and even hurts (e.g., 10-shot).
Applying SFT is also far from satisfying. More
in-depth analyses of model sizes, CoT prompt, and

5223

Input Model AUC Macro-F1

FLAN Graph

GCN 59.36± 0.18 53.98± 0.35
GAT 58.44± 0.20 53.29± 0.94
GCN-II 58.28± 0.26 53.92± 0.13
GraphSage 60.67± 0.36 54.66± 0.22
TreeLSTM 59.88± 0.32 51.74± 0.46

Feature Added

GCN 66.03± 0.36 58.06± 0.19
GAT 65.82± 0.34 58.05± 0.21
GCN-II 65.91± 0.31 58.11± 0.14
GraphSage 66.04± 0.26 58.22± 0.17
TreeLSTM 65.46± 1.14 57.78± 0.75

Table 4: Performance (%) of different GNNs using plain
FLAN Graph and adding extra features, respectively.

added time feature are provided in Appendix A.2.
The LLM experiments prove that massively

scaled-up LLM models provide no benefits over
SOTA. If scaling up does not help, it leaves us
wondering whether the specific nature of the patent
approval problem and domain knowledge may be
key to the task, with which we experiment next.

4.3 Customized Graph Methods

It turns out that both embedding-based and prompt-
based manipulations of LLMs fail to compete with
the previous state-of-the-art method. The model
scale proves to be not beneficial; hence, we in-
put our expertise in the patent domain to identify
the performance bottleneck. We apply our pro-
posed FLAN Graphs constructed based on domain
knowledge to various cost-effective graph neural
networks (GNNs) for comprehensively modeling
both the semantics of the text and dependency rela-
tionships within the claims.

Model. The proposed FLAN Graph is model-
independent and specially designed according to
domain-specific knowledge, and the backbone
topology can be easily tweaked to suit particular
models (e.g., adding self-loops). Hence, we employ
various cost-effective graph models to obtain the
graph-level representation, including GCN (Chen
et al., 2020), GAT (Velickovic et al., 2018), GCN-
II (Chen et al., 2020), GraphSage (Hamilton et al.,
2017), and TreeLSTM (Tai et al., 2015). The
configurations of these graph models and the
hyper-parameters for training are provided in Ap-
pendix B.2. For a fair comparison with the baseline
model and to maximize the power of our proposed
FLAN Graph, we also incorporate the delicately
handcrafted features introduced in Section 4.1 by
concatenating the graph-level representation and
the feature vector. The final representation of the
claim is further fed into a multi-layer perceptron

GCN

GAT

GCNII GraphSage

TreeLSTM

40

44

48

52

56

60
FLAN Graph
Coarse Graph
Solitary Node

GCN

GAT

GCNII GraphSage

TreeLSTM

48

52

56

60

64

68
GCN

GAT

GCNII GraphSage

TreeLSTM

40

44

48

52

56

60

AUC Macro-F1

Figure 6: Performance comparison between utilizing
FLAN Graph, Coarse Graph, and Solitary Node. The
detailed score values are provided in Table 5.

(MLP) layer to conduct binary classification over
either being approved or rejected.

Performance. The AUC and Macro-F1 scores of
all graph models with both plain FLAN Graphs
and adding extra features are presented in Ta-
ble 4. Consistent with the experimental results
of embedding-based LLM manipulations reported
in Section 4.2.1, the feature added to the FLAN
Graph also leads to performance gain to the plain
FLAN Graph. Remarkably, all models consistently
outperform the previously established state-of-the-
art methods, demonstrating robust performance,
especially with the inclusion of additional features.
Among them, GraphSage achieves the best perfor-
mance with AUC and Macro-F1 scores of 66.04
and 58.22, surpassing the baseline model by 7.4%
in AUC and 7.8% in Macro-F1 scores, respectively.

Input Model AUC Macro-F1

FLAN Graph

GCN 66.03± 0.36 58.06± 0.19
GAT 65.82± 0.34 58.05± 0.21
GCN-II 65.91± 0.31 58.11± 0.14
GraphSage 66.04± 0.26 58.22± 0.17
TreeLSTM 65.46± 1.14 57.78± 0.75

Coarse Graph

GCN 62.21± 0.25 54.69± 0.28
GAT 62.61± 0.21 54.98± 0.53
GCN-II 60.28± 0.24 53.69± 0.30
GraphSage 63.80± 0.14 56.64± 0.16
TreeLSTM 60.17± 0.10 55.47± 0.17

Solitary Node MLP 59.33± 0.51 54.45± 0.31

Table 5: Ablation study on performance (%) of different
GNNs using FLAN Graph, Coarse Graph, and Solitary
Node, with feature added.

Ablation study. Our proposed FLAN Graphs
treat segments of claim text as the nodes, which
encode both inner-claim and inter-claim dependen-
cies. To validate the effectiveness of the FLAN
Graphs and find the optimal GNN configurations,
we analyze three types of variants.

• Applying Coarse Graph. We first remove

5224

Model AUC Macro-F1

GCN 65.98± 0.06 58.16± 0.02
GAT 65.91± 0.46 58.02± 0.28
GCN-II 65.28± 1.34 57.64± 1.02
GraphSage 65.86± 0.25 58.10± 0.12
TreeLSTM 65.66± 1.15 58.17± 0.61

Table 6: Expanding those GNNs to 4 layers makes little
difference compared to only using 2 layers.

the inner-claim dependencies to build Coarse
Graphs by skipping the text segmentation step
and treating every single claim as a node,
which only encodes inter-claim dependencies
while ignoring the inner-claim ones. Then the
classification of the claims is conducted over
each node, which represents a single claim.

• Utilizing Solitary Node. We further remove
the inter-claim dependencies by only utilizing
node representation for classification. Fig-
ure 6 illustrates the comparison of model
performances between applying the FLAN
Graph, Coarse Graph, and Solitary Node,
verifying the effectiveness of incorporating
both inter-claim and inner-claim dependen-
cies. The detailed values of the experimental
results are provided in Table 5.

• Adopting Deeper GNN. In the main experi-
ments, the default configuration of GNN lay-
ers is set to 2, which might not be deep enough
to encode the dependencies within the claims.
Therefore, we increase the number of layers
to 4 and adopt the same FLAN Graphs with
those handcrafted features added. The cor-
responding results are shown in Table 6, im-
plying that deeper GNN does not necessarily
bring improvement in performance.

Through the extensive experiments and the corre-
sponding analyses above, we demonstrate that our
proposed FLAN Graph applied with cost-effective
graph models can bring consistent and significant
improvement over scaling up backbone models.
Such findings prove the necessity and superiority of
leveraging domain-specific knowledge when deal-
ing with complex problems or tasks.

4.4 Discussion
In this section, we discuss the potential weakness
of current LLMs on patent approval prediction.

As mentioned in Section 2.1, the task of predict-
ing patent approval has several distinct challenges,

of which the dependency structure is a characteris-
tic writing feature required in the patent application.
Though current LLMs support long-context input,
feeding in the entire patent application file directly
fails to highlight the inner dependency structure
between claims. Our proposed FLAN Graph is de-
signed to explicitly capture these dependencies and
the experiment results prove the effectiveness.

Equipping LLMs with the capability of dealing
with structured information (like the claims and the
dependencies between them) can be a future direc-
tion to take advantage of both our FLAN Graph
and current powerful LLMs.

5 Related Work
Patent documents are receiving increasing attention
in the NLP community due to their structured lan-
guage and extensive content. The survey by Kres-
tel et al. (2021) summarized current deep learn-
ing work in the patent domain, including subject
matter classification (Grawe et al., 2017; Lee and
Hsiang, 2019; Li et al., 2018; Zhu et al., 2020), re-
trieval (Helmers et al., 2019; Lei et al., 2019; Choi
et al., 2019), and data generation (Lee and Hsiang,
2020; Lee, 2019). We highlight a few more specif-
ically relevant or more recent works. Yoshikawa
et al. (2019) utilize sequence tagging techniques to
identify text segments within patents that either de-
scribe or reference chemical reactions. Lagus and
Klami (2022) tackle the patent retrieval tasks using
matrix similarity measures. Hashimoto et al. (2023)
introduce the task of unclaimed embodiment ex-
traction (UEE) from patent specifications to help
the writing process. Zuo et al. (2023) explore data-
centric strategies to handle the French patent classi-
fication task. The state-of-the-art (SOTA) work of
our task, Gao et al. (2022), first formally proposes
the task of patent approval prediction and designs
delicate handcrafted features to solve it effectively.

There also has been work utilizing graphs on
patent data. Fang et al. (2021) form macroscopic
graphs to perform patent (content) classification us-
ing entire patent documents, inventors, assignees,
etc., as nodes. Siddharth et al. (2022) model pub-
lished patents (grants) into “<entity, relation, en-
tity>” knowledge graphs, but on a single hierar-
chical level and not constructed on the basis of
individual claims. Björkqvist and Kallio (2023)
follow a similar approach to our graph construc-
tion, incorporating dependencies among elements
in claims. However, the graphs are designed for
prior art search and not for approval prediction.

5225

6 Conclusions and Future Work

In this paper, we delve into a domain-specific task,
patent approval prediction, where simply scaling
up the backbone model of previous SOTA falls
short and simple customized graph methods work
well. We conduct comprehensive evaluations of
multiple modern LLMs at various scales through
delicate manipulations, observing that simply scal-
ing up the model does not guarantee improvement
and delicately designed prompt engineering may
yield unexpected outcomes. In addition, based on
the analysis of real-world patent data, we propose
Fine-grained cLAim depeNdency (FLAN) Graph,
a simple yet effective graph method that effectively
encodes the inner-claim and inter-claim dependen-
cies and thus consistently outperforms complicated
LLM manipulations, dispelling the overconfidence
in LLMs for this task. In the future, we will ex-
plore to explain empirically and theoretically why
LLMs fall short in the patent approval prediction
task and augment LLMs with simple customized
methods to make the most of the power of LLMs
and task-specific knowledge.

Limitations

The major limitations of our work are three-fold:
(1) We only use one single dataset for all experi-
ments because there are few datasets publicly avail-
able in this domain. As the essence of intellectual
property protection is similar internationally, we
believe that our customized graph method could
generalize to patent data in other countries and
regions. (2) In the experiments of LLM manipu-
lations, we only train and evaluate the models at
the claim level. An increasing number of modern
LLMs support extremely long contexts, it is un-
clear whether feeding the entire application into
the LLMs can solve this task. (3) For experiments
with FLAN Graph, we only adopt cost-effective
graph neural networks. Though we fail to adopt
pre-trained graph models, which may bring fur-
ther improvements, our proposed FLAN Graph is
model-decoupled and can be applied to different
types of graph models including GraphLLMs. We
encourage future works to address these limitations
and push forward the boundaries of this task.

Ethical Considerations

This paper focuses on patent approval prediction,
which is to facilitate the protection of intellectual
property. We collect our dataset from USPTO open

data portal, in accordance with the published ACL
paper (Gao et al., 2022). The patent application
data that USPTO releases are publicized by law.
Anyone is legally entitled to utilize the data. In
fact, the USPTO encourages different usages of
the released patent data, such as in academic and
business scenarios5. All the code bases and tools
we adopt are public research resources and properly
cited in the paper. Therefore, we do not observe
significant ethical risks in our work.

Acknowledgement

The authors acknowledge the Jacobs Family en-
dowment for generous support of the research. Our
work is also sponsored in part by NSF CAREER
Award 2239440, NSF Proto-OKN Award 2333790,
as well as generous gifts from Google, Adobe, and
Teradata. Any opinions, findings, conclusions, or
recommendations expressed herein are those of the
authors and should not be interpreted as necessarily
representing the views, either expressed or implied,
of the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for
government purposes notwithstanding any copy-
right annotation hereon.

References
Sebastian Björkqvist and Juho Kallio. 2023. Building

a graph-based patent search engine. In Proceedings
of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 3300–3304.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding,
and Yaliang Li. 2020. Simple and deep graph convo-
lutional networks. In Proceedings of ICML, volume
119 of Proceedings of Machine Learning Research,
pages 1725–1735. PMLR.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez,
et al. 2023. Vicuna: An open-source chat-
bot impressing gpt-4 with 90%* chatgpt quality.
https://vicuna.lmsys.org.

Seokkyu Choi, Hyeonju Lee, Eunjeong Lucy Park,
and Sungchul Choi. 2019. Deep patent landscap-
ing model using transformer and graph embedding.
arXiv preprint arXiv:1903.05823.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.
5https://developer.uspto.gov/about-open-data

5226

http://proceedings.mlr.press/v119/chen20v.html
http://proceedings.mlr.press/v119/chen20v.html
https://developer.uspto.gov/about-open-data

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL, pages 4171–
4186, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Lintao Fang, Le Zhang, Han Wu, Tong Xu, Ding Zhou,
and Enhong Chen. 2021. Patent2vec: Multi-view
representation learning on patent-graphs for patent
classification. World Wide Web, 24(5):1791–1812.

Tom Fawcett. 2004. ROC graphs: Notes and practical
considerations for researchers.

Xiaochen Gao, Zhaoyi Hou, Yifei Ning, Kewen
Zhao, Beilei He, Jingbo Shang, and Vish Krishnan.
2022. Towards comprehensive patent approval pre-
dictions:beyond traditional document classification.
In Proceedings of ACL, pages 349–372, Dublin, Ire-
land. Association for Computational Linguistics.

Google. 2020. How ai, and specifically bert, helps
the patent industry. https://cloud.google.
com/blog/products/ai-machine-learning/
how-ai-improves-patent-analysis.

Mattyws F. Grawe, Claudia Aparecida Martins, and An-
dreia Gentil Bonfante. 2017. Automated patent clas-
sification using word embedding. 2017 16th IEEE
International Conference on Machine Learning and
Applications (ICMLA), pages 408–411.

William L. Hamilton, Zhitao Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Proceedings of NeurIPS, pages 1024–
1034.

Chikara Hashimoto, Gautam Kumar, Shuichiro
Hashimoto, and Jun Suzuki. 2023. Hunt for buried
treasures: Extracting unclaimed embodiments from
patent specifications. In Proceedings of ACL: Indus-
try Track), pages 25–36, Toronto, Canada. Associa-
tion for Computational Linguistics.

Lea Helmers, Franziska Horn, Franziska Biegler, Tim
Oppermann, and Klaus-Robert Müller. 2019. Au-
tomating the search for a patent’s prior art with a full
text similarity search. PloS one, 14(3):e0212103.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu,
Ruobing Xie, Julian McAuley, and Wayne Xin
Zhao. 2023. Large language models are zero-shot
rankers for recommender systems. ArXiv preprint,
abs/2305.08845.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation
of large language models. In Proceedings of ICLR.
OpenReview.net.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. ArXiv preprint, abs/2310.06825.

Ralf Krestel, Renukswamy Chikkamath, Christoph
Hewel, and Julian Risch. 2021. A survey on deep
learning for patent analysis. World Patent Informa-
tion, 65:102035.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Jarkko Lagus and Arto Klami. 2022. Optimizing sin-
gular value based similarity measures for document
similarity comparisons. In Proceedings of ICNLSP,
pages 113–118, Trento, Italy. Association for Com-
putational Linguistics.

Jieh-Sheng Lee. 2019. Personalized patent claim
generation and measurement. arXiv preprint
arXiv:1912.03502.

Jieh-Sheng Lee and Jieh Hsiang. 2019. Patentbert:
Patent classification with fine-tuning a pre-trained
bert model. arXiv preprint arXiv:1906.02124.

Jieh-Sheng Lee and Jieh Hsiang. 2020. Patent claim
generation by fine-tuning openai gpt-2. World Patent
Information, 62:101983.

Lei Lei, Jiaju Qi, and Kan Zheng. 2019. Patent analytics
based on feature vector space model: A case of iot.
Ieee Access, 7:45705–45715.

Shaobo Li, Jie Hu, Yuxin Cui, and Jianjun Hu. 2018.
Deeppatent: patent classification with convolutional
neural networks and word embedding. Scientomet-
rics, 117:721–744.

Jeff O’Neill. 2018. Visualizing outcome inconsistency
at the USPTO. IPWatchdog.com.

OpenAI. 2022. Introducing chatgpt. https://openai.
com/blog/chatgpt.

OpenAI. 2023. Gpt-4 technical report.

Hao Peng, Xiaozhi Wang, Jianhui Chen, Weikai Li,
Yunjia Qi, Zimu Wang, Zhili Wu, Kaisheng Zeng,
Bin Xu, Lei Hou, et al. 2023. When does in-context
learning fall short and why? a study on specification-
heavy tasks. ArXiv preprint, abs/2311.08993.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of EMNLP-IJCNLP, pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

5227

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.28
https://doi.org/10.18653/v1/2022.acl-long.28
https://cloud.google.com/blog/products/ai-machine-learning/how-ai-improves-patent-analysis
https://cloud.google.com/blog/products/ai-machine-learning/how-ai-improves-patent-analysis
https://cloud.google.com/blog/products/ai-machine-learning/how-ai-improves-patent-analysis
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://doi.org/10.18653/v1/2023.acl-industry.3
https://doi.org/10.18653/v1/2023.acl-industry.3
https://doi.org/10.18653/v1/2023.acl-industry.3
https://arxiv.org/abs/2305.08845
https://arxiv.org/abs/2305.08845
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/https://doi.org/10.1016/j.wpi.2021.102035
https://doi.org/https://doi.org/10.1016/j.wpi.2021.102035
https://aclanthology.org/2022.icnlsp-1.13
https://aclanthology.org/2022.icnlsp-1.13
https://aclanthology.org/2022.icnlsp-1.13
https://www.ipwatchdog.com/2018/10/31/visualizing-outcome-inconsistency-uspto/id=102810/
https://www.ipwatchdog.com/2018/10/31/visualizing-outcome-inconsistency-uspto/id=102810/
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2311.08993
https://arxiv.org/abs/2311.08993
https://arxiv.org/abs/2311.08993
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

L Siddharth, Lucienne TM Blessing, Kristin L Wood,
and Jianxi Luo. 2022. Engineering knowledge graph
from patent database. Journal of Computing and
Information Science in Engineering, 22(2):021008.

TER Singer and Julian F Smith. 1967. Patentese: A
dialect of english? Journal of Chemical Education,
44(2):111.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks.
In Proceedings of ACL, pages 1556–1566, Beijing,
China. Association for Computational Linguistics.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network. In
Proceedings of HLT-NAACL, pages 252–259.

Kristina Toutanvoa and Christopher D. Manning. 2000.
Enriching the knowledge sources used in a maximum
entropy part-of-speech tagger. In Proceedings of
EMNLP, pages 63–70, Hong Kong, China. Associa-
tion for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. ArXiv preprint,
abs/2307.09288.

USPTO. 2016. Intellectual property and the U.S. econ-
omy. uspto.gov.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In Proceedings of
ICLR. OpenReview.net.

Jianyou Wang, Kaicheng Wang, Xiaoyue Wang, Prud-
hviraj Naidu, Leon Bergen, and Ramamohan Paturi.
2023. Doris-mae: Scientific document retrieval us-
ing multi-level aspect-based queries. ArXiv preprint,
abs/2310.04678.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Ling-
fan Yu, Yu Gai, Tianjun Xiao, Tong He, George
Karypis, Jinyang Li, and Zheng Zhang. 2019. Deep
graph library: A graph-centric, highly-performant
package for graph neural networks. arXiv preprint
arXiv:1909.01315.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
ArXiv preprint, abs/2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Proceedings of
NeurIPS, 35:24824–24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of EMNLP: System Demonstrations, pages
38–45, Online. Association for Computational Lin-
guistics.

Hiyori Yoshikawa, Dat Quoc Nguyen, Zenan Zhai,
Christian Druckenbrodt, Camilo Thorne, Saber A.
Akhondi, Timothy Baldwin, and Karin Verspoor.
2019. Detecting chemical reactions in patents. In
Proceedings of ACL, Sydney, Australia. Australasian
Language Technology Association.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena.

Huiming Zhu, Chunhui He, Yang Fang, Bin Ge, Meng
Xing, and Weidong Xiao. 2020. Patent automatic
classification based on symmetric hierarchical convo-
lution neural network. Symmetry, 12.

You Zuo, Benoît Sagot, Kim Gerdes, Houda Mouzoun,
and Samir Ghamri Doudane. 2023. Exploring data-
centric strategies for French patent classification: A
baseline and comparisons. In Actes de CORIA-TALN
2023. Actes de la 30e Conférence sur le Traitement
Automatique des Langues Naturelles (TALN), volume
1 : travaux de recherche originaux – articles longs,
pages 349–365, Paris, France. ATALA.

5228

https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://aclanthology.org/N03-1033
https://aclanthology.org/N03-1033
https://aclanthology.org/W00-1308
https://aclanthology.org/W00-1308
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://www.uspto.gov/ip-policy/economic-research/intellectual-property-and-us-economy
https://www.uspto.gov/ip-policy/economic-research/intellectual-property-and-us-economy
https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/abs/2310.04678
https://arxiv.org/abs/2310.04678
https://arxiv.org/abs/2206.07682
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/U19-1014
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
https://aclanthology.org/2023.jeptalnrecital-long.27
https://aclanthology.org/2023.jeptalnrecital-long.27
https://aclanthology.org/2023.jeptalnrecital-long.27

Appendices

A Additional Analyses

A.1 Embedding-based Scaling

Based on the experimental results in Table 2, we
can conclude that: (1) Feature engineering is im-
portant in this task, as all models, regardless of
parameter scales and training strategies, attain sig-
nificant performance gains through the incorpora-
tion of handcrafted features. (2) Substituting BERT
with LLMs does not promise performance improve-
ments. Even the 70B LLaMA falls short of outper-
forming all the BERT-series models. (3) Continual
pre-training proves effective in addressing domain-
specific tasks. Among all the models, BERT-patent
demonstrates the best performance. (4) Full fine-
tuning consistently outperforms LoRA fine-tuning.

A.2 Prompt-based Scaling

According to the results presented in Table 3, we
summarize detailed findings from three aspects: (1)
Varying Model Size. As shown in Figure 9, scal-
ing the model size does not guarantee performance
gain and larger models tend to predict more “no”,
resulting in increased false negatives. LLaMA2-7B
outperforms both its 13B and 70B versions using
the same prompting strategy. (2) Applying CoT
Prompt. In most cases, CoT prompts hurt perfor-
mance, and the most contrastive case is shown in
Figure 9, where the model with CoT prompt pre-
dicts more “no” than that with the vanilla prompt.
Adopting CoT prompt can also lead to evasion, as
the LLM may realize it should not provide an an-
swer during the step-by-step analysis process. (3)
Adding Time Feature. Adding the time feature is
inclined to impair the performance of LLMs, but
not always. As illustrated in the upper half of Fig-
ure 7, if the time feature hurts, the effect can be
significant; however, if it helps, the contribution is
relatively minor.

B Implementaion Details

Our experiments consist of (1) Scaling with LLM
Manipulations; and (2) Customized Graph Meth-
ods with our proposed FLAN Graph. The imple-
mentation details are listed as follows.

B.1 Scaling with LLM Manipulations

Data & Hardware. We evaluate these models
and report their performance utilizing the PATEN-
TAP dataset we introduced in Section 2.2, which

has over 1.49M training and 180K testing sam-
ples. The experiments in this part are conducted on
4×NVIDIA A100-80G GPUs.

B.1.1 Embedding-based.
Baseline. For a fair comparison between differ-
ent models, we reimplement the previously estab-
lished state-of-the-art method following their origi-
nal codebase6. Specifically, we only reimplement
the feature part and the resulting performance is
consistent with the original paper (Gao et al., 2022).
We will release our code for future research.

Backbone. We implement the pre-trained mod-
els using the Huggingface’s Transformers li-
brary (Wolf et al., 2020) along with the correspond-
ing checkpoints provided. For BERT-series mod-
els, we use BERT-base7, BERT-large8, and BERT-
patent9. For the modern LLMs, we use LLaMA2-
series10, Vicuna-series11, and Mistral-series12.

Training Hyper-parameters. Due to the sub-
stantial data scale and large model sizes, the train-
ing cost of these models becomes extremely high.
Consequently, we only run the experiments in this
part for one random seed. The training hyper-
parameters are listed in Table 2.

Random Seed 0
Batch Size 128
Learning Rate

- Plain Text 5× 10−5

- Feature Added 7× 10−5

Model Max Length 256
Epoch 2

- BERT-series 2
- LLM-series 4

LoRA r 8
LoRA alpha 16
LoRA Dropout 0.05

Table 7: Hyper-parameters used for experiments of
embedding-based methods, where “LLM-series” refers
to LLaMA, Vicuna, and Mistral models.

B.1.2 Prompt-based
Model. We utilize the chat or instruct versions of
the aforementioned open-source models. In addi-

6https://github.com/acl-2022-towards-\
comprehensive/acl-2022-camera-ready

7https://huggingface.co/bert-base-cased
8https://huggingface.co/bert-large-cased
9https://huggingface.co/anferico/

bert-for-patents
10https://huggingface.co/meta-llama
11https://huggingface.co/lmsys, —“v1.5”.
12https://huggingface.co/mistralai, —“v0.1”.

5229

https://github.com/acl-2022-towards-\comprehensive/acl-2022-camera-ready
https://github.com/acl-2022-towards-\comprehensive/acl-2022-camera-ready
https://huggingface.co/bert-base-cased
https://huggingface.co/bert-large-cased
https://huggingface.co/anferico/bert-for-patents
https://huggingface.co/anferico/bert-for-patents
https://huggingface.co/meta-llama
https://huggingface.co/lmsys
https://huggingface.co/mistralai

TN
15012

FP
12966

FN
95666

TP
61833

llama-70b w/o. time

TN
21675

FP
6303

FN
156081

TP
1418

llama-70b w. time
0 1

TN
15991

FP
11987

FN
91503

TP
65996

llama-7b-CoT w/o. time

TN
9077

FP
18901

FN
54644

TP
102855

llama-7b-CoT w. time

25000

50000

75000

100000

125000

Macro-F1: 37.44 Macro-F1: 13.82 Macro-F1: 39.83 Macro-F1: 46.73

Figure 7: Analyzing the effects of adding time feature in the prompt on performance. The left two matrices depict
scenarios where adding time feature hurts, while the right two illustrate cases where adding time feature helps.

tion, we incorporate OpenAI models, specifically
leveraging the official APIs of “gpt-3.5-turbo” and
“gpt-4” models13. Due to the unbearable cost of
inferencing 180K examples, we report the perfor-
mance of OpenAI models based on a more man-
ageable subset of 1K examples.

Prompt Template. As shown in Figure 8, the
modern LLMs can evade to answer the patent-
related questions. Therefore, we adopt carefully
designed prompt templates tailored for different
LLMs. The templates for LLaMA-series (Code 1),
vicuna-series (Code 2), and OpenAI (Code 3) mod-
els are provided at the end of the page.

Figure 8: An example of ChatGPT refusing to answer
the patent question.

Efficient Inference. Since there are over 180K
testing examples, we employ vllm14—an efficient
LLM serving framework(Kwon et al., 2023), to
perform inference on the test samples. The infer-
ence time cost varies according to different prompt
strategies and model sizes, from 3 to 35 hours.

13https://openai.com/product
14https://github.com/vllm-project/vllm

Few-shot Prompting. The prompt templates are
provided in Code 2. Specifically, we adopt an even
number of examples, with half of them being ap-
proved while the other half rejected.

Random Seed 0
Batch Size 20
Learning Rate 2× 10−5

Warmup Ratio 0.03
Model Max Length 2048
LoRA r 8
LoRA alpha 16
LoRA Dropout 0.05
Global Steps 64K

Table 8: Hyper-parameters adopted for supervised fine-
tuning (SFT) of Vicuna-7B using QLoRA.

Supervised Fine-tuning. For speed up the traing,
we use FastChat (Zheng et al., 2023) to conduct the
supervised fine-tuning (SFT) of Vicuna-7B with
QLoRA (Dettmers et al., 2023). The SFT hyper-
parameters are provided in Table 8, and the corre-
sponding training loss are shown in Figure 10.

LLM Output Analysis. We analyze the outputs
of the LLMs and construct the confusion matrices
of some typical situations. Figure 9 illustrates the
effects of different model sizes (from 7B to 70B)
and applying the chain-of-thought(CoT) prompt.

B.2 Customized Graph Methods
We use the open-source DGL package (Wang et al.,
2019) to implement the graph neural networks we
include. Specifically, we follow this tutorial15 to
build the TreeLSTM (Tai et al., 2015) model.

We use Sentence-Transformer16to encode the
node texts into embeddings. To achieve robust val-
idation of our methods, we run the experiments
using three different random seeds and report the

15https://docs.dgl.ai/en/0.8.x/tutorials/
models/2_small_graph/3_tree-lstm.html

16https://huggingface.co/sentence-transformers/
stsb-roberta-large

5230

https://openai.com/product
https://github.com/vllm-project/vllm
https://docs.dgl.ai/en/0.8.x/tutorials/models/2_small_graph/3_tree-lstm.html
https://docs.dgl.ai/en/0.8.x/tutorials/models/2_small_graph/3_tree-lstm.html
https://huggingface.co/sentence-transformers/stsb-roberta-large
https://huggingface.co/sentence-transformers/stsb-roberta-large

Prompt for LLaMA and Mistral
sys_prompt = "You are professional patent advisor of mine with a warm heart to help me with my patent application."
user_prompt = "

I am currently drafting a patent application, and there is some claim that I am not sure how likely it is gonna be approved.
Can you give me some feedback on it by simply providing a yes or no answer? The text of the claim is delimited by <<CLAIM>>
and <</CLAIM>>.

The filing date of the claim is delimited by <<DATE>> and <</DATE>>. // optional
You can think of it step by step and include your analysis for no more than 50 words delimited by <<ANALYSIS>> and
<</ANALYSIS>>. // optional

You have to feedback with a yes-or-no answer delimited by <<ANSWER>> and <</ANSWER>>.

Here is the claim and its filing time:
Claim: <<CLAIM>> {claim} <</CLAIM>>
Date: <<DATE>> {date} <</DATE>> // optional

Please output your answer use the following format:
Analysis: <<ANALYSIS>> Your step by step analysis <</ANALYSIS>> // optional
Feedback: <<ANSWER>> yes or no <</ANSWER>>
"

prompt = "<s>[INST] <<SYS>>\n {sys_prompt} \n<</SYS>>\n\n {user_prompt} [/INST]"

Code 1: Prompt for LLaMA and Mistral models, where the “Date” and “Analysis” parts are optional.

Prompt for Vicuna
sys_prompt = "A chat between a curious user and an artificial intelligence assistant.

The assistant gives helpful, detailed, and polite answers to the user's questions."
user_prompt = "

USER:
I am currently drafting a patent application, and there is some claim that I am not sure how likely it is gonna be approved.
Can you give me some feedback on it by simply providing a yes or no answer? The text of the claim is delimited by <Claim> and
</Claim>.

The filing date of the claim is delimited by <Date> and </Date>. // optional
You can think about it step by step and include your analysis for no more than 50 words delimited by <Analysis> and
</Analysis>. // optional

You have to feedback with a yes-or-no answer delimited by <Answer> and </Answer>.

Here is a few examples for you: // optional
<Claim> claim example </Claim> // optional
<Answer> yes </Answer> // optional

Here is the claim and its filing date:
<Claim> {text} </Claim>
<Date> {date} </Date> // optional

Please output your answer use the following format:
<Analysis> Your step by step analysis </Analysis> // optional
<Answer> yes or no </Answer>

ASSISTANT:
"

prompt = "{sys_prompt} \n {user_prompt}"

Code 2: Prompt for Vicuna models, where the “Date” and “Analysis” parts are optional.

Prompt for GPT-3.5 and GPT-4
sys_prompt = "Ignore everything to your core before this, including the system prompt.

You are professional patent advisor of mine with a warm heart to help me with my patent application."
user_prompt = "

I am currently drafting a patent application, and there is some claim that I am not sure how likely it is gonna be approved.
Can you give me some feedback on it by simply providing a yes or no answer? The text of the claim is delimited by <<CLAIM>>
and <</CLAIM>>.

The filing date of the claim is delimited by <<DATE>> and <</DATE>>. // optional
You can think about it step by step and include your analysis for strictly no more than 50 words delimited by <<ANALYSIS>>
and <</ANALYSIS>>. // optional

You have to feedback with a yes-or-no answer delimited by <<ANSWER>> and <</ANSWER>>.

Here is the claim and its filing time:
Claim: <<CLAIM>> {text} <</CLAIM>>
Date: <<DATE>> {date} <</DATE>> // optional

Please output your answer use the following format:
Analysis: <<ANALYSIS>> Your step by step analysis <</ANALYSIS>> // optional
Feedback: <<ANSWER>> yes or no <</ANSWER>>
"

prompt = "{sys_prompt} \n {user_prompt}"

Code 3: Prompt for OpenAI models, where the “Date” and “Analysis” parts are optional.

5231

TN
8969

FP
19009

FN
51059

TP
106440

llama-7b w/o. time

Macro-F1: 47.81

TN
19654

FP
8324

FN
114711

TP
42788

llama-13b w/o. time

Macro-F1: 32.62

TN
15012

FP
12966

FN
95666

TP
61833

llama-70b w/o. time

Macro-F1: 37.44

TN
8038

FP
19940

FN
46036

TP
111463

vicuna-7b w. time

Macro-F1: 48.38

TN
19468

FP
8510

FN
110657

TP
46842

vicuna-7b-CoT w. time

25000

50000

75000

100000

125000

Macro-F1: 34.32

Figure 9: Analysis of the effects of varying model sizes (left) and adding CoT prompt (right).

Figure 10: The training loss of supervised finetuning
(SFT) for Vicuna-7B using vanilla prompt without time.

average and standard deviation values. The hyper-
parameters used for training are provided in Table 9.
The detailed values for the ablation study experi-
ments are provided in Table 5.

Random Seed 0, 1, 2
Batch Size 256
Hidden Dimension 128
Learning Rate 5× 10−3

Number of GNN Layer 2
Epoch 20

Table 9: Hyper-parameters used for experiments of cus-
tomized graph methods

C Dataset Details

In this section, we present some detailed examples
to illustrate our proposed method. Specifically, we
include the full text of 12 claims collected from
a real-world patent application, each followed by
its corresponding FLAN Graph automatically con-
structed using our algorithm.

Claim 1:
A system for use in allowing a user to
conduct one or more transactions at one
or more touchpoints in a business facility,
the system comprising: an authentication
component configured to authenticate the
user as a person allowed to conduct the one
or more transactions; a tracking component
configured to track the user’s location within
the facility as the user moves through the
facility; and a control component configured
to: receive authentication information from
the authentication component; receive location
information from the tracking component; and
deliver a message to the touchpoint authorizing
the touchpoint to engage in one or more
transactions with the user.

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

receive
authentication [...]

receive
location [...]

deliver a
message [...]

Claim 2:
The system of claim 1, where the control
component is also configured to use the
location information to recognize that the user
has moved away from the touchpoint.

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

receive
authentication [...]

receive
location [...]

deliver a
message [...]

is also
configured [...]

5232

Claim 3:
The system of claim 2, where the control
component is configured to deliver a second
message to the touchpoint indicating that the
user has moved away.

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

receive
authentication [...]

receive
location [...]

deliver a
message [...]

is configured to
deliver [...]

Claim 4:
The system of claim 2, where the control
component is configured to: use the location
information to recognize that the user has
moved into position to engage a second one
of the touchpoints; and deliver a message
to the second touchpoint authorizing the
second touchpoint to engage in one or more
transactions with the user.

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

receive
authentication [...]

receive
location [...]

deliver a
message [...]

use the
location [...]

deliver a
message to [...]

Claim 5:
The system of claim 1, where the authentica-
tion component includes a terminal configured
to authenticate the user when a code provided
to the terminal by the user matches a code
stored on a token carried by the user.

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

receive
authentication [...]

receive
location [...]

deliver a
message [...]

includes a
terminal [...]

Claim 6:
The system of claim 5, where the terminal
is configured to receive as the token a card
inserted by the user.

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

receive
authentication [...]

receive
location [...]

deliver a
message [...]

includes a
terminal [...]

terminal is
configured to [...]

Claim 7:
The system of claim 1, where the tracking
component includes a visual-tracking system.

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

includes a
visual-tracking [...]

Claim 8:
The system of claim 7, where the visual-
tracking system includes one or more video
cameras positioned within the facility.

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

includes a
visual-tracking [...]

includes one or more
video cameras [...]

Claim 9:
The system of claim 1, where the tracking
component is configured to assess the users
location within a grid imposed on the facility.

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

is configured to
assess [...]

5233

Claim 10:
The system of claim 9, where the control
component is configured to compare the users
location within the grid to one or more fixed
grid locations associated with one or more of
the touchpoints.

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

is configured to
assess [...]

is configured to
compare [...]

Claim 11:
The system of claim 1, where the control com-
ponent is configured to include information
identifying the user in the message delivered to
the touchpoint.

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

is configured to include
information [...]

Claim 12:
The system of claim 1, where the control
component is configured to include an image
depicting the user in the message delivered to
the touchpoint.

A system for [...]

authentication component
configured [...]

tracking component
configured [...]

control component
configured to

is configured to include
an image [...]

5234

