
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5140–5153
August 11-16, 2024 ©2024 Association for Computational Linguistics

WaveCoder: Widespread And Versatile Enhancement For Code Large
Language Models By Instruction Tuning

Zhaojian Yu1∗ Xin Zhang2† Ning Shang2 Yangyu Huang2 Can Xu2

Yishujie Zhao1∗ Wenxiang Hu2 Qiufeng Yin2

1Tsinghua University
2Microsoft

yzj23@mails.tsinghua.edu.cn, xinzhang3@microsoft.com
https://github.com/microsoft/WaveCoder

Abstract

Recent work demonstrates that, after instruc-
tion tuning, Code Large Language Models
(Code LLMs) can obtain impressive capabil-
ities to address a wide range of code-related
tasks. However, current instruction tuning
methods for Code LLMs mainly focus on the
traditional code generation task, resulting in
poor performance in complex multi-task scenar-
ios. In this paper, we concentrate on multiple
code-related tasks and present WaveCoder, a
series of Code LLMs trained with Widespread
And Versatile Enhanced instruction data. To
enable the models to tackle complex code-
related tasks, we propose a method to sta-
bly generate diverse, high-quality instruction
data from open source code dataset in multi-
task scenarios and obtain CodeSeaXDataset, a
dataset comprising 19,915 instruction instances
across 4 code-related tasks, which is aimed at
improving the generalization ability of Code
LLM. Our experiments demonstrate that Wave-
Coder models significantly outperform other
open-source models in terms of the generaliza-
tion ability across different code-related tasks.
Moreover, WaveCoder-Ultra-6.7B presents the
state-of-the-art generalization abilities on a
wide range of code-related tasks.

1 Introduction

Recently, Large Language Models (LLMs) such
as ChatGPT, GPT-4 (OpenAI, 2023), and Gem-
ini 1 have attained unprecedented performance lev-
els in a broad array of NLP tasks. These models
utilize a self-supervised pre-training process, and
subsequent supervised fine-tuning to demonstrate
exceptional zero/few-shot capabilities, effectively
following human instructions across various tasks.

For code-related tasks, several previous works,
including Codex (Chen et al., 2021), StarCoder (Li

∗Work was done during an internship at Microsoft.
†Corresponding author.

1https://deepmind.google/technologies/
gemini

et al., 2023a), CodeLLaMa (Roziere et al., 2023)
and DeepseekCoder (Guo et al., 2024), have suc-
cessfully demonstrated that pre-training on code
corpus can significantly improve the model’s ca-
pability to tackle code-related problems. After the
process of pre-training, instruction tuning (Wei
et al., 2022; Aribandi et al., 2022; Chung et al.,
2022) has shown its effectiveness in the aspect of
improving the quality of LLM responses. To specif-
ically enhance the performance of Code LLMs
on code-related tasks through instruction tuning,
many existing methods for instruction data gen-
eration have been designed. For example, Code
Alpaca (Chaudhary, 2023) utilizes the method of
self-instruct (Wang et al., 2023a) within the cod-
ing domain, leveraging the few-shot capabilities
of teacher LLM to generate instruction data. Sim-
ilarly, WizardCoder (Luo et al., 2024) applies the
evol-instruct (Xu et al., 2024) approach based on
Code Alpaca, demonstrating a novel and effec-
tive method for the generation of instruction data.
These applications underscore the potential of uti-
lizing teacher LLMs to produce instructional con-
tent effectively, thereby offering an avenue for the
creation of instruction data in the code domain.
However, the quality of the data they generate heav-
ily relies on the performance of the teacher LLM
and the limited initial seeds, which often produces a
large amount of duplicate instruction instances and
reduce the effectiveness of instruction tuning (Xu
et al., 2022; Yan et al., 2023; Lee et al., 2022). To
break away from dependence on teacher LLMs, Oc-
topack (Muennighoff et al., 2024) constructs a code
instruction dataset leveraging the natural structure
of Git commits. Nonetheless, ensuring the qual-
ity of data in git messages presents a considerable
challenge, and the comprehensive screening of data
through artificial filtering rules is often a complex
task. Additionally, these endeavors are predomi-
nantly centered on traditional code generation tasks
and lack the capability to produce detailed, task-

5140

https://github.com/microsoft/WaveCoder
https://deepmind.google/technologies/gemini
https://deepmind.google/technologies/gemini


Manually-
defined rules

Code Embedding Space

Coreset 
Generation

Raw Code Coreset

Raw data Collection Instruction Data Generation

LLM Generator LLM Discriminator

Bad Generation

Good Generation

zero/few shot

Example Database

Training Process

Base Language Model

Good Generation

CodeSeaXDataset

Instruction 
tuning

WaveCoderProblem solving

Foundation dataset

Task definition:
Ø Code generation
Ø Code summary
Ø …

Task rule:
Ø Check the input
Ø Check the generation
Ø …

Input:…
Generation:

A

B Generator setting

Discriminator settingC

Reformatting the 
good generation 
to instruction data

Raw Code

A B C

Raw code collection

KcenterGreedy

D

D Training process

Figure 1: The overview of the widespread and versatile enhancement for Code LLM. Part B and C indicates
the LLM-based Generator and LLM-based Disciminator where the generator can leverage different examples in
example database by in-context learning.

specific instructions in multi-task scenarios.
In this paper, we primarily focus on multiple

code-related tasks, aiming to generate high-quality
and diverse instructional data tailored to specific
task requirements. Addressing the aforementioned
challenges, we refine the instruction data by clas-
sifying the instruction instances to four univer-
sal code-related tasks in CodeXGLUE (Lu et al.,
2021): 1) Code Summarization, 2) Code Gener-
ation, 3) Code Translation, 4) Code Repair and
propose a widespread and versatile enhanced in-
struction generation method that could make full
use of open source code data and stably generate
high quality and diverse instruction data in multi-
task scenarios. By this generation strategy, we ob-
tain a dataset of 19,915 instruction instances across
four code-related tasks, termed CodeSeaXDataset.

To validate our approach, we train StarCoder (Li
et al., 2023a), CodeLLaMa (Roziere et al., 2023),
and DeepseekCoder (Guo et al., 2024) with our
initial CodeSeaXDataset dataset and get Wave-
Coder. Following a thorough assessment on Hu-
manEval (Chen et al., 2021), MBPP (Austin et al.,
2021), HumanEvalPack (Muennighoff et al., 2024)
benchmarks, experimental results show that our
WaveCoder exhibits outstanding generalization
ability based on widespread and versatile enhanced
instruction tuning. Moreover, to further explore
the improvements brought by data quality, we
use GPT-4 (OpenAI, 2023) to regenerate response

for the instruction in CodeSeaXDataset. Fine-
tuned with the enhanced 20K CodeSeaXDataset
dataset, we obtain WaveCoder-Pro-6.7B which
achieve 72.0% pass@1 on HumanEval (Chen et al.,
2021) and surpass open source Code LLMs but
still behind SoTA Code LLM. Combining en-
hanced CodeSeaXDataset with WaveCoder-evol-
codealpaca, the decontaminated Magicoder-evol-
codealpaca 2 dataset, we present WaveCoder-
Ultra-6.7B, with SoTA generalization capabilities
on multiple code-related tasks.

2 CodeSeaXDataset: Four-task
Code-related Instruction Data

2.1 Tasks Details

Given the code-related tasks from CodeXGLUE
(Lu et al., 2021), we select four of the most uni-
versally representative and common tasks from the
three generative tasks (code-to-text, text-to-code,
and code-to-code) for further exploration includ-
ing Code Summarization, Code Generation, Code
Translation, and Code Repair. Detailed descrip-
tions of these tasks can be found below.
Code Summarization (code-to-text). This task
aims to create a brief summary of a given code. The
raw code is used as input and the teacher model’s
response is reformulated into an instruction format.

2https://huggingface.co/datasets/
ise-uiuc/Magicoder-evol-codealpaca-110K

5141

https://huggingface.co/datasets/ise-uiuc/Magicoder-evol-codealpaca-110K
https://huggingface.co/datasets/ise-uiuc/Magicoder-evol-codealpaca-110K


Table 1: The proportion of generated data in generation phase.

Task Num Per(%) Prompt

Code Generation 11370 57.1 Implementing functions that perform specific operations given input.
Code Summarization 3165 15.8 Write clear and concise documentation for the given code.
Code Repair 3144 15.8 Identify and fix errors in the given code.
Code Translation 2236 11.2 Rewrite the given code from one programming language to another.

Table 2: The proportion of programming language in
raw code.

Task Percentage(%)

Python 29.44
PHP 21.34
Go 19.68
Java 18.53
JavaScript 5.56
Others (Ruby,C++,C#) 5.45

Code Generation (text-to-code, code-to-code).
In this task, the model is expected to generate code
based on a user’s demand description. Therefore,
the teacher model is expected to generate instruc-
tions and solution code given the raw code as a
instruction-solution pair. The generated solution
code is then considered as the output.
Code Translation (code-to-code). This task in-
volves converting one programming language into
another. The task-specific prompt and raw code are
given to the teacher model, then the model gener-
ates instructions and the translated code.
Code Repair (code-to-code). The aim of this task
is to provide correct code based on potential issues
in the given code. The teacher model is expected to
generate solutions for the incorrect code, typically
with the correct code and some descriptions, which
are then taken as the output.

2.2 Widespread and Versatile Enhanced
Instruction Generation

In past research work (Zhou et al., 2023; Gupta
et al., 2023), many researchers have discovered
that data quality and diversity often play a more
important role in instruction tuning process than
data amount. The improvement of data quality and
diversity are directly related to the performance
of the fine-tuned LLM. Therefore, to ensure the
data quality and diversity of instruction instance,
we propose a widespread and versatile enhanced
instruction generation method including two the
following parts: 1) a method that can retain the di-
versity of instruction data by retainig the diversity
of raw code to the utmost extent. 2) a LLM-based

Generator-Discriminator framework to stably gen-
erate high-quality instruction data.

2.2.1 Raw Code Collection

To ensure the quality and diversity of raw code,
we manually define some filtering rules and uti-
lize a cluster method KCenterGreedy (Sener and
Savarese, 2018; Chen et al., 2023) to get the raw
code collection from the open source code dataset.
In this work, we select CodeSearchNet 3, which
contains 2 million of <comment, code> pairs from
open-source libraries hosted on GitHub, as our
foundation dataset and process it with the following
steps:
Manually defined filtering rules. In order to se-
lect high-quality code for instruction-tuning, we
make the following rules to filter the foundation
dataset: i) In this work, we filtered the code to
make sure that the length of required code is nei-
ther too long nor too short. ii) Followed Code
Alpaca (Chaudhary, 2023), we have eliminated
the raw code containing words from the blacklist,
which could potentially reduce the performance of
the resulting model.
Coreset selection method. To ensure the data
diversity when select raw code samples, we em-
ployed KCenterGreedy (Sener and Savarese, 2018)
algorithm, which has been proven efficient in ob-
taining a set of core samples of one distribution,
to select representative samples from the open
source code dataset based on the code embed-
dings encoded by the same embedding model
(roberta-large-v1 (Liu et al., 2019)).

By incorporating such a method into the open
source code dataset, the diversity of the generated
data no longer relies solely on capability of the
teacher LLM itself or initial seed. Moreover, due
to the application of the KCenterGreedy algorithm,
the diversity of languages is also significantly re-
tained, as shown in Table 2.

3https://huggingface.co/datasets/code_
search_net

5142

https://huggingface.co/datasets/code_search_net
https://huggingface.co/datasets/code_search_net


open source code
Generation

Convert/Rewrite the given code from one programming language to another.

Write clear and concise documentation for the given code.

Identify and fix errors in the given code.
LM 

Each generated case needs to be provided with the following keys:
Ø Task Name
Ø Instruction
Ø Input
Ø Output
Here are some requirements you should allowed:
1. The Output is a specific resolution addressing Instruction and Input; 
therefore, an Output must be relevant to both Instruction and Input.
2. The instruction should be one or two sentences.
3. In the Output, it should only contain the code. There should be no 
explanations provided outside the code.
...

Each generated case needs to be provided with the following keys:
Ø Task Name
Ø Instruction
Ø Input
Ø Output
Here are some requirements you should allowed:
1. The Output is a specific resolution addressing Instruction and Input; 
therefore, an Output must be relevant to both Instruction and Input.
2. The instruction should be one or two sentences.
3. In the Output, it should only contain the code. There should be no 
explanations provided outside the code.
...

Each generated case needs to be provided with the following keys:
Ø Task Name
Ø Instruction
Ø Information
Ø Solution
Here are some requirements you should allowed:
1. The Output is a specific resolution addressing Instruction and Input; 
therefore, an Output must be relevant to both Instruction and Input.
2. The instruction should be one or two sentences.
3. In the Output, it should only contain the code. There should be no 
explanations provided outside the code.
...

ØTask Name
Ø Instruction
Ø Information
Ø Solution

LM 

Analysis:
- step 1: check the code:
1. The Input should be code and cannot only 
contain comments. 
- step 2: check the Output:
1. Solution: Solution is related to instruction 
and information. Solution is the specific 
resolution to instruction and information. 
2. Instruction: the programming language 
should be specified in the instruction. 
3. Solution: in the solution, it should only 
contain the code and comments within the 
code. There should be no explanations 
provided outside the code. 
4. Instruction: The content of the instruction 
should be relevant to the Input and should be a 
summary of the Input content, without any 
additional unrelated information. 
...

Model-Generated

Human-written

A BGeneration Phase Discrimination Phase

Figure 2: The overview of the our LLM-based Generator-Discriminator framework. In part A, the output of
Generator includes 4 keys: Task name, Instruction, Information, Solution. All keys will be analyzed in the
Discrimination Phase and the analysis can be reused as examples in next turn.

2.2.2 LLM-based Generator-Discriminator
Framework

After the process of raw code collection, the data
diversity from raw code has been retained, where
the next step is to generate instruction data for su-
pervised fine-tuning from the raw code. To fur-
ther ensure the quality of generated instruction
data, shown in Figure 2, we propose a LLM-based
Generator-Discriminator framework where the gen-
erator can leverage an extensive amount of unsu-
pervised open source code to generate supervised
instruction data and the discriminator can generate
analysis for each component in instruction data.
Generation Phase. In the generation phase, we
utilize GPT-4 to generate definitions for each code-
related task. As shown in Figure 2, following
the model-generated task definition, we manually
develop the generation requirements for the each
code-related task. Integrating both the task defini-
tion and all associated requirements into the gen-
eration prompt, we take the raw code as an input
and select different examples from the example
database to generate instruction data by GPT-3.5.
Discrimination Phase. During the exploration of
the instruction generation process, we noticed that
the data quality of the instruction instances cannot
be guaranteed through the generation phase alone.
In order to enhance the controllability of data gener-
ation and further ensure the data quality, we employ
GPT-4 as a LLM-based discriminator to continue
analyzing and filtering the instruction data. Subse-
quently, inspired by Zero-shot-CoT (Kojima et al.,
2022), we establish a series of rules, exemplified in
Figure 4 and disassemble them to some subtopics
to ensure the discriminating accuracy where the
LLM-based discriminator can analyze the gener-

ation step by step. By adopting this method, the
discrimination rules can be modified partially to
address certain issues. After the discrimination
process, as shown in Figure 1, each instruction in-
stance is classified as either a good or bad case
and the classification information is subsequently
random selected in the following generation as ex-
amples. For the reusage of these classified instruc-
tion instance, different from self-instruct (Wang
et al., 2023a) which solely utilize the initial seed
task as good example, we exploit both the good
generation and bad generation as few-shot example
so that the generator can learn from the mistake in
different bad example. Therefore, this framework
provides a comprehensive approach to generating
and evaluating instruction data, ensuring a high-
quality training dataset.

3 Experiments

3.1 Setup

Unlike the previous work (Luo et al., 2024; Shen
et al., 2023; Gunasekar et al., 2023) that mainly
focus on code generation task, we generate about
20K dataset covers 4 common code-related tasks to
enhance the geralization abilties of Code LLM. To
obtain WaveCoder models, We choose StarCoder-
15B, CodeLLaMa (7B and 13B), DeepseekCoder-
6.7B as the base model and fine-tune all the base
model for 3 epochs using NVIDIA A100-80GB
GPU. For StarCoder-15B, CodeLLaMa-7B and
CodeLLaMa-13B, we set the global batch size to
256 using Tensor Parallel and set the initial learn-
ing rate at 2e-5. For DeepseekCoder-6.7B, we set
the global batch size to 512 using the Fully Sharded
Data Parallel (FSDP) module from Pytorch and set
the initial learning rate at 5e-5.

5143



Table 3: Results of pass@1 on HumanEval and MBPP benchmark. We use self-reported scores whenever available.
The abbreviations "CL", "SC", "DS" refer to the base models CodeLLaMa and StarCoder and DeepseekCoder,
respectively. "WaveCoder-Pro-6.7B" and "WaveCoder-Ultra-6.7B" is detailed in the last paragraph of Section
1. Due to the difference in decoding strategies from previous evaluation work, we marked the results of greedy
decoding in blue and n = 200 samples in red . -: Not reported in their paper.

Model Params Base Model InsT Data HumanEval MBPP (500)

Proprietary Models

GPT-4 - - - 85.4 / 67.0 -
ChatGPT - - - 73.2 / 48.1 52.2

Open-Source Models

StarCoder 15B - ✘ 33.6 43.3
OctoCoder 15B StarCoder 13K 46.2 43.5
WizardCoder 15B StarCoder 78K 57.3 51.8
WaveCoder-SC-15B 15B StarCoder 20K 50.5 (+16.9) 51.0 (+7.4)

CodeLLaMa 7B - ✘ 33.5 41.4
CodeLLaMa-instruct 7B CodeLLaMa 14K 34.8 44.4
WaveCoder-CL-7B 7B CodeLLaMa 20K 48.1 (+14.6) 47.2 (+5.8)

CodeLLaMa 13B - ✘ 36.0 47.0
CodeLLaMa-instruct 13B CodeLLaMa 14K 42.5 49.4
WaveCoder-CL-13B 13B CodeLLaMa 20K 55.4 (+19.4) 49.6 (+2.6)

DeepseekCoder 6.7B - ✘ 49.4 60.6
Magicoder-DS 6.7B DeepseekCoder 75K 66.5 60.4
WaveCoder-DS-6.7B 6.7B DeepseekCoder 20K 64.0 (+14.6) 62.8 (+2.2)
WaveCoder-Pro-6.7B 6.7B DeepseekCoder 20K 72.0 (+22.6) 63.6 (+3.0)

SoTA Open-Source Models

DeepseekCoder-instruct∗ 6.7B DeepseekCoder - 73.8 62.8
Magicoder-S-DS 6.7B DeepseekCoder 185K 76.8 64.6
WaveCoder-Ultra-6.7B 6.7B DeepseekCoder 130K 78.6 (+29.2) 64.4 (+3.8)

Benchmarks and Baselines. To ensure a thorough
assessment of the model’s generalization ability,
we score our model on three code benchmarks
across different code related tasks: HumanEval
(Chen et al., 2021), MBPP (Austin et al., 2021)
and HumanEvalPack (Muennighoff et al., 2024),
as illustrated in Appendix D.
Proprietary Models. We present the self-reported
results from an array of SoTA LLMs, including
ChatGPT (gpt-3.5-turbo), GPT-4. If not re-
ported, we use the results from Octopack (Muen-
nighoff et al., 2024) or evaluate by ourselves.
Open Source Models. To ensure an equitable com-
parison, we opted to select models that have been
trained with the similar amount of instruction in-
stances for our comparative analysis.
SoTA Open Source Models. We compared
WaveCoder-6.7B with the SoTA open source
Code LLM, includes Magicoder-S-DS (Wei et al.,
2023) and DeepseekCoder-instruct-6.7B (Wei et al.,
2023) on a wide range of code-related tasks. All
the result of SoTA open source models is presented
from EvalPlus. (Liu et al., 2023) If not reported,

we evaluate it by ourselves.

3.2 Result

Evaluation on Code Generation Task. Hu-
manEval and MBPP are two representative bench-
marks for code generation task, as illustrated in
Appendix D. Table 3 shows the pass@1 score of
different LLMs on both benchmarks. From the
results, We have the following observations:
1) WaveCoder-Pro-6.7B outperforms other open
source models with only 6.7B parameters and 20K
instruction data. Trained with GPT-4 enhanced
CodeSeaXDataset dataset, WaveCoder-Pro-6.7B
achieve 72.0% pass@1 and on HumanEval and
63.6% on MBPP, surpassing all open source models
but still behind proprietary models and the SoTA
open source models.
2) Refined and diverse instruction data can signifi-
cantly improve the efficiency of instruction tuning.
As delineated in Table 3, WaveCoder demonstrates
commendable performance, utilizing a dataset com-
prising merely about 20K Instruction Tuning Data
(InsT Data), which positions it on an equal foot-

5144



Table 4: Results of pass@1 on HumanEvalFix benchmark. We use self-reported scores whenever available. Due to
the difference in decoding strategies from previous evaluation work, we marked the results of greedy decoding in
blue and n = 20 samples in red .

Model Python JavaScript Java Go C++ Rust Avg.

GPT-4 47.0 48.2 50.0 50.6 47.6 43.3 47.8

StarCoder 8.7 15.7 13.3 20.1 15.6 6.7 13.4
OctoCoder 30.4 28.4 30.6 30.2 26.1 16.5 27.0
WizardCoder 31.8 29.5 30.7 30.4 18.7 13.0 25.7
WaveCoder-SC-15B 39.3 35.1 34.8 36.2 30.2 22.5 33.0

CodeLLaMa-instruct-7B 28.0 23.2 23.2 18.3 0.1 0.1 15.5
CodeLLaMa-CodeAlpaca-7B 37.8 39.0 42.0 37.8 37.2 29.2 37.1
WaveCoder-CL-7B 41.4 41.4 42.0 47.1 42.7 34.7 41.5

CodeLLaMa-instruct-13B 29.2 19.5 32.3 24.4 12.8 0.1 19.7
CodeLLaMa-CodeAlpaca-13B 42.7 43.9 50.0 45.7 39.6 37.2 43.2
WaveCoder-CL-13B 48.8 48.2 50.6 51.8 45.1 40.2 47.4

DeepseekCoder-6.7B 29.9 29.2 39.0 29.2 25.0 21.9 29.0
Magicoder-DS 42.0 43.3 50.6 41.4 38.4 29.2 40.8
DeepseekCoder-CodeAlpaca-6.7B 49.4 51.8 45.1 48.8 44.5 31.7 45.2
WaveCoder-DS-6.7B 57.9 52.4 57.3 47.5 45.1 36.0 49.4
WaveCoder-Pro-6.7B 59.1 56.7 54.2 45.1 45.7 34.1 49.2

Deepseek-instruct-6.7B 56.1 58.5 57.3 49.4 45.1 36.6 50.5
Magicoder-S-DS 56.1 55.4 58.5 51.2 45.7 35.3 50.3
WaveCoder-Ultra-6.7B 58.5 57.3 61.0 53.0 50.0 37.2 52.8

ing with its contemporaries. Despite a discernible
shortfall in the code generation benchmarks relative
to WizardCoder (50.5 vs 57.3) and Magicoder (64.0
vs 66.5), it is imperative to consider the substantial
disparity in the volume of training data. More-
over, it is observed that WaveCoder-pro-6.7B sig-
nificantly outperforms Magicoder-DS-6.7B (72.0
vs 66.5), demonstrating the effectiveness of data
quality and diversity in instruction tuning.

Evaluation on Other Code-related Task. We
score WaveCoder with state-of-the-art Code LLMs
on HumanEvalPack (Muennighoff et al., 2024) in
Table 4 and Table 5, highlighting the the following
salient observations:

1) WaveCoder models outperform all open source
models on other code-related task. Building upon
Starcoder, our proposed WaveCoder-SC has ex-
hibited exceptional performance, transcending the
capabilities of both WizardCoder and OctoCoder as
evidenced by the HumanEvalFix (33.0 vs 25.7 vs
27.0) and HumanEvalExplain (30.8 vs 27.5 vs 24.5)
benchmarks, which is also shown in other base
models. Notably, WaveCoder-DS-6.7B achieves
49.4% average pass@1 score on HumanEvalFix
and 41.3% on HumanEvalExplain, surpassing all
open source models and demonstrating strong gen-
eralization capabilities in multi-task scenarios.

2) The enhancement in data refinement and di-

versification can markedly bolster the efficacy of
instruction tuning in multi-task scenarios. Such
data refinement, coupled with the categorization
of instructions into four code-related tasks, has
propelled our models to reach an unforeseen gener-
alization capabilities in various code-related tasks.
Remarkably, our WaveCoder-DS-6.7B model out-
performs GPT-4 (49.4 vs 47.8) on HumanEvalFix,
thereby underscoring the potential of smaller mod-
els to achieve near-parity with parameter-heavy
models when optimized efficiently.
WaveCoder-Ultra-6.7B. Inspired by Magicoder-
S-DS-6.7B (Wei et al., 2023), we combine Code-
SeaXDataset with WaveCoder-evol-codealpaca to
a 130K dataset. Fine-tuned with this combination
of two datasets, we obtain WaveCoder-Ultra-6.7B.
As illustrated in Table 3, 4, 5, WaveCoder-Ultra-
6.7B has the state-of-the-art generalization abilities
on a wide range of code-related tasks, which high-
lights the significance of our CodeSeaXDataset
dataset again and demonstrates the potential of
larger datasets.

4 Ablation and Analysis

4.1 Ablation of Code-related Tasks
To explore the relationship between different tasks,
we conduct an ablation study about the task type
of instruction data. Using DeepseekCoder-Base-

5145



Table 5: Results of pass@1 on HumanEvalExplain benchmark. We use self-reported scores whenever available. Due
to the difference in decoding strategies from previous evaluation work, we marked the results of greedy decoding in
blue and n = 20 samples in red .

Model Python JavaScript Java Go C++ Rust Avg.

GPT-4 64.6 57.3 51.2 58.5 38.4 42.7 52.1

StarCoder 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WizardCoder 32.5 33.0 27.4 26.7 28.2 16.9 27.5
OctoCoder 35.1 24.5 27.3 21.1 24.1 14.8 24.5
WaveCoder-SC-15B 37.1 33.3 40.5 23.3 31.8 19.3 30.8

CodeLLaMa-instruct-7B 33.5 36.0 31.7 21.3 25.0 16.4 27.3
CodeLLaMa-CodeAlpaca-7B 34.7 24.4 37.8 23.2 28.6 19.5 28.0
WaveCoder-CL-7B 41.4 31.7 39.0 25.0 34.1 23.2 32.4

CodeLLaMa-instruct-13B 40.2 26.8 37.2 22.5 28.0 14.6 28.2
CodeLLaMa-CodeAlpaca-13B 32.3 28.0 34.1 18.9 29.9 20.7 27.3
WaveCoder-CL-13B 45.7 42.0 48.2 32.3 38.4 20.7 37.9

DeepseekCoder-6.7B 43.9 40.2 37.8 29.2 34.1 22.5 34.6
Deepseek-CodeAlpaca-6.7B 40.8 37.2 42.1 29.9 31.7 22.5 34.0
Magicoder-DS 55.5 36.6 49.4 36.0 39.6 27.4 40.7
WaveCoder-DS-6.7B 48.2 47.5 49.4 32.3 48.2 22.0 41.3
WaveCoder-Pro-6.7B 53.0 43.3 54.9 34.1 42.7 20.0 41.3

Magicoder-S-DS 60.3 46.3 54.3 38.4 48.1 29.2 46.1
Deepseek-instruct-6.7B 62.2 54.3 61.0 39.6 55.5 33.5 51.0
WaveCoder-Ultra-6.7B 56.7 50.0 54.3 34.8 51.2 36.6 47.3

Table 6: Ablation study on different code-related tasks: CG (Code Generation), CS (Code Summarization), CT
(Code Translation), CR (Code Repair). WaveCoder-DS-6.7B utilizes all 4 code-related tasks.

Model CG CS CT CR HumanEval HumanEval
Fix (Avg.)

HumanEval
Explain (Avg.)

DeepseekCoder-Base-6.7B ✘ ✘ ✘ ✘ 49.4 29.0 34.6
WaveCoder-DS-6.7B ✔ ✔ ✔ ✔ 64.0 (+14.6) 49.4 (+20.4) 41.3 (+7.3)

-Without Repair ✔ ✔ ✔ ✘ 60.9 (-3.1) 15.7 (-33.7) 41.2 (-0.1)
-Without Generation ✘ ✔ ✔ ✔ 53.6 (-10.4) 47.4 (-2.0) 40.5 (-0.8)
-Without Translation ✔ ✔ ✘ ✔ 60.9 (-3.1) 49.3 (-0.1) 41.6 (+0.3)
-Without Summarization ✔ ✘ ✔ ✔ 61.5 (-2.5) 45.6 (-3.8) 28.4 (-12.9)

6.7B as our base model and initial 20K CodeSeaX-
Dataset data as our base dataset, we have the fol-
lowing observations from Table 6:
1) Refined instruction data can significantly im-
prove the generalization ability of pre-trained mod-
els without a tradeoff. As shown in Table 6, in-
corporating all 4 code-related tasks into training
data, WaveCoder-DS-6.7B achieves the best perfor-
mance on benchmark of all tasks. For example, the
participation of the Code Repair task yields a con-
siderable average improvement of 33.7% absolute
for HumanEvalFix without any significant decline
in other tasks, and even improved by 3.1% absolute
for HumanEval benchmark.
2) Different tasks can promote each other so that
the model can show a generalization ability. From
Table 6, we can observe that any combination of
three tasks resulted in a lower score than all tasks.

For example, the addition of the code summariza-
tion task offers a modest yet significant average
improvement on all benchmarks. Moreover, the
absence of any task will cause the score of Hu-
manEval to drop, which also reflects the mutual
promotion between different tasks.

4.2 Discussion about Data Leakage

In this section, we explore the potential leakage
through three instruction datasets about code (i.e.
Code Alpaca, CodeSeaXDataset, Magicoder-evol-
codealpaca). To ensure an accurate analysis, we
employ SoTA embedding model GTE-Large (Li
et al., 2023b) to encode the canonical code in test
benchmarks and all code in training set. Subse-
quently, we find the nearest neighbour in train set
for each questions in test benchmark. As illus-
trated in Figure 3, CodeSeaXDataset has the lower

5146



CodeSeaXDataset (Avg:0.88)

CodeSeaXDataset

CodeSeaX

CodeSeaXCodeSeaXDataset (Avg:0.877)

CodeSeaXDataset

Figure 3: Discussion about data leakage in different
training dataset. WaveCoder-evol-codealpaca indicates
the decontaminated Magicoder-evol-codealpaca dataset
under our strategy.

average cosine similarity than other datasets. Fig-
ure 6 in Appendix presents two examples about
the data leakage in these training set. More-
over, we analyze all benchmarks and notice a
serious data leakage issue between HumanEval
and Magicoder-evol-codealpaca dataset. Therefore,
we decontaminate Magicoder-evol-codealpaca for
each evaluation problem in HumanEval and ob-
tain WaveCoder-evol-codealpaca. As illustrated in
Figure 3, WaveCoder-evol-codealpaca has lower
similarity than Magicoder-evol-codealpaca.

5 Related Work

Instruction Tuning. Recent studies, such as FLAN
(Wei et al., 2022), ExT5 (Aribandi et al., 2022),
and FLANT5 (Chung et al., 2022), have under-
scored the efficacy of integrating diverse tasks
within training process to bolster the adaptability of
pre-trained models for downstream tasks. Specif-
ically, Flan-PaLM 540B’s (Chung et al., 2022)
instruction-tuning over 1.8K tasks has demon-
strated that a widespread and versatile enhanced

instruction dataset markedly enhances language
model performance. InstructGPT (Ouyang et al.,
2022), with its incorporation of premium instruc-
tion data crafted by human annotators, has shown
significant promise in aligning model outputs with
user intents, prompting further investigation into
instruction-tuning mechanisms. Additionally, Stan-
ford Alpaca (Taori et al., 2023) has innovatively
employed GPT-generated instruction data via self-
instruct (Wang et al., 2023a) for instruction tuning
process. WizardLM (Xu et al., 2024) has built upon
these advancements by applying the evol-instruct
methodology, collectively illuminating the transfor-
mative impact of instruction tuning on the overall
capabilities of LLM.
Code Large Language Models. Recent advance-
ments in code generation have been propelled by
Code LLMs such as CodeGen (Nijkamp et al.,
2022), CodeT5 (Wang et al., 2021), StarCoder (Li
et al., 2023a), CodeLLaMa (Roziere et al., 2023)
and Deepseek-Coder (Guo et al., 2024), which
benefit from extensive pre-training on expansive
code corpora. Efforts to further enhance efficiency
and problem-solving capabilities have led to the
development of instruction-tuned models like In-
structCodeT5+ (Wang et al., 2023b), WizardCoder
(Luo et al., 2024), Pangu-coder2 (Shen et al., 2023),
However, all the instruction data they used is from
Code Alpaca, which is not refined enough in the
context of multi-task environment, which drives us
to propose new methods for instruction data gen-
eration. Concurrently, with the release of our con-
temporaneous work Magicoder (Wei et al., 2023),
we offer a concise analysis in Section 3.

6 Conclusion

This paper presents WaveCoder, a Code LLM fine-
tuned with widespread and versatile enhanced in-
struction data. By enabling language models to
effectively tackle complex code-related tasks, our
approach demonstrates the potential of integrating
multiple code-related tasks into instruction tuning
for Code LLM and generating high-quality and di-
verse instruction data for specific task requirements
in multi-task scenarios. WaveCoder achieves state-
of-the-art generalization performance on different
code-related tasks surpassing existing open source
Code LLMs. Furthermore, our analysis of the re-
lationship of different tasks provides valuable in-
sights for future research, paving the way for more
extensive code-related tasks and larger dataset.

5147



Limitations

We present WaveCoder and propose a data genera-
tion method which can stably generate high-quality
and diversity instruction data from open source
dataset in multi-task scenario. One limitation of
our work is that the training dataset we used only in-
cludes 19,915 instructions, which produces limited
enhancements to the model. As illustrated Sec-
tion 3, we expand the training dataset to a larger
amount and the resulted model still have significant
improvement. Therefore, future work should focus
on more code-related task types and larger dataset.

Ethics Statement

We constructed our CodeSeaXDataset dataset from
open source code. For each code snippet we used,
we are committed to adhering to the terms of its
license, which includes proper attribution ensur-
ing that any modifications or derivative works are
also shared under the compatible terms. More-
over, we notice a serious data leakage issue in the
Magicoder-evol-codealpaca dataset. To ensure a
fair comparison, we remove three nearest neigh-
bours of each question in test benchmark from train
set. However, if all similar samples are accidentally
removed, the integrity of the data will be damaged,
which is harmful to model training. Therefore, this
phenomenon should be attributed to the fact that
the problems in the current test benchmarks are
some of the most basic algorithm logic. To this
end, we call for more comprehensive and complex
test benchmarks for Code LLMs which will not
easily cause data leakage problem.

References
Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao,

Huaixiu Steven Zheng, Sanket Vaibhav Mehta, Hon-
glei Zhuang, Vinh Q. Tran, Dara Bahri, Jianmo Ni,
Jai Gupta, Kai Hui, Sebastian Ruder, and Donald
Metzler. 2022. Ext5: Towards extreme multi-task
scaling for transfer learning. In International Confer-
ence on Learning Representations (ICLR).

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Sahil Chaudhary. 2023. Code alpaca: An
instruction-following llama model for code genera-
tion. https://github.com/sahil280114/
codealpaca.

Hao Chen, Yiming Zhang, Qi Zhang, Hantao Yang, Xi-
aomeng Hu, Xuetao Ma, Yifan Yanggong, and Junbo
Zhao. 2023. Maybe only 0.5% data is needed: A pre-
liminary exploration of low training data instruction
tuning. arXiv preprint arXiv:2305.09246.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all
you need. arXiv preprint arXiv:2306.11644.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Himanshu Gupta, Saurabh Arjun Sawant, Swaroop
Mishra, Mutsumi Nakamura, Arindam Mitra, San-
tosh Mashetty, and Chitta Baral. 2023. Instruction
tuned models are quick learners. arXiv preprint
arXiv:2306.05539.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations (ICLR).

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances
in neural information processing systems (NIPS),
35:22199–22213.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8424–8445.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023a. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023b. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

5148

https://openreview.net/forum?id=Vzh1BFUCiIX
https://openreview.net/forum?id=Vzh1BFUCiIX
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca


Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and
LINGMING ZHANG. 2023. Is your code gener-
ated by chatGPT really correct? rigorous evalua-
tion of large language models for code generation.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1).

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. International Conference on Learning Rep-
resentations (ICLR).

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2024. Octopack: Instruction tuning
code large language models. International Confer-
ence on Learning Representations (ICLR).

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems (NIPS), 35:27730–
27744.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Ozan Sener and Silvio Savarese. 2018. Active learn-
ing for convolutional neural networks: A core-set
approach. In International Conference on Learning
Representations (ICLR).

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan
Ji, Jingyang Zhao, et al. 2023. Pangu-coder2: Boost-
ing large language models for code with ranking feed-
back. arXiv preprint arXiv:2307.14936.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Stan-
ford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023a. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (ACL) (Volume 1: Long
Papers), pages 13484–13508.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi D.Q. Bui, Junnan Li, and Steven C. H. Hoi.
2023b. Codet5+: Open code large language mod-
els for code understanding and generation. arXiv
preprint.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8696–8708.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations (ICLR).

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2024. Wizardlm: Empowering large language
models to follow complex instructions. International
Conference on Learning Representations (ICLR).

Jin Xu, Xiaojiang Liu, Jianhao Yan, Deng Cai, Huayang
Li, and Jian Li. 2022. Learning to break the loop:
Analyzing and mitigating repetitions for neural text
generation. Advances in Neural Information Process-
ing Systems (NIPS), 35:3082–3095.

Jianhao Yan, Jin Xu, Chiyu Song, Chenming Wu,
Yafu Li, and Yue Zhang. 2023. Understanding in-
context learning from repetitions. arXiv preprint
arXiv:2310.00297.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

5149

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
http://arxiv.org/abs/2303.08774
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


A Prompt

Followed Alpaca (Taori et al., 2023), we set the fine-tuning prompt as follows:

Prompt with Input:
Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.
### Instruction:{instruction}
### Input:{input}
### Response:

Prompt without Input:
Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.
### Instruction:{instruction}
### Response:

B Examples of the LLM-based Generator-Discriminator framework

Raw Code
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Simple server which adds a DocumentWordsProvider to the
CodeCompletion worker.

On Windows, this script is frozen by freeze_setup.py (cx_Freeze).
"""
from pyqode.core import backend

if __name__ == '__main__':
 backend.CodeCompletionWorker.providers.append(backend.DocumentWordsProvider())
 backend.serve_forever()

Generation

Task_name: Adding a DocumentWordsProvider to a CodeCompletion worker
Instruction: Write a Python code that adds a DocumentWordsProvider to a CodeCompletion 
worker.
Information: The CodeCompletion worker is from the pyqode.core.backend module. The 
DocumentWordsProvider is used to provide word completion suggestions for a given document.
Solution:
from pyqode.core import backend

if __name__ == '__main__':
 backend.CodeCompletionWorker.providers.append(backend.DocumentWordsProvider())
 backend.serve_forever()

Note:
This script is used to add a DocumentWordsProvider to a CodeCompletion worker in a simple 
server. The script is frozen by freeze_setup.py on Windows.

a

b

Analysis

- step 1: check the Input:
1. The Input should be code and cannot only contain comments. 
<answer:      yes, the Input includes both the code and comments, not just the 
comments>

- step 2: check the Output:
1. Solution: Solution is related to instruction and information. Solution is the 
specific resolution to instruction and information. 
<answer: yes>

2. Instruction: the programming language should be specified in the instruction. 
<answer: yes, the instruction specifies the use of Python>

3. Solution: in the solution, it should only contain the code and comments within 
the code. There should be no explanations provided outside the code. 
<answer: no, in the solution, it is reasonable to include the code and comments 
within the code. However, the Note section belongs to explanations provided 
outside the code, which is not allowed>

4. Instruction: The content of the instruction should be relevant to the Input and 
should be a summary of the Input content, without any additional unrelated 
information. 
<answer: yes, the Instruction is related to the Input>

- Overall answer: no

-    Reasons: In the solution, it is reasonable to include the code and comments 
within the code. However, the Note section belongs to explanations provided 
outside the code, which is not allowed. So the overall answer is no.

c

Figure 4: An example of LLM-based Generator-Discriminator framework on code generation task. The generator
produce the instruction data based on the input (a). Subsequently, the discriminator accept the output and generated
analysis for it. The output (b) includes four keys, we take the information as input and solution as output in our
instruction tuning. The analysis (c) consists of the detailed reason for each rule and an overall answer to check if the
sample meet all the requirements.

C Comparison with CodeAlpaca

CodeAlpaca dataset contains 20K multi-task instruction-following data generated by the techniques in
the self-instruct (Taori et al., 2023). To ensure a fair and multidimensional comparison, we randomly
sampled 1K and 5K from both datasets (CodeAlpaca and CodeSeaXDataset), set the same set of training
hyper-parameters set (epoch = 3, learning rate = 1e-4, LoRA rank = 8) and used the same training prompts.
To prevent overfitting, we use Low-Rank Adaption (LoRA) (Hu et al., 2022) for fine-tuning if the size of
instruction-follow training dataset is less than 5K and perform full fine-tuning on whole 20K dataset.

1) After being fine-tuned with 1K, 5K and 20K of instructional data respectively, the performance
of base model improves significantly on HumanEval shown in Figure 5. Taking Starcoder as the base

5150



model, CodeSeaXDataset surpasses the CodeAlpaca (44.9% vs 41.7%, 45.7% vs 48.1% and 47.0% vs
50.5%) shown in Figure 5 (a), which emphasizes the effectiveness of our method on refining instruction
data. As shown in Figure 5 (b), The results of different base models on CodeSeaXDataset surpasses the
results on CodeAlpaca, which emphasizes the effectiveness of CodeSeaXDataset dataset in enhancing the
instruction-following ability of the base model.

2) According to Table 4 and Table 5, All WaveCoder models significantly outperform the model
fine-tuned with CodeAlpaca. Remarkably, The pass@1 score of WaveCoder-CL-13B outperforms
CodeLLaMa-CodeAlpaca-13B achieving 10.6% absolute improvements on HumanEvalExplain. This
emphasizes the effectiveness of defining and classifying code-related tasks on enhancing the generalization
ability of Code LLMs.

30

35

40

45

50

55

60

1K (LoRA) 5K (LoRA) 20K (Fully)

41.741.7

45.745.7
4747

44.944.9

48.148.1

50.550.5

CodeAlpaca CodeOcean

0

10

20

30

40

50

60

70

Starcoder CodeLLaMa-7B CodeLLaMa-13B DeepseekCoder-6.7B

33.6 33.5
36

49.4
47

39

46.3

60.9

50.5
48.1

55.4

64

BaseModel CodeAlpaca CodeOcean

p
a
s
s
@
1

p
a
s
s@

1

(a) HumanEval (Base Model:Starcoder) (b) HumanEval (Different Models)

Figure 5: Comparision with CodeAlpaca with different dataset size(a) and different base models(b). CodeSeaX-
Dataset outpeforms CodeAlpaca on HumanEval multidimensionally, more detailed analysis is shown in Section 3.3.

D Evaluation Benchmark

HumanEval 4, which consists of 164 manually-written Python programming problems and an average of
9.6 test cases allocated to each problem is now the most extensively adopted benchmark for Code LLMs.
MBPP 5 consists of around 1,000 crowd-sourced Python programming problems, designed to be solvable
by entry level programmers, covering programming fundamentals, standard library functionality, and
so on. In this paper, we choose the 500 problems test dataset to evaluate both few-shot inference of
fine-tuned models. For whose MBPP (500) result is not reported or not used, we reproduced for them
using bigcode-evaluation-harness 6.
HumanEvalPack 7 is an extension of OpenAI’s HumanEval to cover 6 total languages across 3 tasks. In
this paper, we select the HumanEvalFix to evaluate the code to code ability especially on code repair task
and HumanEvalExplain benchmarks to evaluate the code to text ability especially on code summarization
task.

4https://huggingface.co/datasets/openai_humaneval
5https://huggingface.co/datasets/mbpp
6https://github.com/bigcode-project/bigcode-evaluation-harness
7https://huggingface.co/datasets/bigcode/humanevalpack

5151

https://huggingface.co/datasets/openai_humaneval
https://huggingface.co/datasets/mbpp
https://github.com/bigcode-project/bigcode-evaluation-harness
https://huggingface.co/datasets/bigcode/humanevalpack


LLM-based Generator-Discriminator framework

Input:
The Python code calculates the area of a circle given its radius.
Output:
task_name: Calculate Circle Area
instruction: Write a Python function that calculates the area of a circle given its radius.
information: The formula to calculate the area of a circle is A = pi * r2, where A is the
area and r is the radius.
solution:
import math
def area_of_circle(radius): return math.pi * radius ** 2
Analysis: - Step 1: Check the Instruction: The programming language should be
specified in the instruction. <answer: yes, The instruction mentions "Write a Python
function," which clearly specifies the programming language as Python.>
- Step 2: Check the Solution:
1. Solution is related to instruction and information. Solution is the specific resolution to
instruction and information. <answer: yes, The solution provided calculates the area of
a circle given its radius, which is directly related to the instruction and the information
provided.>
2. In the solution, it should only contain the code and comments within the code. There
should be no explanations provided outside the code. <answer: yes, The solution only
contains the code without any explanations outside the code. Comments within the code
are not present, but the code is straightforward and easy to understand.>
3. The code that contains algorithmic logic in solution should not often be buried inside
complex or poorly documented functions, making them difficult to follow or learn from.
<answer: yes, The code that contains algorithmic logic in the solution should not often be
buried inside complex or poorly documented functions, making them difficult to follow or
learn from.>
4. The code should import the required necessary libraries. <answer: yes, The code
imports the necessary math library, which is required for calculating the area of a circle
using the mathematical constant pi.>
- Overall answer: yes
- Reasons: All the requirements are met as per the given rules. The programming language
is specified, and the solution is related to the instruction and information. The code is
simple, easy to follow, and imports the necessary library. The solution provided is a good
example of a well-structured and concise code that meets the task’s specifications.

Table 7: An example of the LLM-based Generator-Discriminator framework

5152



HumanEval/1(canonical code):

from typing import List

def has_close_elements(numbers: List[float], threshold: float) 
-> bool:
""" Check if in given list of numbers, are any two numbers 
closer to each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""

for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):

if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:

return True

return False

Here is the function written in Python:

```python
def has_close_elements(list_of_numbers, threshold):

for i in range(len(list_of_numbers)):
for j in range(i + 1, len(list_of_numbers)):

if abs(list_of_numbers[i] - list_of_numbers[j]) < threshold:
return True

return False
```

Cosine Similarity: 94.3

def closest_pair(arr, target): 
min_difference = 999999
min_pair = (-1, -1)
# Iterate through all elements 
for i in range(len(arr)): 
# Loop through rest of elements 
for j in range(i + 1, len(arr)): 

diff = abs(arr[i] + arr[j] - target) 
# Check for maximum difference 
if diff < min_difference: 

min_difference = diff 
min_pair = (i, j) 

return min_pair

Cosine Similarity: 87.5

import math

def find_closest_component(components):
def _bounds(component):

xmin, ymin, xmax, ymax = component["xmin"], component["ymin"],                   
component["xmax"], component["ymax"]

return math.sqrt(xmin**2 + ymin**2)
return min(components, key=_bounds)

Cosine Similarity: 86.9

Evol-codealpaca-v1

CodeAlpaca

CodeOcean

HumanEval/101(canonical code):

def make_a_pile(n):
"""
Given a positive integer n, you have to make a pile of n   
levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a list, where 
element at index i represents the number of stones in the level 
(i+1).

Examples:
>>> make_a_pile(3)
[3, 5, 7]
"""

return [n + 2*i for i in range(n)]

def make_a_pile(n, pattern):
if pattern == 'odd’:

p = [3]
stone = 3
for i in range(n-1):

stone += 2
p.append(stone)

elif pattern == 'even’:
p = [3]
stone = 3
for i in range(n-1):

stone += 2
p.append(stone)

return p

print(make_a_pile(3, 'odd'))
print(make_a_pile(3, 'even’))

Cosine Similarity: 94.4

def generate_list(n):

"""This function takes an integer n and returns a list with length 
n of numbers from 0 to n-1.""”

return [i for i in range(n)]

Cosine Similarity: 85.0

def inventory_levels(arr)
levels = Hash.new(0)
arr.each do |type, quantity|

levels[type] += quantity
end
return levels
end

Cosine Similarity: 83.2

Evol-codealpaca-v1

CodeAlpacaCodeOcean

Figure 6: Examples about data leakage.

5153


