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Abstract
Argumentation mining (AM) aims to detect the
arguments and their inherent relations from ar-
gumentative textual compositions. Prior meth-
ods are afflicted by a sequential feature decod-
ing paradigm, wherein they initially address the
features of argumentation components (ACs)
for argumentative relation type classification
(ACTC) subtask. Then, these features are amal-
gamated in pairs for argumentative relation
identification (ARI) subtask. Finally, the AC
pairs and ascertained pertinent relations are em-
ployed for argumentative relation type classifi-
cation (ARTC) subtask. However, these meth-
ods merely rely on a shared encoder to implic-
itly capture the interactions of the three sub-
tasks, which cannot explicitly and comprehen-
sively model the inter-relationship among sub-
tasks. In this paper, we propose a novel method
PITA for PromptIng Task interAction to model
the inter-relationships among the three subtasks
within a generative framework. Specifically,
we employ a dynamic prompt template to in-
dicate all ACs and AC pairs in the three sub-
tasks. Then, we construct an undirected het-
erogeneous graph to capture the various re-
lationships within and between ACs and AC
pairs. We apply the Relational Graph Convolu-
tional Network (RGCN) on the graph and inject
the task interaction information into the soft
prompts with continuous representations. PITA
jointly decodes all ACs and AC pairs using the
prompt template with task interaction informa-
tion, which thus explicitly and comprehensively
harmonizes the information propagation across
the three subtasks. Extensive experiments show
PITA achieves state-of-the-art performances on
two AM benchmarks.

1 Introduction

Argumentation mining (AM) (Lawrence and Reed,
2020) aims to detect argumentation structures in

* Equal Contribution.
† Bin Liang, Min Yang and Ruifeng Xu are correspond-

ing authors.

ID ACs Type Pairs RelationType
ST

Confidience

1
However, despite the fact that 
advertisements can be 
falseful and exaggerated.

Premise
(1,2) Attack √ 0.999

(1,3) - -

2 It is also true that it plays a 
important role economically. Claim

(1,4) - -
(1,5) - -

3

They introduce new products ,
and provide various choices , 
not to mention they are often 
visually enjoyable.

Premise
(2,3) Support √ 0.941

(2,4) Support 0.005

4

Advertising also helps to 
keep prices at reasonable 
levels, creates a fair 
environment for commercial 
competition.

Premise
(2,5) - -

(3,4) - -

5

Otherwise the market may be 
monopolistic , and the price 
as well as the choice will not 
be so selective.

Premise
(3,5) Support 0.061

(4,5) - -

Figure 1: An exemplary argumentative text from the PE
dataset, where Premise and Claim denote the types of
ACs. Attack and Support refer to the types of ARs. The
ST confidence denotes the results of the ARI subtask.

an argumentation text by identifying the arguments
and the relations between them. Generally, AM
involves four subtasks, including (1) Argument
component segmentation (ACS) which extracts ar-
gument components (ACs) from an argumentative
text; (2) argument component type classification
(ACTC) that classifies the type of each AC (i.e.,
Claim or Premise); (3) argumentative relation iden-
tification (ARI) that identifies the argumentative
relation (i.e., Relevant and No-Relevant) of AC
pairs; (4) argumentative relation type classifica-
tion (ARTC) that determines the type of the ARs
(i.e., Support and Attack). We follow previous
works (Potash et al., 2017; Kuribayashi et al., 2019;
Bao et al., 2021a; Morio et al., 2022) and assume
that the first subtask ACS has been completed, that
is, ACs have been segmented, and focus on the
other three subtasks. Figure 1 shows an example of
an argumentative text and its structure, where the
text is decomposed into five ACs and contains four
AC pairs with ARs.
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Previous works (Kuribayashi et al., 2019; Bao
et al., 2021a; Morio et al., 2022) usually employed
multi-task learning to capture the relationships
among the three subtasks, which have achieved
remarkable progress for AM. Most of them uti-
lized sequential decoding. Specifically, previous
methods first separately tackled the ACs for ACTC.
Then, they exploited the AC representations to
model the relation between AC pairs for ARI. Fi-
nally, the AC pairs with identified relevant relations
were used to classify the relation types for ARTC.

However, these methods, merely relying on a
shared encoder, only implicitly capture task in-
teractions and limit explicit, comprehensive inter-
task modeling. Concretely, in sequential decod-
ing, the information only explicitly flows from the
ACTC decoder to ARI and ARTC decoders, not
vice versa, potentially misguiding subsequent pre-
dictions if the former task decoding is inaccurate.
For instance, the state-of-the-art model ST (Morio
et al., 2022) misclassified the AC2 and AC4 as two
Claims with a high degree of confidence. The pair
decoder for ARI identifies the relation of the AC
pair (AC2, AC4) as Non-Relevant, which is an in-
correct answer, misleading the relation type for the
ARTC subtask. The imbalanced information flow
(i.e., from ACs in ACTC to AC pairs in ARI and
ARTC as shown in Figure 2(a)) might have induced
this error. Therefore, we argue that it may be impor-
tant to model the inter-relationships among ACTC,
ARI and ARTC for AM.

To address the aforementioned issue, we pro-
pose a novel method PITA for PromptIng Task
interActions to model the inter-relationships among
ACTC, ARI and ARTC. Our framework employs
a generative encoder-decoder pre-trained language
model (PLM), where the encoder focuses on the
representation learning of ACs and AC pairs in the
input text. The decoder equipped with a joint fea-
ture decoding mechanism facilitates the learning of
task interaction patterns.

We recognize that subtasks are interconnected
by the interactions among these task-specific rep-
resentations of ACs or AC pairs. Specifically,
to explicitly model the inter-relationship among
subtasks and prompt the PLM, we first devise
a dynamic prompt template to indicate all ACs
and AC pairs. Considering these multiplex inter-
relationships among ACs and AC pairs for the three
subtasks, we construct an undirected heterogeneous
graph. In the graph, the ACs and AC pairs serve
as nodes, while their interrelations form the edges.

ACs AC Pairs AC Pairs

ACTC subtask ARI subtask ARTC subtask

(a) Sequential Decoding

Information flow from ACs to AC pairs

ACs AC Pairs AC Pairs

(b) Our Joint Decoding

Information flow from AC pairs to ACs

Figure 2: Comparison of information flow between
sequential decoding and joint decoding.

Then, we apply Relational Graph Convolutional
Networks (RGCN) (Schlichtkrull et al., 2018) over
the graph to capture task interaction information
among ACs and AC pairs. Finally, we inject the
information into the soft prompt with continuous
representation as the input of the decoder for jointly
decoding all ACs and AC pairs for ACTC, ARI and
ARTC simultaneously, rather than in separate steps.

The joint decoding mechanism explicitly incor-
porates task interactions, addressing the issues
arising from sequential decoding. This method
achieves equilibrium in the dissemination of in-
formation between individual ACs and their corre-
sponding AC pairs. As shown in Figure 2(b), it not
only utilizes inherent information existing amidst
these ACs in ACTC for AC pairs in ARI and ARTC
like previous methods (i.e., information flow from
AC to AC pairs). But also it makes an AC assign
heightened attention to evaluating its suitability for
integration into an AC pair, transcending the scope
of its self-contained informational content (i.e., in-
formation flow from AC pairs to ACs). In addition,
different from the vanilla autoregressive generation
paradigm (Lewis et al., 2019), our prompt template
with the joint decoding mechanism only needs to
be fed into the decoder one time and processed in
parallel on GPUs.

In summary, our main contributions are as fol-
lows. (1) We introduce a novel method termed Task
Interaction-Based Prompt Tuning (PITA) for AM.
It employs prompt tuning in a generative frame-
work catering to the multifaceted demands of multi-
task AM. (2) We introduce a graph-based method
to learn task interaction and information injection,
devised to effectively represent the multifaceted re-
lationships that exist between ACs and their respec-
tive pairs. (3) We conduct extensive experiments on
two AM benchmarks. Experimental results exhibit
significantly better performance for AM.
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Figure 3: The architecture of PITA, where we omit the intra-task edges for concision.

2 Task Definition

Given the input argumentative text W =
{w1, w2, . . . , wn}, the goal of AM is to identify
a series of ACs X = (x1, x2, . . . , xm) from it. Fol-
lowing previous work (Kuribayashi et al., 2019;
Morio et al., 2022), we assume that the text span
(b1i , b

2
i ) of each AC xi is given, which contains the

beginning word index b1i and the ending word in-
dex b2i . Specifically, for each AC xi, an AM system
first needs to predict its AC type yACTC

i ∈ YACTC

(e.g., Claim and Premise). Then, it identifies the
AR yARI

(i,j) ∈ YARI (e.g., Rel and No-Rel) between
two ACs xi and xj . Finally, the type of each AR
yARTC
(i,j) ∈ YARTC (e.g., Support and Attack) needs

to be classified.

3 Methodology

Our proposed method, PITA, employs
BART (Lewis et al., 2019) as the base
model, and augments it with task interac-
tion. BART is a standard Transformer-based
PLM consisting of an encoder and a decoder:
BART = [BARTenc,BARTdec]. The encoder
is employed for representation learning of ACs
and AC pairs, and the decoder is used for task
interaction pattern learning among ACTC, ARI
and ARTC. To enable BART to learn task inter-
action patterns, we first design a task interaction
prompt template for the input text, as described
in Section 3.2.1. The prompt template contains
placeholders, which are essentially learnable
vectors, serving as the reserved interface for task
interaction information. Then, a task interaction
graph is constructed and modeled through an
RGCN (Section 3.2.2). The resulting node
representations are integrated into BARTdec by

the placeholders of the prompt template. In this
way, the decoding process can be guided by the
task interaction pattern (Section 3.2.3). Figure 3
illustrates the architecture of PITA.

3.1 Text Encoding

Given a piece of argumentative text W with AC
spans, this module generates the AC and AC pair
representations. Specifically, we feed W into
BART-Encoder to obtain the context representa-
tion matrix HW ∈ Rn×d, where d denotes the
dimension of hidden states of BART.

HW = BARTenc(W ) (1)

We use mean-pooling operation over HW to obtain
the input text representation hW . The represen-
tation of each AC xi is derived by mean-pooling
over HW : hi =

1
b2i−b1i+1

∑b2i
k=b1i

HW
k . Then, the

representation of each AC pair is calculated by av-
eraging the representations of the two ACs in the
pair: h(i,j) = (hi + hj)/2. Subsequently, the out-
put of the BART-encoder will be used as the input
of the BART-decoder.

3.2 Task Interaction Prompt

To facilitate task interaction learning, we inject con-
tinuous prompt tokens into the decoder of BART.

3.2.1 Prompt Template
We devise a task interaction prompt template to
produce the continuous prompt tokens for BART.
In the prompt template, we employ different place-
holders 1 for different ACs in the input text. Al-
though both the ARI and ARTC subtasks use AC

1The placeholder, also known as virtual word, is imple-
mented using specific tokens like the eos token < s > in the
BART vocabulary, and possess learnable vectors.
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pairs to complete objectives, the task goals are dif-
ferent (i.e., relation identification for ARI and re-
lation type classification for ARTC). We use two
separate placeholders for the same AC pair for ARI
and ARTC. In particular, given an argumentative
text W with m ACs for ACTC, m × (m − 1)/2
AC pairs for ARI and m× (m− 1)/2 AC pairs for
ARTC, the prompt template can be defined as:

T = Concat([D], TACTC , TARI , TARTC)

TACTC = [AC1] . . . [ACm]

TARI = [P(1,2)] . . . [P(m−1,m)]

TARTC = [Q(1,2)] . . . [Q(m−1,m)]

where [D] denotes the input text placeholder, pro-
viding global information (e.g., topics) for subse-
quent ACs and AC pair placeholders. This also
proves effective in other tasks such as dialogue gen-
eration (Li et al., 2021). [ACi], [P(i,j)] and [Q(i,j)]
denote the placeholders of AC xi, AC pair (xi, xj)
and AC pair (xi, xj) for ACTC, ARI and ARTC
subtasks, respectively. Instead of using a fixed
number of template tokens for all instances, our
dynamic prompt template has different template to-
kens for different instances. Each token is infused
with knowledge specific to these subtasks and de-
signed to facilitate interaction among subtasks.

3.2.2 Task Interaction Graph Construction
Since the BART-decoder is an autoregression mod-
ule, it only constructs the directed interaction of
left-to-right among the prompt tokens and lacks
their mutual interactions. To effectively capture the
task interactions and balance the information prop-
agation between ACs and AC pairs for the three
subtasks, we construct an undirected heterogeneous
graph.

The heterogeneous graph has four kinds of nodes
corresponding to the placeholders in the prompt
template: the input text placeholder [D] as the
global node, the AC placeholders [AC∗] as the AC
nodes and the two AC pair placeholders [P∗] and
[Q∗] as the two kinds of AC pair nodes. Moreover,
there are three kinds of inter-node edges in our
graph:

• Global Edge: The global node is connected
to all other nodes. It can transmit the global
information in the input text to other nodes.

• Intra-Task Edge: In each subtask, all nodes are
fully connected, i.e., AC nodes connect AC
nodes in ACTC and AC pair nodes connect
AC pair nodes in ARI (ARTC). These edges

can help the AC/pair nodes access contextual
information.

• Inter-Task Edge: Two nodes from two differ-
ent subtasks are connected if they have an in-
clusion relationship. For example, the AC pair
node [P(i,j)] ([Q(i,j)]) in ARI (ARTC) links in-
dividual AC nodes [ACi] and [ACj ] as the AC
pair (xi, xj) includes AC xi and xj . The AC
pair node [P(i,j)] in ARI is connected with the
AC pair node [Q(i,j)] in ARTC. They are the
primary way for ACs and AC pairs to interact
with each other. It not only helps the AC pair
nodes to invoke the inherent information of
ACs. But also the AC nodes can interact with
AC pair nodes to transmit argumentation rela-
tion information of AC pairs to themselves.

3.2.3 Task Interaction Information Injection
To make full use of the graph-based task inter-
action pattern, we inject the task interaction in-
formation into template embedding 2. Specifi-
cally, we first feed the whole prompt template into
the embedding layer of BART, which embeds in-
put sequence T into the embedding space ET =
[eD, e1, . . . , em, eP(1,2), . . . , e

P
(m−1,m), e

Q
(1,2), . . . ,

eQ(m−1,m)] , where eD denotes the embedding of

input text placeholder [D]. ei, eP(i,j) and eQ(i,j) are
the embeddings of AC and AC pair placeholders
[ACi], [P(i,j)] and [Q(i,j)]s, respectively.

Then, we apply an RGCN (Schlichtkrull et al.,
2018) on our undirected heterogeneous graph to
model the task interaction pattern. Given a node
u ∈ T at the l-th RGCN layer, the information
interaction and aggregation operation is defined as
follows:

el+1
u = ReLU(el

u +
∑

r∈R

∑

v∈Nr(u)

1

|Nr(u)|
W l

re
l
v + blr) (2)

where Nr(u) denotes the neighbors for node u con-
nected with the edge of type r, ReLU is the ReLU
activation function, W l

r and blr are the trainable
parameters. For the first RGCN layer, we adopt
the embeddings of placeholders in the template T
to initialize node features. Finally, we select the
representation of all nodes of the last layer L as the

2We also consider directly putting the template embedding
into BART-Decoder and take the output hidden states of the
decoder as the input of the RGCN to incorporate task inter-
action information. The detailed analysis can be seen in the
ablation study.
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updated prompt template representations, which ag-
gregate task interaction information from a certain
heterogeneous graph.

Although the prompt and context information
would interact with each other at the cross-attention
layers in the decoder, simply feeding the updated
template placeholder features into the decoder
makes it hard to focus accurately on the correct seg-
ment of input text for ACs and AC pairs. Therefore,
we add the context representations of ACs and AC
pairs to the updated template representations to ob-
tain the context-specific prompt embeddings ÊT =
[êD, ê1, . . . , êm, êP(1,2), . . . , ê

P
(m−1,m), ê

Q
(1,2), . . . ,

êQ(m−1,m)] , where êD = eD,L+hW , êi = eLi +hi,

êk(i,j) = ek,L(i,j) + h(i,j) and k ∈ {P,Q}.
After that, we feed the prompt representations

into the BART decoder to get the output hidden
states h0

i , h1
(i,j) and h2

(i,j) of the placeholders
[ACi], [P(i,j)] and [Q(i,j)]. Recall the joint decod-
ing process of ACs and AC pairs from the prompt.
It is obvious that the interaction among different
subtasks is considered under this paradigm. In this
way, our method can solve the problems in sequen-
tial decoding and balance the information between
ACs and AC pairs.

3.3 Objective Function
The training objective of PITA is to generate out-
puts that replace the placeholders in the prompt
template with gold labels. For ACTC, PITA is
expected to derive the argumentation type of the
AC xi using the hidden state of placeholder [ACi].
PITA employs the placeholder [P(i,j)] to determine
the relation between AC pair (xi, xj) for ARI. For
ARTC, PITA uses the placeholder [Q(i,j)] to pre-
dict the relation type between AC pair (xi, xj). For-
mally, we create a learnable label word vector vi

for each label yi in each subtask. We utilize cross-
entropy functions as the learning objectives of the
ACTC, ARI and ARTC subtasks, which are defined
as follows:

LACTC = −
m∑

i=0

log(ŷACTC
i )

LARI = −
m∑

i=0

m∑

j=i+1

log(ŷARI
(i,j))

LARTC = −
m∑

i=0

m∑

j=i+1

log(ŷARTC
(i,j) )

(3)

where ŷACTC
i = v0

kh
0
i , ŷARI

(i,j) = v1
kh

1
(i,j) and

ŷARTC
(i,j) = v2

kh
2
(i,j) are the predicted probability

of ground truth labels yk of the AC xi for ACTC,
AC pair (xi, xj) for ARI and AC pair (xi, xj) for
ARTC subtasks, respectively. v0

k, v1
k and v2

k are
the k-th label vector in ACTC, ARI and ARTC.

We train PITA by jointly optimizing the three
subtasks. The total training object is defined as
follows:

L = LACTC + LARI + LARTC (4)

3.4 Efficiency Considerations

PITA has three components including a BART, a
RGCN and a prompt template. The RGCN is re-
quired to model the task interaction graph, which
has a time complexity O(m4) and could cause ef-
ficiency considerations. In practice, this issue is
minor for our experiments on the two datasets (PE
and CDCP) and real scenarios, because the num-
ber 3 of ACs in argumentation texts is usually rel-
atively small scales. Noted our prompt template
with the joint decoding mechanism only needs to
be fed into the decoder one time and processed in
parallel. It is more efficient compared with the au-
toregressive paradigm (Lewis et al., 2019) which
generates tokens sequentially during inference. We
present the time cost of PITA in Appendix A.4.

4 Experimental Setup

Datasets To evaluate the effectiveness of our
PITA model, we conduct extensive experiments
on two widely-used AM datasets, PE (Stab and
Gurevych, 2017) and CDCP (Park and Cardie,
2018) following the official split. The detailed
statistics of PE and CDCP are summarized in Ap-
pendix A.1.

Evaluation Metrics We employ the same evalu-
ation metrics with the previous works (Kuribayashi
et al., 2019; Liu et al., 2022), including F1 score
and macro averaged score (denoted as Macro). We
adopt the macro averaged score for ACTC and
ARTC and calculate F1 scores for determining the
relevant (Rel) AR between ACs for ARI follow-
ing (Morio et al., 2022).

Baselines We compare PITA with the follow-
ing strong baseline models. Following previous
works (Morio et al., 2022), for the PE dataset,
we compare our model with six strong baselines,
including Joint-ILP (Stab and Gurevych, 2017),

3The average number of ACs in the PE and CDCP samples
is 3.5 and 6.5, respectively.
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Model ACTC ARI ARTC Avg
Joint-ILP 82.6 58.5 - -
Joint-PN 84.9 60.8 - -
BERT-Trans 88.4 70.6 - -
LSTM+dist 85.7 67.8 54.3 69.3
BART 82.7 62.9 53.4 66.3
ST 86.8 69.3 57.1 71.1
PITA (our) 88.3 73.5 59.2 73.7 (+2.6)

Table 1: Perfromance comparison on the PE dataset in
terms of Macro for ACTC and ARTC, as well as F1 for
ARI. Avg indicates the average value across all metrics.
Our improvements over baselines are statistically signif-
icant with p < 0.05.

Model ACTC ARI ARTC Avg
SSVM-strict 73.2 26.7 - -
TSP-PLBA 78.9 34.0 - -
BERT-Trans 82.5 37.3 - -
DR-LG 65.3 29.3 15.0 36.5
BART 81.4 32.9 16.7 43.7
ST 82.3 40.2 20.4 47.6
PITA (our) 83.6 44.9 23.8 50.8 (+3.2)

Table 2: Performance comparison on CDCP dataset in
terms of Macro for ACTC and ARTC, as well as F1 for
ARI. Avg indicates the average value across all metrics.
Our improvements over baselines are statistically signif-
icant with p < 0.05.

Joint-PN (Potash et al., 2017), LSTM+dist (Kurib-
ayashi et al., 2019), BERT-Trans (Bao et al.,
2021a) BART (Lewis et al., 2019) and ST (Morio
et al., 2022). For the CDCP dataset, we compare
our model with five strong baselines, which are
DR-LG (Galassi et al., 2018), SSVM-strict (Nicu-
lae et al., 2017), TSP-PLBA (Morio et al., 2020),
BERT-Trans (Bao et al., 2021a), BART (Lewis
et al., 2019) and ST (Morio et al., 2022).

Implementation Details We use PyTorch to im-
plement the proposed framework based on Trans-
formers (Wolf et al., 2020) on NVIDIA TESLA
A100-PCIE-40GB. Our model is optimized us-
ing AdaW (Loshchilov and Hutter, 2017) with the
learning rates of 3e-5 and weight decay of 1e-2
on both PE and CDCP datasets. We set the batch
size to 4 on both PE and CDCP datasets. For both
datasets, we adopt dropout (Srivastava et al., 2014)
with a dropout rate of 0.1 to avoid overfitting. We
set the layer number L of RGCN to 1 because of its
best performance. All experiments are performed
5 times with different random seeds, and the evalu-
ation scores are averaged. Our code is available at
https://github.com/syiswell/PITA.

Model PE CDCP
ACTC ARI ARTC ACTC ARI ARTC

PITA 88.3 73.5 59.2 83.6 44.9 23.8
w/o TIG 85.5 70.6 56.6 82.5 40.8 21.5
PB TIG 86.4 69.5 55.8 83.6 41.1 21.5
w/o IRT-Edge 87.3 71.5 57.9 83.2 41.7 21.8
w/o IET-Edge 86.8 71.6 57.1 82.8 41.4 22.6
w/o G-Edge 86.7 71.1 58.4 83.7 41.2 22.4

Table 3: The impact of different components in terms
of Macro for ACTC and ARTC, as well as F1 for ARI.

5 Experimental Results

5.1 Performance Comparison

The comparison results on PE and CDCP datasets
are summarized in Table 1 and Table 2, respectively.
We can observe that PITA achieves the best perfor-
mance on both datasets. On the PE dataset, our
PITA model outperforms state-of-the-art (SOTA)
model ST by 4.2% and 2.1% on ARI and ACTC
subtasks in terms of F1 and Macro, respectively.
We observe similar trends for the CDCP dataset.
Our model brings 4.7% improvement of F1 score
for ARI and 3.4% improvement of Macro score for
ARTC. We argue that task interaction learning by
joint decoding manner plays an important role in
PITA, balancing the information obtained by ACs
and AC pairs.

In addition, we also observe that the feature-
based models (i.e., Joint-ILP and St-SVM-strict)
perform poorly since they heavily rely on feature
engineering. The BERT- and Longformer-based
neural network (i.e., BERT-Trans and ST) consis-
tently outperforms the LSTM-based baselines (i.e.,
LSTM+dist and TSP-PLBA). This may be because
BERT and Longformer-based methods can exploit
rich knowledge from PLMs trained on large-scale
general corpora. Our PITA model performs bet-
ter than the strong BERT- and Longformer-based
models by modeling task interaction patterns to ef-
fectively capture the rich dependency information
within and across the ACs and AC pairs.

5.2 Ablation Study

To analyze the impact of different components in
PITA, we conduct ablation studies and report the
results in Table 3. We can observe that by remov-
ing the whole task-interaction graph (w/o TIG), the
model cannot access the connectivity of the ACs
and AC pairs, with significant performance degra-
dation. It is worth noting that removing the whole
task-interaction graph (w/o TIG) is equal to only us-
ing the prompt template, which is ultimately close

5041

https://github.com/syiswell/PITA


PITA PITA-S PITA-M PITA-ICR PITA-IRC PITA-CRI PITA-RCI PITA-RIC
Models

0

10

20

30

40

50

60

70

A
ve

ra
ge

 S
co

re
s

73.7 72.1
69.9 71.5 69.9

72.6 71.8 71.5

50.8
47.5

10.7

43.4 43.9
48.2 49.0

43.3

PE
CDCP

Figure 4: The impact of different templates in terms of
average score over ACTC, ARTC and ARI. Note the
template of PATA-M exceeds the maximum length of
BART on CDCP.

to vanilla BART. In addition, to further illustrate
the effectiveness of task interaction information in-
jection, we put the task interaction graph behind
the BART-Decoder and the hidden states of the de-
coder as the input of the RGCN (denoted by PB
TIG). We can observe that PB TIG leads to a sig-
nificant decrease in performance. This is because
the PB TIG separately decodes the representations
of ACs and AC pairs in the decoder, which cannot
efficiently utilize the knowledge within the PLM
to obtain high-quality AC and AC pair representa-
tions.

To examine the importance of different compo-
nents in the task interaction graph, we consider re-
moving the different nodes and edges. We can see
that after removing the global node with the global
edge (w/o G-Edge), the model performance drops,
showing the effectiveness of the global information
for ACs and AC pairs. Removing the intra-task
edge (w/o IRT-Edge) degrades the performance,
verifying that contextual information is important
for AM. Removing inter-task edge (w/o IET-Edge)
leads to performance drops, demonstrating that task
interaction pattern learning facilitates a balanced
propagation of information between ACs and their
corresponding AC pairs.

5.3 Adaptability Experiment

Inspired by the recent success of Large Language
Models (LLMs) (Min et al., 2023), we conduct
additional experiments on two prominent LLMs,
namely ChatGPT-3.5-Turbo and LLAMA2. We
employ the natural language prompt approach
like (Madaan et al., 2022; Li et al., 2023) and few-
shot in-context learning (here 3-shot is used due
to the limitation of input length) in ChatGPT-3.5-

Data Type Model ACTC ARI ARTC

PE FT

PITA 88.3 73.5 59.2
LLAMA2-FT 83.0 59.0 50.8
LLAMA2-PITA 87.2 70.4 53.6
-w/o TIG 85.9 69.1 52.8

FS ChatGPT-3.5-turbo 64.2 57.4 38.6
LLAMA2 23.2 10.8 7.6

CDCP FT

PITA 83.6 44.9 23.8
LLAMA2-FT 77.6 27.1 14.4
LLAMA2-PITA 85.5 35.1 17.8
-w/o TIG 84.0 31.5 16.0

FS ChatGPT-3.5-turbo 57.4 22.6 11.3
LLAMA2 23.7 10.3 5.3

Table 4: Performance comparison on PE and CDCP
dataset in terms of Macro for ACTC and ARTC, as well
as F1 for ARI. FT and FS represent fine-tuning and few-
shot learning approaches, respectively.

Turbo and LLAMA2 for AM. Figure 6 displays
the format of the natural language prompt for AM.
To evaluate the adaptability of our method, we
adapt our approach to fine-tuning LLAMA2 using
LORA (Hu et al., 2021) (denoted by LLAMA2-
PIAT). Besides, we fine-tune LLAMA2 with the
natural language prompt approach (denoted by
LLAMA2-FT) and LLAMA2-PIAT without the
task interaction graph using LORA as baselines.
Each fine-tuning method uses a batch size of 1.
The results are presented in Table 4.

We observe that few-shot-based methods (i.e.,
LLAMA2 and ChatGPT-3.5-Turbo) significantly
underperform fine-tuning methods (i.e., PITA,
LLAMA2-PITA and LLAMA2-FT) on PE and
CDCP. Among these fine-tuning approaches, our
PITA framework (LLAMA-PITA) outperforms the
w/o TIG as well as the LLAMA-FT which is fine-
tuned using natural language prompt, validating the
effectiveness of our task interaction learning. In
addition, LLAMA-PITA performs worse than PITA
using BART as the base model. This is because
LLAMA-PITA has a large number of parameters
(including trainable and non-trainable parameters)
while the AM datasets have a small number of sam-
ples, which leads to severe overfitting.

5.4 Impact of Different Templates

We explore how different types of prompts affect
the performance in this section, as shown in Fig-
ure 4. We first compare two template variants with
our method: PITA-S, which uses an identical place-
holder for different ACs (AC pairs) in each sub-
task, and PITA-M, where each AC and AC pair
followed an [MASK] token for prediction, simulat-
ing the pretrained objective of BART. Furthermore,
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We argue that there are task order biases in our
PITA model due to the autoregressive generative
paradigm. Thus, we investigate the effect of task
order in the template and explore five variants (de-
noted by PITA-ICR, PITA-IRC, PITA-CRI, PITA-
RCI and PITA-RIC) that rearrange the placeholder
positions for the ACTC (C), ARI (I), and ARTC
(R) tasks. The formats of all prompt templates are
detailed in Table 7.

We find that (1) our template outperforms other
template variants; (2) PITA-S performs worse than
ours. With the same placeholders in each subtask,
where the template neither contains specific knowl-
edge about ACs or AC pairs nor learns task interac-
tion patterns during training; (3) PITA-M achieves
worse results than ours, demonstrating our ACs
and AC pairs placeholders can be better used for
task-specific prediction by injecting task interac-
tion information, whereas the extra [MASK] simply
contains the priori knowledge learned during pre-
training; (4) Unsurprisingly, PITA-ICR, PITA-IRC,
PITA-CRI, PITA-RCI and PITA-RIC obtain worse
performance than ours, which verifies that the task
order of ACTC, ARI and ARTC is better setting.
This setting is widely used in previous works.

5.5 Impact of Different Connections of Task
Interaction Graph

In the task interaction graph, we connect nodes ac-
cording to the strategy described in Section 3.2.2,
but this connection is not unique. To assess the
effectiveness of the proposed connection strategy,
we experiment with two different variants. The
first variant, termed Random connection (RC), ran-
domly links two nodes. The second variant, named
Full connection (FC), links each node pair. The
results are presented in Table 5. RC outperforms
FC yet falls short of our strategy, indicating that in-
discriminate node connections can introduce noisy
information. Our connection strategy considers not
only the contextual information within each sub-
task and the interactions across the three subtasks.
This ensures a balanced information flow between
Argument Components (ACs) and AC pairs, lead-
ing to superior results.

5.6 Case Study
We analyze two examples selected from the bench-
mark corpus to demonstrate the effectiveness of
task interaction for balancing information among
three subtasks, which is shown in Figure 5. Our
task interaction graph makes ACs and AC pairs

Model PE CDCP
ACTC ARI ARTC ACTC ARI ARTC

PITA 88.3 73.5 59.2 83.6 44.9 23.8
with RC 86.9 72.3 56.7 82.2 43.5 21.0
with FC 86.8 71.6 57.4 79.2 42.2 21.4

Table 5: The impact of different connections of task
interaction graph.

interact with each other. It not only helps the AC
pair nodes to invoke the type information of ACs
and itself. But also the AC nodes can interact with
AC pair nodes to transmit argumentation relation
information of AC pairs to themselves. In the first
example, although ST classifies all the correct ACs,
it cannot couple the correct pair (AC3, AC4). By
considering the argumentation relationship among
ACs, PITA avoids this situation. For the second
example, ST and PITA both classify the wrong type
for AC4 in ACTC. In ARTC, the sequential encod-
ing method ST cannot couple the pair (AC2, AC4),
resulting in one undetected pair. On the contrary,
PITA can avoid them and correct the pair type by
task interaction pattern learning and the balance of
information flow between AC and AC pairs.

6 Related Works

6.1 Argumentation Mining

Argumentation mining (AM) aims to identify and
extract the argumentation structures from argu-
mentative texts automatically (Lawrence and Reed,
2020; Bao et al., 2021b; Cheng et al., 2021; Sun
et al., 2022; Guo et al., 2023; Chen et al., 2023).
Early works (Peldszus and Stede, 2015; Persing
and Ng, 2016; Stab and Gurevych, 2017; Afan-
tenos et al., 2018) applied methods like minimum
spanning trees (MST) and integer linear program-
ming (ILP) with discrete features, focusing heav-
ily on feature engineering, which is both labor-
intensive and time-consuming. With the rise of
deep learning, Potash et al. (2017) introduced
a sequence-to-sequence model with pointer net-
works and attention for AM. Kuribayashi et al.
(2019) added linguistic clues to enhance AM per-
formance, while Niculae et al. (2017) used SVM-
based structured learning for both tree and non-tree
data, albeit requiring argumentation-specific fac-
tor graph designs. Galassi et al. (2018) and Morio
et al. (2020) introduced residual networks and task-
specific modules for AM, tackling tree and non-tree
structures separately. Bao et al. (2021a) proposed
a neural transition-based model using BERT for
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Example  1
Argumentation Text:
last but not least, [compared with teachers, parents do not have enough time to spend with their children]AC1. [nowadays we are facing a 
global economic crisis and it is necessary for both \\parents to work]AC2, hence [there is only limited time for them to teach their 
children]AC3. Thus, [it was impossible for them to be a good teacher]AC4. 
Ground Truth:
AC1: Premise; AC2: Premise; AC3: Premise; AC4: Claim;
(AC1, AC4, Support); (AC2, AC3, Support); (AC3, AC4, Support) 
PITA output:
AC1: Premise; AC2: Premise; AC3: Premise; AC4: Claim;
(AC1, AC4, Support); (AC2, AC3, Support); (AC3, AC4, Support) 

Example  2
Argumentation Text:
However, despite the fact that [advertisements can be exaggerated]AC1, it is also true that [it plays and important role economically] AC2. 
[They introduce new products, and provide various choices, not to mention they are often visually enjoyable]AC3. [Advertising also helps 
to keep prices at reasonable levels, creates a fair environment for commercial competition]AC4.
Ground Truth:
AC1:Premise; AC2:Claim; AC3:Premise; AC4: Premise; 
(AC1, AC2, Attack); (AC2, AC3, Support); (AC2, AC4, Support) 
PITA output:
AC1:Premise; AC2:Claim; AC3:Premise; AC4:Claim; 
(AC1, AC2, Attack); (AC2, AC3, Support); (AC2, AC4, Support) 

ST output:
AC1: Premise; AC2: Claim; AC3: Premise; AC4: Claim;
(AC1, AC2, Attack); (AC2, AC3, Support); (AC2, AC4, No-Rel)

ST output :
AC1: Premise; AC2 : Premise; AC3 : Premise; AC4: Claim;
(AC1, AC4, Support); (AC2, AC3, Support); ); (AC3, AC4, No-Rel) 

Figure 5: Examples predicted by PITA and ST, where incorrect prediction results are marked in red.

ACTC and transforming ARI into action prediction,
and Morio et al. (2022) used a Longformer-based
model with biaffine function for AM. Different
from previous works, we explicitly model the task
interactions by constructing the complex relations
within and between ACs and AC pairs for AM
through a generative framework.

6.2 Prompt Tuning

Prompt tuning (Liu et al., 2023) has attracted much
attention in the field of natural language process-
ing (NLP), such as text classification (Schick and
Schütze, 2021; Wang et al., 2022), text genera-
tion (Li and Liang, 2021) and information extrac-
tion (Ma et al., 2022). Existing studies on prompt
tuning learning mainly focus on discrete and con-
tinuous prompts. The former designs text-based
prompts (Jiang et al., 2020; Gao et al., 2020; Schick
and Schütze, 2020), while the latter prepend a learn-
able prompt vector to word embeddings (Lester
et al., 2021). We adopt the latter because of its
flexibility and extensiveness. To the best of our
knowledge, our PITA is the first work to use prompt
tuning within a generative framework for AM.

7 Conclusion

In this paper, we proposed a novel model PITA,
which prompted task interaction to model the re-
lationships within and between ACs and AC pairs
through a joint decoding mechanism encompassed
within a generative framework. To explicitly model
the interaction among three subtasks, we devised
a dynamic prompt template to prompt all ACs and
AC pairs in the three subtasks. Then, we con-
structed an undirected heterogeneous graph to cap-
ture the comprehensive relationships within and
between ACs and AC pairs. Experimental results

on two benchmarks showed that our method out-
performed strong baselines significantly.

Limitation

To point out future research direction for AM, we
perform an error analysis on 100 cases where our
PITA made mistakes for ACTC, ARI and ARC
subtasks. In the ACTC subtask, we discover that
there is a type bias for different positions of ACs.
For instance, PITA tends to predict the first AC
as “Claim” and the last AC as “Promise”. This
is because PITA overfits the type distribution of
ACs’ different positions based on the prompt place-
holders. Maybe we can adopt a debias approach to
alleviate this issue. For ARI, we find that PITA cap-
tures the connection between long-distance ACs
so excessively that it identifies additional AC pairs.
In the argumentation structure, AC pairs with re-
lationships should not be too far apart, or it won’t
follow the argumentation structure habits of human
texts. Therefore, we suggest that during ARI tasks,
incorporating distance loss between ACs can guide
the model to focus more on the connection between
ACs with moderate distances, which could poten-
tially address the issue. In the ARTC task, the most
serious problem is the error identification of AC
pairs, resulting in incorrect AC pair type classifica-
tion. In addition, there is a serious class imbalance
problem that induces incorrect model predictions.

Last, we argue that there are order biases in our
PITA model as described in Table 4 due to the au-
toregressive generative paradigm. In particular, the
order of the placeholders in the prompt template
is fixed, but there are actually no order relations
between these placeholders. Although we mitigate
the order bias between tasks using task interaction
learning and experimentally validate the effective-
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ness of our task interaction learning. However, two
directions worth exploring are combining multiple
templates with different task orders to eliminate or-
der bias between tasks and the fact that order bias
within each task needs to be taken into account,
even if it may be increases the complexity of the
model. Therefore, the tradeoff between order mod-
eling and complexity is what we need to explore.
Additionally, a new method that is free from the
influence of order bias is more desirable.
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A Appendices

Type PE CDCP
Paragraphs 1833 731
Train 1464 581
Test 369 150
Components 6089 4779
Relations 3832 1353
Components Per Sample 3.5 6.5

Table 6: The statistics of the PE and CDCP datasets.

A.1 Data statistics
We conduct experiments on two popular bench-
mark datasets.

• PE (Stab and Gurevych, 2017): The PE
dataset contains 420 essays with 1833 para-
graphs. There are three types of ACs (i.e.,
MajorClaim (MC), Claim and Premise) and
two types of ARs (i.e., Support and Attack).
Each AC has at most one outgoing AR so the
argumentation graph of the paragraph can be
either directed trees or forests. In addition, we
extend each AC by including its argumenta-
tive marker following previous works (Kurib-
ayashi et al., 2019; Bao et al., 2021a). We
split this dataset into a training set of 1464
ACs and a testing set of 369 ACs, and ran-
domly choose 10% of the training set as the
validation set, which is consistent with previ-
ous works (Kuribayashi et al., 2019; Bao et al.,
2021a).

• CDCP (Park and Cardie, 2018): The CDCP
dataset contains 731 paragraphs. All ACs are
classified into five types: Value, Policy, Tes-
timony, Fact and Reference. The ARs have
two types: Reason and Evidence. Each AC
may have several outgoing ARs, thus the argu-
mentation graph is of non-tree structure. The
whole dataset is partitioned into a training set
of 581 ACs and a testing set of 150 ACs. We
randomly choose 10% of the training set as
the validation set following (Bao et al., 2021a;
Morio et al., 2022).

The statistics of the two datasets are summarized
in Table 6.

A.2 Baselines
Following previous works (Morio et al., 2022), for
the PE dataset with tree structure, we compare our
model with six strong baselines:

• Joint-ILP (Stab and Gurevych, 2017): This
model optimizes argument component types
(ACTC) and argumentative relations (ARI)
using Integer Linear Programming.

• Joint-PN (Potash et al., 2017): It applies a
Pointer Network with attention mechanism to
jointly learn ACTC and ARI.

• LSTM+dist (Kuribayashi et al., 2019): This
work first introduce LSTM-minus-based span
representation with pretrained ELMO embed-
ding for of AM.

• BERT-Trans (Bao et al., 2021a): This model
employs neural transition-based model by gen-
erating a sequence of actions for argumenta-
tion mining.

• BART (Lewis et al., 2019): The model only
uses a BART and converts the AM into a se-
quence generative formulation. The format of
the target sequence is similar to our prompt
format.

• ST (Morio et al., 2022): This method employs
Longformer (Beltagy et al., 2020) and biaffine
function for AM.

For the CDCP dataset with non-tree structure,
we compare our model with six strong baselines,
which are:

• DR-LG (Galassi et al., 2018): This method
explores the use of residual networks with
link-guided training to jointly learn ACTC,
ARI and ARTC.

• SSVM-strict (Niculae et al., 2017): This
method is a variant of structured SVM with
strict factor graph for both ACTC and ARI.

• TSP-PLBA (Morio et al., 2020): The model
incorporates task-specific parameterization to
encode ACs and proposition-level biaffine at-
tention to capture the structure of argumenta-
tion corpus.

• BERT-Trans (Bao et al., 2021a): This model
employs neural transition-based model by gen-
erating a sequence of actions for argumenta-
tion mining, which is also the current state-of-
the-art method on the CDCP dataset.
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Input: 

The text is "Despite the fact that advertisements can be exaggerated, it is also true that it plays an 

important role economically. They introduce new products.". 

The argumentation components in the text: 

"advertisements can be exaggerated". 

"it plays and important role economically". 

"They introduce new products". 

The type of argumentation component and argumentation relation in the text:

Output: 

"advertisements can be exaggerated." is Premise.

"it plays an important role economically." is Claim.

"They introduce new products." is Premise.

the argument relation between "advertisements can be exaggerated." and "it plays an important role 

economically." is "Attack".

the argument relation between "it plays an important role economically." and "They introduce new 

products." is "Support".

Figure 6: The format of natural language prompts for AM.

Type Templates
PITA [D][AC1] . . . [ACm][P(1,2)] . . . [P(m−1,m)][Q(1,2)] . . . [Q(m−1,m)]
PITA-S [D][AC] . . . [AC][P ] . . . [P ][Q] . . . [Q]

PITA-M
[D][AC1][MASK] . . . [ACm][MASK]
[P(1,2)][MASK] . . . [P(m−1,m)][MASK]
[Q(1,2)][MASK] . . . [Q(m−1,m)][MASK]

PITA-ICR [D][P(1,2)] . . . [P(m−1,m)][AC1] . . . [ACm][Q(1,2)] . . . [Q(m−1,m)]
PITA-IRC [D][P(1,2)] . . . [P(m−1,m)][Q(1,2)] . . . [Q(m−1,m)][AC1] . . . [ACm]
PITA-CRI [D][AC1] . . . [ACm][Q(1,2)] . . . [Q(m−1,m)][P(1,2)] . . . [P(m−1,m)]
PITA-RCI [D][Q(1,2)] . . . [Q(m−1,m)][AC1] . . . [ACm][P(1,2)] . . . [P(m−1,m)]
PITA-RIC [D]][Q(1,2)] . . . [Q(m−1,m)][P(1,2)] . . . [P(m−1,m)][AC1] . . . [ACm]

Table 7: The format of different templates.

• BART (Lewis et al., 2019): The model only
uses a BART and converts the AM into a se-
quence generative formulation. The format of
the target sequence is similar to our prompt
format.

• ST (Morio et al., 2022): This method employs
Longformer (Beltagy et al., 2020) and biaffine
function for AM.

A.3 Impact of Different Templates

We explore how different types of prompts affect
the performance in this section, as shown in Fig-
ure 4. We first compare two template variants with
our method: a template (denoted by PITA-S) with
the same placeholder for different ACs (AC pairs)
in each subtask, a template (denoted by PITA-M)
with each AC and AC pair following an added
[MASK] for prediction to simulate the pretrained
objective of BART. In addition, We argue that there
are task order biases in our PITA model due to the
autoregressive generative paradigm. Thus, we in-
vestigate the effect of task order in the template
and explore five templates (denoted by PITA-ICR,
PITA-IRC, PITA-CRI, PITA-RCI and PITA-RIC)
in which the positions of placeholders in the three
tasks are swapped. The format of all prompt tem-
plates can be viewed in Table 7.

Data Model TT (min) IT (sec)

PE

BART 1.17 15.00
ST 1.23 4.08
PITA 1.27 2.54
-w/o TIG 1.20 2.26

CDCP

BART 0.63 18.63
ST 0.81 1.75
PITA 0.73 1.26
-w/o TIG 0.65 1.05

Table 8: Computational cost in terms of Training Time
(TT) per epoch (minutes) and Inference Time (IT) in the
test set (second).

A.4 Computational Cost

We investigate the computational cost of baseline
methods and our PITA model in training and in-
ference. For a fair comparison, all these models
use the same batch size of 4 in training and infer-
ence. Table 8 shows the training time and inference
time on the PE and CDCP. PITA has a competi-
tive efficiency compared to the SOTA model (i.e.,
ST) for training, while faster than ST for inference.
For example, PITA shows a decrease of 1.54s and
0.49s in inference time for all samples in PE and
CDCP, respectively, compared to ST, which veri-
fies the efficiency of our method. In addition, dur-
ing inference, our PITA is more efficient than the
generation-based baseline (i.e., BART) by a fac-
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tor of 6-18 owing to our task interaction prompt
learning, although minimal overhead is added to
the training process. Comparing PITA with w/o
TIG, the task interaction graph introduces a small
amount of extra time (almost 1.8s on PE and 1.2s
on CDCP for one epoch) in both the training and
inference phases (0.28 seconds on PE and 0.21
seconds on CDCP for all instances), which is ac-
ceptable in practice.
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